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1 Semantic Indexing

The aim of this section is to develop a high-performance semantic indexing system using Gaussian
mixture model (GMM) supervectors and tree-structured GMMs [1, 2]. GMM spervectors corresponding
to six types of audio and visual features are extracted from video shots by using tree-structured GMMs.
The computational cost of maximum a posteriori (MAP) adaptation for estimating GMM parameters
are reduced by tree-structured GMMs by keeping accuracy at high levels. Our best result was 17.3 % in
terms of Mean InfAP, which was ranked 1st over all semantic indexing runs in the full task.

1.1 Feature extraction

The following six types of visual and audio features are extracted from video data:

1. SIFT features with Harris-Affine detector (SIFT-Har)

The scale invariant feature transform (SIFT) proposed by Lowe [3] is a local feature extraction
method that is widely used for object categorization since it is invariant to image scaling and
changing illumination. The Harris-Affine detector [5], which is an extension of the Harris corner
detector, improves robustness against affine transform of local regions. These features are extracted
from every other frame, and principal component analysis (PCA) is applied to reduce their dimen-
sions from 128 to 32.

2. SIFT features with Hessian-Affine detector (SIFT-Hes)

SIFT features are extracted with the Hessian-Affine detector [5], which is complementary to the
Harris-Affine detector. The combination of several different detectors can improve the robustness
against noise. These features are extracted from every other frame, and PCA is applied to reduce
their dimensions from 128 to 32.

3. SIFT and hue histogram with dense sampling (SIFTH-Dense)

SIFT features and 36-dimensional hue histograms [4] are combined to capture color information.
These features are extracted from key-frames by using dense sampling. PCA is applied to reduce
dimensions from 164 to 32.

4. HOG with dense sampling (HOG-Dense)

32-dimensional histogram of oriented gradients (HOG) are extracted from key-frames by using dense
sampling. PCA is applied but dimensions of the HOG features are kept to 32.

5. HOG from temporal subtraction images (HOG-Sub)

Temporal subtraction images which are obtained by subtracting the key frames from the sub-key
frames are used to capture movement information. A frame image five frames after a key frame is
used as a sub-key frame. HOG features are extracted from the temporal subtraction images in the
same way as the HOG-Dense features.

6. MFCC audio features (MFCC)

Mel-frequency cepstral coefficients (MFCCs), which describe the short-time spectral shape of audio
frames, are extracted to capture audio information. MFCCs are widely used not only for speech
recognition but also for generic audio classification. ∆ MFCCs, ∆∆ MFCCs, ∆ log-power and ∆∆
log-power are extracted in addition to the MFCCs. Here, “∆” means the derivation of the feature.
The dimension of the audio feature is 38, including 12-dimensional MFCCs.



1.2 Gaussian Mixture Models

Gaussian mixture models (GMMs), whose probability density function (pdf) is given by

p(x|θ) =
K∑

k=1

wkN (x|µk,Σk), (1)

are used to model video shots. Here, x is a local feature, θ = {wk, µk,Σk}Kk=1 is a set of GMM parameters,
K is the number of Gaussian components (vocabulary size), wk is a mixture coefficient, and N (x|µk,Σk)
is a Gaussian pdf with a mean vector µk and a covariance matrix Σk.

The GMM parameters are estimated for each shot under the maximum a posteriori (MAP) criterion.
The MAP solution for GMM means, namely MAP adaptation, is given by

µ̂k =
τ µ̂

(U)
k +

∑n
i=1 cikxi

τ + Ck
, cik =

wkgk(xi)∑K
k=1 wkgk(xi)

, Ck =
n∑

i=1

cik, gk(x) = N (x|µ̂(U)
k , Σ̂

(U)
k ), (2)

where XF = {xi}ni=1 (F ∈ {SIFT-Har, SIFT-Hes, SIFTH-Dense, HOG-Dense, HOG-Sub, MFCC}) is a set of

feature vectors extracted from a shot, τ is a predefined hyper-parameter, and θ̂(U) is the parameter for a
universal background model (UBM). The UBM presents how the features are distributed in the general

case: therefore, the parameter θ̂(U) is estimated by using all features in the training set.

