
論文 / 著書情報
Article / Book Information

Title A File Search Method Based on Intertask Relationships Derived from
Access Frequency and RMC Operations on Files

Author Yi Wu, Kenichi Otagiri, Yousuke Watanabe, Haruo Yokota

Journal/Book name Lecture Notes in Computer Science, Vol. 2011, No. 6860/2011, pp.
364-378

発行日 / Issue date 2011, 8

DOI 10.1007/978-3-642-23088-2_27

権利情報 / Copyright The original publication is available at www.springerlink.com.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

A File Search Method based on Intertask
Relationships Derived from Access Frequency

and RMC Operations on Files

Yi Wu1??, Kenichi Otagiri2, Yousuke Watanabe3, and Haruo Yokota1

1 Department of Computer Science, Tokyo Institute of Technology
2 Cowbell Engineering Corporation

3 Global Scientific Information and Computing Center, Tokyo Institute of Technology
{goi,otagiri,watanabe}@de.cs.titech.ac.jp,yokota@cs.titech.ac.jp

http://yokota-www.cs.titech.ac.jp

Abstract. The tremendous growth in the number of files stored in
filesystems makes it increasingly difficult to find desired files. Traditional
keyword-based search engines are incapable of retrieving files that do not
include keywords. To tackle this problem, we use file-access logs to de-
rive intertask relationships for file search. Our observations are that 1)
files related to the same task are frequently used together, and 2) a set
of Rename, Move, and Copy (RMC) operations tends to initiate a new
task. We have implemented a system named SUGOI, which detects two
types of task, FI tasks and RMC tasks, from file-access logs. An FI task
corresponds to a group of files frequently accessed together. An RMC
task is generated by RMC operations and then constructs a graph of
intertask relationships based on the influence of RMC operations and
the similarity between tasks. In utilizing detected tasks and intertask
relationships, our system expands the search results of a keyword-based
search engine. Experiments using actual file-access logs indicate that the
proposed approach significantly improves search results.

Keywords: file-access logs, desktop search, full-text search, task mining

1 Introduction

The explosion in the volume of information that people handle has been accom-
panied by daily increases in the number of files stored in filesystems. Many of
these are unstructured files, such as images, diagrams, and numerical-data files,
which do not contain any appropriate text that can be used for search. As these
files do not include the target keywords, traditional text-based desktop keyword
search engines are not useful for finding them.

A number of systems have been developed for desktop keyword search, such
as Google Desktop Search[3], Microsoft’s Windows Desktop Search[5], and Spot-
light on Mac OS X[1]. These systems all develop indexes for high-speed search,
?? The author is currently with NTT DATA Corporation.

2 Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota

and some use a thesaurus and meta-information such as the file name, creation
time, and file type, to improve search performance. However, it is still difficult
to search for files that do not include text.

Recently, some desktop search systems, such as FRIDAL[9, 10] and Connec-
tions[8], have been proposed to tackle the problem of the association between
files based on the co-occurrence information derived from file-access logs. These
systems try to capture the relationships between files based on users’ access pat-
terns. These approaches are effective in searching for files that do not contain
text. However, sometimes the searches return irrelevant files or fail to return
relevant files because infrequent but important operations for files could not
be found and temporary simultaneous access of files influences the results from
these approaches.

In this paper, to improve the accuracy of search results based on file-access
logs, we focus on a task where a user accesses multiple files to accomplish his/her
goal. In other words, most files accumulated in a filesystem must be related to
individual tasks. We refer to a group of files that are used to accomplish a
particular goal as a “task.” Thus, in this paper, the term “task” represents a
logical unit of files to be processed in a computer system, such as collating some
experimental data, writing a report or article, or preparing presentation slides.

Based on the concept of task, we propose a file search system named SUGOI—
Search by Utilizing Groups Of Interrelated files in a task—which consists of two
parts: a task mining component and a file search component. The task mining
component extracts tasks and discovers the interrelation between tasks from
file-access logs. The file search component incorporates the task mining results
within the search results of a traditional desktop search engine to achieve an
accurate keyword-based file search.

We observed that 1) files related to the same task are frequently used to-
gether, and 2) a set of Rename, Move and Copy (RMC) operations tends to
initiate a new task. Therefore, the task mining component of SUGOI extracts
two types of task: FI (Frequent Itemset) tasks and RMC tasks. We then propose
formulas to combine FI and RMC tasks.

