
論文 / 著書情報
Article / Book Information

Title A Fast MAP Adaptation Technique for GMM-supervector-based Video
Semantic Indexing Systems

Author Nakamasa Inoue, Koichi Shinoda

Citation(English) Proc. ACM Multimedia 2011, Vol. , No. , pp. 1357-1360

Issue date 2011, 11

Copyright Copyright (c) 2011 Association for Computing Machinery

Set statement Copyright (C)2011 Association for Computing Machinery(ACM), . This
is the author's version of the work. It is posted here by personal use.
Not for redistribution. The definitive version of Record was published in
Nakamasa Inoue, Koichi Shinoda, ACM Multimedia'11,2011,pp. 1357-
1360.http://dx.doi.org/10.1145/2072298.2072014

Note このファイルは著者（最終）版です。
This file is author (final) version

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

A Fast MAP Adaptation Technique for
GMM-supervector-based Video Semantic Indexing Systems

Nakamasa Inoue, Koichi Shinoda
Dept. of Computer Science,

Tokyo Institute of Technology, Japan
{inoue, shinoda}@ks.cs.titech.ac.jp

ABSTRACT
We propose a fast maximum a posteriori (MAP) adaptation
technique for a GMM-supervectors-based video semantic in-
dexing system. The use of GMM supervectors is one of the
state-of-the-art methods in which MAP adaptation is needed
for estimating the distribution of local features extracted
from video data. The proposed method cuts the calcula-
tion time of the MAP adaptation step. With the proposed
method, a tree-structured GMM is constructed to quickly
calculate posterior probabilities for each mixture compo-
nent of a GMM. The basic idea of the tree-structured GMM
is to cluster Gaussian components and approximate them
with a single Gaussian. Leaf nodes of the tree correspond
to the mixture components, and each non-leaf node has a
single Gaussian that approximates its descendant Gaussian
distributions. Experimental evaluation on the TRECVID
2010 dataset demonstrates the effectiveness of the proposed
method. The calculation time of the MAP adaptation step
is reduced by 76.2% compared to that of a conventional
method and resulting accuracy (in terms of Mean average
precision) was 10.2%.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image processing and
computer vision—Applications

General Terms
Algorithm, Experimentations

Keywords
Video Semantic Indexing, GMM Supervectors, MAP Adap-
tation

1. INTRODUCTION
Video semantic indexing is one of the fundamental chal-

lenges in the field of computer vision. Its goal is to develop a

.

generic method for automatically assigning semantic tags to
video data. Detecting semantic concepts including objects,
events and scenes is a challenging task due to within-class
variations in shapes, colors, illuminations and backgrounds.

Many studies have started to focus on large-scale video
recognition—a problem that requires a large amount of com-
putational resources in recent years. For example, in the
TREC Video Retrieval Evaluation (TRECVID) [1] work-
shop, which provides researchers with common tasks of video
analysis, the size of target video resources has been dou-
bling every year. While developing an accurate classifica-
tion method is a top priority, a fast method for processing
such a large amount of data is also needed. In response to
these requirements, the motivation of the present study is
to develop a fast and accurate semantic indexing system.

In recent researches, supervector coding of local features
[2] has been proposed as an image-annotation method and
applied to video recognition. For example, using a com-
bination of Gaussian mixture model (GMM) supervectors
and support vector machines (SVMs) has achieved better
performance than that achieved by the bag-of-visual-words
approach [3, 4]. With this method, a probability density
function (pdf) of extracted local features is estimated by a
GMM using maximum a posteriori (MAP) estimation. This
MAP estimation step is called MAP adaptation. Aiming to
reduce computational costs, most previous studies focused
on reducing the cost of feature extraction (e.g., GPU imple-
mentations in [5]). The calculation time of the MAP adap-
tation step, however, has become the bottleneck of a system.

In the present study, we propose a fast maximum a poste-
riori (MAP) adaptation technique for a GMM-supervectors-
based video semantic indexing system. We evaluated the
technique by testing it on the TRECVID 2010 dataset.