1.3 Fast MAP adaptation

The fast MAP adaptation technique [1] reduces computational costs for calculating posterior probabil-
ities cik in Eq. (9) by constructing a tree-structed GMM. The basic idea of the tree-structured GMM is to
cluster Gaussian components and approximate them with a single Gaussian. Each leaf node corresponds
to a Gaussian component of the UBM, and each non-leaf node has a single Gaussian that approximates
its descendant Gaussian components.

The tree-structured GMM T is defined as

T = (V,E,GTREE), (3)

where V is a set of nodes, E is a set of edges, and GTREE is a set of Gaussian components for nodes
in V . Here, g(v) ∈ GTREE denotes a Gaussian component for v ∈ V . The Gaussian components for the
UBM, GUBM = {gk}Kk=1, are assigned to leaf nodes, i.e., for each leaf ℓ ∈ V , there exists gk ∈ GUBM

that satisfies g(ℓ) = gk. Gaussian components for non-leaf nodes and their children are determined by
applying k-means clustering to GUBM (see [1] for details).

With the tree-structured GMM, posterior probabilities cik in Eq. (9) are calculated only for active
Gaussian components. The following algorithm finds active leafs by expanding active nodes VA from the
root node to output cik quickly.

1. Set VA ← {r}, where r is the root node.

2. Expand active nodes by making child nodes of the active nodes active:

VA ←
∪

v∈VA

C(v), (4)

where C(v) is a set of child nodes of the node v. Here, C(ℓ) = {ℓ} is used for leaf nodes ℓ to keep
the leaf nodes active.

3. Calculate posterior probabilities c
(v)
i for an active GMM given by

p(x|VA) =
∑
v∈VA

w̃(v)g(v)(x), w̃(v) =
w(v)∑

v∈VA
w(v)

, (5)

i.e., calculate

c
(v)
i =

w̃(v)g(v)(xi)∑
v∈VA

w̃(v)g(v)(xi)
=

w(v)g(v)(xi)∑
v∈VA

w(v)g(v)(xi)
. (6)



4. Keep a node v active if c
(v)
i is larger than the predetermined threshold cTH, i.e.

VA ← {v ∈ VA | c(v)i > cTH}. (7)

5. If all nodes in VA are leaf nodes, output

ĉik =

{
c
(ℓ)
i (ℓ ∈ VA, g(ℓ) = gk)

0 (otherwise)
. (8)

Otherwise, return to Step 2.

Finally, MAP adaptation is given by

µ̂k =
τ µ̂

(U)
k +

∑
ĉik ̸=0 ĉikxi

τ + Ĉk

, Ĉk =
∑
ĉik ̸=0

ĉik. (9)

1.4 GMM supervector SVM

After video shots are represented by GMMs, GMM supervectors are extracted by combining normal-
ized mean vectors as

ϕ(XF) =


µ̃1

µ̃2

...
µ̃K

 , µ̃k =

√
w

(U)
k (Σ

(U)
k )−

1
2 µ̂k. (10)

Support vector machines (SVMs) with the following RBF-kernel are used to train discriminative models
for each semantic concepts.

k(XF, X
′
F) = exp

(
−γ∥ϕ(XF)− ϕ(X ′

F)∥22
)
, γ =

1

d̃
, (11)

where d̃ is the average distance between two GMM supervectors. Finally, trained discriminative functions
are linearly combined as

f(X) =
∑
F∈F

αFfF(XF), 0 ≤ αF ≤ 1,
∑

F

αF = 1. (12)

where F = {SIFT-Har,SIFT-Hes,SIFTH-Dense,HOG-Dense,HOG-Sub,MFCC}. Combination coeffi-
cients αF are optimized on a validation set.