We also consider the graph of intertask relationships for retrieving related
files. Assuming that the greater the number of identical files accessed during
different tasks, the stronger is the interrelation between these tasks, we build
similarity links between these tasks. In addition, we generate RMC links between
tasks, assuming that users tend to RMC files for reuse in related tasks. For
example, as researchers tend to use the same graph of experimental results in
both their articles and their presentation slides, they may copy the file of the
graph from the article folder to the presentation folder. In this case, the copy
operation indicates a strong relationship between the tasks of writing the article
and of preparing the presentation. To represent such intertask relationships, the
weight of an RMC link is computed considering the type of the operation and
its direction. We propose a formula to handle both types of links.

After the tasks and intertask relationships have been extracted, the file search
component of SUGOI expands the search results of a traditional keyword-based

A File Search Method based on Intertask Relationships 3

search engine using the mined tasks and intertask relationships, and ranks the
search results. We evaluate the proposed system using actual file-access logs. The
experimental results indicate that the proposed approach significantly improves
recall and F-measure.

The remainder of this paper is organized as follows. Section 2 presents related
research on desktop search. Section 3 gives a detailed explanation of SUGOI
and Section 4 describes the experimental results and investigation. Section 5
concludes this paper and indicates future work.

2 Related Work

With the great increase in the capacity of storage devices, the volume of all
types of data is steadily increasing, with most being file-based and unstructured.
Users require more effective and simpler mechanisms for managing vast numbers
of files, such as locating desired files easily from files scattered across different
directories. Traditional content-based search tools cannot deal with files that do
not include the query keywords, and supported file formats are restricted. For
the purpose of enhancing full-text search, much research has been done using
file-access logs. This section describes three previous studies that used file-access
logs for file search.

As mentioned in Section 1, Connections [8] is a file search system that uses
contextual information with the aim of enhancing full-text search results. Con-
nections generates a relational graph of files based on traces of filesystem calls.
To discover relationships, it splits access logs into multiple relation windows
and identifies the input and output files in each window by considering which
operation is performed on the files. Connections then creates links with weight
1 from input files to output files or increases the weight of existing links. It
uses a Basic-BFS (Breadth First Search) algorithm to propagate the weights
of keyword-containing files to keyword-lacking files to expand and reorder the
results generated by a full-text search engine. By contrast, we utilize file-access
logs to group files into tasks and identify the interrelations between tasks rather
than the relationships between files.

FRIDAL[9, 10] is another system for searching keyword-lacking files by using
the interfile relationship. FRIDAL exploits open/close logs in order to derive the
duration for which the file is used. Assuming that files used at the same time
have some relevance to each other, FRIDAL calculates the interfile relationship
by using the co-occurrence data between files in access logs. It finds keyword-
lacking files by using a Basic-BFS-like method. By contrast, SUGOI emphasizes
tasks and only uses access patterns that occur frequently. Furthermore, we take
RMC operations into account in calculating the weight of semantic links between
tasks.

The iMecho[2] system performs task mining similar to SUGOI, building three
types of associations: Content-based Associations (CA), Explicit Activity-based
Associations (EAA), and Implicit Activity-based Associations (IAA). It reranks
the results of a full-text search engine, using a random walk algorithm based on

4 Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota

Fig. 1. Overview of SUGOI

PageRank[7]. The purpose of the task mining in iMecho is to generate IAA links
between files; it does not consider the relationship between tasks. In addition,
the ranking score used in iMecho is defined as the product of a full-text search
result and a link analysis result, so iMecho does not extend the result of a full-
text search to include non-text files. By contrast, SUGOI can extend the result
of a full-text search by task mining and detecting the relevance between tasks.

3 Proposed Approach

We propose an approach for searching files by introducing the concept of “tasks.”
Before the search process, we cluster related files as a task and discover the cor-
relation between tasks by exploiting file-access logs. We then expand the results
from a traditional keyword-search engine using the tasks and intertask relation-
ships. We have implemented a prototype system using the proposed approach
and named it “Search by Utilizing Groups Of Interrelated files in a task” or
“SUGOI” for short. An overview of SUGOI is illustrated in Fig. 1. To trace user
access as file-access logs, SUGOI places an access monitor on the filesystem. The
file-access logs should include access time, information to identify the client, the
path of the target file, and the operation on it. After cleaning the log, the sys-
tem extracts the semantic file groups as tasks, and builds weighted links between
tasks. Following a user’s search request, SUGOI searches for files by combining
the context of tasks with the traditional full-text search results to calculate the
task scores. The details of the proposed methods (apart from log cleaning) are
described in the following subsections. Log cleaning is described in Section 4.1,
because the process corresponds to the monitoring tool used in the experiments.

