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Abstract
In speaker verification, structural maximum-a-posteriori
(SMAP) adaptation for Gaussian mixture model (GMM) has
been proven effective, especially when the speech segment is
very short. In SMAP adaptation, an acoustic tree of Gaussian
components is constructed to represent the hierarchical acoustic
space. Until now, however, there has been no clear way to
automatically find the optimal tree structure for a given speaker.
In this paper, we propose using an acoustic forest, which is
a set of trees, for SMAP adaptation, instead of a single tree.
In this approach, we combine the results of SMAP adaptation
systems with different acoustic trees. A key issue is how to
combine the trees. We explore three score fusion techniques,
and evaluate our approach in the text-independent speaker
verification task of the NIST 2006 SRE plan using 10-second
speech segments. Our proposed method decreased EER by
3.2% from the relevant MAP adaptation and by 1.6% from the
conventional SMAP with a single tree.
Index Terms: speaker verification, text-independent, short
speech, MAP, SMAP

1. Introduction
Recent research on text-independent speaker verification has
mainly focused on the problem of channel compensation of
GMM-based speaker models. However, when a speech segment
is very short (e.g. 10 seconds), extra attention goes to model
adaptation for making a speaker-dependent GMM from the
speaker-independent GMM called universal background model
(UBM). For 10-second speech segments, Vogt et al. [1] pro-
posed using speaker subspace MAP adaptation for factor anal-
ysis (FA) modeling. Fauve et al. [2] proposed a well-tuned
speech detection front-end for improving frame selection in
eigenvoice modeling. Kenny et al. [3] extended joint factor
analysis (JFA) to model within-session-variability over a shorter
time span. The adaptation part of all these methods did not
use structural modeling for sharing parameters in the acoustic
space.

We try to handle such short speech segments by structural
modeling using the structural maximum-a-posteriori (SMAP)
adaptation technique. This technique was first proposed by
Shinoda et al. [4] for speech recognition. In speaker verifica-
tion, Liu et al. [5] and Xiang et al. [6] successfully applied it to
speech segments of 2 minutes or shorter. In SMAP adaptation,
a single tree structure has been used to model the acoustic space
of all the speakers. That is, we have implicitly assumed that the
hierarchical structure of the acoustic space can be shared among
all the speakers. During our work on speaker verification, how-
ever, we notice that a single tree structure is not always opti-
mal for modeling the acoustic space of every speaker. Ideally,
different tree structures should be provided for different speak-
ers. However, until now no methods for obtaining such trees

UBM

Tree 

b c

d
e f

g

a
a

b c

d
e f

g

h

i

j

j

h i

a b c d e f gLeaf

Root

Gaussian 

component Prior Information

Accumulated 

Gaussian 

component

(a) Tree construction from Gaussian components

(b) Notations (c) Usual tree representation

Figure 1: An example of a tree structure of Gaussian compo-
nents in SMAP. Each of a, b, ..., g is a Gaussian component of
a UBM. h, i and j are parent Gaussians of {a, b, c}, {d, e, f ,
g} and {h, i}, respectively.

are known. In this paper, we propose using an acoustic forest,
which is a set of trees instead of a single tree, in order to solve
this problem.

The remainder of the paper is organized as follows. A brief
description of SMAP adaptation is given in Section 2. Section 3
illustrates acoustic forest. In Section 4, we describe our GMM-
SVM based system. In Section 5 and Section 6, we describe
our experimental setup and results, respectively. Section 7 gives
some conclusions.

2. SMAP adaptation

The SMAP adaptation was proposed to keep the desirable
asymptotic properties of relevance MAP while dealing with
the problem of data sparseness by using a tree structure. The
SMAP-based method have two steps. In the first step, a tree
is obtained by clustering Gaussian components of the UBM
as shown in Fig. 1(a). The root node of the tree represents
the whole acoustic space and each of the non-leaf nodes has
a Gaussian component that summarizes its child node distribu-
tions. Each leaf node corresponds to a Gaussian component in
the UBM as shown in Fig. 1(c). In the second step, a speaker-
dependent model is obtained by using the distribution of each
non-leaf node as the prior for parameters of its child nodes.
These two steps are briefly described in the following two sub-
sections.
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2.1. Tree construction

In order to define a tree structure, we first provide the number of
layers L and the number of branches B(l)

r from a node r at the l-
th layer prior to clustering1. For clustering, we use the symmet-
ric Kullback-Leibler (KL) divergence as the distance measure
between two Gaussian components. Assuming the covariance
matrices to be diagonal, the KL divergence between two Gaus-
sian components, ga(·) and gb(·), can be written as

d(a, b) =

F∑
i=1

[
σ2
a(i)− σ2

b (i) + (µb(i)− µa(i))
2

σ2
b (i)

+
σ2
b (i)− σ2

a(i) + (µa(i)− µb(i))
2

σ2
a(i)

], (1)

where µa(i) is the i-th element of F -dimensional mean vector
µa and σ2

a(i) is the i-th diagonal element of covariance matrix∑
a.

