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PAPER

Synthesis of 2-Channel IIR Paraunitary Filter Banks by Successive
Extraction of 2-Port Lattice Sections

Nagato UEDA†a), Eiji WATANABE††, Members, and Akinori NISHIHARA†, Fellow

SUMMARY This paper proposes a synthesis method of 2-channel IIR
paraunitary filter banks by successive extraction of 2-port lattice sections.
When a power symmetry transfer function is given, a filter bank is realized
as cascade of paraunitary 2-port lattice sections. The method can synthesize
both odd- and even-order filters with Butterworth or elliptic characteristics.
The number of multiplications per second can also be reduced.
key words: IIR filters, paraunitary filter banks, extraction, power symmetry

1. Introduction

Recently, a number of researchers have been studying sub-
band coding by using filter banks for communication, com-
pression, etc. Several methods for designing filter banks
have been proposed so far [1], [10], [11].

In general, filter banks have sampling rate alteration.
Therefore, output signals may have distortions such as ALD
(aliasing distortion), AMD (amplitude distortion) and PHD
(phase distortion). If we can eliminate all of these distor-
tions, output signals are perfectly reconstructed. Since hu-
man hearing system is lower sensitive to PHD compared
with AMD in certain applications such as speech coding
[12], [13], it can be regarded that PHD is acceptable in these
applications compared with AMD/ALD. Thus, in this paper,
we assume that PHD can be disregarded.

As a structure of filter banks, paraunitary filter banks
are well known. The merits of those structures are that they
have low sensitivity with respect to their coefficients, and a
synthesis bank is readily obtained by designing an analysis
bank [1]. It is well known that odd-order IIR paraunitary
filter banks are constructed by parallel of two real allpass
filters [6], [7] and even-order paraunitary IIR filter banks
are constructed by complex allpass filters [4]. However, the
conventional paraunitary filter banks suffer from constraints
in the order of their transfer functions. For odd-order cases,
the order of numerator polynomial should be higher than
that of denominator by one [1]. For even-order cases, the
orders of numerator and denominator should be equal each
other [1], [4]. Therefore, we cannot use these structures for
other transfer functions to satisfy paraunitiary property.

In this paper, we propose a procedure to synthesize IIR
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Fig. 1 2-channel filter bank.

paraunitary filter banks using real allpass filters from any
power symmetric transfer functions. We assume that we
are given this power symmetric transfer function (H0(z) in
Fig. 1) to be synthesized as a paraunitary structure. At first,
we propose a method for deriving a polyphase matrix from
a given transfer function. From this matrix and the relation
between low pass and high pass filters, we derive that a given
transfer function should have power symmetric property so
that it constitutes a paraunitary filter bank. When we have
such a transfer function, we show that we can synthesize
IIR paraunitary cascade connected structure by extracting
2-port lattice sections. We use a WDLF (wave digital lattice
filter) as a fundamental section like [3]. Although [3] deals
with scalar transfer functions, this paper extends [3] to filter
banks. Then, we reconfirm the extraction method in [3]. In
[3], when we determine a multiplier coefficient in a zeroth-
order section, a value of characteristic function at pole be-
fore extraction was arbitrary. But, we confirm the formula to
determine the multiplier coefficient in zeroth-order section
is different depending on the value of characteristic function
at pole. From this procedure, we show that we can synthe-
size the circuit of IIR paraunitary filter banks without caring
the order of the transfer function. If a given transfer func-
tion is odd-order, synthesized structure is the same as the
conventional structure, and we can also synthesize the even-
order circuits with the same procedure. In these circuits,
we can reduce the number of multiplication per unit time.
In addition, it is shown that we can synthesize circuits even
if the order of numerator polynomial is higher than that of
denominator by 2 or more.

