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Optimal use of trees in structural MAP adaptation
for speaker verification

SANGEETA Biswas,! Marc FErras,™ KoicHi SHINODAT!
and SapAaok1 Furuif?

In speaker verification, the Structural Maximum-A-Posteriori(SMAP) adap-
tation technique is often used to train speaker-adapted acoustic models by using
available speech data in an efficient and flexible manner. In SMAP adaptation,
a tree structure is used to represent the acoustic space of the human voice.
We observed that one particular tree structure is not necessarily optimal for
modeling the acoustic space of all speakers. In this paper, we propose a voting
approach as a way to combine the decisions of multiple SMAP-adapted systems
using different tree structures. We expect that this approach is more robust
than using a single tree structure. We evaluate our proposed method on the
10secdw-10secdw task of NIST SRE 2006 and show that our method is more
elfective than the conventional SMAP adaptation as well as relevance MAP
adaptation.

1. Introduction

Over the last few years text-independent speaker verification systems have be-
come robust againsl inter-session variability for speech segments of around 2 or
3 minutes. This is mainly due to the development of the Joint Faclor Analysis
(JFA)Y and Nuisance Attribute Projection (NAP)® techniques. Iowever, when
speech segments are very short, e.g., 10 seconds, the verification accuracy is not
as satisfactory as for long segments. Tn some cases using NAP has been reported
to be worse®) than no compensation.

To tackle this problem, Vogt et al.?) proposed using Probabilistic Subspace
Adaptation (PSA) into Factor Analysis (FA) modeling. Fauve et al.*) proposed
a well-tuned speech detection front-end for improved [rame selection followed by
eigenvoice modeling. All these methods emphasize keeping the number of model
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parameters small enongh so that they can be reliably estimated.

In speech recognition, Shinoda et al.” showed that the Stractural Maximmm-A-
Posteriori (SMAP) adaplation technique using a tree structure performs better
than relevance MATP® when the size of adaptation data is very small. In speaker
verification, Liu et al.® and Xiang et al.2® successfully used it for speech segments
of about 2 minutes long or shorter. owever, one particular tree structure is not
always oplimal [or modeling the acoustic space ol every speaker. In this paper,
we propose a voting approach as a way to combine decisions of multiple systems
with different tree structures. We expect that this approach is more robust than
SMAP adaptation with a single tree structure.

The remainder of the paper is organized as follows. In Scction 2, we describe
our GMM-SVM based system. A brief description of SMATP adaptation is given
in Section 3. Section 4 illustrates our proposed voting approach. In Section 5 and
Section 6, we describe our experimental setup and results respectively. Section 7
gives some conclusions. _

2. GMM-SVM verification system

The goal of an aulomalic speaker verification system is to verily the claimed
identity of a speaker, giving a binary decision. Adaptation of Gaussian Mix-
ture Models (GMM) was first used lor speaker verification by Reynolds et al.®).
Most speaker verification approaches are currently based on the same framework.
Campbell et al.t) showed that an approach using Support Vector Machines (SVM)
and GMM mean vectors as leatures (GMM-SVM) oblains similar performance
to the GMM-UBM paradigm and has less computational complexity.

In a GMM-SVM system, a speaker-independent GMM, so-called Universal
Background Model (UBM), is trained using hours of speech segments from hun-
dreds of speakers using the Expectation-Maximization (EM) algorithm, A GMM
is obtained for each speech segment of a target speaker by adaptating the UBM.
GMM for a set of background speakers, used as negative data in the clagsifier,
are obtained in the same way. The SVM classifies the stacked mean vectors of
the speaker maodels into target (true) or impostor (false) classes.

Let the GMM-UBM have M Gaussian pdf components
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M
(@) =Y NN (5 pas, ), (1)

where A; is a mixture weight, A/ 1i=sla Gaussian pdl, p; and X; are the mean
and covariance matrix of the Gaussian pdf respectively and Y; is assumed to be
diagonal.

For speaker s and the m-th Gaussian, MAP adaptation generates a mean vector

as

ﬁm (S} = C‘-'mf-"m(s) =+ (1 N C’m)pfrn (2)
where p,,(s) is the expected value of the m-th Gaussian using the adaptation

data only and pt,, is the corresponding mean vector in the UBM. ¢, is a weight
used to weight ihe relevance of the prior and is computed by introducing the
so-called relevance factor 7 as

Tm .
Gt = ) ('5)
. . ¥ eI .
where 7y, is the occupation count of the m-th Gaussian given the adaptation
data.
The SVM classifies so-called supervectors obtained by concafenation of the
mean vectors of the speaker-adapted models. Prior to classification, the mean
vectors are typically normalized by its variance and mixture weight as

sv® = (v )\121_%#&'{‘5 doc Tt tane)T (4)

where sv* has dimension A x I il the Gaussian mean vectors are I'-dimensional.
3. SMAP adaptation

SMAP adaptation was proposed to keep the desirable asymplolic properties of
relevance MAP while dealing with the problem of the data scarceness by using a
tree structure. First, a tree is obtained by clustering the Gaussian components
of the UBM. The root node of the tree represents the whole acoustic space and
cach of the leal nodes has a Gaussian component that summarizes its child node
distributions. After building the tree, speaker-dependent models are obtained by
using each nou-leaf node as prior information for its child nodes. These two steps
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are brielly described in the following two subsections.

