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1. Overview

De-embedding is the process of deducing the characteristics of a device under test (DUT) from
measurements made at a distance ((Bauer & Penfield, 1974)), often via additional measure-
ments of one or more dummy devices. This article reviews a simple thru-only de-embedding
method suitable for on-wafer characterization of 2-port, 4-port, and 2n-port networks having
a certain symmetry property. While most conventional de-embedding methods require two
or more dummy patterns, the thru-only method requires only one THRU pattern.
If the device under measurement is a 2-port and the corresponding THRU pattern has the
left/right reflection symmetry, the THRU can be mathematically split into symmetric halves
and the scattering matrix for each of them can be determined (Ito & Masu, 2008; Laney, 2003;
Nan et al., 2007; Song et al., 2001; Tretiakov et al., 2004a). Once those scattering matrices are
available, the effects of pads and leads can be canceled and the characteristics of the device ob-
tained. The method was applied up to 110GHz for characterization of an on-chip transmission
line (TL) (Ito & Masu, 2008).
In the case of 4-port devices such as differential transmission lines, 4-port THRU patterns with
ground-signal-ground-signal-ground (GSGSG) pads or GSSG pads can often be designed to
have the even/odd symmetry in addition to the left/right reflection symmetry. In that case,
the scattering matrix for a THRU can be transformed into a block-diagonal form represent-
ing two independent 2-ports by an even/odd transformation. Then, the 2-port thru-only de-
embedding method can be applied to the resultant two 2-ports. This 4-port thru-only method
was applied to de-embedding of a pair of coupled transmission lines up to 50 GHz (Amakawa
et al., 2008). The result was found to be approximately consistent with that from the stan-
dard open-short method (Koolen et al., 1991), which requires two dummy patterns: OPEN and
SHORT.
In the above case (Amakawa et al., 2008), the transformation matrix was known a priori be-
cause of the nominal symmetry of the THRU. However, if the 4-port THRU does not have the
even/odd symmetry or if the device under measurement is a 2n-port with n ≥ 3, the above
method cannot be applied. Even if so, the thru-only method can actually be extended to
4-ports without even/odd symmetry or 2n-ports by using the recently proposed S-parameter-
based modal decomposition of multiconductor transmission lines (MTLs) (Amakawa et al.,
2009). A 2n-port THRU can be regarded as nonuniform multiconductor transmission lines,
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Fig. 1. DUT embedded in parasitic networks.

and its scattering matrix can be transformed into a block-diagonal form with 2 × 2 diagonal
blocks, representing n uncoupled 2-ports. The validity of the procedure was confirmed by ap-
plying it to de-embedding of four coupled transmission lines, which is an 8-port (Amakawa
et al., 2009).
The thru-only de-embedding method could greatly facilitate accurate microwave and
millimeter-wave characterization of on-chip multiport networks. It also has the advantage
of not requiring a large area of expensive silicon real estate.

2. Introduction

Demand for accurate high-frequency characterization of on-chip devices has been escalating
concurrently with the accelerated development of high-speed digital signaling systems and
radio-frequency (RF) circuits. Millimeter-wave CMOS circuits have also been becoming a hot
research topic.
To characterize on-chip devices and circuits, on-wafer scattering parameter (S-parameter)
measurements with a vector network analyzer (VNA) have to be made. A great challenge
there is how to deal with parasitics. Since an on-wafer device under test (DUT) is inevitably
“embedded” in such intervening structures as probe pads and leads as schematically shown
in Fig. 1(a), and they leave definite traces in the S-parameters measured by a VNA, the char-
acteristics of the DUT have to be “de-embedded” (Bauer & Penfield, 1974) in some way from
the as-measured data.
While there have been a number of de-embedding methods proposed for 2-port networks,
very few have been proposed for 4-port networks in spite of the fact that many important
devices, such as differential transmission lines, are represented as 4-ports. In this article, we
present a simple 4-port de-embedding method that requires only a THRU pattern (Amakawa

pad pad

S

G

S

G

S S

G

G G

G 150µm
PAD left PAD right

Zthru (Ythru)

Fig. 2. Micrograph and schematic representation of THRU (Ito & Masu, 2008).

et al., 2008). This method is an extension of a thru-only method for 2-ports. In addition, we
also present its extension to 2n-ports (Amakawa et al., 2009).
The rest of this article starts with a brief description of the thru-only de-embedding method for
2-ports in Section 3. It forms the basis for the multiport method. In Section 4, we explain the
mode transformation theory used in the multiport de-embedding method. Section 5 presents
an example of performing de-embedding by the thru-only method when the DUT is a 4-port
having the even/odd symmetry. Section 6 explains how the mode transformation matrix can
be found when the DUT does not have such symmetry or when the DUT is a 2n-port with
n ≥ 3. Section 7 shows examples of applying the general method. Finally, Section 8 concludes
the article.

3. Thru-only de-embedding for 2-ports

Commonly used de-embedding methods usually employ OPEN and SHORT on-chip standards
(dummy patterns) (Wartenberg, 2002). De-embedding procedures are becoming increasingly
complex and tend to require several dummy patterns (Kolding, 2000b; Vandamme et al., 2001;
Wei et al., 2007). The high cost associated with the large area required for dummy patterns is
a drawback of advanced de-embedding methods.
Thru-only methods, in contrast, require only one THRU and gaining popularity (Daniel et
al., 2004; Goto et al., 2008; Ito & Masu, 2008; Laney, 2003; Nan et al., 2007; Song et al., 2001;
Tretiakov et al., 2004a).
In (Ito & Masu, 2008; Laney, 2003; Nan et al., 2007; Song et al., 2001; Tretiakov et al., 2004a), the
THRU is modeled by a Π-type equivalent circuit shown in Fig. 1(b). The method of (Goto et al.,
2008), on the other hand, was derived from (Mangan et al., 2006), which is related to (Rautio,
1991). It is applicable if the series parasitic impedance Z in Fig. 1(b) is negligible (Goto et al.,
2008; Ito & Masu, 2008; Rautio, 1991). In what follows, we will focus on the method of (Ito &
Masu, 2008; Laney, 2003; Nan et al., 2007; Song et al., 2001; Tretiakov et al., 2004a).
The THRU pattern used in (Ito & Masu, 2008) is shown in Fig. 2. The 150 µm-pitch ground-
signal-ground (GSG) pads are connected with each other via short leads. It turned out that
the THRU can be adequately represented by the frequency-independent model shown in Fig. 3.
Fig. 4 shows good agreement between the measurement data and the model up to 100 GHz.
The procedure of the thru-only de-embedding method ((Ito & Masu, 2008; Laney, 2003; Nan
et al., 2007; Song et al., 2001; Tretiakov et al., 2004a)) is as follows. The 2-port containing the
DUT and the THRU a are assumed to be representable by Fig. 1(a) and Fig. 1(b), respectively.
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In terms of transfer matrices (Mavaddat, 1996), this means that