3.1 Task Mining

The purpose of task mining is to group those files that are related to the same
task. We extract two types of task: FI tasks and RMC tasks. After the task

A File Search Method based on Intertask Relationships 5

Fig. 2. Extraction of Transactions (TransactionTime = 3600 [s])

Fig. 3. Extraction of an RMC Task (RMCTaskTime = 1800 [s])

mining processes, a number of files accessed by a user belong to at least one
task.

FI Task Mining The FI task, or Frequent Itemset task, is constructed from files
accessed concurrently. The point is that files related to the same task tend to be
accessed frequently within short time periods of each other. For example, when
a user writes an article, he/she edits a TeX file as well as EPS files containing
charts and produces a PDF file. With this characteristic, we propose a method
to semantically group files as FI tasks by mining the access patterns that occur
frequently and simultaneously.

We first convert the file-access logs into a set of transactions (Fig. 2) by split-
ting the logs into several transactions with a certain duration (TransactionT ime).
To discover the frequent patterns, we apply an existing algorithm, Eclat[11], to
the set of transactions. Eclat is one of the best-known algorithms for mining
frequent itemsets. It finds combinations of items whose occurrence frequency
is greater than some minimum support value. In this study, we determine the
minimum support count (MinSuppCnt) to extract frequent itemsets because
file-access logs last for a long period but common tasks last for a fixed period
of time and the number of occurrences of each individual file should be small.
Finally, we extract the maximally frequent itemsets as FI tasks.

6 Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota

RMC Task Mining Assuming that the files RMCed together within a short
time period are related to a task done in the past, we extract such file groups
as an RMC task. To mine RMC tasks, we split access logs into multiple time
windows with the same length of time and only extract the files that are the
target of RMC operations (Fig. 3).

3.2 Intertask Relationship

This subsection presents our proposed formulas for weighting the similarity links
and RMC links of tasks and calculating the relevance between tasks by consid-
ering the overlap and RMC operations between tasks. In addition, we consider
reducing the weight of RMC links because the content of files created by RMC
operations can differ from the original by modification.

Similarity Links Analysis Assuming that tasks that are strongly interrelated
use a number of common files, we weight the similarity links between tasks based
on the number of duplicated files in each task. The weight of a similarity link
from task i to task j, which is expressed as sim(ti → tj), is given by Equation
(1).

sim(ti → tj) =
|ti ∩ tj |
|ti|

(1)

Here, ti and tj represent the file sets of task i and task j, respectively.

RMC Links Analysis Supposing that a user RMCes files contained in related
task to reuse in other tasks, RMC operations can express a strong relationship
between tasks. We build RMC links of tasks by detecting an RMC operation
between different tasks. To calculate the weight of RMC links, we introduce the
element rmcf (fm → fn), which presents the weight from file m to file n caused
by an RMC operation.

rmcf (fm → fn) =



α1 if fm was renamed as fn,
α2 if fm was renamed from fn,
β1 if fm was moved to fn,
β2 if fm was moved from fn,
γ1 if fm was copied to fn,
γ2 if fm was copied from fn,
0 otherwise.

(2)

According to Equation (2), we assign rmcf a constant value specified by the
parameters (α1, α2, β1, β2, γ1, γ2). However, the degree of relevance of each
file will be attenuated because the content of files coming from RMC operations
probably differs from that of the original files by repeated edits.

In addition to rmcf , we propose formulas to take into consideration the
factors that cause reduced relevance. Thus, we define the reduction formulas
using the elapsed time (Equation (3)), the sum of frequency of write operation

A File Search Method based on Intertask Relationships 7

handled to file fm and file fn (Equation (4)), and the sum of the sizes of the
changes to file fm and file fn after RMC operations performed (Equation (5)).