3.1 Tree construction

In our method, the structure of the tree represented by the number of layers
L and the number of branches B,(n” from a node r at the [-th layer needs to be
provided prior to clustering.

For clustering, we define the distance measure between two Gaussian compo-
nents as the symmetric Kullback-Leibler (KL) divergence. Assuming Lhe covari-
ance matrices to be diagonal, the KL divergence between two Gaussian compo-
nents, go(.) and gs(.) can be written as

F_a. _ _ o
d(a,b) = Z["a(ﬂ) i “E(’):‘g((:l)b(?) — 1 (1))
f'fg('i) a2(i) + (e (i) — pp(i))?
oa(i)

where j14(i) is the i-th element of F-dimensional mean vector p, and o2(i) is the

1=1

+

I (5)

i-th diagonal element of covariance matrix 3,
The algorithm for obtaining a tree from a UBM with ¢ gaussians is given
below:
(1) Set:
(a) the root node to be node k
(b) all the M Gaussians of UBM in set Gy,
{e) B,(‘,l) to be the number of children n
(d) ltobel

(2) Calculate the node pdf g, for node k using the following formulas:

1
H (3) T Hm(i)s (b)
] ' A/fk ﬂ‘l;ck
oh) = g7 D (02.00) + 12.(1) — Mepi (i), (7)
" mEGK

where M. is the number of Gaussian components included in Gp.

(3) Iflis equal to L, stop clustering, else go to Step 4

(4) Compute the initial pdf for n child nodes using the minimaxz method:
(a) Find n Gaussian components from Gy:
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(i) The lst Caussian is g, (.) = gm(.) where
th = argmaxd(m, k) (8)
.
(ii) Rest of the (n — 1) Gaussians will be g, (.) = gm(.) where

m = arg max min d(m, cg), (9)
GEG ek
where G is the sel of Gausslans ahoa(]y assigned to the child

nodesofnode k, 1 <p<n—-landl1<g<n—2

(b) Interpolate the node pdl of the node k& and the initial node pdf of

each child node ¢, and set the node pdf for ¢, as follows:
fhe, (1) = (1 — ﬂf)m. (1) ol ("), (10)
62,(1) = (1 — a)(@26) + H2(0)) + o, () + 12 ) = freps (1)
whme 0<a<l
(5) Repeatl the [ollowing k-means procedures until the grand sum of distances,
gD, converges:

(a) For each Gaussian component in Gy, calculate the distance from it
to each child node pdfl of the [-th layer by using (5), and assign each
mixture component to the nearest child node

(b) Recalculate the child node pdf by using (6) and (7)

(¢) Using (5), caleulate the sum of distances, D, from each child node to
each of its mixture components and then obtain GD by accumulating
all D

(6) Set each child node to be node & and its corresponding subset of Gaussian

components to be Gy. Increase [ and go 1o Step 4.

3.2 Adaptation

The formulation of SMATP adaptation is similar to that of relevance MAP*,
except that it uses hierarchical priors and uses normalized pdfs in the formulation.
The adaptation steps for each node p using adaptation data X = {@),xs, ..., x7}
are:
(1) "Transform each sample vector @; inlo a vector y, lor each mixture com-
ponent m as follows:

o = B (@, — ul), (12)

wheret=1,2,... T and m=1,2,..., M®
Estimate the norma.hzed pdf N(Y(P |12, 1) for Yﬁ(g) = {uﬁ,ﬁ?, ej,(}fq,. .,ij:%—.

—
[S%]
~—
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where »(®) and 7(P) represent the shift and rotation needed to compensate
for the distortion, i.e., to adapl the model parameters {o the data. When
there is no mismatch between the training and adaplation data, then /(P =
0 and 5® = . The ML estimation of the mean vector of the normalized
pdl is calculated as follows:
) = En 1 Z:’:t; 71(7:!:)1‘) J'irfnja) (13)
Zf 1 ZN 1 ’Yw(:cll)t) ) l

is the occupation probability for Gaussian m at tree node p and

where qffff)
time .
(3) Calculate the hierarchical prior

SF) | ppp-L
i}(p) NPV(P, | Tl/(p )

=y 14
Ny+7 ' (14)

Mitr
where N, = E = 3 E s Y(P)me 18 the average number ol frames as-

signed to node pdf p and r is the MAP relevance factor that weights the
priors at the parent node p — 1.
(4) Compute the SMAP estimate of the mean vector
2 L2 o -
: AP =P+ 3 o) 5)
»

where t;’ is the unadapted mean vector for Gaussian m of node p.
4. Voting method