Tmeas = TLTdutTR, (1)

Tthru = TLTR. (2)

The S-matrix and T-matrix of a 2-port are related to each other through

S =

[
S11 S12
S21 S22

]
=

1
T11

[
T21 det T
1 −T12

]
, (3)

T =

[
T11 T12
T21 T22

]
=

1
S21

[
1 −S22

S11 −det S

]
. (4)

Suppose now that the Y-matrix of the THRU is given by

Ythru =

[
y11 y12
y12 y11

]
. (5)

Note that in (5), reciprocity (y21 = y12) and reflection symmetry (y22 = y11) are assumed. (5)
can be found by converting the measured S-matrix of the THRU into a Y-matrix through (18).
If the THRU is split into symmetric halves according to the Π-equivalent in Fig. 1(b),

YL =

[
Y + 2Z−1 −2Z−1

−2Z−1 2Z−1

]
(6)
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Fig. 5. De-embedded results of the THRU pattern. The thru-only de-embedding method is
applied. The maximum magnitude of S11 is −33.7 dB (Ito & Masu, 2008).

and

YR =

[
2Z−1 −2Z−1

−2Z−1 Y + 2Z−1

]
, (7)

respectively. The parameters in Fig. 1(b) are then given by

Y = y11 + y12, (8)

Z = −1/y12. (9)

The characteristics of the DUT can be de-embedded as

Tdut = T−1
L TmeasT−1

R . (10)

For the procedure to be valid, it is necessary, at least, that the de-embedded THRU that does
nothing. That is, S11 and S22 should be at the center of the Smith chart, and S12 and S21 are
at (1,0). Fig. 5 shows that those do hold approximately. Published papers indicate reasonable
success of the thru-only de-embedding method for 2-ports (Ito & Masu, 2008; Laney, 2003;
Nan et al., 2007; Song et al., 2001; Tretiakov et al., 2004a).

4. Theory of mode transformation

4.1 General theory
In this section, we explain the theory of S-matrix mode transformation (Amakawa et al., 2008)
in preparation for developing thru-only de-embedding for multiports based on the 2-port
method explained in the preceding section.
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A generalized scattering matrix S of an n-port (Fig. 6) relates the vector, a, of power waves
of a given frequency incident upon the n-port to the vector, b, of outgoing power waves
(Kurokawa, 1965; Mavaddat, 1996).

b = Sa, (11)

a = R−1/2
0 v+ =

1
2

R−1/2
0 (v + Z0i), (12)

b = R−1/2
0 v− =

1
2

R−1/2
0 (v − Z∗

0 i), (13)

v = v+ + v− = Zi, (14)

i = i+ + i− = Yv. (15)

In (12) and (13), ∗ denotes complex conjugate. Z0 is the reference impedance matrix used to
define the generalized S-matrix, and R0 = �(Z0). Z0 is a diagonal matrix in the conductor
domain, in which actual measurements are made with a vector network analyzer (VNA). The
kth diagonal element of Z0 is the reference impedance of the kth port. Z0 is usually set by a
VNA to be a real scalar matrix: Z0 = R0 = R01n with R0 = 50 Ω. Here 1n is an n × n identity
matrix. v and i in (14) and (15) are, respectively, the port voltage vector and the port current
vector in the conductor domain. Z in (14) is the open-circuit impedance matrix of the n-port
under measurement and its inverse is the short-circuit admittance matrix Y in (15). From (11)
and (12), S and Z (= Y−1) can be converted to each other by

S = R−1/2
0 (Z − Z∗

0) (Z + Z0)
−1 R1/2

0 , (16)

Z = R1/2
0 (12 − S)−1

(
R−1/2

0 Z∗
0 + SR−1/2

0 Z0

)
, (17)

Y =
(

R−1/2
0 Z∗

0 + SR−1/2
0 Z0

)−1
(12 − S)R−1/2

0 . (18)

A network matrix of an n-port (Fig. 6) can be transformed into a different representation by
changing the basis sets for voltage and current by the following pair of transformations (Paul,
2008).

v = KVṽ, (19)

i = KI ĩ, (20)

subject to
KT

VK∗
I = 1n. (21)

Here T denotes matrix transposition. ṽ and ĩ are, respectively, the port voltage vector and the
port current vector in the modal domain. (21) ensures that the power flux remains invariant
under the change of bases (Paul, 2008); for example, aTa∗ = ãTã∗. (19) and (20) suggest that
KV and KI can be expressed in terms of a unitary matrix KU (K†

U = K−1
U ) and a Hermitian

matrix KP (K†
P = KP) by polar decomposition as

KV = KUKP, KI = KUK−1
P . (22)

Here † denotes conjugate transpose. Since v and i are related by the Z-matrix as v = Zi,
impedance matrices undergo the following transformation by the change of bases (19) and
(20):

Z̃ = K−1
V ZKI = K−1

P K†
UZKUK−1

P . (23)

Likewise,
Ỹ = K−1

I YKV = KPK†
UYKUKP. (24)

The reference impedance matrix Z0 is, in fact, the impedance matrix of the terminating n-port
shown in Fig. 6 (with all the signal sources shunted) and is also transformed by (23). If Z0 is a
scalar matrix as is usually the case in the conductor domain,

Z̃0 = K−1
P Z0K−1

P . (25)

It is only KP (and not KU) that affects reference impedances.
If Z0 is a real scalar matrix, it can be shown that S-matrices undergo the following unitary
transformation regardless of the value of KP:

S̃ = K†
USKU. (26)

Mode transformation is particularly useful if the form of S̃ is diagonal or block-diagonal be-
cause it means that the n-port is decoupled into some independent subnetworks. In some
cases, the values of KV and KI that give the desired form of S̃ might be known a priori. Mode
transformation is also useful if two or more ports of a network are meant to be excited in a
correlated fashion. An example includes differential circuits. In the following, we present a
couple of transformations that are used often.