2. 2-Channel Parauniray Filter Banks

2.1 Filter Banks

In general, filter banks are composed of filters, decimators
and interpolators as shown in Fig. 1. In this filter bank, X(z)
and X̂(z) are z-transforms of the input and output signals,
respectively. The reconstructed output signal X̂(z) is given

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 Polyphase structure of 2-channel filter banks.

by

X̂(z) =
1
2
{H0(z)F0(z) + H1(z)F1(z)} X(z)

+
1
2
{H0(−z)F0(z) + H1(−z)F1(z)} X(−z). (1)

If two conditions

1
2
{H0(z)F0(z) + H1(z)F1(z)} = z−k (2)

and

1
2
{H0(−z)F0(z) + H1(−z)F1(z)} = 0 (3)

hold, the output signal X̂(z) is perfectly reconstructed. Now,
under a condition where PHD is permitted like in speech
applications, we introduce a synthesis method for IIR filter
banks to eliminate ALD and AMD.

In Fig. 1, H0(z) and H1(z) are decomposed into
polyphase components as

H0(z) = E00(z2) + z−1E01(z2), (4)

H1(z) = E10(z2) + z−1E11(z2), (5)

and we can get a polyphase matrix

E(z2) =

[
E00(z2) E01(z2)
E10(z2) E11(z2)

]
. (6)

Similarly, we can get a polyphase matrix R(z2) from F0(z)
and F1(z). Then, Fig. 1 is rewritten as Fig. 2. If there is a
relation written as

R(z2)E(z2) = A(z2)

[
1 0
0 1

]
, (7)

then, we can get

1
2
{H0(z)F0(z) + H1(z)F1(z)} = z−1A(z2), (8)

1
2
{H0(−z)F0(z) + H1(−z)F1(z)} = 0. (9)

If A(z) is an allpass transfer function, (8) shows that AMD
is eliminated, and (9) shows that ALD is eliminated. As
one of solutions to derive (7), we consider the paraunitary
structure.

2.2 2-Channel IIR Paraunitary Filter Banks

Let P(z) be a scattering matrix of a 2-port system shown in

Fig. 3 Digital 2-port network.

Fig. 3. In this figure, the input-output relation is written as[
Y1

Y2

]
= P(z)

[
X1

X2

]
(10)

=

[
P00(z) P01(z)
P10(z) P11(z)

] [
X1

X2

]
. (11)

We define P∗(z) as

P∗(z) = Pt(z−1). (12)

When P(z) and P∗(z) satisfy

P∗(z) · P(z) = I, (13)

we call P(z) a paraunitary matrix. If E(z2) and R(z2) in
Fig. 2 have this property, we call this filter bank a parau-
nitary filter bank. In addition, if E(z2) and R(z2) are con-
structed by allpass filters, we can easily derive (7).

Now, let the given transfer function H0(z) be

H0(z) =

n∑
i=0

aiz
−i

m/2∑
j=0

bjz
−2 j

(an, bm/2 � 0), (14)

where m is an even number and H0(z) is irreducible. From
the paraunitary property, E(z2) is written as

E(z2) =

[
E00(z2) E01(z2)
E10(z2) E11(z2)

]
(15)

=
1

D(z2)

[
N0(z2) N1(z2)

−z−2lN1(z−2) z−2lN0(z−2)

]
, (16)

where

N1(z2)N1(z−2)

= D(z2)D(z−2) − N0(z2)N0(z−2), (17)

2l =

{
n (n : even)

n − 1 (n : odd)
. (18)

Then, analysis bank U(z) is written as

U(z) =

[
H0(z)
H1(z)

]
(19)

= E(z2)

[
1

z−1

]
. (20)

By substitution of (16) into (20), H0(z) and H1(z) are written
as
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H0(z) =
1

D(z2)
{N0(z2) + z−1N1(z2)}, (21)

H1(z) =
1

D(z2)
{−z−2nN0(z−2)

+z−1 · z−2nN1(z−2)}. (22)

We define T0(z), T1(z) as numerator polynomials in H0(z)
and H1(z). Then, we can get a relation between T0(z) and
T1(z) as

T1(z) = −z−(2n+1)T0(−z−1). (23)

From (21), it is clear that N0(z2) and N1(z2) are polyphase
components of H0(z). That is, we can get polyphase matirix
E(z2) from H0(z). Now we consider what kind of properties
H0(z) should have. In order for E(z2) to be a paraunitary
matrix, H0(z) and H1(z) must have power complementary
property [1]. That is

T0(z)T0(z−1)+T1(z)T1(z−1)=D(z2)D(z−2). (24)

Then we substitute (23) into (24), and we get

T0(z)T0(z−1)

+T0(−z)T0(−z−1) = D(z2)D(z−2). (25)

This formula is a power symmetry property which is intro-
duced in [1]. It is clear that when a given transfer function
has power symmetry property, we can get paraunitary E(z2)
without fail.