1.5 Experimental conditions

Features were extracted by using Mikolajczyk’s implementation [5] for SIFT-Har and SIFT-Hes,
SIFT++ [6] for SIFTH-Dense, and HTK [7] for MFCC. The sum of calculation time (for PCA pro-
jection, MAP adaptation, and SVM prediction) was reduced from 2.47 sec to 1.00 sec (59.5%) by using
the fast MAP adaptation technique. The calculation time was measured by using a Intel Xeon 2.93 GHz
CPU.

The following four runs are submitted to the TRECVID 2011 semantic indexing.

F A TokyoTech Canon 1

This run used GMM supervector SVMs with the six type of features described in Section 1.1. The
number of Gaussian components was K = 512 for the visual features, and K = 256 for the audio feature.
The UBMs were trained using 1,000,000 samples. Optimal tree structures for the UBMs were selected
as to minimize computational costs for MAP adaptation (see [1]). The hyper-parameter τ for MAP
adaptation was set to 20.0.

The parameter γ for RBF-kernels is set to γ = hd̃−1 (h = 0.5, 1.0, 2.0) to train three SVMs for each
type of features. Final scores for ranking video shots were calculated as

f(X) =
∑

h∈{0.5,1.0,2.0}
F∈F

α
(h)
F f

(h)
F (XF), 0 ≤ α

(h)
F ≤ 1,

∑
F,h

α
(h)
F = 1, (13)
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Figure 1: Overview of results of the semantic indexing task in TRECIVD 2010. Mean Inf. AP of our
best run using MFCC and SIFT GMM supervector kernels was 7.36%.

where f
(h)
F is a discriminative function for the feature F and the parameter h. The data sets IACC 1 tv10 training

and IACC 1 A are used for training and validating respectively, to optimize combination coefficients α
(h)
F .

The gradient ascent method was applied to maximize average pricision (AP) on the validation set. Initial

values for α
(h)
F was 1/18.

F A TokyoTech Canon 2

This run used the same features and parameters as F A TokyoTech Canon 1 but γ for RBF-kernels
was fix to d̃−1 and initial values of αF was 1/6.

F A TokyoTech Canon 3

This run combined scores for all semantic concepts. The final score for semantic concept S was
calculated as

gS(X) =
∑
S’

βS’fS’(X),
∑
S’

βS’ = 1, (14)

where fS’(X) is a score for semantic concept S’ for the run of F A TokyoTech Canon 2. Combination
coefficients βS’ are optimized on the validation set by using the gradient ascent method. Initial values of
βS’ were 1 for S’ = S, 0 for otherwise.

F D TokyoTech Canon 4

This run used additional training data from the ImageNET dataset. The names of semantic concepts
were separated by “or” and transformed into valid forms (e.g. cats 7→ cat) to find synsets whose images can
be used for training data. A new classifier fHOG-Image was trained with positive samples form TRECVID
and ImageNET and negative samples from TRECVID. GMM supervectors with the HOG-Dense features
were used for the classifier. The final score was calculated as

f(X) =
∑

F∈F∪{HOG-Image}

αFfF(XF), 0 ≤ αF ≤ 1,
∑

F

αF = 1. (15)

1.6 Results

Our results in the semantic indexing task are illustrated in Figure 1 and Figure 2. The best result
(F A TokyoTech Canon 1) was 17.3% in terms of Mean InfAP, which is ranked first in the TRECVID
2011 semantic indexing task.

The second run F A TokyoTech Canon 2 shows the appropriateness of the selection of γ(= d̃−1) in
Eq. 11, since this run shows almost the same results as the first run in Figure 2.



Figure 2: InfAP for each semantic concept.

The result of the run F D TokyoTech Canon 4, which uses additional training data from ImageNET
dataset, was 17.2%. Images from ImageNET were added to improve accuracy even if there were only few
positive samples in TRECVID dataset, however, semantic concepts evaluated in the testing phase had
at least 500 positive samples in the training data. This is because the Mean InfAP was not improved
compared with the first and the second runs.

