
論文 / 著書情報
Article / Book Information

Title Proposal of Intelligent Cross-Platform Interface for Robotics Middleware

Author Arturo E. Ceron Lopez, Edwardo F. Fukushima

Journal/Book name Proceedings of the 2012 IEEE International Conference on Cyber
Technology in Automation, Control and Intelligent Systems, , , pp.
382-387

Issue date 2012, 5

DOI http://dx.doi.org/10.1109/CYBER.2012.6392584

URL http://www.ieee.org/index.html

Copyright (c)2012 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/CYBER.2012.6392584
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Proposal of Intelligent Cross-Platform Interface for

Robotics Middleware

Arturo E. Cerón López and Edwardo F. Fukushima

Department of Mechanical and Aerospace Engineering

Tokyo Institute of Technology

Tokyo, Japan

aceron@robotics.mes.titech.ac.jp, fukusima@mes.titech.ac.jp

Abstract—The current standard approach for developing robot

software applications is to use middleware for robotics. Protocols

and paradigms have been set by the available middleware.

However, not all of them share a common interface, resulting in

difficulties when developing robot applications using software

developed for different platforms. Even inside the same platform

similar issues arise when software elements inside it are made by

different developers. The research objective is to propose and

define an Intelligent Cross-Platform Interface (ICPI) that enables

data sharing among software elements from different developers,

as well as data from different middleware platforms. Such

interface is to be complemented by additional modules residing

inside it to enhance the functionality. In this article one of the

modules is discussed, this module is for the administration of

data and software in a robot application. The Administration by

Roles module is presented to act as the manager module of the

ICPI, the module enables the categorization of software elements

and their related data.

Keywords-middleware; robotics; interface; cross-platform;

administration

I. INTRODUCTION

Nowadays, development of robot software has become
more accessible and friendlier for the user. The current
standard approach is to use middleware for robotics [1][2],
which is composed of a set of services that allow the
interaction of specialized robot software elements, each one
performing a specific task. Some of those elements may deal
with information related to a physical device (e.g. cameras,
microphones and motors) and some others are data processing
functions (e.g. object recognition, speech processing and
inverse kinematics); all together can build up a more complex
robot application. Each element runs as an independent
process, while they transfer information across a network
(which can be internal or external) to share data with other
available elements.

Various middleware platforms for robotics have been
developed in the recent years [3]~[10]; all of them provide
tools for the developers to create complex robotics applications
in a simpler way. There are many middleware platforms being
utilized among users, researchers and research groups; some of
them are the following: Robot Operating System (ROS) [3][4],
Yet Another Robot Platform (YARP) [5][6], Microsoft
Robotics Developer Studio ® (MRDS) [7][8], National
Instruments LabVIEW ® (LV) [9] and others using the

CORBA standard by OMG [11], like the Robotics Technology
Middleware (RTM) [10].

Different protocols and paradigms have already been set by
each one of them. However, not all of them share a common
interface, resulting in some difficulties for the users like the
transmission of data among platforms.

Since a robot application requires of great amount of code,
the purpose of developing middleware for robotics is to make
robot software as modular and reusable as possible. In this
approach, it is common to see software elements performing
highly specialized functions; these elements can be connected
in many ways to other ones in order to transfer data and share
services between them. Data types have also been defined,
each platform having the basic well known types, plus some
other defined for use in a specific platform.

While platforms can reuse the developed code and data
transmitted inside them, often the user cannot reuse code
and/or share data across platforms (Fig. 1).

Figure 1. General concept for the connection among multiple robotics

middleware platforms using the proposed ICPI.

Intelligent
Cross-

Platform
Interface

RT-
Middleware

App.

Yet Another
Robot

Platform
App.

MS Robotics
Dev. Studio ®

App.

Other
platform’s

App.

NI LabVIEW ®
App.

Robot
Operating

System App.

D
SS

P

TC
P

R
O

S,
U

D
P

R
O

S

Each of the middleware platforms has its own
characteristics and advantages; also some software elements
are only available in few platforms and/or are more stable in
some platforms than in others. It is difficult to conceive a
common robotics middleware platform since needs, problems
and points of view are different among communities [2]. This
is leading to a phenomenon in robotics software application
development; it is that the user and researcher communities are
becoming segmented. People belonging to each segment are
using the same platform among them and attach to it because
they get familiar with the way of use and development of
applications.

However, it becomes troublesome when a link between
different platforms is required for sharing their characteristics
and advantages. Here a series of issues regarding this point is
presented:

 Every platform has defined communication protocols
that lie in the application layer or between the
application and transport layers. It is required to write
new code to parse data between one middleware
platform and another every time the user or developer
wants to have a connection between them and/or with
other interfaces.