Now, we compare power symmetry transfer functions
which were realized in the past and the transfer functions
which are realized in this paper, and classify these transfer
functions in Fig. 4 in terms of the order of transfer func-
tions. Like (14), m and n are the orders of denominator
and numerator polynomials of a given transfer function. In
the existing structures, it is well known that the given trans-
fer function should have n − m = 1 and T0(z)/T0(−z) =
−T0(z−1)/T0(−z−1), and be decomposed into two allpass fil-
ters ((a) in Fig. 4). When n − m = 0, this transfer function
has been realized by a complex allpass filter ((c) in Fig. 4).
When n − m � 2 under m > 0, no realization has been pro-
posed ((d) in Fig. 4). In the case of FIR transfer functions,
D(z2) = 1 in (17). Therefore, since the order of N0(z2) is

Fig. 4 Classification of power symmetry filters.

equal to that of N1(z2), given FIR transfer function has been
odd-order ((e) in Fig. 4). That is to say, it is considered that
even-order FIR paraunitary filter banks ((f) in Fig. 4) can
not be realized [1]. From the above, we discuss the syn-
thesis method for the structure of (a)–(e) in Fig. 4 by using
real allpass filters with the focus on extraction of paraunitary
sections.

3. Extraction of Lattice Sections

3.1 Lattice Sections

In the previous section, we can derive E(z2) from a given
transfer function. It is, however, difficult to directly con-
struct the circuit of analysis bank which have paraunitary
property [8]. It is appropriate to synthesize the circuit by
connecting low-order sections.

As sections to be extracted and extracting method, we
use the technique introduced in [3]. That literature uses a
wave digital lattice filter (WDLF) shown in Fig. 5 which has
paraunitary property. Since WDLF uses allpass filters, we
expect we can eliminate AMD. In addition, because E(z2)
in Fig. 2 is modified to be E(z) by noble identities, allpass
filters in Fig. 5 are polynomials of z−1. Then, in the next
subsection, we consider extraction of WDLF sections.

3.2 Extraction Method

In order to decompose a polyphase matrix E(z) into

E(z) =
n∏

i=1

Ei(z), (26)

we first extract E1(z) from E(z), that is

E′(z) = E−1
1

(z) · E(z), (27)

where E′(z) is the remainder of the extraction. In (27), the
order of E′(z) should be lower than E(z). We classify a first-
order WDLF into two types as

• Type 1: A0(z) =
z−1 − α
1 − αz−1

and A1(z) = 1,

• Type 2: A0(z) = 1 and A1(z) =
z−1 − α

1 − αz−1
.

Any WDLF with real poles can be realized by the cascade
of Type 1’s and Type 2’s according to (27). Then, to unify
these formula, we define

Fig. 5 WDLF section.
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I(z) = 1 − αz−1 (28)

J(z) = z−1 − α, (29)

in Type 1, and also

I(z) = z−1 − α (30)

J(z) = 1 − αz−1, (31)

in Type 2. Thus each section’s matrix for WDLF can be
written as

E1(z) =
1
2

[
A1(z)−A0(z) A1(z)+A0(z)
A1(z)+A0(z) A1(z)−A0(z)

]

=
1

2(1−αz−1)

[
I(z)−J(z) I(z)+J(z)
I(z)+J(z) I(z)−J(z)

]
. (32)

Then, in Type 1, extracted section is[
E′00(z)
E′10(z)

]
=

−1
2I(z)J(z)

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I(z) {E00(z)−E10(z)}

−J(z) {E00(z)+E10(z)}
I(z) {E10(z)−E00(z)}

−J(z) {E00(z)+E10(z)}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (33)

where

E′(z) =

[
E′00(z) E′01(z)
E′10(z) E′11(z)