The algorithm for obtaining a tree from a UBM with M
Gaussians is given below:

1. Set:

(a) k to be the root node

(b) Gk to be a set of all the M Gaussians governed by
node k,

(c) B
(1)
k to be the number of children of node k

(d) l to be 1.

2. Calculate the node pdf gk for node k using the following
formulas:

µk(i) =
1

Mk

∑
m∈Gk

µm(i), (2)

σ2
k(i) =

1

Mk
[
∑

m∈Gk

(σ2
m(i) + µ2

m(i))−Mkµ
2
k(i)],

(3)
where Mk is the number of Gaussian components in-
cluded in Gk.

3. If l is equal to L, stop clustering, else go to Step 4.

4. Compute the initial pdf for n child nodes using the
minimax method:

(a) Find n Gaussian components from Gk:

i. The 1st Gaussian is gc1(·) = gm̂(·) where

m̂ = argmax
m

d(m, k). (4)

ii. The remaining (n − 1) Gaussians will be
gcp(·) = gm̂(·) where

m̂ = argmax
m

min
q∈Gck

d(m, cq). (5)

Here Gck is the set of Gaussians already as-
signed to the child nodes of node k, 1 ≤ p ≤
n− 1 and 1 ≤ q ≤ n− 2.

1At present, we have no automatic ways to obtain the optimal num-
bers for branches and layers for each speaker

(b) Interpolate the node pdf of node k and the initial
node pdf of each child node cp to create a new
node pdf for cp as follows:

µ̂cp(i) = (1− α)µk(i) + αµcp(i), (6)

σ̂2
cp(i) = (1− α)(σ2

k(i) + µ2
k(i)) +

α(σ2
cp(i) + µ2

cp(i))− µ̂cp , (7)

where 0 ≤ α ≤ 1.

5. Repeat the following k-means procedures until the grand
sum of distances, GD, converges:

(a) For each Gaussian component in Gk, calculate the
distance from it to each child node pdf of the l-th
layer by using Eq. (1), and assign it to the nearest
child node.

(b) Recalculate the child node pdf by using Eq. (2) and
Eq. (3).

(c) Using Eq. (1), calculate the sum of distances, D,
from each child node to each of its mixture com-
ponents and then obtain GD by accumulating all
D.

6. Set each child node to be node k and its corresponding
subset of Gaussian components to be Gk. Increase l and
go to Step 4.

2.2. Adaptation

The formulation of SMAP adaptation is similar to that of the
relevance MAP [7], except that it uses hierarchical priors and
normalized pdfs in the formulation. The adaptation steps for
each node p using adaptation data X = {x1, x2, ..., xT } are:

1. Transform each sample vector xt into a vector ymt for
each mixture component m as follows:

y
(p)
mt = Σ−1/2

m (xt − µ(p)
m ), (8)

where t = 1, 2, ..., T and m = 1, 2, ...,M (p).

2. Estimate the normalized pdf N (Y (p)|ν, η) for Y (p)
m =

{y(p)
m1, y

(p)
m2, ..., y

(p)
mT }, where ν(p) and η(p) represent the

shift and rotation needed to compensate for the distor-
tion, i.e., to adapt the model parameters to the data.
When there is no mismatch between the training and
adaptation data, then ν(p) = 0⃗ and η(p) = I . The ML
estimation of the mean vector of the normalized pdf is
calculated as follows:

ν̃(p) =

∑T
t=1

∑M(p)

m=1 γ
(p)
mty

(p)
mt∑T

t=1

∑M
m=1 γ

(p)
mt

, (9)

where γ
(p)
mt is the occupation probability for Gaussian m

at tree node p and time t.

3. Calculate the hierarchical prior

ν̂(p) =
N (p)ν̃(p) + τ ν̂(p−1)

N (p) + τ
, (10)

where N (p) =
∑T

t=1

∑M(p)

m=1
γ(p)mt is the average

number of frames assigned to node pdf p and τ is the
MAP relevance factor that weights the priors at the par-
ent node p− 1.
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Figure 2: Acoustic Forest.