 While one middleware platform may be suitable and
intuitive for a group of users, another one might not.
Therefore, a problem exists for finding a common
paradigm that fits all the needs. Changing between
platforms and developing code that help to link
between them can become time consuming since
some learning and training stage is needed.

 Other issues may include the way data is classified
and interpreted, for example when one wants to use
different software elements made by different
developers; it is sometimes found that the data
connections are not compatible and additional code
needs to be programmed.

This series of issues are present in the currently available
middleware for robotics, and they can become a problem for
the user and the developer while making and testing a complex
robot application. For these reasons, a method that can enable
the linkage among software elements from different developers
and/or from different middleware platforms is desired.

II. INTRODUCTION TO INTELLIGENT CROSS-PLATFORM

INTERFACE

This interface is composed of servers and clients, which
allow data sharing and reutilization of software made by
various developers for different middleware platforms, in an
intuitive way for both the developer and the user. Common
data structures, formats and communication protocols above
the transport layer are to be set. Tools for the transition among
different software elements and platforms are to be provided.

The basic features in the proposed interface are:

 Cross-platform data parsing.

 Data probing.

 Definition of data labels and unit systems.

 Data and software categorization

 Automatic management of data and software.

 Expressed software and data relationships.

 Common data structure and protocols.

 Self-maintenance of robot applications

 Graphical User Interface with virtual representation of
software elements.

 Modularity for its core components.

A. General Architecture

The Intelligent Cross-Platform Interface (ICPI) is illustrated
in Fig. 2 and shows a general architecture for it. The solid line
connections represent the adopted protocol by each of the
middleware platforms, while the dotted line connections show
the common protocol proposed for the ICPI, which is to be
defined in future works.

 ICPI Client:

In order to exchange data and features across the
middleware platforms that are being used, the ICPI Client is in
charge of making a link between software elements inside a
middleware platform and the ICPI Server. For example, data
can come either from an interface or module outside the
platform in use and sent to the corresponding software
elements inside the platform, but also data can be transmitted
from the platform’s software elements to the
interfaces/modules outside the platform; additionally with the
help of the ICPI Server modules, data can be transmitted from
one software element in one platform to another software
element in another platform. The ICPI Client is implemented
according to the middleware platform’s given paradigm; it also
performs basic management functions related to the platform
being used.

Figure 2. Robot applications in different platforms linked by the Intelligent

Cross-Platform Interface (ICPI).

AA

RT-Middleware

MS Robotics Dev. Studio®

NI LabVIEW®

ICPI Server RTM Application

MRDS Application

LV Application

ICPI

AR
module

module
NLP

Additional
modules…

GUI

Camera Joystick

3D Sim.

LRF Robot Panel Object
avoidance

Adopted protocol

Proposed protocol

Client

ICPI
Client

ICPI
Client

To achieve this, an ICPI Client is to be developed for each
specific middleware platform by using the available libraries
that give access to pertinent middleware platform features, as
well as making use of the platform’s adopted communication
protocol. With this, the ICPI Client resides inside the
middleware platform and acts as an element of it, while making
a link to the outside.

 ICPI Server:

The ICPI Server is a stand-alone entity that unifies
middleware platforms for robotics, by allowing data sharing
and enhancing the functionality of the existent platforms. It is
composed of a set of modules that can access data and
functions from a middleware platform throughout the ICPI
Clients. It has additional modules to increase its functionality
and to give a more intuitive way of use; the following modules
are to be implemented inside the ICPI Server architecture:

The manager module: This module is for administrating
data, software elements and robot applications using defined
roles.

Natural Language Processing (NLP) module: A NLP
engine having a common dictionary for data labels and defined
roles, and a common library for known software elements and
complete robot applications.

In this article the manager module, which is part of the ICPI
Server, is introduced as the Administration by Roles (AR)
module.

B. Administration by Roles module:

The purpose of this module is to enable data sharing
between software elements in a categorized way, while relating
data with software elements and/or applications; with this, the
features of the software elements can be managed in such a
way that the automated building of complete applications based
on the running software elements/applications and the data
available in the system becomes possible.

While the middleware platforms are good at reusing code
by just changing the connections between software elements,
data is not always explicitly labeled and categorized (Fig. 3)
and software elements do not always have a defined explicit
role in the system (Fig. 4).

Figure 3. Example of defining labels to data for better categorization.

Figure 4. Defining explicit roles to the available software elements to reduce

ambiguity.

