
論文 / 著書情報
Article / Book Information

Title Relationship Extraction Methods Based on Co-occurrence in Web
Pages and Files

Author Qiang Song, Yousuke Watanabe, Haruo Yokota

Citation(English) Proceeding of The 13th International Conference on Information
Integration and Web-based Applications & Services, , , pp. 82 - 89

Issue date 2011, 12

Copyright Copyright (c) 2011 Association for Computing Machinery

Note This is the definitive version
http://www.iiwas.org/conferences/iiwas2011/,
http://dx.doi.org/10.1145/2095536.2095552

Set statement (c) ACM, 2011. This is the author's version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceeding of The 13th
International Conference on Information Integration and Web-based
Applications & Services, , pp. 82 - 89,
http://dx.doi.org/10.1145/2095536.2095552

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Relationship Extraction Methods Based on Co-occurrence
in Web Pages and Files

Qiang SONG
∗

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku

Tokyo, Japan
soukyou@de.cs.titech.ac.jp

Yousuke WATANABE
†

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku

Tokyo, Japan
watanabe@de.cs.titech.ac.jp

Haruo YOKOTA
‡

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku

Tokyo, Japan
yokota@cs.titech.ac.jp

ABSTRACT
Every day, information on the Web becomes increasingly
enriched. Web access is now very useful in many aspects of
daily life, particularly for writing documents and programs.
In fact, it has become quite usual to edit files while referring
to information on the Web. During the file-editing process,
we usually visit so many Web pages that we cannot remem-
ber all of the relevant ones. Later, if we want to revisit the
same Web pages to modify some part of a file, it can be very
hard to track down the Web pages originally referred to.
In this paper, we propose methods for finding relationships
between files and Web pages based on the co-occurrence of
data in Web-access logs and file-access logs. These rela-
tionships are very useful for revisiting Web pages related to
target files. To analyze co-occurrence in these two types of
access logs, there are two approaches for merging the logs,
involving a trade-off between accuracy and execution time.
We call them the Pre-Merge and Post-Merge methods, and
we have evaluated these two methods using actual access
logs.

Categories and Subject Descriptors
E.5 [Files]: Sorting/searching; H.3.5 [Information Stor-
age and Retrieval]: Online Information Services—Web-
based services; H.2.8 [Information Systems]: Database
ManagementDatabase Application[Data Mining]

General Terms
Experimentation

∗Department of Computer Science, Graduate School of In-
formation Science and Engineering
†Global Scientific Information and Computing Center.
‡Department of Computer Science, Graduate School of In-
formation Science and Engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2011, 5-7 December, 2011, Ho Chi Minh City, Vietnam..
Copyright 2011 ACM 978-1-4503-0784-0/11/12 ...$10.00.

Keywords
file searching, Web page, relationship between Web pages
and files, co-occurrence frequency

1. INTRODUCTION
The Internet is sufficiently established that information

on the Web is significantly enriched every day. This means
that the information on Web pages has become increasingly
useful in daily life. It has therefore become very common
for us to refer to information on the Web, particularly when
writing documents or programs.

For example, suppose that a user has edited a program
file while referring to Web pages describing the program-
language specifications or the algorithm description, and the
user tries later to modify the program during debugging. It
can be very hard to find not only the Web pages but also
the program files themselves, because there may be many
files as well as many Web pages.

Traditional desktop search engines [8, 5, 6] and Web search
engines are useful for finding an individual file or group
of Web pages if the user can remember some related key-
words. However, if the user cannot recall appropriate key-
words, it will be rather difficult to find the file or the Web
pages. For files that include only programs, experimental
data, and figures, for example, it becomes even more diffi-
cult, because these files have no text corresponding to the
keywords. Moreover, current desktop search engines and
Web search engines cannot provide information about any
relationships between the file and the Web pages.

We have previously proposed methods to search for files
containing no keywords [17, 13, 14, 15, 19] by analyzing file-
access logs, based on the concept that related files are fre-
quently accessed at the same time. We have also evaluated
the effectiveness of these methods. However, although they
can search for files, they cannot extract information about
any relationships between files and Web pages. Therefore,
we cannot apply these methods directly to the scenario de-
scribed above.