]
. (34)

The reason to derive only E′00(z) and E′10(z) is that E′11(z)
depends on E′00(z) and E′01(z) depends on E′10(z). In (33),
the orders of E′00(z) and E′10(z) need to be reduced by one.
Therefore by the factor theorem, it is necessary that

E00(z) + E10(z) = (1 − αz−1)

·(polynomial in z−1) (35)

and

E00(z) − E10(z) = (z−1 − α)

·(polynomial in z−1) (36)

hold. To find the conditions for these formulas, we define
the characteristic function written as

P1(z) =
E10(z)
E00(z)

. (37)

Then, substituting pole α into (37), we get

P1(α) = −1. (38)

In Type 2, (33) should be

E00(z) + E10(z) = (z−1 − α)

·(polynomial in z−1) (39)

E00(z) − E10(z) = (1 − αz−1)

·(polynomial in z−1). (40)

So, we can also get

P1(α) = 1. (41)

As a result, we can select the type of WDLF by the value of
the characteristic function at the pole.

3.3 Extraction of Zeroth-Order Sections

The condition to extract a WDLF section is that the value of
characteristic function is either +1 or −1. However, charac-
teristic functions do not always satisfy that condition. We,
then, extract a zeroth-order section (Fig. 6) in advance when
the characteristic function is not ±1. The zeroth-order pa-
raunitary section is described by[

k k′
k′ −k

]
, (42)

where

k′ =
√

1 − k2. (43)

Now, let P2(z) be the characteristic function after extraction
of a zeroth-order section. By extraction, we can get

P2(z) =
−kP1(z) +

√
1 − k2

√
1 − k2P1(z) + k

. (44)

Then, we consider the condition to derive two types of
WDLF sections as follows:

• P2(α) = −1 (Type 1)
From (44),

√
1 − k2(1 + P1(α)) = −k(1 − P1(α)). (45)

To satisfy this equation, if k < 0, P1(α) must be −1 <
P1(α) < 1. So, we can get

k = −
√

1
2
+

1
P1(α) + 1/P1(α)

. (46)

If k > 0, P1(α) must be either P1(α) < −1 or 1 < P1(α).
So we can get

k =

√
1
2
+

1
P1(α) + 1/P1(α)

. (47)

Fig. 6 Zeroth-order paraunitary matrix.

Table 1 Sign in k.

P1(α) Type 1 Type 2

−1 < P1(α) < 1
t = −1
u = +1

t = +1
u = −1

P1(α) < −1, 1 < P1(α)
t = +1
u = +1

t = −1
u = −1
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Fig. 7 Structure after extraction (analysis bank).

Fig. 8 Structure after extraction (synthesis bank).

• P2(α) = 1 (Type 2)
From (44),

√
1 − k2(1 + P1(α)) = k(1 − P1(α)). (48)

To satisfy this equation, if k < 0, P1(α) must be either
P1(α) < −1 or 1 < P1(α). So, we can get

k = −
√

1
2
− 1

P1(α) + 1/P1(α)
. (49)

If k > 0, P1(α) must be −1 < P1(α) < 1. So we can get

k =

√
1
2
− 1

P1(α) + 1/P1(α)
. (50)

From the above, k is expressed to be

k = t ·
√

1
2
+

u
P1(α) + 1/P1(α)

, (51)

where t and u take value of ±1, and these two values are
determined by the value of characteristic function at pole
and the next section’s type of WDLF. We summarize this in
Table 1. Therefore, we can select the types of WDLF by
P1(α), t and u. The use of these parameters t and u is the
extension of [3]. The choice of Type 1 or Type 2 is arbitrary.
For example, it is possible that only Type 1 WDLF sections
are used in analysis bank, and only Type 2 WDLF sections
are used in synthesis bank.

3.4 Analysis Bank and Synthesis Bank

We can extract low order sections from a high order section
by the above procedure. One of the merits of this operation
is that we can easily construct synthesis bank from each ex-
tracted section in analysis bank. In this subsection, we show
the construction method of synthesis bank from extracted
sections in analysis bank.

