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A Fast and Accurate Video Semantic
Indexing System Using Fast MAP Adaptation and

GMM Supervectors
Nakamasa Inoue, Student Member, IEEE, and Koichi Shinoda, Senior Member, IEEE

Abstract—We propose a fast maximum a posteriori (MAP)
adaptation method for video semantic indexing that uses Gaus-
sian mixture model (GMM) supervectors. In this method, a
tree-structured GMM is utilzed to decrease the computational
cost, where only the output probabilities of mixture components
close to an input sample are precisely calculated. Experimental
evaluation on the TRECVID 2010 dataset demonstrates the
effectiveness of the proposed method. The calculation time of
the MAP adaptation step is reduced by 76.2% compared to that
of a conventional method. The total calculation time is reduced
by 56.6% while keeping the same level of the accuracy.

Index Terms—Video Semantic Indexing, GMM Supervectors,
MAP Adaptation.

I. INTRODUCTION

RECENTLY, a large amount of video data has been made
available. An effective video retrieval and searching

system is demanded since it is often difficult to find relevant
video manually. Although current keyword-based text search
systems are sometimes useful for this purpose, they require
metadata that describe the video contents. To automatically
generate metadata, semantic indexing, i.e., assigning semantic
concepts such as airplane, bus, outside, nighttime, and singing
to video segments, is necessary. It has been a challenging task
due to the semantic gap between the low-level features and
high-level semantic concepts.

Most previous studies used statistical modeling to construct
a model that describes the relationship between video and
semantic concepts. In particular, statistical methods for generic
object recognition in image processing have been effective for
semantic indexing, since semantic indexing can be viewed as
an extension of generic object recognition to video processing.
The bag-of-visual-words (BoW) method [13], [14] that uses
low-level features such as scale-invariant feature transform
(SIFT) [15] is the most widely used method for generic
object recognition. In this method, hard clustering, vector
quantization (VQ), of features is used, but its quantization
errors often degrade the indexing performance. Several soft
clustering methods [20], [23] are introduced to solve this
problem and have been proved to be effective. In particular,
Gaussian mixture model (GMMs) are often preferred since
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it is a straightforward extension of VQ to a probabilistic
framework.

In video semantic indexing, it is well-known that not only
image features but also video-specific features such as audio
features and movement features are important to improve the
performance of video semantic indexing [2], [8], [9], [10]. In
[2], we have shown the effectiveness of the combination of the
audio hidden Markov model and the multi-frame feature ex-
traction with GMM supervectors. Our method achieves higher
accuracy than the best method of TRECVID 2010 semantic
indexing [3], [4], [8]. However, video semantic indexing is
more computationally expensive than image classification. In
the testing phase of our method, 28.8%, 67.7%, and 3.5%
of calculation time are spent for low-level feature extraction,
GMM parameter estimation, and classification using SVM,
respectively. Since the amount of video data to be processed
is very large and rapidly increasing, it is strongly demanded
to decrease these computational costs.

The speeded up robust features (SURF) [18] reduces the
cost for low-level feature extraction by using integral images.
The GPU implementation of SIFT [11], [12], and the BoW
algorithm [7] have also been proposed. While these imple-
mentations are faster than a CPU implementation, the focus
was not on the fast algorithm but on the fast implementation.
In our method of GMM-supervector based semantic indexing,
67.7% of calculation time is spent for estimation of GMM
parameter. Therefore, we aim at reducing its computational
cost.

In this paper, we propose a fast maximum a posteriori
(MAP) adaptation method using a tree-structured GMM to
reduce the cost of the estimation of GMM parameters. Its basic
idea is to calculate probabilities only for important Gaussian
components and to skip the calculation for others. We consider
a Gaussian component as important if it is located near the
observed low-level feature. The tree structure is utilized to
search the important Gaussian components. We expect that
the performance of semantic indexing is not to be decreased
by using the proposed method since probabilities for important
Gaussian components are calculated precisely. We evaluated
our system on the TRECVID 2010 video benchmark.

The rest of this paper is organized as follows. Previous
studies are summarized in Section II. Our semantic indexing
system based on the proposing fast MAP adaptation and
GMM supervectors is described in Section III. Experimental
results and conclusions are given in Section IV and Section V,
respectively.
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II. PREVIOUS STUDIES

A basic approach for semantic indexing is the bag-of-visual-
words approach [13], [14], which classifies videos by creating
histograms of quantized low-level features (visual words). The
bag-of-visual-words algorithm consists of three steps: 1) low-
level feature extraction, 2) feature coding and 3) classification.