In SMAP adaptation, a tree structure obtained by clustering Ganssians offers a
convenient way to capture the hierarchical structure of the acoustic space of the
human voice, Different speakers have different acoustic spaces depending on fac-
tors such as the language, accent or pronunciation particularitics. Tt is therelore
reasonable to think that the optimal clustering differs from speaker to speaker
and, in a hierarchical clustering scenario, so wonld the oplimal tree structure.
In other words, some tree structures may be adapted more efficiently Lo some
speakers than others. In the context of SMAP adaptation this would translate
into better prior estimates. As evidenced by informal experiments, decisions in-
volving certain speakers are slightly sensitive to the chosen tree structure. In this
paper, we propose to combine decisions ol mulliple systems with dilferent tree
structures as a way to mitigate this problem. To proceed, we construct a set of
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K SMAP adapted systems with different tree structures and:
(1) For each trial z,
(a) Ask yes/no vote to each of the JX' systems

yes il thry >= score,

Voie(z) = (16)

no il thry < score,
where thry is the speaker independent threshold of system &
(1) Divide the K systems into two groups based on their types of votes.
(¢) Re-estimate the score by averaging the score of the majority group.
(2) Set a global speaker-independent threshold
(3) ‘Take final decision aboul each trial as [ollows
true if thrg >= score,
false il thre < score,
where thrg is the global speaker independent threshold

(17)

Decision(z) =

In machine learning, voting and score fusion techniques are known to obtain
performance gains il 1he individual systems are performing sufficiently, Oth-
erwise, the final decisions could degrade and become worse Lhan those of the
individual systems.

5. Experimental setup

The performance of the speaker verification systems was measured by carrying
ont experiments on the 10secdw-10secdw task of the 2006 NIST SRE *!. In this
task, the length of training and test segments is about 10 seconds. There are 2971
true trials and 30584 false trials for 731 speakers among which 316 are females
and 415 are males.

Regarding feature extraction, we first remove the non-speech part from the
speech segments using the information in the transcript files. We break each
segment into frames of 30 ms long with a frame rate of 100 frames/sec. We pre-
emphasize each [rame with a pre-emphasis factor of 0.97 and apply a Hamming
window. We compute 15 Perceptual Linear Prediction (PLP) coeflicients, aug-
mented with the energy coefficient and first and second derivatives, resulting in

48 features per [rame. Cepstral mean subfraction was applied to remove static

#1 hitp://www.itlnist.gov/iad /mig/tests/spk/2006/index.html
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channcl cffects.

A UBM with 512 Gaussians was trained using about 180 hours of speech in-
volving 2832 and 1974 female and male speech segments of the 2004 NIST SRE.
We applied 5 iterations of Baum-Welch re-estimation. For the speaker models
we use SMAP adaptation with different relevance factors. The resulting super-
vectors have 24576 dimensions. We use a solt-margin SVM with a lincar kernel.
The same 4806 speech segments used for UBM training were used as the imposter
speaker data.

6. Results

First we conducted experiments o compare SMAP and relevance MAP in
the GMM-SVM system, and later some experiments on the proposed voting ap-
proach. We ran one system using relevance MAP and 13 systems using SMAP.
The latter used different tree structures that were either binary trees, varialions
ol binary trees or three level trees with the same number of child nodes at ev-
ery layer. In this series of experiments, both MAP and SMAP systoms used a
relevance [actor of 10.

Table 1 shows the Equal Error Rate (EER) *2 of these systems. Most ol the
SMAP-adapted systems outperform the relevance MAP-adapted system. The
tested binary trees are the worst performing amongst all trees. One reason could
be that the number of nodes/clusters is too small to calculate the prior efli-
ciently. That is the reason why as soon as more than two children are included in
their layers, e.g. SMAP 2.2 2.5 or SMAP 2.2 5.5, error rates decrease. For the
three layer frees, error rates consistently decrease as the number of nodes gets
larger. The best relative improvement for individual SMAP systems, around 6%,
is obtained for the 2.10.10_2 tree structure-based system, although several other
systems perform fairly close. Overall, systems using structures with a larger
number of nodes/clusters tend 1o obtain the lower absolute error rates.

The SMAP voling system outperforms any SMAP individual system, suggest-
ing the voting technique is working properly. We obtain an additional gain of

*2 18ER is the rate when False Rejection(FR) error and False Acceplance (FFA) error are equal.
FA error occurs when a imposter speaker is accepted falsely as the claimed speaker and I'R
error occwrs when a true speaker is rejected against his/her own claim
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2.3% EER from the best SMAP individual system, which makes a total relative
gain ol 8.3% LR from the MAP baseline system.

7. Conclusion

We proposed a voling technigque to avoid the issue of tree structure optimization
in SMAP adaptation. We tested it on a speaker verification task, namely the
10secdw-10secdw condition of the 2006 NIST SRE, a inherently dilhicult task
due to the short length of the speech segments. We showed that the voting
technique is effective although relative gains are small. We also showed that
SMAP-adapted systems outperform a MAP-adapted baseline by a 6% in relative
EER terms. As future work, we would investigate other score fusion strategies,
c.g., based on neural network or logistic regression. Exploring a greater diversity
of trees should be addressed as well.
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