In this paper, we propose new methods for extracting re-
lationships between groups of files and Web pages, both of
which involve the work of the same user. The proposed
methods output URLs for files and Web pages that co-occur
in the file logs and Web-access logs, in the form of a vir-
tual folder. This means that the virtual folder will contains
URLs for files and Web pages that are related to the same
“task”. Here, the term “task” stands for a work unit with
a unifying context. For example, the task “writing thesis”

might refer to the image files, table files, and LaTeX files
that were created while writing a thesis, together with some
Web pages viewed when identifying related publications.

To analyze co-occurrence in the two types of access logs,
file access and Web access, there are two approaches to merg-
ing the logs. One method merges them first, whereas the
other analyzes each log separately and finds matches be-
tween them. We name them the Pre-Merge and Post-
Merge methods, respectively. There is a trade-off between
them involving accuracy and execution time. We have im-
plemented the two methods and compared their performance
using actual access logs.

The remainder of this paper is organized as follows. In
Section 2, we explain how the two proposed methods, Pre-
Merge and Post-Merge, work. In Section 3, we compare
these methods by reporting on experiments using actual ac-
cess logs. Related work is presented in Section 4. Section 5
contains conclusions and proposals for future work.

2. PROPOSED METHODS
We first outline our goal and approach, and then describe

the logs used in this approach. We then propose two meth-
ods, Pre-Merge and Post-Merge, for extracting information
about the relevant groups of files and Web pages from the
logs.

2.1 Goal and Approach
Our goal is to search for correlated files and Web pages be-

longing to the same task. When a user edits specific files and
visits specific Web pages more frequently during this task,
the relationship between these files and Web pages is con-
sidered significant. Based on this assumption, we propose to
use file-access logs and Web-page-access logs to analyze the
relationship between the files and Web pages referred to.

We have previously proposed methods for using file-access
logs to analyze relationships between files to search for re-
lated files in the absence of keywords [17, 14, 13, 15, 19]. We
analyzed the timing overlaps between file accesses from the
file-access logs, and combined this with a full-text search
engine [17]. We then proposed a method for preparing a
virtual folder containing related file data [14]. We also ap-
plied a data-mining method based on frequent-item sets [9]
to identify combinations of files that appear frequently in
the file-access logs [13], combined with an overlap method
[15] and file-operation (rename, move, and copy) logs [19].
However, these methods cannot treat combinations of files
and Web pages.

To extract the relationships between files and Web pages,
we need to handle two types of logs, namely file-access logs
and Web-access logs. The file-access logs can be derived
either from a file server or by using dedicated tools. There
are two types of Web-access logs, namely browser logs and
proxy logs. The pros and cons of these logs will be discussed
in the next section.

In this paper, we propose two methods for utilizing the
contents of the file-access logs and Web-access logs. The
approaches of these two methods are as follows.

• Pre-Merge method: first integrate the file-access logs
and Web-access logs using timestamp information, and
then extract frequent-item sets from the integrated
logs.

• Post-Merge method: first apply frequent-item set ex-

traction to each of the individual logs and then asso-
ciate both frequent-item sets based on the timestamp
information.

As an internal process in both methods, we adopt the FI
method (Frequent Itemsets discovery from file-access logs)
proposed in [13], where access logs are converted into trans-
actions based on a specified duration, and frequent-item sets
are extracted from the transactions. The details of these
methods will be explained in Sections 2.3 and 2.4, respec-
tively.

2.2 Access Logs
Two types of access logs are used in the proposed methods,

namely file-access logs containing the reading and writing
history of files, and Web-access logs that record the Web-
page viewing history.

2.2.1 File-access Logs
The history of file accesses is recorded in an access-log file

in the file server. Some file servers, such as Samba, have
a built-in function for maintaining the file-access log that
can be used in this approach [17]. In this paper, we use
a tool called FaccLog [3] that operates on a file server to
maintain more detailed logs, particularly for experimental
evaluations. The information written in the log comprises
the user’s connection time, action, user name, server IP,
client IP, and file path.

2.2.2 Web-access Logs
Web-access logs can be obtained in two ways. We can ob-

tain them from HTTP proxy servers (squid [7]), or they can
be obtained directly from a user’s browser, such as Firefox
[4], by using add-ons such as Boomtango [1]. The differences
between the two types of logs are as follows.