2. PROPOSED METHOD

2.1 Gaussian Mixture Model
A probability distribution function (pdf) of local visual

(or audio) features is estimated for each video shot. Here,
Gaussian mixture models (GMMs), whose pdf is given by

p(x|θ) =
KX

k=1

wkgk(x), gk(x) = N (x|µk, Σk), (1)

are employed where x is a local feature, θ = {wk, µk, Σk}K
k=1

is a set of parameters, K is the number of mixture compo-
nents, wk is a mixture coefficient, and gk(x) is a pdf with a
mean vector µk and a covariance matrix Σk.

The GMM parameters are estimated by using an expec-
tation maximization (EM) algorithm with a maximum a
posteriori (MAP) criterion. For MAP adaptation, a GMM
for prior distribution, namely a universal background model
(UBM), is first needed. The UBM presents how the features
are distributed in the general case: therefore, the parame-
ters used for the UBM, θ̂(U), is estimated by applying the
EM algorithm to all features in training videos.

With the proposed method, only mean vectors are adapted
for each shot. The MAP solution gives the following equa-
tions:

µ̂(s)
k =

τ µ̂(U)
k +

Pn
i=1 cikxi

τ +
Pn

i=1 cik
, cik =

wkgk(xi)PK
k=1 wkgk(xi)

, (2)

where Xs = {xi}n
i=1 is a set of (one type of) feature vectors

extracted from the s-th shot, θ̂(U) is the UBM parameter,
and τ is a predefined hyper-parameter.

2.2 Tree-structured GMMs
Given the UBM, a tree structure of Gaussian components

that makes calculation of Eq. (2) efficient is constructed.
The basic idea is to cluster Gaussian components by a single
Gaussian. For given Gaussian components gm = N (·|µm, Σm)
and combination coefficients αm (αm ≥ 0,

P
αm = 1) (m =

1, 2, · · · , M), we define a combined single Gaussian by

α1g1 ⊕ α2g2 ⊕ · · ·⊕ αMgM = N (·|µ̄, Σ̄), (3)

µ̄ =
MX

m=1

αmµm, Σ̄ =
MX

m=1

αm(Σm + µmµT
m) − µ̄µ̄T. (4)

If only a set of Gaussians components G = {g1, g2, · · · , gM}
is given,

g(G) =
1
M

g1 ⊕
1
M

g2 ⊕ · · ·⊕ 1
M

gM . (5)

is simply used. Figure 1 shows an example of a tree-structured
GMM. Each leaf node corresponds to a Gaussian compo-
nent of the GMM, and each other node has a single Gaus-
sian obtained by combining corresponding Gaussian pdfs of
descendant nodes. As for the following tree-construction al-
gorithm, it is assumed that the maximum number of child
nodes for each layer (with the exception of the leaf layer) is
given. For example, if the maximum number of child nodes
for the first layer is two and that for the second layer is three,
the resulting tree will be designed as shown in Figure 1. In
this case, a tree with a depth of three (including the leaf
layer) is obtained. This tree-structured GMM is denoted as
T(2,3) = (V, E, GTREE) where V is a set of nodes, E is a set of

edges, and GTREE = {g(v)|v ∈ V } is a set of Gaussian pdfs.
In general, a node at the t-th layer of a tree T(P1,P2,··· ,PT)

has, at most, Pt child nodes.
The node pdfs g(v) of a tree T(P1,P2,··· ,PT) are created by

the following algorithm. Note that GGMM = {g1, g2, · · · , gK}
is a set of mixture components of the UBM, G(v) is a subset
of GGMM corresponding to node v, g(v) is a Gaussian pdf
for node v, and d(gm, gn) is the sum of Kullback-Leibler
divergence from gm to gn and that of from gn to gm.

1. Prepare a queue and enqueue (r, G(r)), where r is the
root node, and g(r) ← g(G(r)) (G(r) = GGMM).

2. (Min-max Initialization) Dequeue (v, G(v)). Let {cp}P
p=1

be the child nodes of node v. For p = 1, 2, · · · , P , ini-

Figure 1: An example of a tree-structured GMM.

tialize child Gaussian pdfs as follows:

g(cp) ← αg̃(cp) ⊕ (1 − α)g(v) (6)

where 0 ≤ α ≤ 1, and g̃(cp) is chosen from G(v) by

g̃(cp) =

8
>>><

>>>:

argmax
g∈G(v)

d(g, g(v)) (p = 1)

argmax
g∈G(v)

g "=g̃(c1),··· ,g̃
(cp−1)

min
1≤p′<p

d(g, g̃(cp′)) (otherwise) .