The run F A TokyoTech Canon 3 achieved Mean InfAP 16.4%. The basic idea of this run was to
combine all scores from all semantic concepts, however, the overfitting problem occurred in optimizing
βS’ in Eq. 14.

1.7 Conclusion

We proposed a high-performance semantic indexing system using Gaussian mixture model (GMM)
supervectors with the six audio and visual features. Our best result was 17.3 % in terms of Mean InfAP,
which was ranked 1st over all semantic indexing runs in the full task. Our future work will focus on the
localization of semantic concepts and the temporal analysis for video indexing.

2 Multimedia Event Detection

In this section, we will present the details of our system in Multimedia Event Detection (MED) task.

2.1 Introduction

Our MED system consists of feature extraction (2.2), event detection using GMM-Supervectors and
SVMs (2.3), and audio event detection using MFCC-HMM (2.4). We applied GMM-Supervector technique
with multiple features used in our Semantic Indexing method and confirmed its effectiveness. We also tried
to detect sounds which characterize the events using HMMs, to improve the event detection performance.
We submitted four runs, all of which were applied to all testing events. In terms of Mean Minimum NDC,
the best result of our runs ranked 7th of all 58 full-submission and 3rd among all the teams in TRECVID
2011 MED task.

2.2 Feature Extraction

In this year’s MED task, we use five local features, each of which represents different characteristics.



2.2.1 SIFT features with Harris Affine regions and Hessian Affine regions

SIFT (Scale-Invariant Feature Transform) [3] has been effective in many researches of image analysis
and video analysis including our semantic indexing method [1, 2]. We extract SIFT features, 128 di-
mensional vectors from two key point regions; Harris Affine region and Hessian Affine region [5]. These
regions are robust for affine transformation. Since extracting SIFT features from all of the frames of all
the clips is computationally too expensive, we extract from one frame in every two seconds. Next, we
apply PCA (Principal Components Analysis) to reduce the dimension. It saves computational costs in
training and detection step. As a result, we compute 32 dimensional vectors.

2.2.2 MFCC features

In MED task, audio is one of the important cues to analyze the video contents of video. We used
MFCC (Mel Frequency Cepstral Coefficient) features, which is often used in speech recognition. In
addition, we use ∆MFCC,∆power,∆∆MFCC,∆∆power. The dimension of a feature vector is 38.

2.2.3 HOG and HOF features with STIP

STIP (Space-Time Interest Points) [8] is expected to be more effective to MED than SIFT because
SIFT is extracted from still images, but STIP is extracted from spatio-temporal regions. We extract
72 dimensional HOG (Histograms of Oriented Gradient) features and 90 dimensional HOF (Histograms
of Optical Flow) features from STIP, and then combine these two vectors. Finally, we convert 162
dimensional vectors into 64 dimensional vectors by applying PCA.

2.2.4 Dense HOG features

We also use 34 dimensional HOG [9] features sampled densely from image space. Differently from
features based on keypoints like SIFT or STIP, dense sampling can give us fixed number of features
although they may include some noise. In the same way as SIFT, we sample the features from one frame
every two seconds.

2.3 Event detection using GMM-Supervectors and SVMs (GS-SVM)

We apply the GS-SVM used in our Semantic Indexing method. We construct a GMM-Supervector
per one feature for each clip. GMM-Supervector represents the distribution of the features by one long
vector consisted of GMM parameters [1, 2]. We set the number of Gaussian in GMM to 512. We train
event models using support vector machines (SVMs) with RBF-kernel. The training data is the set of all
of the clips in Development data set and Event kit.

Finally, we fuse the SVM scores of each feature by weighted average and convert them into [0, 1]
domain. The weights are determined by 2-fold cross validation using Minimum Normalized Detection
Cost (Run 1,2), Average Presicion (Run 3), or no weighted average (Run 4).

2.4 Audio HMMs

Video clips positive for some events often include sounds which characterize the corresponding event.
For example, in Flash mob gathering, you can often here BGM when people dance.