Advantage of proxy logs

• It is easy to collect Web-access logs without consider-
ing the different types of browsers, by simply recording
all activities of all machines inside the target local area
network that use the proxy.

Disadvantages of proxy logs

• There are many irrelevant records within the logs. For
example, when a user loads a single page, all image
files inside the page are recorded separately. Proxy
logs therefore tend to be much larger than browser
logs.

• Because a browser has a cache to improve the response
time for frequently visited Web pages, multiple ac-
cesses to the same Web page over a short duration
are not retained in the proxy logs. This reduces the
accuracy of the logs.

Advantage of browser logs

• This records Web pages that are visited directly via
user actions, and the log files are relatively small.

Disadvantages of browser logs

• To collect Web-access logs, we need to visit all target
client machines.

• The log-recording mechanisms of different browsers vary.
For example, only the most recent access to a Web page
is saved in the log file in Chrome [2], while Firefox [4]
records all accesses for each page.

We compared the effects of using proxy and browser logs
by experiment, as reported below.

2.2.3 Log Filtering
Because a log file may contain many irrelevant records, we

develop separate filters for file-access logs and Web-access
logs to remove unnecessary information.

For file-access logs, we prepare in advance a list of file
extensions that indicate file types, to filter out unnecessary
file accesses such as accesses to system files. The logs also
contain many records of accesses to folders. Because these
accesses are not used in our current approach, we also re-
move them. (We may use them in future work.) If there are
many file accesses within a very short duration (several per
second), these accesses can be considered automatic accesses
generated by software, because a human user could not ac-
cess so many files so quickly. Therefore, if more than N
records are accessed in a second (in our experiments, N was
four), we remove them from the log file. In this way, many
irrelevant access-log entries, such as file scans by antivirus
software, can be removed.

On the other hand, for the Web-access logs, we have to
consider the behavior of users. It is usual to traverse several
Web pages by clicking links to reach a useful Web page, even
when using a Web search engine. The viewing duration for
these stopover Web pages tends to be short until the tar-
get Web page is reached. Therefore, if a user moves quickly
to another Web page (within three seconds in our experi-
ments), we treat the Web page as a stopover, and remove
the reference from the logs.

We also remove logs of visits to specific Web sites. For
example, users tend to access a Web mailbox such as Gmail
frequently, independently of the current task. These types
of Web access are irrelevant to finding relationships with
file accesses. We therefore exclude these logs using a site
exclusion list. In this list, we also exclude logs of social net-
working service sites such as Twitter and Facebook because
the accesses on these sites hardly have any relationship with
the current task at the most time.

In proxy logs, accesses to images within a Web page are
also recorded. Since these files, used to construct parts of a
Web page, are not a target in this approach and can be found
by the URL of Web page later, we remove logs accessing
these image files based on their file extensions: .jpg/.JPG/,
.png/.PNG/, or .jpeg/.JPEG.

We delete logs for HTTP response status codes other than
200, which is the standard response for successful HTTP
requests.

2.3 Pre-Merge Method
In the Pre-Merge method, we first merge the file-access

logs and Web-access logs, and then extract frequent-item
sets from the integrated log. Its process flow is shown on
the left side of Figure 1. We describe each step below. Log
filtering is performed by the procedure described in Section
2.2.3.

2.3.1 Log Merging

Figure 1: Processing Flow for Pre-Merge (Left) and
Post-Merge (Right)

Figure 2: Extracting the Overlap between Two Log
Files

We first unify the formats of the two types of log files to
enable them to be merged, then use the timestamp informa-
tion to sort them in time order.

2.3.2 Overlap Extraction
It is of course very common for users to browse Web pages

independently of editing a file. Because the goal of this
research is to extract the relationship between files and Web
pages, we extract the overlapped part of the two logs in
terms of access time. We remove Web-access logs outside
a particular period (30 minutes in our experiments) before
and after a file access has occurred 2.