4. Compute the SMAP estimate of the mean vector

µ̂(p)
m = µ(p)

m +Σ1/2
m ν̂(p), (11)

where µ(p)
m is the unadapted mean vector for Gaussian m

of node p.
When no sufficient amount of adaptation data is available

for a Gaussian component, it is not shifted in relevance MAP. In
SMAP adaptation, on the other hand, it takes prior information
from its parent Gaussian, and accordingly, every Gaussian com-
ponent is shifted from its position in UBM. Figure 1(a) shows a
schematic example, where a, b, c get prior information from h,
d, ..., g from i, and {h, i} from j.

3. Acoustic forest
In SMAP adaptation, a tree structure obtained by clustering
Gaussians offers a convenient way to capture the hierarchical
structure of the acoustic space of the human voice. Differ-
ent speakers have different acoustic spaces depending on fac-
tors such as their language, accents or pronunciation particu-
larities. It is therefore reasonable to think that the optimal tree
structure differs from speaker to speaker. In other words, some
tree structures may be adapted more efficiently to some speak-
ers than others. However, to find the optimal tree structure for
every speaker is computationally expensive when the number
of speakers is large, and demands a large amount of data. The
easiest solution of this problem is to use a set of trees, assum-
ing that the verification accuracy will generally be higher when
combining the decisions of the set of trees, rather than using
only a single tree. We define the set of trees as an acoustic for-
est. In the acoustic forest, the number of layers and number of
brances of each node will vary from tree to tree. Figure 2 shows
the acoustic forest having five tree structures for the UBM men-
tioned in Fig. 1(a).

There are different ways to combine the decisions of multi-
ple SMAP adapted systems with different tree structures. Like
the random forest algorithm [8], we can use a voting approach
or we can fuse the scores of different systems and take the deci-
sion by setting a threshold on the fused score. In this paper we
use score fusion techniques.

3.1. Score fusion

Let s1, s2, ...., sL be the L scores of L SMAP adapted systems.
Then the fused score, Ŝ of the claimed speaker can be calculated
in the following ways:

• Maximization

Ŝ = max(s1, s2, ...., sL) (12)

• Sum

Ŝ =

L∑
l=1

sl (13)

• Multilayer Perceptron (MLP)

Ŝ =
1

1 + exp(−(
∑H

h=1 wh,oyh + δh,o))
, (14)

where H is the number of neurons in the hidden layer,
wh,o and δh,o are the weights connecting the hidden
layer and the single output neuron of an MLP. yh is the
output of the h-th neuron of the hidden layer which is
obtained by the following sigmoid function:

yh =
1

1 + exp(−(
∑L

l=1 wl,hsl + δl,h))
(15)

where wl,h and δl,h are the weights connecting the l-
th neuron of the input layer and the h-th neuron of the
hidden layer, and sl is the score of the l-th system.

4. GMM-SVM system
In our evaluation, we use a GMM-SVM system proposed by
Campbel et al. [9]. First we train a speaker-independent GMM
using hours of speech by hundreds of speakers. After train-
ing the UBM, adaptation methods are used to make a speaker-
dependent GMM from UBM using approximately 10 seconds
of speech data for the target speaker. After making the GMM, a
supervector is made by stacking the mean vectors of the GMM
of the target speaker and a set of background speakers, used as
negative data in the SVM classifier. Then the supervectors are
used as inputs to a SVM with a linear kernel to train a GMM-
SVM system for the target speaker. The score for each test
speech segment X is calculated as follows:

SX = wMX + b, (16)

where b is a constant, MX is the supervector, and w is calcu-
lated as follows:

w =

R∑
i=1

βiciM̂i, (17)

where R is the number of supportvectors, M̂i is the i-th sup-
portvector, ci is the class ID {1,-1} of M̂i, βi is the Lagrange
multiplier, βi > 0, and

∑R
i=1 βici = 0.

5. Experimental setup
Performance of our speaker verification system was measured
by carrying out experiments on the 10sec4w-10sec4w task of
the 2006 NIST SRE [10]. In this task, the length of each train-
ing and test segment is approximately 10 seconds. There are
2971 true trials and 30584 false trials for 731 speakers among
which 316 are males and 415 are females. We trained one
gender-independent UBM and two gender-dependent UBMs
using 4806 speech segments from the NIST SRE 2004 train-
ing database. Each speech segment was 2.5 minutes long on
average. Among 4806 speech segments, 242 speech segments
of male speakers and 362 speech segments of female speakers
were selected as speech segments of background speakers. As
a development dataset and for T-Normalization, we used the
NIST SRE 2005 training database.