The ratio of such a period with sounds (Event Period) in duration is 10% in Flash mob gathering.
Their features may be different from the global features of the whole video clip. Therefore it is expected
that we can improve the event detection performance by identifying Event Periods and modeling them.

At first, we annotated Event Period to each positive clip manually. We define Event Period for each
event as Table 1. we provide an Event Hidden Markov Model (Event HMM) for each event by using
audio features (MFCC, Section 2.2). Because lengths of Event Periods are various, from several seconds
to several minutes, we equip Event HMMs with many states. And then we reduce their free parameters by
sharing state parameters, in order to avoid deterioration caused by the data sparseness. An Event HMM
is left-to-right and has N×M -state, S11, ..., S1M , ..., Si1, ..., SiM , ..., SN1, ..., SNM , where Si1, ..., SiM with
the same i share the same parameters (Figure 3). Here we set N = 5, M = 60.

We apply the word-spotting technology in speech recognition to determine the score of each clip for
each event. We prepare a garbage model with one state whose parameters are estimated from all video
clips. Then we place it before and after each Event HMM and calculate the log likelihood of the Event
Period data. Let LE be the log likelihood obtained by this Event HMM with the garbage models and



Event Name Event Period

Birthday Party During birthday party on video

Changing a vehicle tire From removing a tire, to setting up all tires

Flash mob gathering During people gathering

Getting a vehicle unstack From applying force on a vehicle to getting the vehicle unstuck

Grooming an animal During human touching and grooming an animal

Making a sandwich During making a sandwich

Parade During parade

Parkour From human jumping to the end of the performance

Repairing an appliance From human touching and repairing an appliance to the end of repairing

Working on a sewing project During processing clothes

Table 1: Definition of event period

Figure 3: Event HMM topology

LG be the log likelihood of the same period obtained by using the garbage model. Then the detection
score SHMM is defined as the log of the likelihood ratio between LE and LG:

SHMM =
1

f
(LE − LG), (16)

where f is the number of frames of the Event Period. We fuse SHMM and GS-SVM scores by weighted
average and make it as the event score.

In our preliminary experiment, this method was better than GS-SVM alone in Flash mob gathering,
Parade, and Repairing an appliance. We applied it to these three events in Run1.

2.5 Runs and Results

We submitted four runs and Table 2 shows their brief description. Run 2-4 use GS-SVM systems.
Their difference is the measure to decide the weights of each feature’s SVM score. Run 2 uses Minimum
Normalized Detection Cost. Run 3 uses Average Precision, which is often used in the validation of
searching system. In Run 4, we use no weight, the SVM score of each feature is simply averaged. Run 1
is our primary run, which is the combination of Run 2 and audio event detection.

Figure 4 shows the overview of TRECVID 2011 MED task. In terms of Mean Actual NDC, our best
run is ranked at 5th of all 58 full-submission and 3rd among all the teams. In terms of Mean Minimum
NDC, our best run is ranked at 7th of 58 full-submission and 3rd among all the teams.

Table 3 shows the Actual NDC and Mimimum NDC of our four runs. The difference between Minimum
NDC and Actual NDC is 0.032 on average. It means that our detection thresholds decided by 2-fold
cross validation are about appropriate. However, it seems that we failed to set the optimized weights.
We assumed that Run 2 gave better performance in the term of Mimimum NDC than Run 3 and Run
4. The cause may be that the population of the test data is different from that of the training data.
In future, we try to develop a method to optimize the weight of each feature by fitting to the test data
automatically.

From comparison of Run 1 and Run 2, it is shown that the gain of Audio HMMs doesn’t appear as
we expected even though we can see the affect in preliminary result. We speculate that nature of positive
clips in training data are so different from test collection, or test data contains many negative clips which
are similar to positive clips in training data.