3. (Clustering by k-means) Assign each Gaussian compo-
nent in G(v) to the nearest child node, i.e.

G(cp) ← {g ∈ G(v) | p = argmin
p′

d(g, g(cp′))}. (7)

Update g(cp) by using Eq. (5) as g(cp) ← g(G(cp)).
Repeat this step until the following sum converges:

D =
PX

p=1

X

g∈G(cp)

d(g, g(cp)). (8)

4. For p = 1, 2, · · · , P , enqueue (cp, G(cp)) if cp is not in
the (T + 1)-th layer and |G(cp)| > 1. Go to step 5 if
the queue is empty; otherwise, return to step 2.

5. For each node v in the (T + 1)-th layer, create leaf
nodes $ for each gk ∈ G(v) ⊂ GGMM and set g(!) = gk.

2.3 Fast MAP Adaptation
A fast MAP adaptation technique which estimates cik in

Eq. (2) efficiently by using a tree-structured GMM is ex-
plained in the following. For a constructed tree-structured
GMM T(P1,P2,··· ,PT), node weights are first defined as fol-
lows:

1. For each leaf node, set w(!) = wk if g(!) = gk ∈ GGMM.

2. Calculate weights for t = T + 1, T, · · · , 1 as follows.
For each node v in the t-th layer,

w(v) =
X

c∈C(v)

w(c), (9)

Table 1: The 30 target semantic concepts in the TRECVID 2010 dataset
Airplane Flying Animal Asian People Bicycling Boat ship Bus
Car Racing Cheering Cityscape Classroom Dancing Dark-skinned People
Demonstration Or Protest Doorway Explosion Fire Female Human Face Closeup Flowers Ground Vehicles
Hand Mountain Nighttime Old People Running Singing
Sitting down Swimming Telephones Throwing Vehicle Walking

where C(v) is a set of child nodes of the node v.

The algorithm for estimating cik for feature vector xi is
described as follows. The key idea is to construct a GMM of
active nodes VA, which means vector xi will be assigned to
descendants of nodes in VA. |VA| is kept small by obtaining
active nodes from the root node.

1. Set VA ← {r}, where r is the root node.

2. Expand active nodes by making child nodes of the ac-
tive nodes active:

VA ←
[

v∈VA

C(v), (10)

where C(v) is a set of child nodes of the node v. Here,
C($) = {$} is used for leaf nodes $ to keep the leaf
nodes active.

3. Consider an active GMM given by

p(x|VA) =
X

v∈VA

w̃(v)g(v)(x), w̃(v) =
w(v)

P
v∈VA

w(v)
.

Calculate

c(v)
i =

w̃(v)g(v)(xi)P
v∈VA

w̃(v)g(v)(xi)
=

w(v)g(v)(xi)P
v∈VA

w(v)g(v)(xi)
.

4. Keep a node v active if c(v)
i is larger than the prede-

termined threshold cTH, i.e.

VA ← {v ∈ VA | c(v)
i > cTH} (11)

5. If all nodes in VA are leaf nodes, output

ĉik =

(
c(!)

i ($ ∈ VA, g(!) = gk)

0 (otherwise)
. (12)

Otherwise, return to step 2.

Since the observed ĉik for non-active nodes is 0, the sum
in Eq. (2) can be calculated for non-zero ĉik only. Moreover,
calculation speed and levels of approximation can be con-
trolled by selecting the threshold in 0 < cTH ≤ 1. Note that
the same cik as given by Eq. (2) is obtained if cTH is set to
0 (because all leaf nodes will be active at the final step).