(1) WDLF section

The scattering matrix of WDLF section is

S(z)=
1
2

[
A1(z)−A0(z) A1(z)+A0(z)
A1(z)+A0(z) A1(z)−A0(z)

]
. (52)

Now, we define S′(z) as

S′(z)=
1
2

[
A0(z)−A1(z) A0(z)+A1(z)
A0(z)+A1(z) A0(z)−A1(z)

]
. (53)

This matrix is obtained by exchanging A0(z) and A1(z) in
S(z). When we multiply these two matrices, we get

S′(z) · S(z) = A0(z)A1(z)

[
1 0
0 1

]
. (54)

(2) Zeroth-order section

From (42), zeroth-order section is expressed as

T =

⎡⎢⎢⎢⎢⎣ k
√

1 − k2√
1 − k2 −k

⎤⎥⎥⎥⎥⎦ . (55)

From this matrix, we have

T · T =
[

1 0
0 1

]
. (56)

Assuming that we have analysis bank written as

E(z) = TL(z)SL−1(z) · · ·S0(z)T0(z), (57)

where Si is a WDLF section and Ti is a zeroth-order section.
From E(z), we construct synthesis bank R(z) written as

R(z) = T0(z)S′
0
(z) · · ·S′

L−1
(z)TL(z). (58)

We can also derived R(z) from E(z) by “time reversal trans-
pose” method [14]. But, if we use “time reversal transpose”,
time delay from input to output will become very large. We
consider this spoils the merit of using IIR filters especially
for speech applications. By allowing PHD, we can use IIR
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filters without time reversal so that the time delay is small.
Therefore we use the above method. Then, by using the
above relations (54), (56), we can get a formula which is
the same as (7). Therefore, we can readily get the structure
of synthesis bank by extraction while keeping the amplitude
distortion free property.

From (57), (58) a structure of paraunitary filter banks is
shown as Fig. 7 and Fig. 8. Now, we consider Ti in analysis
and synthesis banks. In these two figures, Ti is (a) in Fig. 9,
and (a) can be modified as (b). In (b), b′ is

b′ =
b
a
. (59)

Since the a in Fig. 9(b) influences only the gain level, we
can remove a from zeroth-order sections, and move the mul-
tipliers to input (or output). This movement of mulitipliers
is applied when signal scaling is not critical.

4. Comparison of the Number of Multiplications

In the previous section, we can synthesize filter banks by
extraction. Since these filter banks have polyphase struc-
ture, noble identity applies to polyphase matrix. Therefore,
the sampling rate of the input signal is reduced, and we can
reduce the number of multiplications. This reduction has
been restricted to the cases where the order of given transfer
function is odd for IIR filter banks.

If the order is even, the structure in Fig. 10 introduced
in [5] is used, and complex allpass filter applies to this struc-
ture for eliminating amplitude distortion [4]. In Fig. 11,
however, we cannot move decimators to input nor inerpo-
lators to output. Let fs be the sampling frequency, and let
m be the order of the denominator polynomial of the given
transfer function. Then we need m/2 first-order complex
allpass filters, and each filter has four real multiplications.
Therefore, the total number of multiplications per second is

m
2
· 4 · fs = 2m fs. (60)

In contrast, when we use the proposed method, the dec-
imators can be moved as shown in Fig. 7. In Fig. 7, there are
m/2 allpass sections and (m/2+ 1) zeroth-order sections. In
addition, considering the input multiplier, we have the total
number of multiplications as

1
2

fs

{m
2
+ 2

(m
2
+ 1

)}
+ fs (61)

Fig. 9 Transposision of multipliers.

=

(
3
4

m + 2

)
fs. (62)

From (60) and (62), we can reduce the number of multipli-
cations per second in the proposed structure.

5. Examples

In this section, we synthesize some circuits with the pro-
posed synthesis procedure. To begin with, assuming that the
order of numerator is n and that of denominator is m, we
focus on the order of transfer function. With both odd and
even of n, we show that we can synthesize the circuit using
real allpass filters.

Moreover, we show we can also synthesize the transfer
functions in which the difference of n and m is more than 2.