1) Low-level feature extraction
SIFT [15] is the most widely used method for low-level
feature extraction since it is robust against changes in
scale, rotation, and illumination. However, the original
SIFT only uses gray scale intensities. To capture color
information, color descriptors such as hue histogram
[16] and color SIFT [17] have been proposed and used
in image classification.
These low-level feature extraction methods usually con-
sist of two phases: interest point detection and feature
description. Therefore, approaches to fast feature extrac-
tion have focused on either of the two phases. The fast
Hessian detector used in SURF [18] improves the speed
of interest point detection by using integral images.
With dense sampling [19], the phase of interest point
detection can be skipped since grid-points are used as
interest points. GPU implementations of SIFT [11], [12]
and color SIFT [7] have been also proposed for feature
description.
To improve the accuracy of semantic indexing, the
fusion of several types of low-level features has been
used in recent studies. The combination of SIFT and
color SIFT [8] have performed the best in semantic
indexing at TRECVID [3], [4]. In [2], the multi-modal
approach that uses SIFT and mel-frequency cepstral
coefficients (MFCCs) improved the accuracy of semantic
indexing. The MFCCs have first been proposed for
speech recognition to describe the short-time spectral
shape of audio frames.

2) Feature coding
Vector quantization (VQ) techniques such as k-means
clustering are typically used in this step. Each low-
level feature is assigned to one of clusters with VQ in
order to create histogram of low-level features. The soft-
assignment of low-level features [20] has been proposed
to reduce quantization error in VQ. Gaussian mixture
models (GMMs) used in [23] can also be viewed as a
soft-assignment clustering method. The GMMs usually
perform better than the other clustering methods since it
captures variances of low-level features for each cluster.
Beyond the histogram-based method, the GMM super-
vector is first proposed as a speaker verification method
[21], and then supervector coding [5] has been used
for image classification. GMM supervector is made by
concatenated the parameters of mixture components in
a GMM and is used as instead of a histogram of low-
level features. In these methods, an image (or an audio
segment) is modeled by a GMM, i.e., a GMM parameter
is estimated for each image.
The Fisher vector [22], which describes the derivative of
the gradient of the likelihood function, has been applied

to image classification in [24]. The Fisher vector is
equivalent to the GMM supervector if a GMM is used
to compute likelihood in the generation of the Fisher
vector as in [24].
Although the GMM-based method outperforms the
histogram-based bag-of-visual-words, it is computation-
ally more expensive to estimate their parameters.

3) Classification
The original bag-of-visual-words method [13], [14] used
support vector machines (SVMs) for image classifica-
tion. Multiple kernel learning (MKL) [25] enables to
learn a linear combination of base kernels (e.g. ker-
nels for different features). The weight coefficient for
each base kernel is optimized during its training phase.
Multiple kernel Fisher discriminant analysis (MK-FDA)
[26] is an extension of the FDA to multiple kernels.
These multiple kernel methods are computationally more
expensive than the SVM. A linear combination of SVM
scores still often performs well in terms of accuracy.

III. PROPOSED METHOD

In this section, we describe our fast and accurate system for
video semantic indexing, which uses fast MAP adaptation and
GMM supervectors.

A. Overview
The overview of our semantic indexing system is shown in

Fig. 1. We assume videos are automatically segmented into
shots in preprocessing. A shot consists of continuous frames
without switching between cameras.

Our system consists of three parts. First, four types of low-
level features (three types of SIFT features and MFCCs) are
extracted from a video shot. The SIFT features are extracted
by using three different interest point detectors: Harris-Affine
[27], Hessian-Affine [27], and Dense [19]. The MFCCs, which
describe the short-time spectral shape of audio frames, are
extracted to capture audio information. The details of low-
level feature extraction are described in Sec IV-B. Second,
a GMM supervector is created for each type of features. A
GMM models the distribution of low-level features extracted
from a video shot. Its parameter is estimated by using MAP
adaptation, in which a tree-structured GMM is utilized to
reduce the computational cost for parameter estimation. Here,
basic idea is to calculate probabilities only for important
Gaussian components. We consider a Gaussian component as
important if it is located near the observed low-level feature.
The tree structure enables fast search of important Gaussian
components. Third, the outputs of SVMs for the four feature
types are fused to compute a final score.

B. Gaussian Mixture Model
Let X = {xi}n

i=1 be a set of (one type of) low-level features
extracted from a video shot. A probability distribution function
(pdf) of a Gaussian mixture model (GMM) is given by

p(x|θ) =
K∑

k=1

wkN (x|µk, Σk), (1)
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Fig. 1. Overview of our semantic indexing system. Our system consists of three parts: 1) low-level feature extraction, 2) GMM supervector extraction by
using fast MAP adaptation, and 3) SVM classification. First, four types of visual and audio features are extracted. Second, GMM parameters are estimated
by using MAP adaptation. Tree-structured GMMs are used to improve the speed of MAP adaptation. Third, the outputs of SVMs for the four feature types
are fused to compute a final score.

where x is a low-level feature vector, θ = {wk, µk, Σk}K
k=1 is

a set of parameters, K is the number of mixture components,
wk is a mixture coefficient. N (·|µk, Σk) is a Gaussian pdf
with a mean vector µk and a covariance matrix Σk.

