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PAPER Special Section on VLSI Design and CAD Algorithms

MILP-Based Efficient Routing Method with Restricted Route
Structure for 2-Layer Ball Grid Array Packages∗∗

Yoichi TOMIOKA†a), Member, Yoshiaki KURATA†∗, Nonmember, Yukihide KOHIRA††b),
and Atsushi TAKAHASHI†††c), Members

SUMMARY In this paper, we propose a routing method for 2-layer ball
grid array packages that generates a routing pattern satisfying a design rule.
In our proposed method, the routing structure on each layer is restricted
while keeping most of feasible patterns to efficiently obtain a feasible rout-
ing pattern. A routing pattern that satisfies the design rule is formulated as
a mixed integer linear programming. In experiments with seven data, we
obtain a routing pattern such that satisfies the design rule within a practical
time by using a mixed integer linear programming solver.
key words: ball grid array, monotonic, nearest via assignment, package
routing, radiate

1. Introduction

Ball Grid Array (BGA) packages, which have hundreds of
I/O pins of grid pattern, can realize a number of connections
between chip and PCB. However, since the routing area of a
BGA package is very small and has a number of obstacles,
it is difficult to realize all connections under such severe cir-
cumstance. So currently package routing is done manually
and needs a lot of time, and the development of auto routing
is desired.

There are several planar routing methods related to
BGA package routing. A routing method for BGA packages
with single layer was proposed in [2], and was improved in
[3]. The methods in [2], [3] generate a netlist that achieves
low wire congestion with even wire distribution and gen-
erate the corresponding routing. Routing methods for flip
chips were proposed in [4], [5]. The method in [4] gener-
ates a netlist which avoids net intersections and generates
the corresponding routing. The method in [5] is an exact
routing method based on integer linear programming. Al-
though these methods are related to BGA package routing,
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they cannot be used for multi-layer BGA as they are since
they assume a single routing layer.

Routing algorithms for multi-layer BGA and pin grid
array (PGA) have been proposed in [6] and [7], respectively.
These algorithms first assign each net to a layer and then
generate routes in each layer. However, in these methods
for multi-layer, the assignment of vias to ball-region where
solder balls are placed on layer 2 is not considered. Gener-
ally, in the BGA packages, most of vias need to be assigned
to the ball-region.

On the other hand, a via assignment method to the ball-
region in 2-layer BGA package was proposed in [8]. In this
method, the total wire length and the wire congestion on
layer 1 are decreased by repeatedly adjusting the via assign-
ment. This method was improved in [9]. In the improved
method, the execution time is reduced and the routing ra-
tio of layer 2 has been improved. However, a routing pat-
tern that satisfies the design rule is not necessarily obtained
by the method in [9]. The method in [9] does not prohibit
a routing pattern that has wire congestion which is higher
than the limit on layer 1. Moreover, the method consumes
the routing resource of layer 2 much since it sometimes as-
signs the via of a net to a grid which is away from the ball of
the net. It is better to secure the routing resource of layer 2
as much as possible since the routing resource of layer 2 is
used for the routing of the plating leads of power nets and
signal nets to reduce the wire congestion of layer 1 [10].

In this paper, we propose a mixed integer linear pro-
gramming (MILP) based routing method for 2-layer BGA
packages that generates a routing pattern satisfying the de-
sign rule. In BGA package routing, there exist a number of
routing patterns including infeasible routing patterns. How-
ever, the structure of feasible routing pattern on each layer
has several properties. In order to efficiently obtain a feasi-
ble routing pattern, we restrict the structures of routes while
keeping most of feasible routing patterns. In our proposed
method, the routing on layer 1 and layer 2 is restricted to
be monotonic and radiate, respectively. Moreover, via as-
signment is restricted so that all routes on layer 1 can be
monotonic, and that the via of a net is placed near the ball of
the net. In experiments with seven data, we obtain a routing
pattern that satisfies the design rule within a practical time
by using a MILP solver.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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2. Preliminary

2.1 2-Layer BGA Package

There exist various kinds of BGA packages. In this paper,
we consider a fanout type BGA package which consists of a
single chip and a package substrate with two routing layers.
A model of the package is shown in Fig. 1.