T (fm, fn) = ∆time(fm, fn)−τ (3)

E(fm, fn) = ∆edit(fm, fn)−ε (4)

S(fm, fn) = ∆size(fm, fn)−σ (5)

Here, τ , ε, σ are parameters. Considering the circumstances mentioned above, we
calculate the weight of an RMC link by using rmcf and the reduction functions
(Equation (6)).

rmc(ti → tj) =
∑

(fm,fn)∈(ti,tj)

rmcf (fm → fn) ∗T (fm, fn) ∗E(fm, fn) ∗S(fm, fn)

(6)

Intertask Relevance To calculate the degree of association between tasks,
we adopt the weight of similarity links and RMC links and use the parameter
θ(0 ≤ θ ≤ 1) to control which element to emphasize. The proposed formula is
given by Equation (7).

R(ti → tj) = θ ∗ simt(ti → tj) + (1 − θ) ∗ rmct(ti → tj) (7)

3.3 Keyword-based File Search

In addition to files that include keywords, SUGOI can find files contained in tasks
related to the keywords by combining the context and interrelation of tasks. This
subsection describes the procedure for keyword-based search.

STEP 1: Identify tasks containing the keyword-containing files. The initial rel-
evance score of a task to the given keywords is assigned using the file score
given by the existing full-text search engine (Equation (8)).

score0(q, ti) =
∑

fm∈ti

scoref (q, fm) (8)

Here, score0(q, ti) denotes the initial score of task ti to query q, and
scoref (q, fm) denotes the relevance score of file fm to the query. According to
Equation (8), we use the summation of the file score to define the task score
so that the score of the tasks that do not contain the keyword-containing
files should be zero.

STEP 2: In this paper, we adopt a reflexive method based on Basic-BSF, which
is used in Connections[8] and FRIDAL[9, 10], to find tasks that contain re-
lated files. To find the files that do not contain keywords, we iterate the
calculation of the relevance score for all tasks K times for translating the
relevance (score0(q, ti)) to other tasks for emphaisizing tasks that linked with

8 Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota

many related tasks and giving score to tasks that do not contain keyword-
containing files. At the k-th (1 ≤ k ≤ K) calculation, the relevance score of
task ti is given by Equation (9).

scorek(q, ti) = scorek−1(q, ti)+
∑

tj∈InLink(ti)

scorek−1(q, tj)∗R(tj → ti) (9)

Here, InLink(ti) expresses the set of tasks whose links point to task ti.
STEP 3: Normalize the relevance score for all ti and output files contained in

tasks that satisfy scoreK(q, ti) > THscore as results, where THscore is a
threshold parameter.

4 Experiments

4.1 Experimental Environment

To verify the efficiency of SUGOI, we conduct evaluation experiments by using
actual file-access logs gathered from a shared filesystem (Windows Server 2003
SP2, NTFS) used by our research group. To monitor the file access to the server,
we use a tool named FAccLog[6]. FAcclog records the logs by monitoring access
to the OS and the LAN adapter. Logging can be done almost in real time and
includes read, write, create, delete, and rename operations. The full path of the
target file is also included, but in the case of a rename, the path is recorded as
“path before rename � path after rename”. Since the raw logs have noise and
some necessary information is lacking, we apply the log-cleaning process before
the main mining process.

The logs created by machine access mostly generate an incorrect task mining
result, deriving groups of files with little reference to each other. Such kinds of
access often come from background processes such as virus scanning, extracting
indexes by a desktop search engine or making backups. In addition, in many
cases, a lot of file access will occur in a short period. Therefore, we use two
thresholds (THmin and THsec) to eliminate the background machine access from
logs. If the number of accesses occurring in a one minute/second range is larger
than THmin/THsec, all of the log entries are ignored. We also prepare a filter
for detecting machine access by file extension.

The raw logs only distinguish rename operations; they do not move and
copy. To find move operations, we treat entries whose directory part of the path
changed after the rename as move operations. To detect copy operations, we
look for a pattern of a create log entry occurring after a read log entry with the
same filename, and treat it as a copy operation.

The implementation of SUGOI uses an existing full-text search engine named
HyperEstraier[4]. In addition to plain text and HTML files, we can optionally
search PDF, DOC, DOCX, XLS, XLSX, PPT, and PPTX.