As shown in the example of Fig. 3 (upper part), a source of

data expressed as floating point values can be anything;
theoretically this data source can be connected to any software
element, having data ambiguity. However, if labels are given to
data, as shown in Fig. 3 (lower part), ambiguity is reduced and
connections become narrowed, while keeping data as floating
point values.

In Fig. 4 (upper part), since all software elements look the
same, there is still ambiguity about the role they play in the
system. There is still a possibility that data connections are not
correct even if data is labeled correctly. If a specific role is
given to the software elements, as shown in Fig.4 (lower part),
data connections can be narrowed even more, reducing the
ambiguity again.

1) Labeling data in a common data structure:
A common data structure is needed to standardize the way

of communicating among software elements and platforms;
however, such structure must have labels describing the data
contained in the structure, and labels are to be shared among
platforms.

2) Explicit definition of roles:
When defining a role, one is defining the responsibility, the

duty, the capability and/or an expected behavior; same concept
can apply when defining roles for software elements or
complete applications.

Defining a role can be as simple as stating the basic
function, the data needed to perform such a function, and the
data generated after performing the function; similar as in
current programming languages, with the difference that this
information can be shared among platforms to understand each
other, the role becomes a higher level definition. It can be as
specific as needed, allowing defining more complex functions
and relationships of data.

3) Module implementation:
The module consists of a set of databases inside the ICPI

Server for storing information about the available data,
software elements and applications, as well as the following
states (Fig. 5):

Software
Element A

Set Robot
Wheel

Software
Element B

Ctrl. Robot
Arm

Software
Element D

Ctrl. Robot
Wheel

Speed data

Speed data

Speed data

Speed data

Speed data

Speed data

Software
Element A

Software
Element A

Software
Element B

Software
Element B

Software
Element C

Software
Element C

Software
Element D

Software
Element D

Floating
point value

Speed data

Floating
point value

Floating
point value

Floating
point value

Speed data

Voltage data

Speed data

Figure 5. The Administration by Roles module.

State 0. Checking if a new software element and/or

application is run or an existing one is terminated, if this

happens, proceed to next state.

State 1. Classifying the available software elements and/or

applications according to the information found in their

defined role.

State 2. Relating between data and running software

elements/applications.

State 3. Managing of the features pertinent to the software

elements/applications (e.g. connections, statuses,

configurations).

III. EXAMPLE IMPLEMENTATION OF THE ICPI

A. ICPI Client implementation for RT-Middleware

An ICPI Client for RT-Middleware was developed using
the RTC and CORBA libraries. These libraries provide means
for interacting with the core architecture of the robotics
middleware and the communications among software elements.
This direct interaction enables the ICPI Client to behave like a
virtual user, which has the freedom of utilizing the features of
the platform.

The implemented ICPI Client has the capability of adding
and removing ports from itself and is represented in a RTC
fashion. It also can manage the features of the RTCs inside the
system (e.g. configurations, connections and statutes).

B. ICPI Server implementation

As mentioned earlier, the ICPI Server is composed of many
modules that enhance its functionality; the server is the one that
encapsulates the modules that make it work. The
implementation is made using an Administration by Roles
(AR) module, which is the manager module and resides inside
the ICPI Server. As a case study for this article, the AR module
throughout an ICPI Client for use in the OpenRTM-aist
platform will have access to the data and software elements
inside this platform.

1) Implementation of the AR module
The following paragraphs describe how a prototype

implementation of the AR module was developed. The basic

way of operation of this module is to receive data coming from
all RTCs that deliver data and send the required information to
the ones that receive data. To do so, a role is defined for each
RTC, as well as a fixed common data structure with labeled
data.

 Defining roles for the RTCs:

In this example, it has been decided to define the roles by
setting the following actions since they illustrate the most basic
ones when performing a robot software function:

“Deliver”: For RTCs that only deliver data.

“Receive”: For RTCs that only receive data.

“Process”: For RTCs that receive data in order to process it
and delivers new data.

In future works, more complex actions are to be defined
and later decomposed in simpler actions like the ones
illustrated here.

To complement the defined role, labels are given to the
related data; in this system, 3 types of data labels are defined:
“Direction”, “Speed” and “Control Data”.

As the RTM standard gives some fields to describe each
one of the RTCs, the defined role information can be placed in
those fields since they are identification fields available for
modification. We have chosen to put the basic action
information in the Category field and the labels for the related
data in the Description field.

 Labeled data structures for RTCs:

To make this case study example simple and
understandable as possible, it has been decided that for the
prototype AR module, data structures are to be sent and
received as text, this is, character strings. Using the RTM
standard, they will be of RTC::TimedString type for all the
RTCs.