The GMM parameters are often estimated by using an
expectation maximization (EM) algorithm with the maximum
likelihood criterion. However, a set of extracted feature vectors
may not be enough to estimate the parameters precisely. In
such cases, the alternative way is to use maximum a posteriori
(MAP) adaptation. MAP adaptation, a parameter estimation
using the MAP criterion, is robust against over-fitting caused
by limited data since it uses a prior distribution. A GMM
for prior distribution, namely a universal background model
(UBM), is first estimated by applying the EM algorithm to all
the training data. The UBM presents the feature distribution
for the whole database.

In the proposed method, only mean vectors are adapted for
each shot. The MAP solution gives the following equations:

µ̂k =
τ µ̂(U)

k +
∑n

i=1 cikxi

τ +
∑n

i=1 cik
, (2)

cik =
w(U)

k g(U)
k (xi)

∑K
k=1 w(U)

k g(U)
k (xi)

, (3)

g(U)
k (x) = N (x|µ(U)

k ,Σ(U)
k ), (4)

where n is the number of feature vectors, and µ̂(U)
k is a

mean vector of UBM, g(U)
k is a Gaussian component, cik is

a responsibility of a Gaussian component gk for a feature
vector xi, which is the posterior probability of xi being at k-th
Gaussian component, and τ is a predefined hyper-parameter.

C. Tree-structured GMMs

A tree structure of Gaussian components that makes cal-
culation of Eq. (3) efficient is constructed from the UBM.
Fig. 2 shows an example of a tree-structured GMM. Each

leaf node corresponds to a Gaussian component of the UBM,
and each other node has a single Gaussian obtained by
combining corresponding Gaussian pdfs of descendant nodes.
This tree structure is constructed by top-down clustering of
Gaussian components. For a given set of Gaussian components
G = {g1, g2, · · · , gK}, we define a combined single Gaussian
G(G) by

G(G) def= N (·|µ̄, Σ̄), (5)

µ̄ =
1
K

K∑

k=1

µk, (6)

Σ̄ =
1
K

K∑

k=1

(Σk + µkµT
k ) − µ̄µ̄T. (7)

To find a pair of Gaussian components which are close to
each other, a distance measure between them is needed. The
sum of Kullback-Leibler divergence from gk to gk′ and that
of from gk′ to gk is used for this measurement as follows:

d(gk, gk′) =
∫

gk(x) log
gk(x)
gk′(x)

dx +
∫

gk′(x) log
gk′(x)
gk(x)

dx

(8)

=
1
2

(
(µk − µk′)T(Σ−1

k + Σ−1
k′ )(µk − µk′)

+ tr(Σ−1
k′ Σk) + tr(Σ−1

k Σk′) − 2d
)
. (9)

As for the following tree-construction algorithm, it is as-
sumed that the maximum number of child nodes for each layer
(with the exception of the leaf layer) is given. For example, if
the maximum number of child nodes for the first layer (which
only has a root node) is two and that for the second layer is
three, the resulting tree will be designed as shown in Fig. 2.
In this case, a tree with a depth of three (including the leaf
layer) is obtained. This tree-structured GMM is denoted as

T(2,3) = (V, E,GTREE), (10)
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Fig. 2. An example of a tree-structured GMM T(2,3).

where V is a set of nodes, E is a set of edges, and GTREE =
{g(v)|v ∈ V } is a set of Gaussian pdfs. In general, a node at
the t-th layer of a tree T(P1,P2,··· ,PT ) has, at most, Pt child
nodes.

The node pdfs g(v) of a tree T(P1,P2,··· ,PT ) are created by the
following algorithm. The basic idea is to apply hierarchical k-
means clustering for Gaussian components. Note that GUBM =
{g(U)

1 , g(U)
2 , · · · , g(U)

K } is a set of mixture components of the
UBM, G(v) is a subset of GUBM corresponding to node v, and
g(v) is a Gaussian pdf for node v.

1) Prepare a queue and enqueue (r,G(r)), where r is the
root node, G(r) = GUBM, and g(r) ← G(G(r)).

2) (Initialization for k-means) Dequeue (v, G(v)). Let
{cp}P

p=1 be the child nodes of node v. Select the initial
cluster centers g(cp) from the given set of Gaussian com-
ponents G(v), where the min-max selection method is
used instead of random selection. The min-max selection
method is explained in Appendix.

3) (Clustering by k-means) Assign each Gaussian compo-
nent in G(v) to the nearest child node, i.e.