Figure 5 shows the Minimum NDC of each features and combination of multiple features. STIP and
Dense HOG features are shown to be effective in almost the all events. STIP gave, in particular, good
performance to the event including dynamic moving like jumping of “Parkour”, walking of “Parade” or
dancing of “Flash mob gathering”. Dense HOG features may be effective to represent static objects



Run ID System ID Subsystem(s)
The measure to decide

the weight of each feature

Run 1 p-GSSVMndcHMM-r1 GS-SVM + Audio HMMs Minimum NDC
Run 2 c-GSSVMndc-r2 GS-SVM Minimum NDC
Run 3 c-GSSVMap-r3 GS-SVM Average Precision
Run 4 c-GSSVMave-r4 GS-SVM No weight

Table 2: Description of our four runs

Event Name
Actual NDC Minimum NDC

Run1 Run2 Run3 Run4 Run1 Run2 Run3 Run4

Birthday party .658 .658 .654 .588 .636 .636 .636 .585
Changing a vehicle tire .558 .558 .567 .563 .554 .554 .556 .541
Flash mob gathering .339 .347 .326 .353 .325 .326 .324 .334
Getting a vehicle unstuck .429 .429 .444 .388 .406 .406 .421 .388
Grooming an animal .754 .754 .713 .669 .693 .693 .639 .644
Making a sandwich .755 .755 .697 .736 .735 .735 .687 .714
Parade .596 .511 .514 .534 .582 .504 .500 .510
Parkour .479 .479 .418 .506 .444 .444 .400 .441
Repairing an appliance .557 .557 .559 .512 .454 .424 .420 .479
Working on a sewing project .716 .716 .688 .733 .682 .682 .664 .679

Mean .584 .576 .556 .558 .551 .540 .525 .531

Table 3: The Actual NDC and Minimum NDC of our runs. Bold is the best of the four runs.

like stopping car of “Changing a vehicle tire”. As to audio MFCC features, it did not give so high
performance by itself, but by combining with STIP and HOG features, the performance become much
better as shown in “Repairing an appliance” or “Birthday party”. Another fact we can see from the figure
is that SIFT is not so effective, while it was effective in our experiment using training data. we confirmed
the effectiveness of SIFT if the weight of SIFT is optimized. This may be because the average of the
number of feature point of SIFT (Harris:∼42,000, Hessian:∼38,000) is less than that of STIP (∼78,000)
and HOG (∼350,000). The use of more frames when extracting SIFT or the use of dense SIFT may
improve the performance.

2.6 Conclusion

In this year’s MED task, we introduced GMM supervector technique used in our Semantic Indexing
method and confirmed its significant effectiveness. We used five features to represent different character-
istics. Since our results of preliminary experiments showed that the best features are different between

Figure 4: Overview of Mean Actual NDC and Mean Minimum NDC in TRECVID 2011 Multimedia
Event Detection task.



events, we try to optimize the weight of each feature by cross-validation.This optimization, however, did
not always improve the detection performance. This will be our future work.

Figure 5: The Minimum NDC of each feature and multi features. Note that 2 features are STIP and
HOG, 3 features are STIP, HOG and MFCC, 4 features are STIP, HOG, MFCC and SIFT-Hes, 5 features
are STIP, HOG, MFCC, SIFT-Hes and SIFT-Har.The features are fused by score average, then 5 features
means our Run 4. These results are evaluated using the preliminary version of the reference files.

3 Surveillance Event Detection

3.1 Introduction

As in the previous year, we combine local and global features and use them for detecting events. Local
features obtained from a person detector represent movements of individuals. Global features based on
optical flow represent the movement of crowds. This year, we improved local features. We selected three
events out of the seven provided events: PersonRuns, PeopleMeet and PeopleSplitUp.



3.2 Local features

3.2.1 Outline

First, we detect persons using a particle filter. Then, we associate persons between successive frames
and obtain his/her trajectory. Finally, we detect each of event using our event-trajectory model. We
improved each these three steps this year. We use HOG features extracted from a person region for
calculating a person existence probability. In addition, we refine background subtraction, and normalize
the existence probability using the window size for a person. To obtain a person trajectory, we associate
persons using the similarity of LBP histograms [10]. Our new event-trajectory models use a normalized
velocity and the distance between two persons. Each step is detailed below.