4.2 Even/odd transformation
We define the 2-port even/odd transformation by

v =

[
V1
V2

]
= KVe/ove/o, (27)

i =
[

I1
I2

]
= KIe/oie/o, (28)

KVe/o = KIe/o =
1√
2

[
1 0
0 −1

]
, (29)

ve/o =

[
Ve
Vo

]
=

1√
2

[
V1 + V2
V1 − V2

]
, (30)
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Here T denotes matrix transposition. ṽ and ĩ are, respectively, the port voltage vector and the
port current vector in the modal domain. (21) ensures that the power flux remains invariant
under the change of bases (Paul, 2008); for example, aTa∗ = ãTã∗. (19) and (20) suggest that
KV and KI can be expressed in terms of a unitary matrix KU (K†

U = K−1
U ) and a Hermitian

matrix KP (K†
P = KP) by polar decomposition as

KV = KUKP, KI = KUK−1
P . (22)

Here † denotes conjugate transpose. Since v and i are related by the Z-matrix as v = Zi,
impedance matrices undergo the following transformation by the change of bases (19) and
(20):

Z̃ = K−1
V ZKI = K−1

P K†
UZKUK−1

P . (23)

Likewise,
Ỹ = K−1

I YKV = KPK†
UYKUKP. (24)

The reference impedance matrix Z0 is, in fact, the impedance matrix of the terminating n-port
shown in Fig. 6 (with all the signal sources shunted) and is also transformed by (23). If Z0 is a
scalar matrix as is usually the case in the conductor domain,

Z̃0 = K−1
P Z0K−1

P . (25)

It is only KP (and not KU) that affects reference impedances.
If Z0 is a real scalar matrix, it can be shown that S-matrices undergo the following unitary
transformation regardless of the value of KP:

S̃ = K†
USKU. (26)

Mode transformation is particularly useful if the form of S̃ is diagonal or block-diagonal be-
cause it means that the n-port is decoupled into some independent subnetworks. In some
cases, the values of KV and KI that give the desired form of S̃ might be known a priori. Mode
transformation is also useful if two or more ports of a network are meant to be excited in a
correlated fashion. An example includes differential circuits. In the following, we present a
couple of transformations that are used often.

4.2 Even/odd transformation
We define the 2-port even/odd transformation by

v =

[
V1
V2

]
= KVe/ove/o, (27)

i =
[

I1
I2

]
= KIe/oie/o, (28)

KVe/o = KIe/o =
1√
2

[
1 0
0 −1

]
, (29)

ve/o =

[
Ve
Vo

]
=

1√
2

[
V1 + V2
V1 − V2

]
, (30)
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ie/o =

[
Ie
Io

]
=

1√
2

[
I1 + I2
I1 − I2

]
. (31)

Note that KVe/o is orthogonal (KT
Ve/o = K−1

Ve/o) and, therefore,

KU = KVe/o, KP = 1n. (32)

According to (25), the reference impedance matrix in the even/odd domain is given by

Z0e/o = Z0. (33)

This invariance of the reference impedance matrix is an advantage of the even/odd trans-
formation. This property is consistent with the even mode and the odd mode used in mi-
crowave engineering (Pozar, 2005) and transmission line theory (Bakoglu, 1990; Magnusson
et al., 2001). From (26),

Se/o = KVe/oSKVe/o (34)

=
1
2

[
S11 + S21 + S12 + S22 S11 + S21 − S12 − S22
S11 − S21 + S12 − S22 S11 − S21 − S12 + S22

]
. (35)

Extension of the even/odd transformation to 4-ports is straightforward as follows.

v =




V1
V2
V3
V4


 = KVe/ove/o, i =




I1
I2
I3
I4


 = KIe/oie/o, (36)

KVe/o = KIe/o =
1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 , (37)

ve/o =




Ve1
Ve2
Vo1
Vo2


 =

1√
2




V1 + V3
V2 + V4
V1 − V3
V2 − V4


 , ie/o =




Ie1
Ie2
Io1
Io2


 =

1√
2




I1 + I3
I2 + I4
I1 − I3
I2 − I4


 . (38)

The corresponding port numbering is shown in Fig. 7. Clearly, the exact form of KVe/o de-
pends on how the ports are numbered.

Let S be the conductor-domain 4 × 4 scattering matrix as measured by a VNA.

S =

[
S11 S12
S21 S22

]
=




S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44


 . (39)

From (26) and (32), the S-matrix in the even/odd domain, Se/o, is given by the following
orthogonal transformation.

Se/o =

[
See Seo
Soe Soo

]
= KVe/oSKVe/o, (40)

See =

[
Se1e1 Se1e2
Se2e1 Se2e2

]
=

1
2
(S11 + S21 + S12 + S22) , (41)

Seo =

[
Se1o1 Se1o2
Se2o1 Se2o2

]
=

1
2
(S11 + S21 − S12 − S22) , (42)

Soe =

[
So1e1 So1e2
So2e1 So2e2

]
=

1
2
(S11 − S21 + S12 − S22) , (43)

Soo =

[
So1o1 So1o2
So2o1 So2o2

]
=

1
2
(S11 − S21 − S12 + S22) . (44)

If the 4-port in question is symmetrical about the horizontal line shown in Fig. 7(a), the off-
diagonal submatrices Seo and Soe are zero, meaning that the 4-port in the even/odd domain
consists of a pair of uncoupled 2-ports as shown in Fig. 7(b). The upper and the lower 2-ports
are described by See and Soo, respectively.

