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MAP Adaptation Using Multiple Priors for Speaker Verification

⊚Sangeeta Biswas, Johan Rohdin, Koichi Shinoda and Sadaoki Furui

(Tokyo Institute of Technology) ∗

1 Introduction

In automatic speaker verification, Gaussian mix-

ture models (GMMs) [1] have often been used.

In order to estimate their parameters robustly

by using maximum likelihood (ML) estimation, a

large amount of training data are necessary; a

small amount of training data generate a non-

representative GMM for the acoustic space of the

speaker. To deal with this data-sparseness problem,

the maximum a posteriori (MAP) adaptation [2] is

a well-established method. In MAP adaptation for

speaker verification, a prior distribution for each pa-

rameter of the GMM is utilized in the training pro-

cess. How to choose the prior, however, is still a

problem.

Reynolds et al. [1] proposed to use parameters

of a well-trained GMM called universal background

model (UBM) as priors. In this paper, we refer to

these priors as UBM priors. Instead of UBM pri-

ors, hierarchical priors proposed in SMAP adapta-

tion [3], are used in [4], [5], [6] and [7]. The

main difference between the UBM prior and the hi-

erarchical prior is that the UBM prior comes from

the average characteristics of many other speakers

whereas the hierarchical prior comes from the global

characteristics of the same speaker. As shown in

Fig. 1, for estimating parameters of subset C of the

acoustic space of Speaker-S, UBM priors come from

the subset C of other speakers whereas hierarchi-

cal priors come from the larger subset, B of the

same Speaker-S. The combination of these two pri-

ors could improve the performance of speaker ver-

ification. In this paper, we propose a technique to

combine the hierarchical prior with the UBM prior

in the MAP framework. We name this adaptation

technique multiprior MAP (MMAP). The benefit of

MMAP is shown here by giving the results of ex-

periments conducted on NIST SRE 2006 10sec4w-

10sec4w tasks.
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Fig. 1 Comparison between UBM prior and hier-

archical prior.

2 MAP Adaptation

Gauvain et al. [2] proposed using the MAP esti-

mation framework for speaker adaptation in speech

recognition. Let λ be a random vector in a param-

eter space Λ. Then the MAP estimate of λ is ob-

tained as the mode of its posteror p.d.f. denoted as

g(λ|X),

λMAP = argmax
λ∈Λ

g(λ|X),

= argmax
λ∈Λ

f(X|λ)g(λ), (1)

where g(λ) is the prior p.d.f. of λ and X is the set

of T feature vectors,{x1, x2, x3, ..., xT }, extracted

from speech. Reynolds et al. [1] proposed using the

MAP adaptation technique in speaker recognition.

In GMM-based speaker verification, the adaptation

process is typically applied to the mean vector, µ, of

a mixture component, but the variance is kept fixed.

In [2] and [1], the mean vectors of a well-trained

world model or UBM were used for the priors of the

mean vectors of the speaker specific models. Assum-

ing fixed variance, the conjugate prior for the mean,

µ, can be written as:

gu(µ) = N (µu, σu), (2)

where µu is the mean of the UBM and σu is the

standard deviation of the prior. Assuming that
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σu = σ/
√
τ , where σ is the standard deviation of

the UBM, the relevance MAP estimate of the mean

vector is:

µ̂ =
Nµ̃+ τµu

N + τ
, (3)

where µ̃ is the ML estimate of mean vector µ. The

parameter τ , called relevance factor, regulates the

amount of prior knowledge used. N is the total oc-

cupation count which is calculated as:

N =
∑T

t=1

∑K

k=1
γk(xt), (4)

where K is the number of Gaussian components of

the GMM, γk(xt) = f(xt|λk) is the occupation prob-

ability of feature vector, xt being at Gaussian k,

with constraints γk(xt) > 0 and
∑K

k=1 γk(xt) = 1.

There are many other ways to define the priors

used in MAP adaptation technique. For that rea-

son, Lucey et al. [8] referred to the above method

as relevance MAP adaptation. In this paper, we

refer to the choice of priors in the relevance MAP

adaptation as UBM priors.

3 Structural MAP Adaptation

The structural MAP (SMAP) adaptation was first

proposed by Shinoda et al. [3] for speech recognition.

Liu et al. [4], Xiang et al. [5] and Ferras et al. [6]

successfully applied it to speaker verification, where

the duration of the speech segments was around two

minutes . Recently we proposed to use it for GMM-

SVM(support vector machine)-based speaker verifi-

cation using 10-second speech segments [7].

SMAP adaptation consists of two steps. In the

first step, a tree is obtained by clustering the Gaus-

sian components of the UBM. The root node of the

tree represents the whole acoustic space and each of

the non-leaf nodes has a Gaussian component that

summarizes its child node distributions. Each leaf

node corresponds to a Gaussian component in the

UBM.