A File Search Method based on Intertask Relationships 9

Table 1. Experimental Datasets

Dataset # log entries # files # files available for full-text search # relevant files

A 3591 201 137 70
B 2808 416 113 25
C 3424 318 276 32
D 5911 764 311 84
E 8203 642 335 244
F 5123 3422 1152 227
G 13102 3258 338 73

4.2 Experimental Setup

The purpose of the experiments was to verify the effect of utilizing file-access
logs for file search. We used datasets with keywords and lists of relevant files
provided by seven testers. The system was evaluated by comparing the relevant
files except the files that were deleted from the filesystem. A summary of the
experimental datasets is given in Table 1. These datasets were gathered from
April to July 2010. There are more than 2 GB of raw data and the summary is
of the logs after log cleaning.

The parameters below were fixed during the experiments. In log cleaning,
THmin = 30, THsec = 5. To calculate the weight of RMC links, (τ, ε, σ) =
(0, 0, 0). In keyword-based search, THscore = 0, K = 3.

4.3 Evaluation of Task Mining

To expand the full-text search results, we detect two types of tasks and de-
rive the intertask relationships from file-access logs. As files contained in the
same task are identified with each other, the results of task mining should be
important. We first set up these experiments to acquire appropriate values of
parameters used for task mining. The other parameters were fixed as follows:
(α1, α2, β1, β2, γ1, γ2) = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0), θ = 0.5.

Parameter Tuning for FI Task Mining To determine the value of
TransactionT ime and MinSuppCnt, we only used FI tasks, and experiments
were performed in the combinations of TransactionT ime = {900, 1800, 3600,
5400, 7200} [s] and MinSuppCnt = {2, 3}.

The averages of the F-measure are depicted in Fig. 4. The MinSuppCnt =
2 case performed better than the MinSuppCnt = 3 case, with the value of
TransactionT ime held constant. Increasing MinSuppCnt caused the number
of files belonging to tasks to decrease; this indicates that related files that do
not include keywords cannot be found by either tasks or intertask relation-
ships. In addition, we notice a trend of the F-measure decreasing when the

10 Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota

Table 2. Average F-measure (FI Task Mining)

TransactionTime [s] 900 1800 3600 5400 7200

MinSuppCnt=2 0.543 0.513 0.507 0.470 0.506
MinSuppCnt=3 0.452 0.432 0.450 0.411 0.453

Fig. 4. Experimental Results for FI Task Mining

TransactionT ime increases. This is because, as TransactionT ime increases,
more related files are put into the same transaction, and the number of files in a
set of transactions will be less than MinSuppCnt because the number of accesses
is only counted once during the TransactionT ime-long interval. We omit the
details of the experimental results for each dataset because of space limitations.
Analysis of the results indicates that TransactionT ime = 3600 accomplished
the highest F-measure on datasets A, B and E, while TransactionT ime = 900
showed the best performance on datasets C, D, F and G. Differences in work
patterns can be inferred from these results. Based on the results, we used a
different TransactionT ime in subsequent experiments.

Parameter Tuning for RMC Task Mining RMCTaskT ime is the pa-
rameter used in extracting RMC tasks. To determine the value, in addition to
FI tasks, we use the RMC tasks extracted in each case of RMCTaskT ime =
{60, 180, 300, 600, 1800} [s] to perform file search.

As shown in Table 3, the average recall increased as RMCTaskT ime in-
creased. However, the average precision decreased slightly, because a long
RMCTaskT ime potentially brings unrelated files into the same RMC tasks.
As the RMC operations were not handled very frequently, the impact was
small and caused little change in the F-measure. In subsequent experiments,
RMCTaskT ime was set to 60 s.

4.4 Evaluation of Intertask Relationships

Relationships between tasks are derived from similarity links and RMC links.
In this section, we conduct experiments to determine the appropriate values of

A File Search Method based on Intertask Relationships 11

Table 3. Average F-measure (RMC Task Mining)

RMCTaskTime [s] 60 180 300 600 1800

Precision 0.776 0.758 0.762 0.762 0.756
Recall 0.669 0.674 0.673 0.675 0.684
F-measure 0.684 0.681 0.679 0.684 0.684

Table 4. Setups for Comparison of RMC Operations

Rename Move Copy
Setup α1 α2 β1 β2 γ1 γ2

non-RMC 0 0 0 0 0 0
Rename 1 1 0 0 0 0
Move 0 0 1 1 0 0
Copy 0 0 0 0 1 1
RMC 1 1 1 1 1 1

parameters used in the formulas defined for calculating the weights of links and
the degree of intertask relevance.