2.4 GMM Supervector
The combination of GMM supervectors and support vec-

tor machines (SVMs) was first proposed as a speaker recog-
nition method [6] and has been applied to image and video
recognition [3, 4]. GMM supervectors are created for each
shot given by

φ(Xs) =

0

BBBB@

µ̃(s)
1

µ̃(s)
2
...

µ̃(s)
K

1

CCCCA
, µ̃(s)

k =
q

w(U)
k

“
Σ(U)

k

”− 1
2

µ̂(s)
k , (13)

where µ̂(s)
k is an adapted mean vector obtained from Eq. (2),

and θ(U) is the GMM parameter for the UBM. Finally, SVMs
are trained for each semantic concepts and for each type of
features by using RBK kernels.

Note that while the scope of this paper is fast creation of
the GMM supervectors, the proposed technique can be used
for creating the Fisher vectors [7].

3. EXPERIMENTS

3.1 Database and Task
Our experiments were conducted on the TRECVID 2010

dataset [1]. The dataset consists of 400 hours of Internet
archive videos with creative commons licenses. The shot
boundaries are automatically detected and provided with
the video data. Half of the videos were used for training,
and the others were used for testing. The number of shots
was 119,685 for training and 146,788 for testing. The task
of semantic indexing in the experiment is to detect the 30
semantic concepts listed in Table 1. The target 30 concepts
(including objects, events and scenes) were selected at the
TRECVID 2010 workshop. They are considered to be useful
for video searching.

The evaluation measures are Mean average precision (Mean
AP) and calculation time (CT) of the testing phase. Mean
AP is defined as the mean of APs over all 30 target concepts,
and APs are estimated by using a method called inferred av-
erage precision (Inf AP), proposed in [8].

3.2 Experimental Conditions
The following four types of visual and audio features are

extracted from video data: 1) SIFT features with Harris-
Affine detector (SIFT-Har), 2) SIFT features with Hessian-
Affine detector (SIFT-Hes), 3) SIFT and hue histogram with
dense sampling (SIFTH-Dense), and 4) MFCC audio fea-
tures (MFCC).

The number of mixtures (vocabulary size) K for GMMs
was 512 for visual features and 256 for audio features. For
computational efficiency, it was assumed that covariance ma-
trices are diagonal. Hyper parameter τ in the MAP adap-
tation was set to 20.0. SVMs were trained for each seman-
tic concepts by using the libSVM implementation [9]. For
tree-structured GMMs, the optimal tree structure Topt was
selected as

Topt = argmin
T ∈S

CT(T), (14)

S = {T(P1,P2,··· ,PT) | 1 ≤ T ≤ 5, 1 ≤ Pt ≤ 5}, (15)

where CT(T) is calculation time when the tree T is used.
The trees T(4,4,5), T(4,5,5), T(3,4,4,5) and T(3,3) were selected
for SIFT-Har, SIFT-Hes, SIFTH-Dense and MFCC, respec-
tively. Parameter α in Eq. (6) was fixed to 0.1. Threshold
cTH for the fast MAP adaptation was set to 0.001. Here, a
low threshold was set so as to keep detection performance

Table 2: Comparison of Mean Inf AP (%) in terms
of different features.

Feature No tree Topt

SIFT-Har 6.30 6.32
SIFT-Hes 5.96 6.08
SIFTH-Dense 7.10 6.95
MFCC 1.99 2.00
Fusion 10.15 10.16

Table 3: Calculation time (sec) for MAP adaptation.

Feature No tree Topt Tbinary

SIFT-Har 1.62 0.49 0.98
SIFT-Hes 1.67 0.48 1.00
SIFTH-Dense 2.89 0.81 1.89
MFCC 0.22 0.03 0.08

high. Experiments using different thresholds were also con-
ducted (see Subection 3.3.3).

In the experiments, calculation time was measured by us-
ing one Intel Xeon 2.93 GHz CPU.

3.3 Results

3.3.1 Mean Inf APs
Table 2 summarizes obtained Mean Inf APs for each fea-

tures and a fusion method. The Fusion combines four fea-
tures by calculating the weighted sum of detection scores
(fusion weights were optimized by using two-fold cross val-
idation on training data). As a result, we can see that the
Mean Inf APs using tree-structured GMMs are comparable
to those using no trees.