2.3.3 Transaction Conversion
To enable application of a transaction-based algorithm for

mining associations between items [9], we convert the inte-
grated access logs into a sequence of transactions containing
log records appearing within a predefined period (parameter

TransactionT ime[s]).
For example, if the integrated logs contain the records

“1:02:04 w.docx”,“1:05:28 www.example.com”,“1:40:39 y.txt”,
and“2:04:06 z.pptx”, and the parameter TransactionT ime[s]
is set to 3600[s], the converted transactions are transaction1

= “2.docx, www.example.com, y.txt” and transaction2 =
“z.pptx”.

2.3.4 Frequent-set Discovery
In this step, we discover frequently appearing sets from

transactions by using the Apriori algorithm [9]. We extract
combinations of the same file or Web page occurring over
minimum times predefined by the parameter (MinSupport).
This frequent-access-set discovery eliminates accidental simul-
taneous-access combinations that are not in fact related.

2.3.5 Set Maximization
The previous step tends to generate a large number of

small sets containing the same elements. We merge the small
sets into a maximized one. For example, if the frequent-
access-set discovery generates {a, b, c, d} and {a, b, c, e}, the
files or Web pages {a, b, c, d, e} are probably related to the
same task, in spite of there being no set {a, b, c, d, e} in the
frequent-access-set discovery results.

To merge similar small sets into a larger set, we use the
Dice coefficient, defined by the following expression:

2|A ∩ B|
|A| + |B| ≥ Dice threshold

.
If the Dice coefficient between two item sets, A and B, is

equal to or greater than a predefined threshold (parameter
Dice threshold), the sets A and B are combined into a larger
set.

2.4 Post-Merge Method
In the Post-Merge method, we first apply the Apriori al-

gorithm [9] to the file-access log and Web-access log individ-
ually, and then merge the results of the two frequent-item
sets. The right part of Figure 1 shows the process flow for
this method. Because the sets obtained by Log Filtering
(2.2.3), Transaction Conversion (2.3.3), Frequent-set Dis-
covery (2.3.4), and Set Maximization (2.3.5) are the same
as those in the Pre-Merge method, we need only explain the
Matching step in this section.

2.4.1 Matching
After the frequent-access-set discovery for each log file, we

obtain the frequent-item sets for both files and Web pages.
Because we assume that files and Web pages for the same
task are accessed during the same time period in a transac-
tion, we combine file sets with Web-page sets based on the
degree of overlap in access times for each element.

If the number of element pairs of overlapped transactions
is greater than or equal to a predefined parameter (Overlap),
we consider the two frequent-access sets to have a strong
relationship, and combine them. The matching condition
for a frequent-access set of files fp and a frequent-access set
of Web pages wq is defined as follows:

|TranIDs(fp) ∩ TranIDs(wq)| ≥ Overlap

.

Figure 3: Matching in Post-Merge

Here, TranIDs(x) means the set of transaction IDs con-
taining x.

For example, suppose that we obtain a frequent-item set
{x, y, z} for files, and {a, b, c} for Web pages, as shown in
Figure 3. When the parameter value for Overlap is three
and that for TransactionT ime is 15 minutes, and the file x
and Web page a are both accessed in the three transaction-
time periods “12:00–12:15”, “12:15–12: 30”, and “12:45–13:
00” (corresponding to the box colored black in Figure 3),
these two sets are combined.

3. EXPERIMENTS
We performed three experiments to find the optimal pa-

rameter values for the Pre-Merge and Post-Merge methods,
and compared these two methods in terms of accuracy and
execution time.

3.1 Environment
We used the following environment for the experiments:

• OS: Linux CentOS 4.3

• CPU: Dual Core AMD Opteron(tm) Processor 280 *4

• Memory: 16 GB (4 GB *4)

3.2 Data
The file-access logs used in these experiments were de-

rived from the file server in our research laboratory using
a tool called Facclog. For the Web-access logs, the proxy
logs in the HTTP proxy server operating in our laboratory
were recorded, and the browser logs were from the Firefox
browsers installed on each client. We used the access logs of
two distinctive users in these experiments. The details are
shown in Table 1.