G(cp) ← {g ∈ G(v) | p = argmin
p′

d(g, g(cp′ ))}. (11)

Update g(cp) by using Eq. (5) as follows:

g(cp) ← G(G(cp)), (12)

Repeat this step until the following sum of distance
converges:

D =
P∑

p=1

∑

g∈G(cp)

d(g, g(cp)). (13)

4) For p = 1, 2, · · · , P , enqueue (cp, G(cp)) if cp is not in
the (T +1)-th layer and |G(cp)| > 1. Go to step 5 if the
queue is empty; otherwise, return to step 2.

5) For each node v in the (T +1)-th layer, create leaf nodes
! for each g(U)

k ∈ G(v) ⊂ GUBM and set

g(!) = g(U)
k . (14)

D. Fast MAP Adaptation
A fast MAP adaptation technique which estimates cik in

Eq. (3) efficiently by using a tree-structured GMM is explained
in the following. For a constructed tree-structured GMM
T(P1,P2,··· ,PT ), node weights are first defined as follows:

a) For each leaf node !, set

w(!) = w(U)
k , (15)

if g(!) = g(U)
k ∈ GUBM.

b) Calculate weights for t = T + 1, T, · · · , 1 as follows.
For each node v in the t-th layer,

w(v) =
∑

c∈C(v)

w(c), (16)

where C(v) is a set of child nodes of the node v.
The algorithm for estimating cik for feature vector xi is

described as follows. The key idea is to construct a GMM of
active nodes VA, which means vector xi will be assigned to
descendants of nodes in VA. |VA| is kept small by obtaining
active nodes from the root node.

1) Set VA ← {r}, where r is the root node.
2) Expand active nodes by making child nodes of the active

nodes active:

VA ←
⋃

v∈VA

C(v), (17)

where C(v) is a set of child nodes of the node v. Here,
C(!) = {!} is used for leaf nodes ! to keep the leaf
nodes active.

3) Consider a GMM for active node VA given by

p(x|VA) =
∑

v∈VA

w̃(v)g(v)(x), (18)

where

w̃(v) =
w(v)

∑
v∈VA

w(v)
. (19)

Calculate

c(v)
i =

w̃(v)g(v)(xi)∑
v∈VA

w̃(v)g(v)(xi)
=

w(v)g(v)(xi)∑
v∈VA

w(v)g(v)(xi)
.

(20)

4) Keep a node v active if c(v)
i is larger than the predeter-

mined threshold cTH, i.e.

VA ← {v ∈ VA | c(v)
i > cTH}. (21)

5) If all nodes in VA are leaf nodes, output

ĉik =

{
c(!)
i (! ∈ VA, g(!) = g(U)

k )
0 (otherwise)

. (22)

Otherwise, return to Step 2.
Since the observed ĉik for non-active nodes is 0, the sum

in Eq. (2) can be calculated for non-zero ĉik only. Our fast
MAP adaptation requires O(n log K) time which improves
O(nK) time for the basic MAP adaptation. Moreover, cal-
culation speed and levels of approximation can be controlled
by selecting the threshold cTH in 0 < cTH ≤ 1. Note that the
same cik as given by Eq. (3) is obtained when cTH is set to 0
(because all leaf nodes will be active at the final step).
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E. GMM Supervector SVM
The combination of GMM supervectors and support vector

machines (SVMs) was first proposed as a speaker recognition
method [21] and has been applied to image and video recog-
nition [2], [6]. GMM supervectors are created for each shot
and are given by

φ(X) =





µ̃1

µ̃2
...

µ̃K




, µ̃k =

√
w(U)

k

(
Σ(U)

k

)− 1
2

µ̂k, (23)

where µ̂k is an adapted mean vector obtained from Eq. (2), and
θ(U) is the GMM parameter for the UBM. The dimension of
GMM supervectors is Kd, where K is the number of Gaussian
components and d is the dimension of the low-level feature
vector. The weighted sum of Mahalanobis distances between
corresponding Gaussian pairs is obtained by calculating the
squared Euclidean distance between two GMM supervectors.
RBF kernels are used for SVM classification:

k(X,X ′) = e−γ‖φ(X)−φ(X′)‖2
, (24)

where γ is a kernel parameter. An SVM is trained for each
semantic concept and for each type of features. Note that the
proposed method can be used for creating the Fisher vectors
[22], [24].

F. Score Fusion
SVMs for the four types of features described in Sec-

tion IV-B are combined by calculating the weighted sum of
detection scores as

f(X) =
∑

F∈{SIFT-Har, SIFT-Hes,

SIFTH-D, MFCC}

βFfF(X), (25)

where βF is a combination weight and fF(X) is a detection
score for the feature F. The combination weights are optimized
for each semantic concept by cross validation.

IV. EXPERIMENTS

A. Database and Task
Our experiments were conducted on the TRECVID 2010

dataset [3], [4]. The dataset consists of 400 hours of Internet
archive videos with creative commons licenses. The shot
boundaries and key-frame images are automatically detected
and provided with the video data. Half of the videos were used
for training, and the others were used for testing. The number
of shots was 119,685 for training and 146,788 for testing.