A bonding finger, which is referred to as a finger, is
connected to the chip by a bonding wire. Fingers are placed
on an interior region of package substrate in fanout type,
while fingers are placed on the perimeter of package sub-
strate in fanin type. Our model is fanout type and fingers are
placed on the perimeter of a rectangle enclosing the chip on
layer 1. A solder ball, which is referred to as a ball, is an I/O
terminal of the package, and it is placed in a grid array pat-
tern on layer 2. In our model, balls are not placed under the
region where fingers and chip are placed. The interior re-
gion where no ball is placed is called free-region, while the
exterior region where balls are placed in a grid array pat-
tern is called ball-region. A mold gate which is used to pour
resin into the package is placed in a corner of the package
substrate on layer 1.

In package routing design, a connection requirement is
given as a net which consists of fingers and balls. In this
paper, we assume that a net consists of one finger and one
ball. A net is realized as route by using wires on each layer
and vias which connect wires on different layers. The route
of a net must not intersect any routes of other nets. More-
over, there are several special constraints. In this paper, two
types of constraints are considered. The first one is related
to mold gate. In the region at which a mold gate is placed,
a wire on layer 1 is not allowed, but a wire on layer 2 is
allowed. The second one is related to electrical plating to
protect wires. In order to enable electrical plating, a net is
requested to extend its wire to the package substrate bound-
ary on either layer. The extra connection is called a plating
lead.

2.2 Problem Definition

The package substrate is divided into four sectors, and the

Fig. 1 A model of 2-layer BGA package.

nets are divided accordingly. In the following, we consider
the bottom sector as shown in Fig. 2.

The grid array pattern of balls is modeled by a ball grid
array. The set of balls is denoted by B.

There are two types of nets, called signal net and power
supply net. The routing of a signal net is done within ball-
region. The most part of routing of a power supply net
is done within free-region, but its plating lead passes ball-
region. Our concern is the routing of a signal net within
ball-region, but it is requested to reserve the routing resource
of layer 2 as much as possible to enable the routing of the
plating leads of power supply nets.

The candidate positions of a via in ball-region are re-
stricted since the via cannot be placed on a ball and the size
of the via is relatively large even though it is smaller than the
size of a ball. According to the ball grid array, the routing re-
gion is divided into unit squares surrounded by four adjacent
balls. In our model, the number of vias to be placed in a unit
square is at most one, and the via is placed to the center of a
unit square. The center of a unit square is called a grid node.
For ease of explanation, dummy nodes corresponding to the
boundary of the routing region of layer 1 are introduced. A
dummy node corresponding to the left boundary of a row is
placed at the intersection of the row and the left boundary of
the routing region. Similarly, dummy nodes corresponding
to the right boundary are generated.

The sets of grid nodes and dummy nodes are denoted
by NG andND, respectively. The set of nodes is denoted by
N . That is, N = NG ∪ND.

Note that a via cannot be assigned to the dummy nodes
but the grid nodes. The grid array pattern on N is called
a via grid array. In Fig. 2, balls are shown as big gray cir-
cles, grid nodes are shown as small white circles and dummy
nodes are shown as small black circles.

Let u be a ball, a via or a node. The coordinate of u is
denoted by (x(u), y(u)).

Let u and v be two of balls, vias and nodes. The dis-
tance between u and v is the Manhattan distance between
them, and is calculated as |x(u) − x(v)| + |y(u) − y(v)|.

Let ul and ur be nodes inN , where they are adjacent in
the via grid array and ur is on the right of ul in a row. The
interval between ul and ur is called horizontal interval, and

Fig. 2 A model of the bottom sector of BGA package.
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denoted by an ordered pair (ul, ur). Similarly, let ua and ub

be nodes in N , where they are adjacent in the via grid array
and ua is above ub in a column. The interval between ub

and ua is called vertical interval, and denoted by an ordered
pair (ub, ua). In our definition, a dummy node is not verti-
cally adjacent to any other grid node in the via grid array.
Let Ih and Iv be the set of horizontal intervals and vertical
intervals, respectively. The set of horizontal intervals and
vertical intervals is denoted by I. The length of an interval
(u, v) in I is the distance between u and v, and denoted by
length(u, v).