Experiments for RMC Links RMC links, an aspect used for determining
intertask relevance, are weighted using Equation (6), which considers the type
and direction between files, by introducing rmcf . rmcf is defined by Equation
(2) and the six parameters (α1, α2, β1, β2, γ1, γ2). To compare RMC operations,
we set these parameters according to the configuration given in Table 4. As the
results depicted in Fig. 5 show, using the rename and move operations had little
effect on expanding the results of traditional file search. One reason is that re-
named and moved files were ignored because files that do not exist in the filesys-
tem were outside the evaluation targets. Another reason is that only 2% of log
entries are created from rename and move operations. In contrast with rename
and move, the copy operation enhanced the value of recall and the F-measure
of full-text search results. Hence the result which utilized RMC performed the
best F-measure, we set (α1, α2, β1, β2, γ1, γ2) = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0) in sub-
sequent experiments.

Experiment with θ In Equation (7), we use θ to adjust the relative empha-
sis on similarity links and RMC links when calculating the degree of intertask
relevance. To investigate the proper value of θ, we average the 11-point average
precision with θ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

As shown in Fig. 6, better-ranking results were obtained when θ > 0.0 than
when θ = 0.0, although the precise value of θ was not so important. Because

12 Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota

Fig. 5. Comparison of Experimental Results on RMC Links

Fig. 6. Experimental Results for θ

tasks that have more links to other tasks tend to obtain a higher score under the
proposed method, even if the degree of intertask relevance changes, tasks of this
nature would be prioritized. θ = 0.0 led to a poor performance because using
RMC links only was not sufficient to expand the full-text results to other tasks.
We also note that θ = {0.2, 0.4} got the highest 11-point average precisions
(Table 5).

4.5 Evaluation of SUGOI

To improve the results of an existing keyword-based search engine, we group files
related to the same tasks and derive intertask relationships from access frequency
and RMC operations on files. We propose methods for mining FI tasks and RMC
tasks. To expand the full-text search results, we use similarity links and RMC
links to determine the relevance between tasks. To investigate the effect of task
mining and the association links, we use the setup shown in Table 6 to compare
SUGOI with an existing full-text search engine[4].

The experimental results are given in Table 7 and Fig.7. All configurations
of the proposed system SUGOI are better according to the F-measure than
the existing full-text search engine. FI tasks and similarity links increased the
average of recall from 0.273 to 0.5, while precision increased from 0.795 to 0.820

A File Search Method based on Intertask Relationships 13

Table 5. 11-point Average Precision

θ 0.0 0.2 0.4 0.6 0.8 1.0

Average of 11-point Average Precision 0.430 0.482 0.482 0.476 0.476 0.475

Table 6. Setup of SUGOI

Setup Task Type Intertask Relational Links

SUGOI 1 FI Task Only Similarity Links Only
SUGOI 2 FI Task Only Similarity Links + RMC Links
SUGOI 3 FI Task + RMC Task Similarity Links Only
SUGOI 4 FI Task + RMC Task Similarity Links + RMC Links

(SUGOI 1). In general, there is a trade-off between precision and recall. However,
FI tasks consist of groups of files that are frequently accessed together and the
average size of FI tasks is small, so few nonrelevant files are mingled in FI tasks.

In comparing SUGOI 1 with SUGOI 2 and SUGOI 3 with SUGOI 4, without
RMC tasks, the effect of RMC links was small. An analysis of the mining results
showed that only about 9% of log entries were RMC entries and most RMCed
files were not contained in FI tasks because of low access frequency. Therefore,
it was difficult to find new FI tasks using RMC links.

In addition to FI tasks and similarity, using RMC tasks and RMC links
resulted in a certain improvement in recall and F-measure (SUGOI 3, 4). The
reason is that files that do not include the keywords were found because they
are related to tasks with files that do include the keywords. Thus, the precision
average decreased slightly because RMC tasks are extracted from files RMCed
together and, in contrast with FI tasks, extraneous files are easily mingled in
RMC tasks.

From Table. 7, it is clear that SUGOI 4 achieved the highest recall and F-
measure. The result confirmed that our proposed methods for task mining and
deriving the intertask relationships are significantly effective for file search.