We evaluated our system on the TRECVID 2010 Semantic
Indexing benchmark. The task is to detect the 30 semantic con-
cepts (including objects, events and scenes) listed in Table I.
They are considered useful for video searching.

The annotated labels for the 30 concepts are also provided
with the video data (including testing videos for evaluation).
The labels for training data are created using a collaborative
annotation system [28]; however, some of the training shots
are still unlabeled. It was assumed that the unlabeled samples

TABLE I
THE 30 TARGET SEMANTIC CONCEPTS IN THE TRECVID 2010 DATASET

Airplane Flying Female Human Face Closeup
Animal Flowers
Asian People Ground Vehicles
Bicycling Hand
Boat ship Mountain
Bus Nighttime
Car Racing Old People
Cheering Running
Cityscape Singing
Classroom Sitting down
Dancing Swimming
Dark-skinned People Telephones
Demonstration Or Protest Throwing
Doorway Vehicle
Explosion Fire Walking

are negative since the annotation system is based on an active
learning method that requires shots appearing to be positive
samples to be annotated preferentially. On the other hand,
labels for testing videos are attached on the basis of the
submission pool of TRECVID 2010, which allows precise
estimation of average precision.

The evaluation measures are Mean average precision (Mean
AP) and the calculation time of the testing phase. Mean AP is
defined as the mean of APs over all 30 target concepts. APs
are calculated as

AP =
1
R

N∑

r=1

Pr(r)Rel(r), (26)

where R is the number of positive samples, N is the number
of testing samples, Pr(r) is the precision at the rank of r
and Rel(r) takes a value of one if the r-th shot is positive;
otherwise, it takes zero. The AP is estimated by using a method
called inferred average precision (Inf AP), proposed in [31].

B. Experimental Conditions

The following four types of visual and audio features are
extracted from video data.

1) SIFT features with Harris-Affine detector (SIFT-Har)
Scale-invariant feature transform (SIFT) [15] is a low-
level feature extraction method that is widely used for
object categorization. The extracted features are invari-
ant to image scaling and changing illumination. The
Harris-Affine local region detector [27], which is an
extension of the Harris corner detector, provides affine-
invariant local regions. The proposed method uses 32-
dimension SIFT features, whose dimensions are reduced
from 128 to 32 by applying principal component anal-
ysis (PCA). The SIFT features are extracted from every
other frame.

2) SIFT features with Hessian-Affine detector (SIFT-Hes)
SIFT features are extracted with a Hessian-Affine detec-
tor [27], which is complementary to the Harris-Affine
detector. The combination of several different detectors
can improve the robustness against noise. Features are
extracted from every other frame, and PCA is applied
to reduce their dimensions from 128 to 32.
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TABLE II
THE AVERAGE NUMBERS OF EXTRACTED FEATURES.

Feature # of features per shot
SIFT-Har 19,536
SIFT-Hes 18,986
SIFTH-Dense 30,000
MFCC 5,160

3) SIFT and hue histogram with dense sampling (SIFTH-
Dense)
To capture color information, SIFT features and hue his-
tograms [16] are combined. As a result, 164 dimensional
low-level features (which consist of 128-dimension SIFT
features and 36-dimension hue histograms) are obtained.
PCA is also used to reduce the dimensions to 32. This
feature is extracted only from key frames by using dense
sampling, which provides a much larger number of low-
level features than sparse sampling such as the Harris-
Affine and Hessian-Affine detectors.

4) MFCC audio features (MFCC)
Mel-frequency cepstral coefficients (MFCCs), which de-
scribe the short-time spectral shape of audio frames, are
extracted to capture audio information. Semantic con-
cepts related to people speaking, talking, and singing can
be detected by using MFCCs since MFCCs are effective
for speech recognition and audio classification. The
38-dimension audio features consist of 12-dimension
MFCCs, 12-dimension ∆ MFCCs, 12-dimension ∆∆
MFCCs, 1-dimension ∆ log-power and 1-dimension
∆∆ log-power are extracted. Here, “∆” means the
derivative of the feature.

SiftGPU [12] and Mikolajczyk’s implementation [27] were
used for SIFT feature extraction. MFCC features were ex-
tracted by using a speech recognition toolkit HTK [29]. The
average numbers of features per shot are summarized in
Table II.

The number of mixtures (vocabulary size) K for GMMs
was 512 for visual features and 256 for audio features. For
computational efficiency, it was assumed that covariance ma-
trices are diagonal. Hyper parameter τ in the MAP adaptation
was set to 20.0, which is the standard value of the toolkit HTK.
Parameter γ in the RBF kernel was γ = d̄−1, where d̄ is pre-
calculated average distance between two GMM supervectors in
training data. SVMs were trained for each semantic concept by
using the libSVM implementation [30]. Combination weights
for the fusion in Eq. (25) were optimized by using two-fold
cross validation on training data.

