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CROSS-CHANNEL SPECTRAL SUBTRACTION FOR MEETING SPEECH RECOGNITION

Yu Nasu∗, Koichi Shinoda, Sadaoki Furui

Tokyo Institute of Technology
2–12–1 Ookayama, Meguro-ku, Tokyo, 152–8552 Japan

ABSTRACT

We propose Cross-Channel Spectral Subtraction (CCSS), a source
separation method for recognizing meeting speech where one mi-
crophone is prepared for each speaker. The method quickly adapts
to changes in transfer functions and uses spectral subtraction to
suppress the speech of other speakers. Compared with conven-
tional source separation methods based on independent component
analysis (ICA) or that use binary masks, it requires less computa-
tional costs and the resulting speech signals have less distortion.
In a recognition task of computer-simulated, partially-overlapped
speech, CCSS improved the word accuracy from 66.5% to 77.7%. It
also significantly improved the recognition accuracy of speech data
in actual meetings.

Index Terms— Speech enhancement, sound source separation,
spectral subtraction, meeting speech recognition

1. INTRODUCTION

Meeting speech recognition is useful for many purposes, such as in
taking minutes and browsing meeting procedures. In natural conver-
sations, speakers often give backchannels, such as an expression of
agreement, and begin to speak before another speaker has finished.
This produces overlapping speech by two or more speakers, a prob-
lem that makes meeting speech recognition difficult [1].

To solve this problem, sound source separation has been exten-
sively studied (e.g., [2, 3, 4, 5]). Several methods utilizing multi-
ple channel signals from multiple microphones have been proposed
and proven to be effective. Some of them used independent com-
ponent analysis (ICA) [2, 3] and others employed binary masks in
the spectrogram [4, 5]. The ICA-based methods, however, need high
computational costs to calculate higher-order statistics. Signals sep-
arated by binary masking are distorted when the source signals are
not sparse enough or when the estimation of masks is not reliable.

Most of these studies used microphone arrays. They assume
the positions of speakers are fixed during the meeting, which is not
always true in actual meeting situations. In addition, a distant mi-
crophone array provides relatively low signal-to-noise ratio (SNR).
Since the array is often placed on the meeting table, it may also be an
obstacle when the participants want to share some materials. We can
use headset microphones instead of a microphone array to obtain
high SNR, but they have the disadvantage of each speaker having
to wear a headset. Some speakers may feel uncomfortable wearing
one, and furthermore a headset partially occludes one’s face, thus
making it difficult to use visual recognition techniques such as facial
expression recognition. For these reasons, in this study we utilize
lapel microphones for recording. While they need to be attached to
the lapels of the speakers, they are easier to wear than headsets and
do not influence facial image recognition techniques. Though the
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recognition accuracy of speech recorded with lapel microphones is
degraded by overlapping speech [1], the degradation is significantly
smaller than when using microphone arrays.

In noisy speech recognition, spectral subtraction [6], which re-
duces additive noise by subtraction of an estimated noise spectrum
from the spectrum of the current frame, is one of the most popu-
lar methods for single channel speech enhancement. This method
might also be an effective way to suppress other speakers’ speech.
Though it is effective and requires low computational costs, it as-
sumes that the noise is stationary. Some methods adaptively esti-
mate a non-stationary noise spectrum (e.g., [7]), but they cannot be
directly applied to speech separation because they distinguish noise
from speech and do not distinguish speech by different speakers.

This paper proposes a source separation method based on spec-
tral subtraction for meeting speech recognition. With this method,
which we call Cross-Channel Spectral Subtraction (CCSS), speech
signals are recorded with lapel microphones. The method quickly
adapts to changes in transfer characteristics by estimating coeffi-
cients successively and uses spectral subtraction to suppress the
speech of other speakers. It has less computational costs than ICA-
based methods and operates in real time. It is also more robust than
binary masking methods since it effectively estimates and suppresses
interference components, while binary masking methods force all
time-frequency components to be allocated to one channel.

2. SPECTRAL SUBTRACTION

Spectral subtraction [6] is widely used for single channel speech en-
hancement. The power spectrum of the observed signal is approxi-
mated as:

|X(f, t)|2 ≈ |S(f, t)|2 + |N(f, t)|2, (1)

where f and t are the frequency and frame indices and S(f, t) and
N(f, t) are spectra of speech and additive noise, respectively. With

the estimated noise power spectrum |N̂(f, t)|2, the power spectrum
of speech is estimated as:

|Ŝ(f, t)|2 = |X(f, t)|2 − α|N̂(f, t)|2, (2)

where α is the subtraction factor.