3.2.2 Calculation of the person existence probability

In this year, we prepare two new ways for calculating the existence probability of a person. We submit
one run for each.

HOG-Cascade
For each pixel in an image frame, the person existence probability is calculated using a cascade of person
detectors [11]. Its input is an image with a size of 48 × 80 pixels, whose center is located at the pixel.
This cascade sequentially connects 20 strong classifiers, each of which consists of 50 weak classifiers based
on HOG features. We calculate the person existence probability as a function of the number of strong
classifiers that the input passes through. The function P (n) is defined as the ratio of the number of
positive samples in the training samples which passed through exactly n classifiers, to the number of the
total training samples which passed through exactly n classifiers.

HOG-SVM
Here the existence probability is calculated using a SVM whose input is a HOG feature vector extracted
from an image with a size of 48× 128 pixels. The vector’s length is 2,700. Since the SVM’s output score
SSVM is not a probability, it is transformed into a probability Pperson by using the following sigmoid
function.

Pperson =
1

1 + exp(a(−SSVM + b))
. (17)

The parameters a and b are optimized by using training data.

3.2.3 Person detection using a particle filter and clustering

A particle filter [12] is an estimator which estimates the current condition by considering past in-
formation, also known as sequential Monte Carlo method. We use 800 particles. The particles tend to
concentrate to the regions where persons are likely to exist. We cluster the particles by using the furthest
neighbor method, where we set a threshold on the distance between clusters. We identify each resulting
cluster as a person. In order to improve the detection performance, we have changed the background
subtraction and added a probability normalization process.

Background subtraction
Last year, the background image included static persons. But static persons also participate in People-
Meet and PeopleSplitUp events. Therefore, this year we use a background image which does not include
persons from training data. The way to apply the background subtraction is the same as that of last
year. That is, we multiply the existence probability of a person by a factor β:

β = 1− α exp

(
− d2

2σ2

)
, (18)

where

d =
√
(ra − rb)2 + (ga − gb)2 + (ba − bb)2 (19)

is the difference between the color (ra, ga, ba) of the pixel and the background color (rb, gb, bb) of the same
pixel. And α is the subtraction factor which controls the effect of the background subtraction.



Table 4: Values of α, ω, and TC

α ω TC

Camera1 Camera2 Camera3 Camera4 Camera5

PersonRuns 50 0.30 44 57 58 100 131
PeopleMeet 150 0.77 187 140 201 176 173
PeopleSplitUp 150 0.80 48 55 142 45 86

Probability correction based on sub-window size
Because the target videos are recorded by fixed cameras, it is easy to estimate the size of a person in
a fixed position of a frame image. We use this information to normalize the existence probability. Its
purpose is to reject too small or too large persons compared with the estimated person size from its
location. The process is as follows. First, we obtain the relational expression h(yp) = ayp + b between
the y-coordinate of the center of a person yp and the estimated height of the person h(yp) by using linear
regression estimated from training data. Then, we multiply the person existence probability of a particle,
whose y-coordinate is yp and sub-window height is hp, by a factor γ:

γ = exp

(
− (hp − h(yp))

2

2σ2

)
(20)

3.2.4 Human tracking

In order to obtain the trajectory of a person, each person in the i-th frame is associated with its
corresponding person in the (i+1)-th frame. First, we estimate the position of person A at the (i+1)-th
frame by using A’s position and velocity at the i-th frame. The candidates to be associated with A are
those detected at the (i + 1)-th frame whose Euclidean distances from A are less than a predetermined
threshold dth. Then, we calculate the LBP histograms of A and the candidates. Among the candidates,
we select the one which has the minimum Bhattacharyya distance from A.