4.3 Common/differential transformation
We define the 2-port common/differential transformation by

v =

[
V1
V2

]
= KVc/dvc/d, (45)

i =
[

I1
I2

]
= KIc/dic/d, (46)

KVc/d =

[
1 1/2
1 −1/2

]
= KVe/o

[ √
2 0

0 1/
√

2

]
, (47)

KIc/d =
(

K†
Vc/d

)−1
=

[
1/2 1
1/2 −1

]
= KIe/o

[
1/

√
2 0

0
√

2

]
, (48)

vc/d =

[
Vc
Vd

]
=

[
(V1 + V2)/2

V1 − V2

]
, (49)

ic/d =

[
Ic
Id

]
=

[
I1 + I2

(I1 − I2)/2

]
. (50)

This definition is consistent with the common mode and the differential mode in analog circuit
theory (Gray et al., 2009). The differential mode gives what is interpreted as the signal in
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ie/o =

[
Ie
Io

]
=

1√
2

[
I1 + I2
I1 − I2

]
. (31)

Note that KVe/o is orthogonal (KT
Ve/o = K−1

Ve/o) and, therefore,

KU = KVe/o, KP = 1n. (32)

According to (25), the reference impedance matrix in the even/odd domain is given by

Z0e/o = Z0. (33)

This invariance of the reference impedance matrix is an advantage of the even/odd trans-
formation. This property is consistent with the even mode and the odd mode used in mi-
crowave engineering (Pozar, 2005) and transmission line theory (Bakoglu, 1990; Magnusson
et al., 2001). From (26),

Se/o = KVe/oSKVe/o (34)

=
1
2

[
S11 + S21 + S12 + S22 S11 + S21 − S12 − S22
S11 − S21 + S12 − S22 S11 − S21 − S12 + S22

]
. (35)

Extension of the even/odd transformation to 4-ports is straightforward as follows.

v =




V1
V2
V3
V4


 = KVe/ove/o, i =




I1
I2
I3
I4


 = KIe/oie/o, (36)

KVe/o = KIe/o =
1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 , (37)

ve/o =




Ve1
Ve2
Vo1
Vo2


 =

1√
2




V1 + V3
V2 + V4
V1 − V3
V2 − V4


 , ie/o =




Ie1
Ie2
Io1
Io2


 =

1√
2




I1 + I3
I2 + I4
I1 − I3
I2 − I4


 . (38)

The corresponding port numbering is shown in Fig. 7. Clearly, the exact form of KVe/o de-
pends on how the ports are numbered.

Let S be the conductor-domain 4 × 4 scattering matrix as measured by a VNA.

S =

[
S11 S12
S21 S22

]
=




S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44


 . (39)

From (26) and (32), the S-matrix in the even/odd domain, Se/o, is given by the following
orthogonal transformation.

Se/o =

[
See Seo
Soe Soo

]
= KVe/oSKVe/o, (40)

See =

[
Se1e1 Se1e2
Se2e1 Se2e2

]
=

1
2
(S11 + S21 + S12 + S22) , (41)

Seo =

[
Se1o1 Se1o2
Se2o1 Se2o2

]
=

1
2
(S11 + S21 − S12 − S22) , (42)

Soe =

[
So1e1 So1e2
So2e1 So2e2

]
=

1
2
(S11 − S21 + S12 − S22) , (43)

Soo =

[
So1o1 So1o2
So2o1 So2o2

]
=

1
2
(S11 − S21 − S12 + S22) . (44)

If the 4-port in question is symmetrical about the horizontal line shown in Fig. 7(a), the off-
diagonal submatrices Seo and Soe are zero, meaning that the 4-port in the even/odd domain
consists of a pair of uncoupled 2-ports as shown in Fig. 7(b). The upper and the lower 2-ports
are described by See and Soo, respectively.

4.3 Common/differential transformation
We define the 2-port common/differential transformation by

v =

[
V1
V2

]
= KVc/dvc/d, (45)

i =
[

I1
I2

]
= KIc/dic/d, (46)

KVc/d =

[
1 1/2
1 −1/2

]
= KVe/o

[ √
2 0

0 1/
√

2

]
, (47)

KIc/d =
(

K†
Vc/d

)−1
=

[
1/2 1
1/2 −1

]
= KIe/o

[
1/

√
2 0

0
√

2

]
, (48)

vc/d =

[
Vc
Vd

]
=

[
(V1 + V2)/2

V1 − V2

]
, (49)

ic/d =

[
Ic
Id

]
=

[
I1 + I2

(I1 − I2)/2

]
. (50)

This definition is consistent with the common mode and the differential mode in analog circuit
theory (Gray et al., 2009). The differential mode gives what is interpreted as the signal in
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Fig. 8. (a) Model of an as-measured 4-port. The DUT is embedded in between the intervening
structures L and R. (b) Model of a THRU dummy pattern.

differential circuits. The common mode describes how the pair would collectively appear
when seen from far away.
Since KU = KVe/o and KP �= 1n as shown in (47) and (48), according to (25), Z0c/d is not equal
to Z0. If, for example,

Z0 =

[
50 0
0 50

]
, (51)

then

Z0c/d =

[
25 0
0 100

]
. (52)

From (26),

Sc/d = KVe/oSKVe/o = Se/o (53)

=
1
2

[
S11 + S21 + S12 + S22 S11 + S21 − S12 − S22
S11 − S21 + S12 − S22 S11 − S21 − S12 + S22

]
. (54)

Extension of the common/differential transformation to 4-ports is also straightforward.

v = KVc/dvc/d, i = KIc/dic/d, (55)

KVc/d =




1 0 1/2 0
0 1 0 1/2
1 0 −1/2 0
0 1 0 −1/2


 = KVe/o




√
2 0 0 0

0
√

2 0 0
0 0 1/

√
2 0

0 0 0 1/
√

2


 , (56)

KIc/d =




1/2 0 1 0
0 1/2 0 1

1/2 0 −1 0
0 1/2 0 −1


 = KVe/o




1/
√

2 0 0 0
0 1/

√
2 0 0

0 0
√

2 0
0 0 0

√
2


 , (57)

vc/d =




Vc1
Vc2
Vd1
Vd2


 =




(V1 + V3)/2
(V2 + V4)/2

V1 − V3
V2 − V4


 , ic/d =




Ic1
Ic2
Id1
Id2


 =




I1 + I3
I2 + I4

(I1 − I3)/2
(I2 − I4)/2


 . (58)

Sc/d is given by (53) and (40) through (44). This result is consistent with (Bockelman & Eisen-
stadt, 1995; Yanagawa et al, 1994) except for port ordering.
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Fig. 9. (a) Micrograph of a THRU with GSGSG pads. (b) A pair of 1 mm-long TLs with the same
pads. The line width is 6 µm and the spacing between the lines is 4.6 µm. Nominal differential
characteristic impedance is 100 Ω. The technology is a 0.18-µm CMOS process.