3. CROSS-CHANNEL SPECTRAL SUBTRACTION

3.1. Algorithm

Consider that one microphone is prepared for each speaker and let
the number of speakers be N . Then, assuming the speech signals
from multiple speakers are linearly mixed and ignoring noise, the
signal recorded by the i-th microphone can be modeled as:

Xi(f, t) =

N∑
j=1

Gij(f, t)Sj(f, t), (3)
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where Sj(f, t) is the speech of the j-th speaker and Gij(f, t) is the
transfer function from the j-th speaker to the i-th microphone. The
transfer functions are time-variable, since they may change when
speakers move around, while they are regarded as stationary in most
conventional studies.

The target signal is the j-th speaker’s speech recorded by the
j-th microphone for each j. By defining it as:

Yj(f, t) = Gjj(f, t)Sj(f, t), (4)

and substituting the transfer function by:

Hij(f, t) =
Gij(f, t)

Gjj(f, t)
, (5)

the recorded signal can be written as:

Xi(f, t) = Yi(f, t) +
∑
j �=i

Hij(f, t)Yj(f, t). (6)

Then, the power spectrum of the recorded signal is calculated
as:

|Xi(f, t)|2

=

∣∣∣∣∣∣Yi(f, t) +
∑
j �=i

Hij(f, t)Yj(f, t)

∣∣∣∣∣∣
2

= |Yi(f, t)|2 +
∑
j �=i

|Hij(f, t)Yj(f, t)|2

+

N∑
k=1

∑
j �=k

|Hik(f, t)Yk(f, t)Hij(f, t)Yj(f, t)| cos θkj,i,

(7)

where θkj,i is the phase difference between the speech of the k-th
and j-th speakers observed with the i-th microphone.

Since the phases of different speakers are uncorrelated in each
time-frequency bin, the expectation of cos θkj,i is zero. Assuming
that the sparseness of speech holds approximately, i.e., the following
equation holds:

Sj(f, t)Sk(f, t) ≈ 0 (j �= k), (8)

the third term of (7) becomes sufficiently small and it can be ignored.
Hence, the speech signal of the i-th speaker is estimated as:

|Ŷi(f, t)|2 = |Xi(f, t)|2 − α
∑
j �=i

|Ĥij(f, t)|2|Ŷj(f, t)|2, (9)

in the same manner as in (2).
In practice, it is necessary to estimate unknown factors |Ĥij(f, t)|2

and |Ŷj(f, t)|2. We will discuss the ways to estimate them in the
next two subsections.

3.2. Estimation of transfer functions

We estimate the transfer functions using frames in which only one
speaker is speaking. It can be safely assumed that such frames exist
in meetings. The signal channel recorded by the j-th microphone
is expected to have the largest power when only the j-th speaker is
speaking. Thus we calculate the target signal of the i-th channel as:

|Ŷi(f, t)|2 = max

⎛
⎝|Xi(f, t)|2 −

∑
j �=i

|Xj(f, t)|2, 0
⎞
⎠ , (10)

and select the frames which suffice the both conditions:

1

|F |
∑
f∈F

|Ŷj(f, t)|2 > Tj1(t), (11)

1

|F |
∑
f∈F

|Ŷk(f, t)|2 < Tk2(t), ∀k �= j (12)

as the frames where only the j-th speaker is speaking, with predeter-
mined thresholds Tj1(t) and Tk2(t) where F is the frequency range
to use.

Then, the power spectrum of the i-th recorded signal when only
the j-th speaker is speaking is written by:

Xi(f, t) =

{
Yj(f, t), if i = j

Hij(f, t)Yj(f, t), otherwise
(13)

and the transfer function Hij(f, t) can be estimated as the quotient
of Xi(f, t) and Xj(f, t) when only the j-th speaker is speaking.

Since the transfer function is considered to be time-variable, we
update it in some time intervals as:

|Ĥij(f, t)|2 = ρh|Ĥij(f, t− 1)|2 + (1− ρh)
|Xi(f, t)|2
|Xj(f, t)|2 . (14)

This update is carried out when only the j-th speaker is speaking,

using predetermined initial values |Ĥij(f, 0)|2 and forgetting factor
ρh ∈ [0, 1].

3.3. Estimation of separated signals
The separated signals are estimated by an iterative process us-
ing the estimated transfer functions. We set the initial value as

|Ŷ (0)
i (f, t)|2 = |Xi(f, t)|2 and iteratively update it as:

|Ŷ (n)
i (f, t)|2 = |Xi(f, t)|2 − αn

∑
j �=i

|Ĥij(f, t)|2|Ŷ (n−1)
i (f, t)|2,

(15)

where αn is the subtraction factor of each iteration.
In the first loop of the iteration, some speech components of the

target speaker are subtracted and the signals are distorted. We can
obtain less distorted signals by improving estimates of the second
term of (15) with this iterative process.