5.1 Odd-Order IIR Filter (n − m = 1)

We use a 5th-order elliptic lowpass filter. This filter’s trans-
fer function is used in [2]. We extract WDLF and zeroth-
oder sections successively from this transfer function. Then
we get one Type 1 section and one Type 2 WDLF section.
So, organizing these sections, we get the circuit shown in
Fig. 12. It is clear that this structure in Fig. 12 is the same
structure which is introduced in [1]. The transfer functions
of two allpass filters in Fig. 12 are

A0(z) =
z−1 + 0.2368041466
1 + 0.2368041466z−1

, (63)

A1(z) =
z−1 + 0.7149039978
1 + 0.7149039978z−1

. (64)

Fig. 10 Prototype structure for even-order filter banks.

Fig. 11 Conventional even-order structure using complex allpass filter.

Fig. 12 Synthesized circuit for odd order IIR filter bank.
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Fig. 13 Synthesized circuit for 4th-order IIR filter (analysis bank).

Fig. 14 IIR-FIR hybrid structure (analysis bank).

Table 2 Values of coefficients and transfer functions in Fig. 13.

a −0.009332229256
k0 5.027339492
k1 −2.414213562
k2 0.6681786379

A0(z)
0.03956612990 + z−1

1 + 0.03956612990z−1

A1(z)
0.4464626922 + z−1

1 + 0.4464626922z−1

5.2 Even-Order IIR Filter (n − m = 0)

In this subsection, we use a 4th-order Butterworth lowpass
filter. To this transfer function, we do the same operations
as odd transfer functions. Then, we get a circuit shown in
Fig. 13. The coefficients and transfer functions in Fig. 13 are
shown in Table 2.

5.3 IIR-FIR Hybrid Type (n − m � 2)

Let us now consider a transfer function with n−m � 2. Such
a transfer function has been derived so far [9], but the struc-
ture which can eliminate AMD has not been synthesized
from the transfer function. In this subsection, we consider
the synthesis method for a transfer function with n −m � 2.
In 5.1 and 5.2, since n − m is either 0 or 1, we have only
to focus on the poles of the transfer function. However, if
n − m � 2, FIR sections remain even if we extract IIR sec-
tions. Whereat, we consider to extract FIR sections. From
this, we can treat IIR-FIR hybrid type.

As a section to be extracted, we use FIR sections
(Fig. 15) because these sections have paraunitary and FIR
properties. In the same way as Sect. 3.2, we derive the con-
dition to extract these sections as

Fig. 15 (a) FIR WDLF section type 1, (b) FIR WDLF section type 2.

Table 3 Value of coefficients and transfer function in Fig. 14.

a −0.604583247
k0 −1.518993591
k1 −2.039507733
k2 −1.696140478

A0(z)
0.4202041029 + z−1

1 + 0.4202041029z−1

P(0) =

{
+1 (Type 1)
−1 (Type 2)

, (65)

where P(z) is the characteristic function. In addition, if
P(0) � ±1, it is necessary to extract zeroth-order section.

Now, as an example of the proposed structure, we real-
ize the transfer function

H0(z) =
(1 + z−1)4(1 − 0.127016653793z−1)

1 − 0.420204102887z−2
. (66)

From this transfer function, we extract some paraunitary
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sections. As a result, we get a circuit shown in Fig. 14. In
this structure, coefficients and transfer functions are written
in Table 3.

6. Conclusion

In this paper, we propose a procedure to design the circuit
of IIR paraunitary filter banks. We derive that a given trans-
fer function should have power symmetry property. From a
power symmetric transfer function, we can get a polyphase
matrix E(z2) shown in Fig. 2, and by applying the proposed
extraction method to this polyphase matrix, we can get the
structure of 2-channel paraunitary filter banks. In extraction
operation, we can derive the condition of extraction proce-
dure from the value of the characteristic function P(z). Fo-
cusing the order of the given transfer function, we can syn-
thesize even-order filter banks without using complex all-
pass filters, and we can reduce the number of multiplications
per unit time. In addition, we can synthesize circuits from
the transfer function whose order of numerator polynomial
is higher than that of denominator polynomial by more than
2.
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