5. De-embedding of 4-port with even/odd symmetry

Suppose a 4-port under measurement can be represented as a cascade of three four-ports, as
shown in Fig. 8(a). Then, its transfer matrix can be written as Tmeas = TLTdutTR. As in the
case of a 2-port, if the intervening structures L and R are somehow characterized, the prop-
erties of the DUT can be de-embedded by Tdut = T−1

L TmeasT−1
R . The 4-port de-embedding

method proposed by (Han et al., 2003) follows this idea. Their method requires that the upper
ports and the lower ports of both L and R consist of uncoupled two-ports as in Fig. 7(b). This
condition may be fulfilled by appropriately configured off-chip systems (Han et al., 2003).
However, on-chip THRU patterns (e.g. Fig. 9(a)) can hardly meet this requirement. Note, how-
ever, that an on-chip THRU, typically having GSGSG or GSSG probe pads, can often be made
symmetrical about the horizontal line shown in Fig. 7(a). In that case, the S-matrix of the THRU
can be decomposed into a pair of uncoupled 2-ports (Fig. 7(b)) by the even/odd transforma-
tion (40) (Amakawa et al., 2008) or, equivalently, the common/differential transformation (53).
Then, each resultant 2-port can be bisected and the matrix representing each half determined
as described in Section 3.
The conversion of 4-port S to/from T can be done via S′ defined by

S′ =

[
S′

11 S′
12

S′
21 S′

22

]
=




S′
11 S′

12 S′
13 S′

14
S′

21 S′
22 S′

23 S′
24

S′
31 S′

32 S′
33 S′

34
S′

41 S′
42 S′

43 S′
44


 =




S11 S13 S12 S14
S31 S33 S32 S34
S21 S23 S22 S24
S41 S43 S42 S44


 , (59)

T =

[
T11 T12
T21 T22

]
=




T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44


 =

[
S′−1

21 −S′−1
21 S′

22
S′

11S′−1
21 S′

12 − S′
11S′−1

21 S′
22

]
, (60)

S′ =

[
T21T−1

11 T22 − T21T−1
11 T12

T−1
11 −T−1

11 T12

]
. (61)

We applied the proposed de-embedding method to samples fabricated with a 0.18 µm CMOS
process. The frequency ranged from 100 MHz to 50 GHz. The two-step open-short method
(Koolen et al., 1991) originally proposed for a two-port was also applied for comparison.
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differential circuits. The common mode describes how the pair would collectively appear
when seen from far away.
Since KU = KVe/o and KP �= 1n as shown in (47) and (48), according to (25), Z0c/d is not equal
to Z0. If, for example,

Z0 =

[
50 0
0 50

]
, (51)

then

Z0c/d =

[
25 0
0 100

]
. (52)

From (26),

Sc/d = KVe/oSKVe/o = Se/o (53)

=
1
2

[
S11 + S21 + S12 + S22 S11 + S21 − S12 − S22
S11 − S21 + S12 − S22 S11 − S21 − S12 + S22

]
. (54)

Extension of the common/differential transformation to 4-ports is also straightforward.

v = KVc/dvc/d, i = KIc/dic/d, (55)

KVc/d =




1 0 1/2 0
0 1 0 1/2
1 0 −1/2 0
0 1 0 −1/2


 = KVe/o




√
2 0 0 0

0
√

2 0 0
0 0 1/

√
2 0

0 0 0 1/
√

2


 , (56)

KIc/d =




1/2 0 1 0
0 1/2 0 1

1/2 0 −1 0
0 1/2 0 −1


 = KVe/o




1/
√

2 0 0 0
0 1/

√
2 0 0

0 0
√

2 0
0 0 0

√
2


 , (57)

vc/d =




Vc1
Vc2
Vd1
Vd2


 =




(V1 + V3)/2
(V2 + V4)/2

V1 − V3
V2 − V4


 , ic/d =




Ic1
Ic2
Id1
Id2


 =




I1 + I3
I2 + I4

(I1 − I3)/2
(I2 − I4)/2


 . (58)

Sc/d is given by (53) and (40) through (44). This result is consistent with (Bockelman & Eisen-
stadt, 1995; Yanagawa et al, 1994) except for port ordering.
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Fig. 9. (a) Micrograph of a THRU with GSGSG pads. (b) A pair of 1 mm-long TLs with the same
pads. The line width is 6 µm and the spacing between the lines is 4.6 µm. Nominal differential
characteristic impedance is 100 Ω. The technology is a 0.18-µm CMOS process.

5. De-embedding of 4-port with even/odd symmetry

Suppose a 4-port under measurement can be represented as a cascade of three four-ports, as
shown in Fig. 8(a). Then, its transfer matrix can be written as Tmeas = TLTdutTR. As in the
case of a 2-port, if the intervening structures L and R are somehow characterized, the prop-
erties of the DUT can be de-embedded by Tdut = T−1

L TmeasT−1
R . The 4-port de-embedding

method proposed by (Han et al., 2003) follows this idea. Their method requires that the upper
ports and the lower ports of both L and R consist of uncoupled two-ports as in Fig. 7(b). This
condition may be fulfilled by appropriately configured off-chip systems (Han et al., 2003).
However, on-chip THRU patterns (e.g. Fig. 9(a)) can hardly meet this requirement. Note, how-
ever, that an on-chip THRU, typically having GSGSG or GSSG probe pads, can often be made
symmetrical about the horizontal line shown in Fig. 7(a). In that case, the S-matrix of the THRU
can be decomposed into a pair of uncoupled 2-ports (Fig. 7(b)) by the even/odd transforma-
tion (40) (Amakawa et al., 2008) or, equivalently, the common/differential transformation (53).
Then, each resultant 2-port can be bisected and the matrix representing each half determined
as described in Section 3.
The conversion of 4-port S to/from T can be done via S′ defined by

S′ =

[
S′

11 S′
12

S′
21 S′

22

]
=




S′
11 S′

12 S′
13 S′

14
S′

21 S′
22 S′

23 S′
24

S′
31 S′

32 S′
33 S′

34
S′

41 S′
42 S′

43 S′
44


 =




S11 S13 S12 S14
S31 S33 S32 S34
S21 S23 S22 S24
S41 S43 S42 S44


 , (59)

T =

[
T11 T12
T21 T22

]
=




T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44


 =

[
S′−1

21 −S′−1
21 S′

22
S′

11S′−1
21 S′

12 − S′
11S′−1

21 S′
22

]
, (60)

S′ =

[
T21T−1

11 T22 − T21T−1
11 T12

T−1
11 −T−1

11 T12

]
. (61)

We applied the proposed de-embedding method to samples fabricated with a 0.18 µm CMOS
process. The frequency ranged from 100 MHz to 50 GHz. The two-step open-short method
(Koolen et al., 1991) originally proposed for a two-port was also applied for comparison.
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Fig. 10. Characteristics of the THRU (Fig. 9a) after performing the thru-only (S11TH, S33TH,
S21TH, S43TH) or open-short (S11OS, S33OS, S21OS, S43OS) de-embedding (Amakawa et al., 2008).