Each data structure should have a label, which describes the
nature of the data inside the structure. Each structure can
contain many data fields inside (e.g. “Direction” data structure
can contain “X Axis”, “Y Axis” and “Rotation” data fields,
each one having a value) which are also labeled. The format
used is the following:

<LABEL>([FLD_0:V_0][FLD_1:V_1] ... [FLD_n:V_n])

Where LABEL is the desired label for the data structure,
FLD_n is the label for the n

th
 field, and V_n is the given value

of the n
th
 field.

By defining data structures and labels in this way, many
RTCs can complement one single data structure, for example if
one RTC sends the following character string:

<DIRECTION>([X_AXIS:0.0][Y_AXIS:1.0]
[ROTATION:0.5]),

and another one sends this character string:

<DIRECTION>([Z_AXIS:0.7]),

the resulting character string will be the following:

Classifying

Checking Managing

Relating

Databases

<DIRECTION>([X_AXIS:0.0][Y_AXIS:1.0][Z_AXIS:0.7]
[ROTATION:0.5]),

the prototype AR module will be in charge of organizing the
data provided in order to have the resulting character string as
the one just shown.

It is to note that the value of each field can be an integer
value, a floating point value, a text or any other customized
value that can be represented in alphanumerical characters (e.g.

<DEMO_DATA>([SPEED:100.25][SENTENCE:Hello
world][BUTTONS:10100011][COUNTER:4])).

 AR module states and databases:

For the implementation, the prototype AR module counts
with a set of databases for the data received and the data
generated (referred as the Data Structures database), also
databases for classifying the RTCs according to their
previously defined role. Algorithms in charge of updating the
mentioned databases and of performing the described state
operations are running in background as independent threads
(Fig. 6).

State 0. Checking whether a new RTC is run or an existing
one is terminated:

The AR module is always checking with the help of the
ICPI Client for any change in the system that may indicate the
execution or finalization of an RTC; if this happens then the
next state is issued. Additionally, data inside the Data
Structures database that has not been updated in a while is
deleted.

State 1. Classifying the RTCs:

The defined roles of all RTCs are checked to see which
type of action they perform, if the described action is
“Deliver”, the RTC is added to the “Deliver” database; if the
action is “Receive”, the RTC is added to the “Receive”
database; if the action imply both “Deliver” and “Receive”
actions, as in the case of a “Process” action, the RTC is added
to both databases.

State 2. Relating between data and running RTCs:

Additions to each database are triggered by the ICPI Client;
additions to the “Deliver” database leads to an addition of an
Input Port at the ICPI Client and a port assignment for that
RTC, while an addition to the “Receive” database leads to a
procedure of looking for suitable data in the Data Structures
database for this RTC. The ICPI Client reads the data coming
from all the RTCs and passes it to the AR module, this
information is added or updated in the Data Structures
database, where it gets classified and ordered. Many RTCs can
complement one data structure. An addition to the Data
Structures database leads to an addition of an Output Port at the
ICPI Client and a port assignment for that data structure, each
Output Port deliver information concerning one data structure
identified by the AR.

State 3. Managing features pertinent to the RTCs:

In this prototype AR module, the automatic activation and
connection of the RTCs are the managed features; this is made

Figure 6. Interface for Administration by Roles and ICPI Client designed for
RT-Middleware.

throughout the ICPI Client. Then, the RTCs that are registered
in the “Deliver” database are connected to their assigned Input
Ports at the ICPI Client. In the case of the RTCs registered in
the “Receive” database, if there is a suitable data structure for
them, the RTCs are connected to the ICPI Client at the
previously assigned Output Port of the suitable data structure.
Finally, when connections were successfully made, the AR
module issues the activation of the RTCs via the ICPI Client.

IV. TESTING THE ICPI SERVER’S AR MODULE AND THE

ICPI CLIENT

To test the prototype AR module and the given ICPI Client,
a simple robot application using an omnidirectional robot
platform (Fig. 7), a joystick, and a simple function that given a
scalar “speed” value, multiplies it with the “direction” vector
given by the joystick and delivers “control data” to the robot in
order to make it move. Demonstration RTCs were made to run
in the OpenRTM-aist platform, each one delivers and/or
produces different data structures (Fig. 8), they are as
following:

 Joystick RTC:

Delivers:<DIRECTION>([X_AXIS:1.0][Y_AXIS:1.0]
[ROTATION:1.5]).

 Speed RTC:

Delivers:<DIRECTION>([SPEED: 2.0]).