In the second step, a speaker-dependent model is

obtained by using the distribution of each non-leaf

node for the hierarchical prior of the parameters of

its child nodes. The hierarchical prior, gh(µ), for a

node is:

gh(µ) = N (µh, σh), (5)

where µh is the mean and σh is the standard devia-

tion of hierarchical prior. Let node o be the parent

node of node p which is the parent node of node q.

Then for node q, µh is estimated as:

µh
(q) = µ(q)

u +Σ(q)1/2ν̂(p), (6)

where µ
(q)
u is equal to the UBM prior of the node q

and ν̂(p) is the hierarchical shift for node q which is

calculated as:

ν̂(p) =
N (p)ν̃(p) + ην̂(o)

N (p) + η
, (7)

where N (p) is the total occupation count of frames

assigned to node p. η is the relevance factor that

weights the shifting value at the parent node o. ν̃(p)

is the ML estimate of the mean vector of normalized

p.d.f. of node p which is estimated as follows:

ν̃(p) =

∑T
t=1

∑K(p)

k=1 γ
(p)
k (xt)y

(p)
kt∑T

t=1

∑K(p)

k=1 γ
(p)
k (xt)

, (8)

where K(p) is the number of siblings of node q and

y
(p)
kt is computed from the adaptation data as fol-

lows:

y
(p)
kt = Σ

(p)
k

−1/2
(xt − µ

(p)
k ). (9)

The SMAP estimate of the mean vector is:

µ̄(q) = µ(q)
u +Σ(q)1/2ν̂(q). (10)

4 Multiprior MAP Adaptation

The main difference between the UBM prior and

the hierarchical prior is that the UBM prior comes

from the average characteristics of many other

speakers whereas the hierarchical prior comes from

the global characteristics of the same speaker. The

prior for a small subset of the acoustic space is based

on the estimated parameters of a larger subset of

the acoustic space of the same speaker. The com-

bination of these two priors, gu(µ) and gh(µ), could

improve the performance of speaker verification.

Naturally, there are many ways to combine pri-

ors. An intuitive way would be to use a mixture of

the priors, i.e., a weighted sum of the two Gaussian

priors,

gc(µ) = (1− w)gu(µ) + wgh(µ) (11)

where w controls the weights of the two priors,

0 ≤ w ≤ 1 (12)

Unfortunately, its corresponding posterior distribu-

tion will also have two Gaussian components as
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Fig. 2 Ways of combining priors.

shown in Fig. 2(a). Since the MAP approach consid-

ers only the global maximum ignoring all other local

maxima of the posterior distribution, this form of

distribution may not be suitable for MAP adaption.

Also, there is no closed expression for the mode of

the posterior distribution.

Therefore, instead of using a GMM of two pri-

ors, we estimate a new Gaussian prior with a mean

equal to a weighted sum of the means of the two

Gaussian priors in Eq. (2) and (5) with weights, w,

fulfilling (12),

gc(µ) = N (µc, σc) (13)

where µc for a child node q is:

µc
(q) = (1− w)µ(q)

u + w(µ(q)
u +Σ(q)1/2ν̂(p))

= µ(q)
u + wΣ(q)1/2ν̂(p). (14)

This can be seen as approximating the two Gaus-

sian priors with one Gaussian as shown in Fig. 2(b).

Alternatively this distribution would arise if one

considered one of the priors to be a prior for the

other prior. The standard deviation, σc, may de-

pend on difference of the means of the two priors

as well as their variances but perhaps mostly on

the properties of the approximation itself. As for

MAP adaptation we assume σ
(q)
c = σ(q)/

√
ζ where

σ(q) is the standard deviation of the Gaussian to be

adapted. This gives the multiprior MAP (MMAP)

estimate:

µ̈(q) =
N (q)µ̃(q) + ζ(µ

(q)
u + wΣ(q)1/2ν̂(p))

N (q) + ζ
, (15)

where ζ is the relevance factor for the multiprior.

The only difference from SMAP, Eq. (10), is the

weight w. Setting w = 1 gives us SMAP and set-

ting w = 0 gives us relevance MAP. Our proposed

method allows us to choose how much of the shift

we want to use.

While MMAP can be used for all nodes, in this

study we use MMAP only for the leaf nodes. The

hierarchical shifts, ν̂(p) of the parent nodes are esti-

mated according to the standard SMAP procedure.

Three parameters, η, ζ and w, need to be optimized.

5 Experiment

We compared the MMAP adaptation with ML es-

timation, relevance MAP and SMAP adaptation for

text-independent speaker verification.