For tree-structured GMMs, the optimal tree structure Topt

was selected as

Topt = argmin
T ∈S

CT(T ), (27)

where CT(T ) is calculation time when the tree T is used and

S = {T(P1,P2,··· ,PT ) | 1 ≤ T ≤ 5, 1 ≤ Pt ≤ 5}. (28)

The trees T(4,4,5), T(4,5,5), T(3,4,4,5) and T(3,3) were selected
for SIFT-Har, SIFT-Hes, SIFTH-Dense and MFCC, respec-
tively. Parameter α in Eq. (32) was fixed to 0.1.

Threshold cTH for the fast MAP adaptation was set to
0.001. Here, a low threshold was set so as to keep detection
performance high. Experiments using different thresholds were
also conducted (see Subsection IV-C4).

In the experiments, calculation time was measured by using
a single core of Intel Xeon 2.93 GHz CPU. Calculation time
without feature extraction time is reported since some features
were pre-extracted by using GPUs. The average feature extrac-
tion time per shot was 0.38 sec by using a GPU NVIDIA Tesla
M2050.

C. Results
1) Mean Inf APs: Table III summarizes obtained Inf APs

and Mean Inf AP for each types of low-level features and
two fusion methods: visual fusion and multi-modal fusion.
The visual fusion is a combination of three types of visual
features (SIFT-Har, SIFT-Hes, and SIFTH-Dense). The multi-
modal fusion combines the MFCC in addition to the visual
features. As a result, we can see that the Mean Inf APs using
tree-structured GMMs are comparable to those using no trees.
Some example video shots for training and testing sets are
shown in Fig. 3.

2) Calculation time: Table IV lists calculation times for
MAP adaptation using different features and different trees.
The results for binary trees (Tbinary) are also listed in the
table. The calculation speed when the optimal tree is used
on average 4.2 times faster than when trees were not used;
that is, calculation time was reduced by 76.2%.

Fig. 4 shows calculation time for each step in the testing
phase of the proposed semantic indexing system. The testing
cost was reduced, on average, by 56.6% by using tree-
structured GMMs. The second and third highest costs were
for the PCA projection and the SVM prediction (including
calculation of kernels). The SVM prediction can be speed
up by using linear kernels instead of RBF kernels. To avoid
decrease in detection accuracy, a possible compromise is to
use linear kernels for roughly ranking shots and re-evaluate
high-ranked shots by using RBF kernels.

3) Analysis of estimation error: Estimation errors of cik

were evaluated from the mean absolute error (MAE), given as
follows:

MAE =
1
n

n∑

i=1

K∑

k=1

|ĉik − cik|, (29)

where ĉik and cik are given by Eq. (22) and Eq. (3), respec-
tively. The MAE for SIFTH-Dense was 0.32 on average (note
that 0 ≤ MAE ≤ 2). Although we have estimation errors of cik

in the fast MAP adaptation algorithm, they can be cancelled
when the distance in Eq. (24) is calculated since the same
errors occur in training and testing phases.

4) Effect of using different thresholds: Table V lists the
results obtained using different thresholds cTH for the fast MAP
adaptation. The number of leaf nodes that are active (at least
once in Eq. (17) ) and MAE are also listed in the table.

As cTH gets higher, the calculation time shortens, but Mean
Inf AP was decreased when cTH = 0.1 and 0.5. Moreover, the
number of active leaf nodes decreases, and MAE increases.
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Fig. 3. Example video shots for training and testing sets. The top 5 results obtained by using our system (multi-modal fusion) are shown in the right side
of the figure.

TABLE III
RESULTING INFERRED AVERAGE PRECISIONS (INF APS) FOR EACH SEMANTIC CONCEPT AND FOR EACH METHOD. MEAN INF APS ON THE TESTING SET

AND MEAN APS ON A TWO-FOLD CROSS-VALIDATION SPLIT OF THE TRAINING DATA ARE ALSO SHOWN.