Fig. 10 shows the de-embedded characteristics of a symmetric THRU itself (Fig. 9a). The re-
flection coefficients obtained by the proposed method (S11TH and S33TH) stay very close to the
center of the Smith chart and the transmission coefficients (S21TH and S43TH) at its right end as
they should. Fig. 11 shows even- and odd-mode transmission coefficients for a pair of 1 mm-
long transmission lines shown in Fig. 9(b). A comparatively large difference is seen between
the results from the two de-embedding methods for the even mode. One likely cause is the
nonideal behavior of the SHORT (Goto et al., 2008; Ito & Masu, 2008). The odd-mode results,
on the other hand, agree very well, indicating the immunity of this mode (and the differential
mode) to the problem that plague the even mode (and the common mode).

6. Decomposition of a 2n-port into n 2-ports

The essential used idea in the previous section was to reduce a 4-port problem to two inde-
pendent 2-port problems by mode transformation. The requirement for it to work was that
the 4× 4 S matrix of the THRU dummy pattern (a pair of nonuniform TLs) have the even/odd
symmetry and left/right symmetry. This development naturally leads to the idea that the
same de-embedding method should be applicable to 2n-ports, where n is a positive integer,
provided that the S-matrix of the THRU (n coupled nonuniform TLs) can somehow be block-
diagonalized with 2 × 2 diagonal blocks (Amakawa et al., 2009).
Modal analysis of multiconductor transmission lines (MTLs) have been a subject of intensive
study for decades (Faria, 2004; Kogo, 1960; Paul, 2008; Williams et al., 1997). MTL equations
are typically written in terms of per-unit-length equivalent-circuit parameters. Experimental
characterization of MTLs, therefore, often involves extraction of those parameters from mea-
sured S-matrices (Nickel et al., 2001; van der Merwe et al., 1998). We instead directly work
with S-matrices. In Section 5, the transformation matrix (37) was known a priori thanks to
the even/odd symmetry of the DUT. We now have to find the transformation matrices. As
before, we assume throughout that the THRU is reciprocal and hence the associated S-matrix
symmetric.

So2o1TH

So2o1OS

So2o1before

Se2e1TH

Se2e1before

Se2e1OS

Fig. 11. Even-mode (broken lines) and odd-mode (solid lines) transmission coefficients for a
pair of transmission lines (Fig. 9b) before and after de-embedding (thru-only or open-short)
(Amakawa et al., 2008).

Our goal is to transform a 2n × 2n scattering matrix S into the following block-diagonal form:

S̃′ =




Sm1
. . .

Smn


 , (62)

where Smi are 2 × 2 submatrices, and the rest of the elements of S̃′ are all 0. The port number-
ing for S̃′ is shown in Fig. 12 with primes. Note that the port numbering convention adopted
in this and the next Sections is different from that adopted in earlier Sections. Once the trans-
formation is performed, the DUT can be treated as if they were composed of n uncoupled
2-ports.
This problem is not an ordinary matrix diagonalization problem. The form of (62) results by
first transforming S into S̃, which has the following form:

S̃ =




. . .
. . .

. . .
. . .


 , (63)

and then reordering the rows and columns of S̃ such that Smi in (62) is built from the ith
diagonal elements of the four submatrices of S̃ (Amakawa et al., 2009). The port indices of S̃
are shown in Fig. 12 without primes. The problem, therefore, is the transformation of S into S̃
followed by reordering of rows and columns yielding S̃′.
In the case of a cascadable 2n-port, it makes sense to divide the ports into two groups as shown
in Fig. 12, and hence the division of S, a, and b into submatrices/subvectors:

b =

[
b1
b2

]
=

[
S11 S12
S21 S22

] [
a1
a2

]
= Sa. (64)
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Fig. 10. Characteristics of the THRU (Fig. 9a) after performing the thru-only (S11TH, S33TH,
S21TH, S43TH) or open-short (S11OS, S33OS, S21OS, S43OS) de-embedding (Amakawa et al., 2008).
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Fig. 11. Even-mode (broken lines) and odd-mode (solid lines) transmission coefficients for a
pair of transmission lines (Fig. 9b) before and after de-embedding (thru-only or open-short)
(Amakawa et al., 2008).
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ing for S̃′ is shown in Fig. 12 with primes. Note that the port numbering convention adopted
in this and the next Sections is different from that adopted in earlier Sections. Once the trans-
formation is performed, the DUT can be treated as if they were composed of n uncoupled
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This problem is not an ordinary matrix diagonalization problem. The form of (62) results by
first transforming S into S̃, which has the following form:
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In the case of a cascadable 2n-port, it makes sense to divide the ports into two groups as shown
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This was already done in earlier Sections for 4-ports. Since our 2n-port is reciprocal by as-
sumption, S is symmetric: ST = S. Then, it can be shown that the following change of bases
gives the desired transformation.

[
a1
a2

]
=

[
W1

(WT
2 )

−1

] [
ã1
ã2

]
, (65)

[
b1
b2

]
=

[
(WT

1 )
−1

W2

] [
b̃1
b̃2

]
, (66)

where the blanks represent zero submatrices. W1 and W2 diagonalize S−1
21 S22S−1

12 S11 and
S22S−1

12 S11S−1
21 , respectively, by similarity transformation:

W−1
1 S−1

21 S22S−1
12 S11W1 = Λ1, (67)

W−1
2 S22S−1

12 S11S−1
21 W2 = Λ2, (68)

where Λ1 and Λ2 are diagonal matrices. W1 and W2 can be computed by eigenvalue decom-
position. The derivation is similar to (Faria, 2004). S̃ is thus given by

S̃ =

[
WT

1 S11W1 WT
1 S12(WT

2 )
−1

W−1
2 S21W1 W−1

2 S22(WT
2 )

−1

]
. (69)

7. Multiport de-embedding using a THRU

Suppose, as before, that the device under measurement and the THRU can be represented as
shown in Fig. 13. Here the DUT is MTLs. In terms of the transfer matrix T defined by

[
a1
b1

]
= T

[
b2
a2

]
=

[
T11 T12
T21 T22

] [
b2
a2

]
, (70)

T =

[
T11 T12
T21 T22

]
=

[
S−1

21 −S−1
21 S22

S11S−1
21 S12 − S11S−1

21 S22

]
, (71)
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Fig. 13. (a) Model of n coupled TLs measured by a VNA. The TLs sit between the intervening
structures L and R. (b) Model of a THRU.
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Fig. 14. Flow of validating the de-embedding method.