We prepared three datasets, which were various combina-
tions of the users and Web-access log types, as follows:

• Dataset1: File-access logs + Browser logs for User1

• Dataset2: File-access logs + Proxy logs for User1

• Dataset3: File-access logs + Proxy logs for User2

The reason for preparing these three datasets was that Dataset1
and Dataset2 are for the same user, the difference being that
they combine the same file-access logs with different types

Table 1: Data

User Term Log Size (byte) File/Web page
numbers

User1 2010/09/24 - File 23,624,947 472
2010/11/21 Browser 2,036,315 1731

Proxy 52,332,311 3939
User2 2010/10/1 - File 42,450,684 506

2010/10/31 Proxy 68,546,676 3036

Figure 4: Examples of Virtual Folders

of Web-access logs. We aimed to identify the better type
of Web-access log by comparing results for Dataset1 and
Dataset2. On the other hand, Dataset2 and Dataset3 are
from different users using the same type of Web-access log.
We aimed to find differences between users by comparing
the results for Dataset2 and Dataset3.

To evaluate our experimental results, we created correct
Answer Sets by hand for four tasks. The details are shown
in Table 2.

3.3 Output Examples
We describe examples of the output from our proposed

methods in this section. As illustrated in Figure 4, we use
virtual folders to show the results. Here, a virtual folder
corresponds to a task. Two virtual folders are depicted in
Figure 4.

Virtual Folder1 contains two Perl files and four Web-page
URLs belonging to an implementation task for User1. The
desktop search engines could find the two Perl files but were
unable to present the four Web pages to the users at the
same time. Our methods were able to identify both files
and Web pages at the same time.

Virtual Folder2 contains only Web-page URLs. The rea-
son for this kind of output is that, when a user browses
the Web, the user will occasionally touch a file. Therefore,
these records will not be deleted in the log-filtering step.
However, in the frequent-set-discovery step, the records for
files are removed, leaving only frequently accessed records
of Web pages. Such sets are the results of Web browsing by
a user. The purpose of this paper is the extraction of re-
lationships between files and Web pages, but we would not
use such result sets in experiment.

3.4 Evaluation
We use Precision, Recall, and F −measure [10] to eval-

uate the results. The definitions of these metrics are:

Precision =
|Results ∩ Examinees|

|Results| (1)

Recall =
|Results ∩ Examinees|

|Examinees| (2)

F−measure =
2 ∗ Precision ∗ Recall

Precision + Recall
. (3)

We only evaluate result sets that refer to both files and
Web pages. With reference to Figure 4, we do not evaluate
Virtual Folder2 because it refers to no files. If the items of
the correct answer set are distributed across more than one
result set, we compare each result set with the answer set
and choose the one with the highest value for Recall.

3.5 Experimental Results

3.5.1 Experiment 1
The goal of Experiment 1 was to determine the optimal

parameter values for the two methods. We changed the pa-
rameter values individually to derive the highest F-measure
value. The results are shown in Table 3. The order of the
parameters listed in the Parameters column of the table is
“TransactionTime – MinSupport – Threshold value for Dice
– Overlap (only used in Post-Merge)”.

We found that the optimal parameter values for the two
methods are different. Between different users, because of
differences in their behavior, the optimal parameters are also
different.

For TransactionT ime, too small a value will limit the
opportunities for related items to combine with each other.
Conversely, too large a value will lead to results containing
irrelevant items. We found that the optimal setting was
1800[s]for the Pre-Merge method with User1, it was 3600[s]
for Post-Merge with User1, it was 3600[s] for Pre-Merge with
User2, and it was 5400[s] for Post-Merge with User2.

For the threshold value for Dice, we found it differed
significantly for different users. Except for User2’s optimal
setting being 0.7, the optimal threshold value is between 0.1
and 0.4. Setting too high a threshold value will limit set
unification and will lead eventually to low Recall values.

For Overlap in the Post-Merge method, values of 3 or 4
are optimal in all cases. If we set a value of up to 6, the
frequent sets for files and Web pages will no longer unite,
meaning that we cannot get a final result that refers to both
files and Web pages.

3.5.2 Experiment 2
In Experiment 2, we used the optimal parameter values

derived in Experiment 1 to compare the accuracy of the Pre-
Merge and Post-Merge methods. The results are depicted
as graphs in Figure 5.

The results indicate that Pre-Merge performs significantly
better than Post-Merge on all Precision, Recall, and F-measure
metrics. We consider that there are two reasons for this.