5.1 Experimental Condition

Performance of our speaker verification system

was evaluated on the 10sec4w-10sec4w task of the

2006 NIST SRE [9]. In this task, the length of each

training and test segment is approximately 10 sec-

onds. Speaker specific models are trained using only

one segment. The training set consists of 731 files

for 731 speakers among which 316 are males and

415 are females. The test set consists of 2,971 true

trials and 30,584 false trials. As development data,

we used the NIST SRE 2005 training database. It

has 3,143 true trials and 32,001 false trials for 627

speakers among which 265 are males and 362 are

females.

In our evaluation, we used a GMM-UBM sys-

tem proposed by Reynolds et al. [1]. We trained

two gender-dependent UBMs using 4806 speech seg-

ments from the NIST SRE 2004 training database.

Each speech segment was 2 minutes long on average.

Our UBM had 512 Gaussian components.

Regarding feature extraction, we first removed the

non-speech part from the speech segments using the

information in the transcript files. We broke each

segment into frames of 30 ms, with a frame rate

of 100 frames/sec. We pre-emphasized each frame

with a pre-emphasis factor of 0.97 and applied a

Hamming window. We computed 15 perceptual lin-

ear prediction (PLP) coefficients, augmented with

energy and first-order derivatives, resulting in 32

features per frame. Cepstral mean subtraction was

applied to remove static channel effects.

The performance measure was equal error rate

(EER) and minimum detection cost (MDC). For

- 81 -日本音響学会講演論文集 2012年3月



SMAP adaptation, we chose ten different tree struc-

tures having odd number of branches in intermedi-

ate layers. The feature extraction and GMM con-

struction were implemented by using the hidden

markov model toolkit (HTK).

5.2 Results

First we conducted experiments on the develop-

ment set to optimize model parameters. For SMAP

adaptation, when η = 20, we found that the low-

est EER was obtained from the 21 21 tree structure

based system. We changed the values of τ and η

from 20 to 1 for our relevance MAP and SMAP

adapted systems. The lowest EER was obtained

when τ = 15 for relevance MAP and η = 10 for

SMAP-adapted system, respectively. For MMAP,

we achieved the lowest EER by setting (η, ζ, w) =

(1, 15, 0.1).

Table 1 shows our results on the test data.We

did not achieve a big improvement in MDC by us-

ing MMAP. We achieved only 5.7% and 2.5% rela-

tive improvement in MDC over ML estimation and

SMAP adaptation, respectively. MDCs were the

same for MAP and MMAP adaptation. One of the

reasons could be that the optimization of model pa-

rameters were only based on the improvement in

EER. Since speech segments were very short, ML

estimation-based GMMs did not represent speakers

well. Therefore, its EER was high. The relevance

MAP was better than the SMAP. One of the reasons

could be that the optimization of tree structures in

SMAP was not good enough. Our proposed MMAP

adaptation outperformed ML estimation, relevance

MAP adaptation and SMAP adaptation. In MMAP,

we achieved 27.6%, 3.3%, and 11% relative improve-

ment in EER over ML estimation, relevance MAP

and the SMAP, respectively. Thus, we confirmed

that our proposed method was significantly effec-

tive.

6 Conclusions

In this paper, we proposed a technique to combine

the hierarchical prior used in the SMAP adapta-

tion with the UBM prior used in the relevance MAP

adaptation in the MAP framework. We named this

adaptation technique multiprior MAP (MMAP).

We compared the speaker verification performances

of classical ML estimation, relevance MAP, SMAP,

Table 1 MDC and EER(%) for GMM-UBM sys-

tems using different types of priors in MAP adapta-

tion on the test set.

Adaptation Techniques EER MDC

ML 35.9 0.0991

MAP 26.9 0.0934

SMAP 29.2 0.0958

MMAP 26.0 0.0934

and MMAP adaptation techniques for short speech

segments in NIST SRE 2006 10sec4w-10sec4w task.

Our proposed method, MMAP achieved 27.6%,

3.3%, and 11.0% relative improvement in EER over

ML estimation, relevance MAP and SMAP, respec-

tively. Our experimental results showed that it is

better to set a small value to η i.e., use a small

amount of hierarchical prior in the multiprior. One

of the reasons could be that the hierarchical prior

was not estimated properly. This fits well with

the fact that relevance MAP performs better than

SMAP.

In order to obtain a better baseline we need bet-

ter channel compensation techniques. In future, we

therefore, would like to introduce JFA in our ap-

proach. We would also like to find a better ap-

proach to optimize the tree structure in order to im-

prove the performance of SMAP as well as MMAP

adapted systems.

Our MMAP framework can also be used in other

applications such as acoustic modeling for speech

recognition. We also plan to study in this direction.
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