3.2.5 Event detection using the event-trajectory model

We describe how to detect an event using the trajectory information. The input features of each
trajectory are the positions and velocities of the associated persons for five frames. Let vA(i) be the
velocity of person A normalized by its size at time frame i, and dAB(i) be a distance between person A
and person B. Then, we define the score for each of the three events Slocal as follows:

• PersonRuns: Slocal = max
0≤i≤4

|vA(i)|

• PeopleMeet: Slocal =

{ ∑3
i=0(dAB(i)− dAB(i+ 1)) (∀i dAB(i) > dAB(i+ 1))

0 (otherwise)

• PeopleSplitUp: Slocal =

{ ∑3
i=0(dAB(i+ 1)− dAB(i)) (∀i dAB(i+ 1) > dAB(i))

0 (otherwise)

We set the score for PeopleMeet and PeopleSplitUp to zero when there is at most one person in the
frame image.

3.3 Global features

We use optical flow vectors [13] as global features. Using these vectors as input, the output score
Sglobal from SVMs shows the degree of likelihood of an event occurring.

3.4 Combining local features and global features

The score Slocal is obtained by using the event-trajectory models that use local features. And the
score Sglobal is obtained by using the SVMs based on global features. We define a score SC by combining
these two scores with a weight ω as follows:

SC = (1− ω)Slocal + αωSglobal. (21)



Table 5: Our SED results of TRECVID 2010

Ref Sys CorDet FA Miss Act.DCR Min.DCR

PersonRuns 107 7 0 7 107 1.0023 1.0023
PeopleMeet 449 8 0 8 449 1.0026 1.0026
PeopleSplitUp 187 43 1 42 186 1.0084 1.0084

Table 6: Our SED results of TRECVID 2011

HOG-Cascade Ref Sys CorDet FA Miss Act.DCR Min.DCR

PersonRuns 107 174 3 171 104 1.0280 1.0003
PeopleMeet 449 151 8 143 441 1.0291 1.0003
PeopleSplitUp 187 598 51 547 136 0.9066 0.8976

HOG-SVM Ref Sys CorDet FA Miss Act.DCR Min.DCR

PersonRuns 107 205 0 205 107 1.0672 1.0003
PeopleMeet 449 148 8 140 441 1.0281 1.0003

PeopleSplitUp 187 608 51 557 136 0.9099 0.9066

The frames in which SCs are larger than the predetermined threshold TC are detected as the event frames.
The values of α, ω and TC are shown in Table 4.

3.5 Results

Table 5 shows our last year’s detection results for the three events, and Table 6 shows our results
for this year. This year, our NDCR scores for PersonRuns and PeopleMeet are still larger than 1. On
the other hand, our NDCR scores for PeopleSplitUp improved by 10.1% and are less than 1. In our
preliminary experiments using dry-run data set, the new person detection process improved the person
detection accuracy by 6.6% (the NDCR score by 0.0264) and the new person tracking process improved
the NDCR score by 0.0052, and the new event detection process improved the NDCR score by 0.0123.
We have also fixed bugs related to the calculation of Sglobal in our formal-evaluation runs. These might
be the reasons for the improvement in PeopleSplitUp.

The PeopleMeet event is the reversed event of PeopleSplitUp, but its result was not significantly
improved from last year. Since the end timing of PeopleMeet and the start timing of PeopleSplitUp share
the similar video features, these timings can be detected equally. Also, it is easy to detect the end time
for PeopleSplitUp because a person usually leaves the image frame. On the other hand, it is harder to
detect the start timing for PeopleMeet, the timing when two persons start to communicate. We think this
is the reason why we did not achieved improvement for PeopleMeet. We did not achieved improvement
for PersonRuns either. We assume persons are all adults, so children tend to fail to be detected compared
with adults. But there exist, particularly in this event, many children. We think this is the reason why
we did not improved.

As explained in section 3.2.2, we prepared two new ways for calculating the person existence probabil-
ity and submit one run for each. But there is no significant difference between the two runs. For detecting
the three events, we use the same way to detect and track persons, but we use different event-trajectory
models for each event. In the future, in order to increase the detection performance for PersonRuns
and PeopleMeet, we will improve the event-trajectory models of these events. Also, we will improve the
process to use global features.
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