S =

[
S11 S12
S21 S22

]
=

[
T21T−1

11 T22 − T21T−1
11 T12

T−1
11 −T−1

11 T12

]
. (72)

The as-measured T-matrix for Fig. 13(a) is Tmeas = TLTTLTR.
In order to de-embed TTL from Tmeas, the THRU (Fig. 13(b)) is measured, and the result
(Tthru = TLTR) is transformed into the block-diagonal form S̃′

thru. Since each of the re-
sultant 2 × 2 diagonal blocks of S̃′

thru is symmetric by assumption, the method in Section 3
can be applied to determine TL and TR. Then, the characteristics of the TLs are obtained by
TTL = T−1

L TmeasT−1
R .

Shown in Fig. 14 is the procedure that we followed to validate the thru-only de-embedding
method for 2n-ports (Amakawa et al., 2009). S-parameter files of 1 mm-long 4 coupled TLs
and pads were generated by using Agilent Technologies ADS. A cross section of the TLs is
shown in Fig. 15. The schematic diagram representing the pads placed at each end of the bun-
dle of TLs is shown in Fig. 16. Figs. 17 and 18 show the characteristics of the “as-measured”
TLs and the THRU, respectively. The characteristics of the bare (un-embedded) TLs and the
de-embedded results are both shown on the same Smith chart in Fig. 19, but they are indistin-
guishable, thereby demonstrating the validity of the de-embedding procedure.
We also applied the same de-embedding method to the TLs shown in Fig. 9, analyzed earlier
by the even/odd transformation in Section 5 (Amakawa et al., 2008). The numerical values
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ã2

]
, (65)

[
b1
b2

]
=

[
(WT

1 )
−1

W2

] [
b̃1
b̃2

]
, (66)

where the blanks represent zero submatrices. W1 and W2 diagonalize S−1
21 S22S−1

12 S11 and
S22S−1

12 S11S−1
21 , respectively, by similarity transformation:

W−1
1 S−1

21 S22S−1
12 S11W1 = Λ1, (67)

W−1
2 S22S−1

12 S11S−1
21 W2 = Λ2, (68)

where Λ1 and Λ2 are diagonal matrices. W1 and W2 can be computed by eigenvalue decom-
position. The derivation is similar to (Faria, 2004). S̃ is thus given by

S̃ =

[
WT

1 S11W1 WT
1 S12(WT

2 )
−1

W−1
2 S21W1 W−1

2 S22(WT
2 )

−1

]
. (69)

7. Multiport de-embedding using a THRU

Suppose, as before, that the device under measurement and the THRU can be represented as
shown in Fig. 13. Here the DUT is MTLs. In terms of the transfer matrix T defined by

[
a1
b1

]
= T

[
b2
a2

]
=

[
T11 T12
T21 T22

] [
b2
a2

]
, (70)

T =

[
T11 T12
T21 T22

]
=

[
S−1

21 −S−1
21 S22

S11S−1
21 S12 − S11S−1

21 S22

]
, (71)

TLsL

(a) (b)

R L R

Fig. 13. (a) Model of n coupled TLs measured by a VNA. The TLs sit between the intervening
structures L and R. (b) Model of a THRU.

pads4 TLs

Prepare component
S matrices

Match?

De-embed S matrix of TLs

de-embed-

ded 4 TLs

1

2

3

4

5

6

7

8

4 TLs

Synthesize as-measured
S matrices by cascading

pads pads

pads pads

Fig. 14. Flow of validating the de-embedding method.

S =

[
S11 S12
S21 S22

]
=

[
T21T−1

11 T22 − T21T−1
11 T12

T−1
11 −T−1

11 T12

]
. (72)

The as-measured T-matrix for Fig. 13(a) is Tmeas = TLTTLTR.
In order to de-embed TTL from Tmeas, the THRU (Fig. 13(b)) is measured, and the result
(Tthru = TLTR) is transformed into the block-diagonal form S̃′

thru. Since each of the re-
sultant 2 × 2 diagonal blocks of S̃′

thru is symmetric by assumption, the method in Section 3
can be applied to determine TL and TR. Then, the characteristics of the TLs are obtained by
TTL = T−1

L TmeasT−1
R .

Shown in Fig. 14 is the procedure that we followed to validate the thru-only de-embedding
method for 2n-ports (Amakawa et al., 2009). S-parameter files of 1 mm-long 4 coupled TLs
and pads were generated by using Agilent Technologies ADS. A cross section of the TLs is
shown in Fig. 15. The schematic diagram representing the pads placed at each end of the bun-
dle of TLs is shown in Fig. 16. Figs. 17 and 18 show the characteristics of the “as-measured”
TLs and the THRU, respectively. The characteristics of the bare (un-embedded) TLs and the
de-embedded results are both shown on the same Smith chart in Fig. 19, but they are indistin-
guishable, thereby demonstrating the validity of the de-embedding procedure.
We also applied the same de-embedding method to the TLs shown in Fig. 9, analyzed earlier
by the even/odd transformation in Section 5 (Amakawa et al., 2008). The numerical values
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port numbers. Dimensions are in µm. Relative dielectric permittivity is 4. Metal conductivity
is 5.9 × 107 (Ω · m)−1. tan δ = 0.04 (Amakawa et al., 2009).
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Fig. 16. Model of the left half of the THRU including pads (Amakawa et al., 2009).

of even/odd transformed and fully block-diagonalized S-matrix of the THRU (Fig. 9(a)) at
10 GHz are, respectively,

S′
e/o =




0.050 − 0.064j 0.828 − 0.369j 0.001 − 0.000j 0.001 − 0.000j
0.828 − 0.369j 0.051 − 0.064j −0.000 + 0.002j 0.001 + 0.000j
0.001 − 0.000j −0.000 + 0.002j −0.030 − 0.124j 0.904 − 0.322j
0.001 − 0.000j 0.001 + 0.000j 0.904 − 0.322j −0.030 − 0.123j


 ,

S̃′ =




0.051 − 0.064j 0.828 − 0.369j 0.000 + 0.000j 0.000 + 0.000j
0.828 − 0.369j 0.050 − 0.064j 0.000 + 0.000j 0.000 + 0.000j
0.000 + 0.000j 0.000 + 0.000j −0.030 − 0.124j 0.903 − 0.324j
0.000 + 0.000j 0.000 + 0.000j 0.903 − 0.324j −0.032 − 0.123j


 .