Firstly, from the nature of Web pages, there are only a
few Web page sets that appear frequently. For example,
suppose that files “a, b, and c” and Web page “w” belong

Table 2: Answer Sets
User Set Content Extensions Files Web page numbers Total numbers
User1 S1 Implementation of the core part java, pptx 24 1 25

S2 Implementation of the filter pl, txt 8 14 22
S3 Seminar pdf, pptx 2 7 9

User2 S4 Academic management bmp, pdf, xlsx 14 4 18
doc, docx, pptx

Table 3: Optimal Parameter Values

Dataset Method Parameter Answer set Precision Recall F-measure Execution time[s]
Dataset1 Pre-Merge 1800-2-0.1 S1 0.61 0.76 0.68

S2 1.00 0.86 0.93
S3 1.00 0.67 0.80

average 0.87 0.76 0.80 35.31
Post-Merge 3600-2-0.4-3 S1 0.56 0.76 0.64

S2 0.21 0.13 0.16
S3 0.00 0.00 0.00

average 0.26 0.30 0.27 18.85
Dataset2 Pre-Merge 1800-2-0.3 S1 0.00 0.00 0.00

S2 1.00 0.36 0.53
S3 0.80 0.44 0.57

average 0.60 0.27 0.37 38.79
Post-Merge 3600-2-0.4-3 S1 0.56 0.76 0.64

S2 0.21 0.13 0.16
S3 0.00 0.00 0.00

average 0.26 0.29 0.27 22.81
Dataset3 Pre-Merge 3600-2-0.3 S1 0.80 0.22 0.35

average 0.80 0.22 0.35 67.38
Post-Merge 5400-2-0.7-4 S1 0.10 0.17 0.13

average 0.10 0.17 0.13 24.38

to the same task, and that every time a user edits file “a”,
“b”, or “c”, page “w” is accessed. Under this assumption,
the frequent-access set {a, b, c, w} will be derived in the Pre-
Merge method. However, for Post-Merge, the frequent sets
for files and Web pages are calculated separately, so we will
derive only {a, b, c} because no other Web pages are accessed
together with “w”. In other words, “w”will not be extracted
into any frequent set before matching, because it is a single-
ton with respect to Web accesses. That is, because the fre-
quent sets for Web pages tend to be small in the Post-Merge
method, its accuracy will be worse. The same phenomenon
is occurred in the case that a file is a singleton in the unified
frequent-access set.

Secondly, in the matching step of Post-Merge, it is possible
that some unrelated items are matched into the final result.
This also decreases the accuracy of the Post-Merge method.
It would appear to be necessary to improve the matching
process in future.

In addition, the period of collected logs used in these ex-
periments was about 1–2 months. When we apply the two
methods to longer periods of log data in the future, we would
expect that the accuracy differences will be larger.

Comparing the results for Dataset1 and Dataset2, the use
of browser logs performs better than the use of proxy logs on
all Precision, Recall, and F-measure metrics. We consider
that there are also two reasons for this.

Firstly, the proxy logs contain too many irrelevant logs

such as records of advertising sites and loading records for
material embedded in a Web page. These decrease the Pre-
cision values for the proxy logs directly.

Secondly, because of the cache function in browsers, the
browser will not load the same Web page from Web servers
again until the cache expires. Therefore, the access history
for the same Web pages within a short period may be found
in the browser logs, but not in the proxy logs. This decreases
the Recall values for the proxy logs.

3.5.3 Experiment 3
Experiment 3 uses the optimal parameter values from Ex-

periment 1 to compare the two methods in terms of execu-
tion time. The results are shown in Figure 6.

For Dataset1, the Pre-Merge method takes 1.87 times
longer than the Post-Merge method. This is 1.70 times
longer for Dataset2, and even reaches 2.76 for Dataset3. We
consider that there are two reasons for this.

Firstly, the frequent-access-set discovery step is the most
time-consuming step for both methods, and its execution
time depends on the size of the logs. Because Pre-Merge
merges both logs first, the size of the logs becomes larger
before calculating the frequent sets.

Secondly, when Pre-Merge combines the two logs, it is
necessary to sort the two logs in order of timestamps. This
is also time consuming.