The condition of wire clearance is given depending on
the packaging technology. In order to get a smaller package,
the length of an interval between adjacent grid nodes is usu-
ally set to be short as long as the connection requirements
are satisfied. In our model, the length of the interval is set
so that one wire can go through between adjacent balls on
layer 2. It is the minimum except trivial cases. While, the
maximum number of possible wires that intersect the inter-
val on layer 1 is larger than one if there is no obstacle. Let
the length of the interval be unit length of our coordinate
system. Let c be the maximum number of possible wires on
layer 1 per unit length. In experiments, c = 7 is used. Note
that the length of the interval related to a dummy node may
not be unit length.

A signal net consists of a finger and a ball. The set of
signal nets is denoted by ΩS , and they are labeled according
to the order of fingers from the left to the right as ΩS =

{1, 2, . . . ,N}, where N is the number of nets. The route of a
net consumes the routing resource of layer 2 much if the net
has more than one via since vias are connected on layer 2.
Since the routing of layer 2 is tight, we restrict that each net
inΩS has just one via. Let bi and vi be the ball and the via of
net i, respectively. Moreover, we restrict the plating lead of
a signal net to be routed from the via of the net on layer 1.
The routing resource of layer 2 is reserved for the plating
leads of power supply nets as much as possible.

In Fig. 2, the route of a signal net 7 including its plating
lead and the plating lead of a power supply net from ball b′
are shown. The via of the signal net is illustrated by small
gray circle. The routes of the nets on layer 1 and layer 2 are
shown as black line and as gray thick line, respectively.

A via assignment is an assignment of the vias of nets in
ΩS to nodes. The global routing problem for a 2-layer BGA
package is defined as follows:

Ball-region routing problem for 2-layer BGA
Inputs: The set of signal nets ΩS

Outputs: A via assignment and routing for ΩS

Objective: Minimize the total wire length of both lay-
ers
Constraint: satisfy the design rule

2.3 Monotonic Routing on Layer 1

If the route of each net on layer 1 from its finger to the

Fig. 3 Monotonic via assignment and the corresponding monotonic
routing on layer 1.

Fig. 4 Feasible and infeasible routing patterns where two routes pass
through a square surrounded by adjacent balls on layer 2.

package boundary intersects any horizontal grid line at most
once, then the route is said to be monotonic.

It is clear that a monotonic routing is possible for the
via assignment if and only if x(vi) < x(v j) is satisfied for any
pair of nets i and j (i < j) such that y(vi) = y(v j). A via
assignment is said to be monotonic if a monotonic routing
of layer 1 is possible [2], [8].

Given a monotonic via assignment, monotonic rout-
ing on layer 1 is uniquely determined. An example of a
monotonic via assignment and the monotonic routing for
the via assignment are shown in Fig. 3. The routes of nets
10, 11, . . ., and n pass to the right of via v9, and the routes
of nets 1, 2, . . ., and 12 pass to the left of via v13. Therefore,
the routes of nets 10, 11, and 12 pass between vias v9 and
v13.

Since the capacity of a horizontal line is close to the
number of nets, via assignment and global routing of layer 1
in actual design are usually monotonic. By definition, a
monotonic route intersects a horizontal grid line of the via
grid array just once. While, the number of intersections of
vertical grid lines and routes increases according to route
snaking. We evaluate the total wire length of layer 1 by the
number of intersections.

2.4 Radiate Routing on Layer 2

On layer 2, the number of routes between adjacent balls is
at most 1. Two routes can pass through a unit square if a via
is not placed in the unit square as shown in Fig. 4(a). While,
two routes cannot pass if a via is placed in the square as
shown in Fig. 4(b) since enough space does not exist around
the via.