4. EXPERIMENTS

4.1. Experimental conditions
We performed experiments to determine our method’s effectiveness
in recognizing meeting speech. The experiments were performed
first by using computer-simulated speech with the Corpus of Spon-
taneous Japanese (CSJ) [8] and then by using actual meeting speech.

The thresholds defined in (11) and (12) were set as:

Tj1(t) =
2

|F |
∑
f∈F

|N̂j(f, t)|2, (16)

Tk2(t) =
1

|F |
∑
f∈F

|N̂k(f, t)|2, (17)

with the frequency range F = [100, 1000] Hz.
The transfer functions were calculated on 64 divided frequency

ranges and updated with ρh = 0.98 and |Ĥij(f, 0)|2 = 0.10, which
were set experimentally.
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In our preliminary investigations, we obtained significant im-
provements with two iterations and small changes in recognition ac-
curacy occurred when the number of iterations was increased. Ac-
cordingly, we performed two iterations in the actual experiments.
We experimentally set the subtraction factors at α1 = 1.0 and α2 =
4.0.

We compared the speech recognition results for speech sepa-
rated with the proposed method (CCSS), speech separated with a
conventional binary masking method [4] (Binary masking) that also
operates in real time, and unprocessed speech as a baseline (Base-
line). In the binary masking method [4], each time-frequency com-
ponent was allocated to the channel with the largest power. Short-
time Fourier transform was performed using a Hamming window of
64 ms frame with 32 ms frame shift. Separated signals were retrans-
formed back to the time domain prior to acoustic feature extraction.

We used word correct (Corr.) and accuracy rates (Acc.) as per-
formance metrics. The speech feature vector was 38 dimensional,
comprising 12 MFCCs, their first and second derivatives, and the
first and second derivatives of the power. It was extracted every 10
ms with a 25 ms frame and normalized using cepstral mean subtrac-
tion. The acoustic model was trained with Simulated Public Speech
(SPS) data in the CSJ excluding its test set, for which no spectral
subtraction was carried out. We used HTK [9] for the experiments.
It was assumed that speech/non-speech segmentation was done cor-
rectly. Recognition was performed for all speech segments of every
speaker.

4.2. Evaluation with computer-simulated speech

4.2.1. Evaluation data

Using SPS data in the CSJ test set, we synthesized four-channel
speech data spoken by four male speakers. The data comprised 480
seconds of Japanese speech, i.e., 120 seconds spoken by each of the
four speakers. The speech was split into utterance units of 1.2–7.6
seconds duration (2.7 seconds on average), and arranged at random
intervals. The total number of morphemes was 1,593. The speech
segments totaled 480 seconds in duration, and 58% of them were
overlapped with another speaker’s speech. The sampling rate was
set to 16 kHz.

The evaluation data was generated by convoluting it with the
speech and impulse responses and adding background noise to it.
The impulse responses were measured in a meeting room which had
a reverberation time (RT60) of 0.4 seconds. Four unidirectional lapel
microphones and four loudspeakers were arranged in the room as
shown in Fig. 1. Background noise was recorded with the same mi-
crophone arrangement, and added to the speech where the SNR in
speech segments was 25 dB on average.

4.2.2. Results

Table 1 shows the results obtained for unprocessed speech (Base-
line), speech separated by the binary masking and CCSS methods,
and non-overlapping, noise-free speech (Ideal). Although the speech
segments were given, the recognition accuracy for unprocessed
speech dropped because of the overlap. While the conventional
binary masking method improved word accuracy by 5.0%, CCSS
achieved a significantly better 11.2% improvement. Its accuracy was
close to that of non-overlapping speech. We consider that the signals
separated by CCSS are less distorted than those separated by the bi-
nary masking method (which may produce some distortion because
of non-sparseness or mask estimation errors), and that they maintain
the acoustic features that are necessary for speech recognition.

Overhead view

1.0 m

1.0 m

Loudspeaker

Microphone

Side view of each

loudspeaker/microphone pair

10 cm

2 cm

Table

Fig. 1. Arrangement of loudspeakers and microphones. Four loud-
speaker/microphone pairs were arranged on a table in a meeting
room (left). A unidirectional lapel microphone was put in front of
each loudspeaker (right).