4.6 Summary of Experiments

In this section, we inspected the characteristics of the parameters and confirmed
the validity of SUGOI by using actual file-access logs. The following conclusions
were obtained.

1. A lower minimal support count (MinSuppCnt = 2) generated results with
a higher F-measure. This means that if a combination of file accesses occurs
more than twice in a set of transactions, these files are likely to have relevance
to each other.

14 Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota

Fig. 7. Experimental Results of SUGOI

Table 7. Experimental Results of SUGOI

Setup Precision Recall F-measure

Traditional Full-text Search 0.795 0.273 0.392
SUGOI 1 0.820 0.500 0.606
SUGOI 2 0.820 0.500 0.606
SUGOI 3 0.784 0.638 0.668
SUGOI 4 0.776 0.669 0.684

2. In the experiment on RMC task mining, we observed the trend that in-
creasing RMCTaskT ime decreases the precision and increases the recall.
However, the effect is small because users do not perform RMC operations
frequently.

3. Copy operations, which can be done without making changes to the original
file, were the most effective in RMC.

4. By investigating θ, a parameter used in Equation (7), we found that empha-
sizing the RMC links is effective, but the similarity links were also essential.
SUGOI generated the best-ranking results when θ = {0.2, 0.4}.

5. SUGOI conspicuously improves the average recall and F-measure over tra-
ditional full-text search results. The recall rise represented an increase of
0.396, while the increase in the F-measure was 0.292.

5 Conclusion and Future Work

As the volume of data stored in filesystems is increasing rapidly, and a large
proportion of this is file-based unstructured data such as multimedia files, many
files cannot be found using traditional full-text search engines. In this paper, we
proposed a method for searching for such files by introducing the concept of tasks
and intertask relationships derived from file-access logs. The main contributions
of this paper are summarized as follows.

A File Search Method based on Intertask Relationships 15

1. Task mining methods for two types of task: FI tasks, consisting of files fre-
quently accessed together, and RMC tasks, consisting of files that were re-
named/moved/copied (RMCed) simultaneously.

2. Methods for deriving association links from file-access logs by considering
the similarity and RMC operations between tasks to generate a graph of
intertask relationships.

3. A search method incorporating the task mining results into a full-text search
to accomplish an accurate keyword-based file search.

4. Experimental results using actual file-access logs, which demonstrated that
the proposed approach significantly improves search results.

As future work, we plan to conduct evaluation experiments using larger file-
access logs. Contriving measures to choose the parameters automatically is also
important for practical use. We also want to refine the proposed methods of task
mining and the formulas for indicating intertask relevance.

Acknowledgments

This research was supported in part by a MEXT Grant-in-Aid for Scientific
Research on Priority Areas (#201013017) and a JSPS Grant-in-Aid for Scientific
Research (A) (#22240005).

References

1. Apple Inc.: Spotlight,
http://www.apple.com/macosx/what-is-macosx/spotlight.html

2. Chen, J., Guo, H., Wu, W., Wang, W.: iMecho: an associative memory based
desktop search system. In: CIKM ’09: Proceeding of the 18th ACM conference on
Information and knowledge management. pp. 731–740. ACM, New York, NY, USA
(2009)

3. Google: Google Desktop, http://desktop.google.com
4. Hirabayashi, M.: Hyper Estraier, http://fallabs.com/hyperestraier/
5. Microsoft Corporation: Windows Search,

http://www.microsoft.com/windows/products/winfamily/desktopsearch/
6. Daikoku Net: FAccLog, http://www2s.biglobe.ne.jp/˜masa-nak/fal down.htm
7. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:

Bringing Order to the Web. Tech. rep., Stanford University (1998)
8. Soules, C.A.N., Ganger, G.R.: Connections: using context to enhance file search.

SIGOPS Oper. Syst. Rev. 39(5), 119–132 (2005)
9. Watanabe, T., Kobayashi, T., Yokota, H.: A Method for Searching Keyword-

Lacking Files Based on Interfile Relationships. In: OTM ’08. pp. 14–15. Springer-
Verlag, Berlin, Heidelberg (2008)

10. Watanabe, T., Kobayashi, T., Yokota, H.: Searching Keyword-lacking Files Based
on Latent Interfile relationship. In: Software and Data Technologies. pp. 236–244
(2010)

11. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast Dis-
covery of Association Rules. In: KDD-97 Proceedings. pp. 283–286 (1997)