Regarding feature extraction, we first removed the non-
speech part from the speech segments using the information in
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the transcript files. We broke each segment into frames of 30
ms, with a frame rate of 100 frames/sec. We pre-emphasized
each frame with a pre-emphasis factor of 0.97 and applied a
Hamming window. We computed 15 perceptual linear pre-
diction (PLP) coefficients and mel-frequencey cepstral coeffi-
cients (MFCCs), augmented with energy, first and second-order
derivatives, resulting in 48 features per frame. Cepstral mean
subtraction was applied to remove static channel effects.

The performance measure was equal error rate (EER) and
minimum detection cost (MDC). We chose ten different tree
structures heuristically for the acoustic forest. A three layer
MLP with three hidden neurons in the hidden layer was trained
for score fusion. The feature extraction and GMM part were
implemented by using the hidden markov model toolkit (HTK).
The SVM classifier was made by LIBSVM, and MLP for score
fusion was implemented by MATLAB.

6. Results

First we conducted an experiment on relevance MAP-adapted
GMMs with 32 Gaussian components. By setting the rele-
vance factor equal to 10, we found that the system using the
gender-dependent UBM was better than the system using the
gender-independent UBM, and PLP outperformed MFCC. We
also noticed that the performance of our MAP adapted system
improved when we increased the number of Gaussian compo-
nents until 512, decreased the relevance factor to 1, and did not
use the delta-delta coefficients.

Table 1 shows the EER(%) and MDC of our MAP and
SMAP adapted system where we used the gender-dependent
UBM with 512 Gaussian Components, 32 dimensional PLP
feature vector (i.e. 15 PLP + 15 ∆PLP + E + ∆E), and set
the relevance factor to 1. Most of the SMAP-adapted systems
outperform the relevance MAP-adapted system. Error rates
of SMAP-adapted systems consistently decrease as the num-
ber of nodes gets larger. The best relative improvement for
individual SMAP systems, around 3.2%, is obtained for the
21 21 tree structure-based system without T-Normalization. T-
Normalization helped to drop the EER slightly for both MAP
and SMAP adapted systems.

As shown in Table 2, score fusion techniques improved the
SMAP adapted system by decreasing only EER. Two fusion
techniques, sum and MLP, gave the same performance. 1.6%
relative improvement was gained in EER compared to the sin-
gle tree structure-based system.

7. Conclusions

We have proposed to grow an acoustic forest with different
tree structures for SMAP adapted text-independent speaker ver-
ification. We have implemented three types of score fusion
techniques in order to combine the decision of several SMAP
adapted GMM-SVM systems. By doing experiment on the
10sec4w-10sec4w task of NIST 2006 SRE we showed that
score fusion techniques helped to improve the perforformance
of SMAP adapted system. Two fusion techniques, sum and
MLP, gave an improvement in EER. In this paper we only gave
a comparative figure of relevance MAP and SMAP adapted sys-
tems for short speech segments. In future work we plan to com-
pare SMAP adaptation with other adaptation techniques, such
as eigenvoice modeling.

Table 1: MDC and EER for GMM-SVM systems using MAP
and SMAP adaptation on the 10sec4w-10sec4w task of 2006
NIST SRE. The design of a tree is written as n1 n2 where nl

represents the maximum number of child nodes belonging to
each node of the l-th layer. Each leaf node corresponds one
component in GMM.

Fusion No Norm T-Norm
EER(%) MDC EER(%) MDC

MAP 27.7 0.0917 27.4 0.0910
SMAP 3 3 28.2 0.0959 27.8 0.0941
SMAP 5 5 27.9 0.0943 27.6 0.0921
SMAP 7 7 27.7 0.0943 26.9 0.0917
SMAP 9 9 27.4 0.0937 26.9 0.0918
SMAP 11 11 26.9 0.0936 26.6 0.0918
SMAP 13 13 27.1 0.0932 26.6 0.0913
SMAP 15 15 27.3 0.0930 26.9 0.0909
SMAP 17 17 27.2 0.0933 27.0 0.0910
SMAP 19 19 27.2 0.0927 26.9 0.0913
SMAP 21 21 26.8 0.0922 26.9 0.0915

Table 2: Comparison of the EER and the MDC for fusion of 15
SMAP adapted systems with and without T-Norm on the NIST
2006 SRE 10sec4w-10sec4w task.

Fusion No Norm T-Norm
EER(%) MDC EER(%) MDC

Maximization 27.2 0.0945 26.5 0.0915
Sum 26.5 0.0928 26.2 0.0909
MLP 26.5 0.0922 26.2 0.0908
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