The reference impedance matrices are Z′
0e/o = Z̃′

0 = 50 · 14. The upper diagonal block in
S′

e/o is the even-mode S matrix and the lower diagonal block is the odd-mode S matrix. The
residual nonzero off-diagonal blocks in S′

e/o, representing the crosstalk between the even and
odd modes, were ignored in Section 5 (Amakawa et al., 2008). The transformation (69) can
better block-diagonalize the S-matrix.

8. Conclusions

We have reviewed the simple thru-only de-embedding method for characterizing multiport
networks at GHz frequencies. It is based on decomposition of a 2n-port into n uncoupled
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Fig. 17. Characteristics of the 4 coupled TLs from 100 MHz to 40 GHz before de-embedding
(Amakawa et al., 2009).
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Fig. 18. Characteristics of the THRU from 100 MHz to 40 GHz (Amakawa et al., 2009).

2-ports. After the decomposition, the 2-port thru-only de-embedding method is applied. If
the DUT is a 4-port and the THRU pattern has the even/odd symmetry, the transformation
matrix is simple and known a priori (Amakawa et al., 2008). If not, the S-parameter-based
decomposition proposed in (Amakawa et al., 2009) can be used.
While the experimental results reported so far are encouraging, the validity and applicabil-
ity of the de-embedding method should be assessed carefully. It is extremely important to
ascertain the validity of the 2-port de-embedding method because the validity of the multi-
port method depends entirely on it. One Fig. 1(b) In particular, hardly any justification has
been given for the validity of the Π-equivalent-based bisecting of the THRU (Ito & Masu, 2008;
Laney, 2003; Nan et al., 2007; Song et al., 2001; Tretiakov et al., 2004a). There are other possible
ways of bisecting the THRU. T-equivalent-based bisection is one example (Kobrinsky et al.,
2005). Once the foundations of the 2-port method are more firmly established, the multiport
method can be used with greater confidence.



A thru-only de-embedding method for on-wafer characterization of multiport networks 29

1, 5

2, 6 3, 7

4, 8

30
200

210
30

25

25

310

340

560

15

30

30

30

Fig. 15. Schematic cross section of the 1 mm-long 4 coupled TLs (not to scale), labeled with
port numbers. Dimensions are in µm. Relative dielectric permittivity is 4. Metal conductivity
is 5.9 × 107 (Ω · m)−1. tan δ = 0.04 (Amakawa et al., 2009).

1Ω

0.5Ω 0.1nF

70fF

k = 0.15

k = 0.15

k = 0.15

0.15nH

Fig. 16. Model of the left half of the THRU including pads (Amakawa et al., 2009).

of even/odd transformed and fully block-diagonalized S-matrix of the THRU (Fig. 9(a)) at
10 GHz are, respectively,

S′
e/o =




0.050 − 0.064j 0.828 − 0.369j 0.001 − 0.000j 0.001 − 0.000j
0.828 − 0.369j 0.051 − 0.064j −0.000 + 0.002j 0.001 + 0.000j
0.001 − 0.000j −0.000 + 0.002j −0.030 − 0.124j 0.904 − 0.322j
0.001 − 0.000j 0.001 + 0.000j 0.904 − 0.322j −0.030 − 0.123j


 ,

S̃′ =




0.051 − 0.064j 0.828 − 0.369j 0.000 + 0.000j 0.000 + 0.000j
0.828 − 0.369j 0.050 − 0.064j 0.000 + 0.000j 0.000 + 0.000j
0.000 + 0.000j 0.000 + 0.000j −0.030 − 0.124j 0.903 − 0.324j
0.000 + 0.000j 0.000 + 0.000j 0.903 − 0.324j −0.032 − 0.123j


 .

The reference impedance matrices are Z′
0e/o = Z̃′

0 = 50 · 14. The upper diagonal block in
S′

e/o is the even-mode S matrix and the lower diagonal block is the odd-mode S matrix. The
residual nonzero off-diagonal blocks in S′

e/o, representing the crosstalk between the even and
odd modes, were ignored in Section 5 (Amakawa et al., 2008). The transformation (69) can
better block-diagonalize the S-matrix.

8. Conclusions

We have reviewed the simple thru-only de-embedding method for characterizing multiport
networks at GHz frequencies. It is based on decomposition of a 2n-port into n uncoupled

S
11

S
51

S
33

S
73

S
33

S
11

S
51

S
73

Fig. 17. Characteristics of the 4 coupled TLs from 100 MHz to 40 GHz before de-embedding
(Amakawa et al., 2009).

S
11

S
51

S
33

S
73

S
11

S
33

S
73S

51

Fig. 18. Characteristics of the THRU from 100 MHz to 40 GHz (Amakawa et al., 2009).

2-ports. After the decomposition, the 2-port thru-only de-embedding method is applied. If
the DUT is a 4-port and the THRU pattern has the even/odd symmetry, the transformation
matrix is simple and known a priori (Amakawa et al., 2008). If not, the S-parameter-based
decomposition proposed in (Amakawa et al., 2009) can be used.
While the experimental results reported so far are encouraging, the validity and applicabil-
ity of the de-embedding method should be assessed carefully. It is extremely important to
ascertain the validity of the 2-port de-embedding method because the validity of the multi-
port method depends entirely on it. One Fig. 1(b) In particular, hardly any justification has
been given for the validity of the Π-equivalent-based bisecting of the THRU (Ito & Masu, 2008;
Laney, 2003; Nan et al., 2007; Song et al., 2001; Tretiakov et al., 2004a). There are other possible
ways of bisecting the THRU. T-equivalent-based bisection is one example (Kobrinsky et al.,
2005). Once the foundations of the 2-port method are more firmly established, the multiport
method can be used with greater confidence.
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embedded results. (with a subscript d). Actually, those two are indistinguishable on the Smith
chart (Amakawa et al., 2009).
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