We use the routing graph G = (V, E) proposed in [10]
to represent a global routing on layer 2. The routing graph
has vertices which are balls in B, grid nodes in NG, and ex-
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Fig. 5 Subgraph of routing graph to represent feasible routing patterns
on layer 2.

tra vertices. The set of extra vertices is denoted by Ve. Note
that V = B∪NG∪Ve. Ball vertices and grid node vertices are
embedded in a plane according to the bottom sector of BGA
package. An extra vertex is placed at the center of triangle
consisting of adjacent two ball vertices and grid node ver-
tex. The ball vertices and the grid node vertex are connected
via the extra vertex. Moreover, adjacent extra vertices are
connected. A routing pattern satisfying the design rule is
obtained by generating routes on the routing graph without
intersecting each other. A subgraph of the routing graph and
an example of global routing on it are shown in Fig. 5.

The Manhattan distance between vertices u, v ∈ V is
denoted by dist(u, v). Let (u1, u2, . . . , um) be a route of net
k from ball bk to grid node um on routing graph G, where ui ∈
V (1 ≤ i ≤ m), u1 = bk and um ∈ NG. Route (u1, u2, . . . , um)
is said to be radiate if dist(bk, ui) ≤ dist(bk, uj) for any ui

and uj (1 ≤ i < j ≤ m).
The via and ball of a net is better to be connected by

a route with shorter wire length to save the routing resource
on layer 2. A radiate route connects the via and ball of a
net with shorter wire. In our method, the routing on layer 2
is restricted so that all routes of nets in ΩS on layer 2 are
radiate.

3. Mixed Integer Programming Formulation

3.1 Outline of the Method

In our method, in order to effectively obtain a feasible rout-
ing pattern, via assignment and routing for each layer are
restricted so that the variety of the routing patterns is re-
duced while keeping most of feasible routing patterns. Via
assignment is restricted to be monotonic via assignment for
layer 1, and to be nearest via assignment for layer 2 such
that the via of each net is placed to grid nodes which are
neighborhood of the ball of a net. Moreover, routing on
layer 1 is restricted to be monotonic, and routing on layer 2
is restricted to be radiate. In order to obtain a routing pat-
tern with total wire length on both layers small, the total
wire length on layer 1 is minimized while keeping the total
wire length on layer 2 small. The routing problem with the
restrictions is formulated as a mixed integer linear program-
ming.

In the formulation, two kinds of variables are used.

First one corresponding to a grid node is real variable called
grid variable. For each grid node, one grid variable is gener-
ated. The grid variable of a grid node is mainly used to for-
mulate routing of layer 1. Second one corresponding to the
route of a net is binary variable called segment variable. For
a net, some segment variables are generated. The segment
variables are mainly used to formulate routing of layer 2. In
our proposed method, a feasible routing pattern is obtained
if it exists.

In the following, in Sect. 3.2 and Sect. 3.3, the formu-
lation of routing on layer 1 and our objective function are
explained, respectively. In Sect. 3.4 and Sect. 3.5, nearest
via assignment and the formulation of routing on layer 2 are
explained, respectively.

3.2 Formulation of Monotonic Routing on Layer 1

In routing on layer 1, a via assignment and the correspond-
ing routing pattern satisfying the design rule, are required.

If a monotonic via assignment is given, which side of
the via of net i each route passes is determined in the cor-
responding monotonic routing. In other words, some net
numbers are assigned to some of grid nodes, the correspond-
ing monotonic routing pattern is determined. We represent
a monotonic routing pattern with real variables assigned to
grid nodes.

A grid variable Lu is a real variable, and is generated for
each grid node u. The grid variable represents that the route
of a net on layer 1 whose net number is less or more than
the value of the grid variable passes to the left or right of the
grid node, respectively. If u is a dummy node corresponding
to the left and right boundary, then Lu = 0 and Lu = N + 1,
respectively. Otherwise, Lu is a value between 1 and N.