Semantic concept SIFT-Har SIFT-Hes SIFTH-Dense MFCC Visual fusion Multi-modal fusion
No tree Topt No tree Topt No tree Topt No tree Topt No tree Topt No tree Topt

Airplane Flying 0.064 0.064 0.080 0.078 0.032 0.030 0.001 0.001 0.105 0.105 0.105 0.117
Animal 0.039 0.041 0.034 0.035 0.026 0.020 0.002 0.002 0.068 0.073 0.076 0.076
Asian People 0.024 0.029 0.014 0.015 0.001 0.002 0.041 0.041 0.012 0.009 0.012 0.009
Bicycling 0.039 0.041 0.040 0.033 0.029 0.026 0.000 0.000 0.045 0.056 0.045 0.056
Boat Ship 0.046 0.044 0.040 0.041 0.050 0.049 0.000 0.000 0.085 0.084 0.085 0.084
Bus 0.012 0.012 0.011 0.013 0.007 0.009 0.000 0.000 0.018 0.016 0.021 0.016
Car Racing 0.021 0.019 0.014 0.013 0.060 0.054 0.000 0.000 0.040 0.040 0.056 0.043
Cheering 0.053 0.051 0.044 0.045 0.033 0.037 0.008 0.008 0.052 0.051 0.052 0.051
Cityscape 0.090 0.098 0.109 0.110 0.125 0.108 0.009 0.009 0.180 0.177 0.185 0.179
Classroom 0.004 0.005 0.020 0.022 0.010 0.010 0.000 0.000 0.015 0.011 0.017 0.021
Dancing 0.034 0.036 0.030 0.028 0.034 0.033 0.001 0.001 0.068 0.067 0.068 0.067
Dark-skinned People 0.089 0.088 0.073 0.071 0.118 0.133 0.138 0.139 0.151 0.159 0.208 0.203
Demonstration Or Protest 0.095 0.095 0.065 0.069 0.130 0.121 0.001 0.001 0.137 0.132 0.137 0.132
Doorway 0.084 0.082 0.068 0.067 0.073 0.068 0.000 0.001 0.098 0.097 0.104 0.098
Explosion Fire 0.025 0.025 0.026 0.025 0.045 0.043 0.011 0.011 0.050 0.047 0.050 0.047
Female-Human-Face-Closeup 0.139 0.124 0.096 0.105 0.125 0.121 0.021 0.021 0.169 0.175 0.173 0.178
Flowers 0.030 0.028 0.019 0.017 0.029 0.028 0.001 0.001 0.043 0.044 0.043 0.044
Ground Vehicles 0.159 0.165 0.148 0.150 0.153 0.151 0.021 0.020 0.211 0.210 0.208 0.206
Hand 0.078 0.073 0.062 0.073 0.047 0.055 0.000 0.000 0.092 0.089 0.090 0.090
Mountain 0.059 0.055 0.053 0.054 0.192 0.194 0.003 0.003 0.180 0.169 0.182 0.164
Nighttime 0.072 0.073 0.055 0.054 0.120 0.113 0.002 0.002 0.127 0.133 0.120 0.132
Old People 0.043 0.045 0.040 0.041 0.022 0.023 0.013 0.011 0.059 0.058 0.061 0.063
Running 0.039 0.041 0.047 0.045 0.020 0.018 0.000 0.000 0.073 0.077 0.073 0.077
Singing 0.112 0.105 0.069 0.074 0.069 0.068 0.086 0.090 0.154 0.158 0.182 0.188
Sitting Down 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.002 0.003 0.003 0.004
Swimming 0.121 0.131 0.162 0.164 0.343 0.339 0.199 0.199 0.173 0.186 0.278 0.276
Telephones 0.008 0.010 0.006 0.006 0.008 0.009 0.001 0.000 0.010 0.012 0.010 0.018
Throwing 0.059 0.059 0.063 0.063 0.019 0.016 0.019 0.020 0.062 0.065 0.062 0.066
Vehicle 0.158 0.150 0.163 0.172 0.150 0.146 0.015 0.014 0.205 0.200 0.205 0.200
Walking 0.093 0.103 0.135 0.138 0.061 0.060 0.002 0.002 0.134 0.142 0.135 0.143
Mean InfAP 0.063 0.063 0.060 0.061 0.071 0.070 0.020 0.020 0.094 0.095 0.102 0.102
Mean AP on validation set 1 0.078 0.078 0.081 0.082 0.105 0.107 0.028 0.028 0.147 0.148 0.153 0.154
Mean AP on validation set 2 0.084 0.085 0.092 0.091 0.111 0.111 0.028 0.027 0.158 0.158 0.162 0.161

It can thus be concluded that calculation time should be
reduced not by setting a high threshold cTH but by selecting a
better-structured tree to keep detection performance high. In
particular, cTH should be equal to or smaller than 0.01.

5) Effect of using different tree structures: Fig. 5 shows
calculation time obtained using different tree structures. The
tree of T(3,4,4,5) was the best in terms of calculation time. We
can see that the tree should not be too deep to improve the
speed of MAP adaptation. Fig. 6 shows MAE obtained using
different tree structures. MAE can be reduced by changing the

tree structure. However, we conclude that any tree structures
will not be the cause for decreasing final performance since
there was no decrease in Mean Inf AP even in the case of
MAE = 0.53 in Table V.

6) Comparison With Other Methods: Fig. 7 compares Mean
Inf APs obtained in the above-described experiment with those
values obtained by the other methods used at TRECVID 2010.
Our fusion methods got better results than the best result
reported at TRECVID 2010 (0.900).