 Multiplier:

Receives:<DIRECTION>([X_AXIS:1.0][Y_AXIS:1.0]
[ROTATION:1.5][SPEED:2.0]).

Delivers:<CONTROL_DATA>([X_AXIS:2.0]
[Y_AXIS:2.0][ROTATION:3.0]).

 RobotControl and RobotDisplay RTCs:

Receives:<CONTROL_DATA>([X_AXIS:2.0]
[Y_AXIS:2.0] [ROTATION:3.0]).

Classifying Relating

Checking Managing

Databases

ICPI Server

AR module

ICPI Client
(based on RTC and CORBA libraries)

RTC
Input
Ports

RTC
Output
Ports

Figure 7. Omnidirectional robot platform for testing.

Figure 8. The described case study without (up) and with (down) the usage of
the ICPI Client.

In this example, the data read and write cycle time while

the AR module is performing background work triggered by
the checking state is in average 150 ms, and when the system
becomes stable (i.e. there are no RTCs to be categorized,
related and managed) the average read and write cycle time is
10 ms. However, if the number of RTCs in the system
increases, this cycle time also tends to increase.

TABLE 1. SPECIFICATIONS OF PC USED FOR TESTING

Processor 2.4GHz Intel Core i5-520M

RAM Memory 2 GB

Operating System MS Windows 7 Pro. (32-bit)

Platform Version OpenRTM-aist v1.0.0.0

V. CONCLUSION AND DISCUSSION

This article presented an introduction of the ICPI Client and
Server along with a manager module prototype, the AR
module, which identifies the roles of the software elements
and/or applications and administrates them along with their
related data, making possible the automatic building of a
simple robot application and data complementation throughout
an ICPI Client.

It was shown how an ICPI Client can help to interact with
other interfaces/modules residing in an ICPI Server, the

module tested here was the AR module, which makes easier in
some extent the use of the OpenRTM-aist platform, since the
user only needs to run the RTCs, define a speed value and use
the joystick to move the omnidirectional platform in the
desired direction.

In the example presented here, only how to organize, merge
and redirect data between the RTCs is taken in account.
Situation context, real-time response, and command
interpretation issues will be considered in future works. They
will also include the improvement of the ICPI with its modules
by expanding their capabilities and features (e.g. the
development of a GUI as shown in Fig. 9). Also testing of the
ICPI with different clients and servers, as well as various
hardware and functions in a variety of scenarios and challenges
is to be performed.

Figure 9. GUI example for an ICPI Server.

ACKNOWLEDGMENT

The first author acknowledges support from CONACyT
through a scholarship to pursue graduate studies at the Tokyo
Institute of Technology.

REFERENCES

[1] Mizukawa, M.; "Robot technology (RT) trend and standardization",
2005 IEEE Workshop on Advanced Robotics and its Social Impacts, pp.
249- 253, 12-15 June 2005.

[2] Mohamed, N.; Al-Jaroodi, J. & Jawhar, I.; “Middleware for Robotics: A
Survey”, 2008 IEEE International Conference on Robotics, Automation,
and Mechatronics, pp. 736-742, Sep. 2008.

[3] Quigley, M. et al.; “ROS: an open-source Robot Operating System”,
ICRA Workshop on Open Source Software, 2009.

[4] Robot Operating System, http://www.ros.org

[5] Fitzpatrick, P.; Metta, G. & Natale, L.; “Towards long-lived robot
genes”, Robotics and Autonomous Systems, vol. 56, pp. 29-45, 2008.

[6] Metta, G.; Fitzpatrick, P. & Natale, L.; “YARP: Yet Another Robot
Platform”, International Journal on Advanced Robotics Systems, vol. 3
(1), pp. 43-48, 2006.

[7] MS Robotics Developer Studio 4 ®, http://www.microsoft.com/robotics/

[8] Nielsen, H.; Chrysanthakopoulos, G.; “Decentralized Software Services
Protocol – DSSP/1.0”, Microsoft Open Specification Promise, 2006.

[9] NI LabVIEW ®, http://www.ni.com/labview/

[10] Ando, N.; Suehiro, T.; Kitagaki, K.; Kotoku, T. & Woo-Keun Yoon;
"RT-middleware: distributed component middleware for RT (robot
technology)", 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.3933-3938, 2-6 Aug. 2005.

[11] Object Management Group, http://www.omg.org

GUI for virtual representation

MRDS

MRDS

RTM

RTM

LV

LV

MRDS

Camera

Joystick 3D
Simulation

LRF

Robot

Object
Avoidance

Panel