The via of net i is placed to just one of grid nodes, and
the grid variable of the grid node to which the via is placed
is set to i. A grid variable is set to an appropriate value by
using segment variables. The formulation is given in con-
straint (11) in Sect. 3.5. Moreover, let via(u) be whether a
via is placed to grid node u or not. That is, if a via is placed
to u, then via(u) = 1. Otherwise, via(u) = 0. via(u) is
set to an appropriate value by using segment variables. The
formulation is given in Sect. 3.5.

In order to satisfy the monotonic condition, constraint
(1) is used.

Lu ≤ Lv ∀(u, v) ∈ Ih (1)

Under the monotonic condition, the number of inter-
sections of routes and interval (u, v) on layer 1 is |Lv − Lu|,
and is denoted by cut(u, v). Let (ui, ui+1) (1 ≤ i ≤ m − 1) be
a series of intervals, where vias are placed to u1 and um and
no via is placed to the others. The number of intersections
of routes and the interval between u1 and um can be calcu-
lated by

∑
1≤i≤m−1 cut(ui, ui+1). Note that the route passing

through the via placed to um is counted in it. Especially if
(u, v) is a horizontal interval, then cut(u, v) = Lv − Lu since
Lu ≤ Lv.
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The maximum number of possible routes intersect-
ing interval (u, v) on layer 1 is denoted by capacity(u, v).
If no via is placed at the both ends of the interval, then
capacity(u, v) = c·length(u, v). Otherwise, it is decreased
according to the radius of a via. Let r be the radius of via. In
the case that a via is placed to u, the capacity is decreased by
cr. While, in the case that a via is placed to v, the capacity is
decreased by cr − 1 since the route passing through the via
is counted. Formally, capacity(u, v) is defined as follows:

capacity(u, v)

= c · length(u, v) − cr · via(u) − (cr − 1) · via(v).
In experiments, cr = 1.5 is used.

Constraints (2) and (3) are used to guarantee that the
number of routes intersecting horizontal and vertical inter-
vals is less than or equal to the capacity.

Lv − Lu ≤ capacity(u, v) ∀(u, v) ∈ Ih (2)

|Lu − Lv| ≤ capacity(u, v) ∀(u, v) ∈ Iv (3)

3.3 Formulation of Objective Function

Our objective is to reduce the total wire length on both lay-
ers. The total wire length on layer 1 is evaluated by the
number of intersections of vertical grid lines and routes. In
order to calculate the objective function, a temporal variable
Cu,v and two constraints are generated for a vertical interval
(u, v).

Lv − Lu − via(v) ≤ Cu,v ∀(u, v) ∈ Iv (4)

Lu − Lv − via(v) ≤ Cu,v ∀(u, v) ∈ Iv (5)

Constraints (4) and (5) correspond to Cu,v ≥ cut(u, v)−
via(v). The objective function is given as follows:

Minimize
∑

(u,v)∈Iv
Cu,v (6)

It is equivalent to minimize the number of intersections of
routes and vertical grid lines.

On the other hand, the total wire length on layer 2 is
kept to be small by nearest via assignment and radiate rout-
ing. In the following sections, the formulation of nearest via
assignment and radiate routing are explained.

3.4 Nearest via Assignment

The long route between the ball and the via of a signal net
blocks the plating leads of power supply nets. For example,
in Fig. 6, let balls indicated by thick dotted line be the balls
of power supply nets. In Fig. 6(a), each via is placed to a
nearest grid node of its ball, and two plating leads of power
supply nets are generated. On the other hand, in Fig. 6(b),
two vias are not placed to a nearest grid node of their balls,
and no plating leads can be generated.

In our method, a via is placed to the grid node near its
ball in order to keep the routability of plating leads of power

Fig. 6 Blocking plating leads due to non-nearest via assignment.

Fig. 7 Examples of radiate graph of net i.

supply nets.
The via of a net whose ball is near a mold gate is re-

stricted to be assigned to the grid nodes near the mold gate.
A via of the rest nets is restricted to be assigned to one of
the nearest grid nodes of its ball. The candidate set of net i
is a set of grid nodes to which via vi can be assigned, and is
denoted by Ni.