We should expect that, when we apply the proposed meth-
ods to larger log datasets in future, the differences in exe-

Figure 5: Comparison of the Two Methods in Terms
of Accuracy

cution time will be even larger. Therefore, improving the
processing efficiency in Pre-Merge is a big problem to be
solved.

4. RELATED WORK
There are some popular desktop search engines, such as

Windows Search [8], Google Desktop [5], and Spotlight [6] in
Mac OS X. However, because these desktop search engines
all use textual information inside files for keyword search-
ing, there is the problem that they cannot find nontext-
based files such as image and video files. Another problem
is that they all require the user to input appropriate key-
words, whereas files associated with the same piece of work
do not always use the same keywords. For this reason, us-
ing traditional desktop search engines to search for all files
belonging to a task without missing some of them is very
difficult, particularly when the scale of the task is large.

FRIDAL [17, 18] is a system for solving the problem of
desktop search engines finding files containing no textual in-
formation. FRIDAL calculates the relationship between files
using information such as overlap counts, overlap durations,
and differences in open times in the file-access logs. It then
utilizes the relationships to provide related files to add to the
results of a traditional desktop search engine. Therefore, it
is capable of providing related files that do not contain the
given keyword directly.

The approach of FRIDAL is expanded in the Cluster-
ing using Overlap of file-use (CO) method [14], the FI [13]
method, and the COFI [15] method. The goal of each of

Figure 6: Comparison of the Two Methods in Terms
of Execution Time

these three methods is to list files associated with the same
task in a virtual folder, even though the files may be dis-
tributed across multiple directories in the file system. In
other words, the goal of these methods is to group files by
task.

The CO method discovers files whose times of use overlap.
It then uses hierarchical clustering to group the files into
virtual folders. The CO method can find files distributed
across the file system. However, the problem is that even
files belonging to the same task may not overlap. Thus, CO
cannot find files whose access times do not overlap.

The FI method is an improved version of the CO method.
It converts file accesses into a sequence of transactions de-
fined over a certain period, and then finds the frequently
appearing combinations of files. It also outputs its results
into virtual folders.

The COFI method is a method based on both the CO and
FI methods. It first derives the relationships between file ac-
cesses from file-access logs using the concept of a transaction.
It then calculates the relationships between the transactions
using overlap information, similarly to the CO method.

Based on an assumption that a set of Rename, Move, and
Copy (RMC) operations tends to initiate a new task, the
SUGOI [19] system detects two types of tasks, FI tasks and
RMC tasks, from file-access logs. An FI task corresponds to
a group of files frequently accessed together; an RMC task is
generated by RMC operations and then constructs a graph
of intertask relationships based on the influence of RMC
operations and the similarity between tasks. Experiments
using actual file-access logs indicate that the SUGOI system
significantly improves search results of the COFI methods.

Connections [16] is a file search system that uses contex-
tual information with the aim of enhancing full-text search
results. Connections generates a relational graph of files
based on traces of filesystem calls. To discover relation-
ships, it splits access logs into multiple relation windows
and identifies the input and output files in each window by

considering which operation is performed on the files. Con-
nections then creates links with weight 1 from input files to
output files or increases the weight of existing links. It uses
a Basic-BFS (Breadth First Search) algorithm to propagate
the weights of keyword-containing files to keyword-lacking
files to expand and reorder the results generated by a full-
text search engine.

Semantic Desktop Search [11] extracts the attributes from
each file, then search files using the attributes. However, it is
necessary to write programs for each type of files to extract
the attributes. Our methods are independent of file formats.

Because the targets of these above-mentioned methods are
file accesses only, with no consideration of Web access, the
main contribution of this paper is the combined treatment
of file-access logs and Web-access logs to derive relationships
between them.

OreDesk [12] is a tool that can search both files and Web
pages browsed in the past, as a type of time machine. Ore-
Desk records the behavior of specific applications by in-
stalling plug-ins in them. OreDesk then shows its results on
a timeline. For example, by reviewing a previous timeline,
users can find those Web pages that were browsed when cre-
ating a Word file. However, the problem is that, if the user
cannot remember when the Word file was created, the user
will have to check the whole timeline. A significant differ-
ence between OreDesk and our methods is that our methods
can classify files and Web pages for a task automatically, by
calculating access frequencies.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed two methods for extract-

ing groups of files and Web pages used in the same task
into a virtual folder that provides a means of revisiting re-
lated files and Web pages. We analyzed two types of access
logs, file-access logs and Web-access logs, deriving relation-
ships between files and Web pages by applying a data mining
technique. We named the methods Pre-Merge and Post-
Merge, where the former method first merges the two types
of logs and then finds the relationships, whereas the latter
method first analyzes each type of log separately and then
finds matches between them.