Fig. 8 shows the results of significance test obtained by
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Fig. 4. Calculation time for each step (The lower bars for each feature show
the time in the case that the optimized tree was used)

TABLE IV
CALCULATION TIME (SEC) FOR MAP ADAPTATION. CALCULATION TIME

WAS MEASURED BY USING A SINGLE CORE OF INTEL XEON 2.93 GHZ
CPU.

Feature No tree Topt Tbinary

SIFT-Har 1.62 0.49 0.98
SIFT-Hes 1.67 0.48 1.00
SIFTH-Dense 2.89 0.81 1.89
MFCC 0.22 0.03 0.08

applying partial randomization test (p < 0.05). The muti-
modal fusion was significantly better than the visual fusion.
Our method performed better than the other methods in
TRECVID 2010 for semantic concepts related to human and
human actions such as “Singing” and “Dancing” since we used
audio features. However, there was no significant difference
between the muti-modal fusion and the top result in TRECVID
2010. This result shows that the performance can be improved
by combining a larger number of visual features since the top
ranked methods in TRECVID 2010 used more than 10 types
of visual features.

Although our final goal is to develop a generic methods for
automatically assigning semantic concepts to videos, overall
performances are still low compared with that of human
annotation. One future challenge is detection of many kinds
of semantic concepts; however, we have to consider which
concepts are really useful for applications of video search.

V. CONCLUSION

A fast and accurate semantic indexing system using fast
MAP adaptation and GMM supervectors was proposed. A
tree-structured GMM was constructed to quickly calculate
posterior probabilities for each mixture component of a GMM.
The calculation time for MAP adaptation was reduced by
76.2% from the conventional method, while high detection
performance was maintained. Our future work will focus on a
GPU implementation of the fast MAP adaptation and feature
extraction.

TABLE V
COMPARISON OF MEAN INF AP, CALCULATION TIME (SEC) FOR MAP

ADAPTATION, NUMBER OF LEAF NODES |VA| AND MEAN ABSOLUTE
ERROR (MAE) OF cik BY USING DIFFERENT THRESHOLDS cTH FOR THE

SIFTH-DENSE FEATURE.

cTH Mean Inf AP Calc. time |VA| MAE
0.001 0.695 0.81 17.0 0.32
0.01 0.699 0.68 11.2 0.53
0.1 0.660 0.59 7.3 0.80
0.5 0.641 0.53 5.4 0.98

Fig. 5. Mean absolute error (MAE) of cik obtained using different tree
structures (the SIFTH-Dense feature and cTH = 0.001 were used). 1,364
trees of depth at most 5 that have at most 5 children per node and the binary
tree are tested. All MAE were less than 0.05.

APPENDIX

For the initialization for k-means clustering (Step 2 in the
tree-construction algorithm in Sec III-C),we use the min-max
selection method. This method is known to provides better
initial values than random selection. This method first selects
from G(v) a node set whose nodes are distant from each other,
and then sets a cluster center at an internal dividing point
between node v and each of the selected nodes.

2-1) Choose the mixture component g̃(c1) that has the largest
distance to g(v), i.e.,

g̃(c1) = argmax
g∈G(v)

d(g, g(v)). (30)

2-2) For p = 2, · · · , P , choose g̃(cp) from the rest of mixture
components which belong to the node v and not yet
assigned to any child node, i.e.,

g̃(cp) = argmax
g∈G(v)

p−1

min
1≤p′<p

d(g, g̃(cp′ )), (31)

where G(v)
p−1 = G(v) \ {g̃(c1), · · · , g̃(cp−1)}. If G(v)

p−1 is
an empty set, the child node is deleted from the tree.

2-3) For p = 1, 2, · · · , P , set the parameters of child Gaus-
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Fig. 6. Calculation time obtained using different tree structures (the SIFTH-
Dense feature and cTH = 0.001 were used). 1,364 trees of depth at most 5
that have at most 5 children per node and the binary tree are tested. T(3,4,4,5)
was the best tree and was selected as the optimized tree.

Fig. 7. Comparison of Mean Inf AP with runs of the TRECVID 2010.

sian pdfs g(cp) as follows:

g(cp) ←N (·|µ̄, Σ̄), (32)

µ̄ =αµ̃(cp) + (1 − α)µ(v), (33)

Σ̄ =α(Σ̃(cp) + µ̃(cp)(µ̃(cp))T)
+ (1 − α)(Σ(v) + µ(v)(µ(v))T)
− µ̄µ̄T, (34)

where 0 ≤ α ≤ 1 is a weight parameter to mix the
selected pdf g̃(cp) = N (·|µ̃(cp), Σ̃(cp)) and their parent
pdf g(v) = N (·|µ(v), Σ(v)).
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