Table 1. Recognition results for computer-simulated speech. Word
correct (Corr.) and accuracy rates (Acc.) are shown for unpro-
cessed speech (Baseline), speech separated with a conventional bi-
nary masking method [4] (Binary masking) and with the proposed
method (CCSS), and non-overlapping and noise-free speech (Ideal).

Baseline

Binary

masking CCSS Ideal

Corr. [%] 75.3 78.3 82.6 84.4

Acc. [%] 66.5 71.5 77.7 79.0

4.3. Evaluation with sit-down meeting speech

4.3.1. Evaluation data

We recorded a sit-down meeting 20 minutes in duration, conducted
in the Japanese language by four male speakers in the same meeting
room described in the previous subsection. The speakers’ positions
are shown in Fig. 2. The participants could not move from their
seats, but they were allowed to change their posture as they desired.
The same unidirectional lapel microphones used in the previous ex-
periment were attached to the lapels of the speakers. The speech
segments and utterance transcriptions were hand-labeled. The to-
tal number of morphemes was 5,154. The speech segments totaled
1,496 seconds in duration, and 47% of them were overlapped by an-
other speaker, the overlapping including laughter and coughing as
well as speech.

4.3.2. Results

Table 2 shows the results obtained for unprocessed speech (Base-
line) and speech separated by the binary masking and CCSS meth-
ods. Word accuracies were considerably worse than those obtained
for computer-simulated speech. Since the speech was highly spon-
taneous and included many incomplete sentences and disfluencies
caused by interruptions, recognizing it was a difficult task and would
have been even if it had not had any overlap. However, CCSS im-
proved word accuracy by 6.3% and, in this real-environment situa-
tion, again outperformed the conventional binary masking method.
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1.0 m Table

1.3 m

Speaker wearing a

lapel microphone

Fig. 2. Position of speakers in sit-down meeting

Table 2. Recognition results for sit-down meeting speech

Baseline

Binary

masking CCSS

Corr. [%] 40.2 41.2 43.9

Acc. [%] 30.6 32.1 36.9

Table 3. Recognition results for stand-up meeting speech

Baseline

Binary

masking CCSS

Corr. [%] 45.1 44.3 47.9

Acc. [%] 37.5 35.2 40.6

4.4. Evaluation with stand-up meeting speech

4.4.1. Evaluation data

We recorded a stand-up meeting 20 minutes in duration, conducted
in Japanese language by four male speakers in the same meeting
room described in the previous subsections. The speakers stood
about 1.5 meters away from each other in front of a whiteboard
on which one of them took notes. The same unidirectional lapel
microphones as before were attached to the lapels of the speak-
ers. The speech segments and utterance transcriptions were hand-
labeled. The total number of morphemes was 3,980. The speech
segments totaled 1,496 seconds in duration, and 28% of them were
overlapped by another speaker, the overlapping including laughter
and coughing as well as speech.

4.4.2. Results

Table 3 again shows the results obtained for unprocessed speech
(Baseline) and speech separated by the binary masking and CCSS
methods. Recognition accuracy was slightly diminished by the bi-
nary masking method. We assume that this is because the distortion
of the separated signals that occurs with this method increases when
the positions of speakers and microphones change. It appears that
the decrease in accuracy due to the distortion outweighs the increase
in accuracy due to separation. On the other hand, CCSS improved
word accuracy by 3.1%, thus demonstrating that it is also an effec-
tive speech separation method for meetings in which the speakers
are allowed to move around.

5. CONCLUSIONS

We have proposed a source separation method, CCSS, for meeting
speech recognition, which separates target speech from concurrent
speech signals. We confirmed its effectiveness through our exper-
iments on computer-simulated speech and actual meeting speech.
We found that CCSS was highly effective for computer-simulated
speech and that it was also applicable to actual meeting speech. It
performed significantly better than the conventional binary masking
method. For computer-simulated speech it improved word accuracy
from 66.5% to 77.7%, which was close to that obtained in the recog-
nition of non-overlapping speech. It also operated well for stand-up
meeting speech where the speakers were free to move around, while
for this application the binary masking method could not improve
the accuracy.

In the research reported in this paper, we estimated the trans-
fer function between two microphones simply as the quotient of ob-
served powers. There may be more effective ways to estimate the
function and identifying them is a subject for future work.

While our method effectively reduced speech recognition er-
ror, its word accuracy obtained in experiments was only 36.9%
and 40.6% for sit-down and stand-up meeting speech, respectively.
These are not sufficiently high for applications such as the taking
of minutes. Therefore, another subject for future work will be to
achieve higher word accuracy with our speech recognition system.
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