We evaluated the two methods using actual access logs
from our laboratory. In the experiments, we first deter-
mined optimal parameter values for each method, and then
compared their accuracy, Precision, Recall, and F-measure.
We also compared the execution times for the two methods,
using the optimal parameter values. The results of the ex-
periments indicate that there is a trade-off between accuracy
and execution time for these methods. Pre-Merge performs
better than Post-Merge for all of the Precision, Recall, and
F-measure metrics. However, Pre-Merge takes from 1.70 to
2.76 times longer than Post-Merge. For the size of log files
used in the experiments, the difference in accuracy is more
significant than the execution times, and we conclude that
the Pre-Merge method is preferable. However, for larger log
files, the differences in execution time will increase and may
become a serious problem. We therefore plan to evaluate
the methods using longer-period logs in the future.

In future work, we also plan to refine the methods to im-
prove accuracy, to reduce execution time, to determine opti-
mal parameter values automatically from user behavior, and
to experiment with larger log files.

6. ACKNOWLEDGMENTS
Part of this research was supported by MEXT via a Grant-

in-Aid for Scientific Research #22240005.

7. REFERENCES
[1] Boomtango. http://www.boomtango.com/.

[2] Chrome. http://www.google.com/chrome/.

[3] Facclog.
http://www2s.biglobe.ne.jp/~masa-nak/fal down
.htm.

[4] Firefox. http://mozilla.jp/firefox/.

[5] Google desktop. http://desktop.google.com/.

[6] Mac os x spotlight.
http://www.apple.com/server/macosx/features/spotlight-
server.html.

[7] Squid cache. http://www.squid-cache.org/.

[8] Windows search.
http://www.microsoft.com/windows/products/winfamily/
desktopsearch/default.mspx.

[9] R. Agrawal, T. Imieliński, and A. Swami. Mining
association rules between sets of items in large
databases. Proc. ACM SIGMOD, pages 207–216, 1993.

[10] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999.

[11] A. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and
R. Paiu. Activity based metadata for semantic
desktop search. Proc. Second European Semantic Web
Conference(ESWC 2005), pages 439–454, 2005.

[12] R. Ohsawa, K. Takashio, and H. Tokuda. Oredesk: A
tool for retrieving data history based on user
operations. IEEE International Symposium on
Multimedia (ISM 2006), pages 762–765.

[13] K. Otagiri, Y. Watanabe, and H. Yokota. Access-log
analysis for virtual directory creation to restore files
used in user’s works. Information Processing Society of
Japan, 2009.

[14] K. Otagiri, Y. Watanabe, and H. Yokota. Access-log
based virtual directory creation to restore user’s
works. In DEIM Forum 2009, 2009.

[15] K. Otagiri, Y. Watanabe, and H. Yokota. Virtual
directory creation considering access-times in frequent
accessed file sets. DEIM Forum 2010, 2010.

[16] C. A. N. Soules and G. R. Ganger. Connections: using
context to enhance file search. Proc. of SOSP’05,
pages 119–132, 2005.

[17] T. Watanabe, T. Kobayashi, and H. Yokota. A method
for searching keyword-lacking files based on interfile
relationships. In OTM ’08: Proceedings of the OTM
Confederated International Workshops and Posters on
On the Move to Meaningful Internet Systems, pages
14–15, Berlin, Heidelberg, 2008. Springer-Verlag.

[18] T. Watanabe, T. Kobayashi, and H. Yokota. Searching
keyword-lacking files based on latent interfile
relationship. Software and Data Technologies, pages
236–244, 2010.7.

[19] Y. Wu, K. Otagiri, Y. Watanabe, and H. Yokota. A
file search method based on intertask relationships
derived from access frequency and rmc operations on
files. 22nd International Conference on Database and
Expert Systems Applications (DEXA 2011), pages
364–378, 2011.