Estimation errors of cik were also evaluated from the mean
absolute error (MAE), given as follows:

MAE =
1
n

nX

i=1

KX

k=1

|ĉik − cik|, (16)

where ĉik and cik are given by Eq. (12) and Eq. (2), re-
spectively. The MAE for SIFTH-Dense was 0.32 on average
(note that 0 ≤ MAE ≤ 2). Although we have estimation er-
rors of cik in the fast MAP adaptation algorithm, they can
be cancelled when the distance between two GMM super-
vectors is calculated since the same errors occur in training
and testing phases.

3.3.2 Calculation Time
Table 3 lists calculation times for MAP adaptation using

different features and different trees. The results for binary
trees (Tbinary) are also listed in the table. The calculation
speed when the optimal tree is used on average 4.2 times
faster than when trees were not used; that is, calculation
time was reduced by 76.2%. The MAP adaptation step took,
on average, 0.055 msec per feature.

3.3.3 Effect of using different thresholds
Table 4 lists the results obtained using different thresholds

cTH for the fast MAP adaptation. The number of leaf nodes
that are active (at least once in Eq. (10)) and MAE are also
listed in the table.

Table 4: Comparison of Mean Inf AP (%), calcula-
tion time (sec) for MAP adaptation (CT), number of
leaf nodes |VA| and Mean absolute error (MAE) by
using different thresholds cTH (for SIFTH-Dense).

cTH Mean Inf AP CT |VA| MAE
0.001 6.95 0.81 17.0 0.32
0.01 6.99 0.68 11.2 0.53
0.1 6.60 0.59 7.3 0.80
0.5 6.41 0.53 5.4 0.98

As cTH gets higher, the calculation time shortens, but
Mean Inf AP was decreased when cTH = 0.1 and 0.5. More-
over, the number of active leaf nodes decreases, and MAE
increases. It can thus be concluded that calculation time
should be reduced not by setting a high threshold cTH but
by selecting a better-structured tree to keep detection per-
formance high. In particular, cTH should be equal to or
smaller than 0.01 in this case.

4. CONCLUSION
A fast MAP adaptation technique using tree-structured

GMMs for a video semantic indexing system was proposed.
The detection time was reduced by 56.6%, compared to that
of convention method, while high detection performance was
maintained. The best result, in terms of Mean Inf AP, at-
tained by our fusion method tested on the TRECVID 2010
dataset was 10.16% when tree-structured GMMs were used
and 10.15% when no trees were used. Our future work will
focus on a GPU implementation of the fast MAP adapta-
tion. As a result, feature extraction and MAP adaptation
will be independently conducted for each local feature by
GPUs.

5. REFERENCES
[1] A. F. Smeaton, and et al. Evaluation campaigns and

trecvid. In Proc. of ACM Multimedia MIR workshop,
pages 321–330, 2006.

[2] X. Zhou, and et al. Image classification using
super-vector coding of local image descriptors. In
Proc. of ECCV, 2010.

[3] X. Zhou, and et al. Sift-bag kernel for video event
analysis. In Proc. of ACM Multimedia, 2008.

[4] N. Inoue, and et al. High-Level Feature Extraction
using SIFT GMMs and Audio Models. In Proc. of
ICPR, 2010.

[5] C. Wu. SiftGPU: A GPU implementation of sift.
http://cs.unc.edu/˜ccwu/siftgpu, 2007.

[6] W. M. Campbell, and et al. Support vector machines
using gmm supervectors for speaker verification. In
IEEE Signal Processing Letters, 13:308–311, 2006.

[7] T. Jaakkola and D. Haussler. Exploiting generative
models in discriminative classifiers. In In Advances in
Neural Information Processing Systems 11, pages
487–493. MIT Press, 1998.

[8] E. Yilmaz, and et al. A simple and efficient sampling
method for estimating ap and ndcg. In Proc. of ACM
SIGIR, pages 603–610, 2008.

[9] C.-C. Chang and C.-J. Lin. Libsvm: a library for
support vector machines. Software available at
http://www.csie.ntu.edu.tw/cjlin/libsvm, 2001.