3.5 Formulation of Radiate Routing on Layer 2

If routes are generated on the routing graph described in
Sect. 2.4 without intersecting each other, then the obtained
routing pattern on layer 2 satisfies the design rule.

In this section, variables and constraints which are used
to formulate a routing problem on layer 2 are explained.

Let D = (V, A) be the directed graph obtained from a
routing graph G = (V, E) by replacing each edge with two
arcs of opposite direction. Let Ai(u) be the set of arcs in A
each of which is on a radiate route from ball bi to grid node
u. The radiate graph Di = (Vi, Ai) of net i is a subgraph of D
where Vi = Ni ∪Ve ∪ {bi} and Ai =

⋃
u∈Ni

Ai(u). The radiate
graph Di represents the set of radiate routes from ball bi to a
grid node in Ni. Note that we distinguish between arc (s, t)i

in Ai and arc (s, t) j in Aj if i � j. Examples of radiate graph
Di in the cases that |Ni| = 1 and |Ni| = 7 are illustrated in
Figs. 7(a) and (b), respectively.

A segment variable is generated for an arc in radiate
graph Di. Let βe be the segment variable corresponding to
arc e in Ai. If the route of net i passes through arc e in Ai,
then βe = 1. Otherwise, βe = 0.

The owner of arc e ∈ Ai is net number such that the
radiate graph of the net includes the arc, is denoted by l(e).
That is, l(e) = i if e ∈ Ai.
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Let O(v, i) and I(v, i) be the sets of arcs in Ai which are
incident from and to vertex v in Di, respectively. Let I(v)
and O(v) be

⋃
i∈ΩS

I(v, i) and
⋃

i∈ΩS
O(v, i), respectively.

In order to connect ball bi to just one grid node in Ni,
three kinds of constraints should be satisfied.

∑

e∈O(bi,i)

βe = 1 ∀i ∈ ΩS (7)

∑

u∈Ni

∑

e∈I(u,i)

βe = 1 ∀i ∈ ΩS (8)

∑

e∈I(v,i)

βe =
∑

e∈O(v,i)

βe ∀v ∈ Ve,∀i ∈ ΩS (9)

Constraint (7) is used to guarantee that just one arc in-
cident from a ball is used. Constraint (8) is used to guaran-
tee that just one grid node is used for each net. Constraint
(9) is used for the flow conservation. The source of radiate
graph Di is ball bi, and the sinks of Di are only grid nodes in
Ni. Therefore, even if constraint (8) is not used, constraints
(7) and (9) guarantee that ball bi and a grid node in Ni are
connected if it is possible. Therefore, constraint (8) can be
pruned. In experiments, we use the constraints (7) and (9).

In order to forbid intersections between any routes,
each vertex must be used by at most one net. Constraint
(10) is used to forbid intersecting routes of different nets at
extra vertices and grid nodes since it restricts each vertex so
that at most one arc incident to the vertex can be used.

∑

e∈I(v)

βe ≤ 1 ∀v ∈ NG ∪ Ve (10)

Let u be a grid node in NG. Again, Lu is the grid vari-
able of grid node u. If u is connected to ball bi on layer 2,
then Lu is set to i since via vi is assigned to u. Otherwise, Lu

is a real value between 1 and N. Constraint (11) is used to
satisfy above conditions.

1 +
∑

e∈I(u)

βe(l(e) − 1) ≤ Lu ≤ N −
∑

e∈I(u)

βe (N − l (e))

∀u ∈ NG (11)

Moreover, via(u) is whether a via is placed to grid node u
or not, and formulated with segment variables as follows:

via(u) =
∑

e∈I(u)

βe

It is substituted in constraints explained in Sect. 3.2 and
Sect. 3.3.

4. Arc Reduction Technique

Segment variables correspond one-to-one with arcs in the
radiate graphs. If the number of arcs in the radiate graphs
is reduced, then the number of segment variables is re-
duced and the number of constraints is accordingly reduced.
Therefore, the two kinds of modifications of the radiate
graphs to reduce the number of arcs without losing the fea-
sible routing patterns are performed before generating con-
straints.

Fig. 8 Arc replacements related to extra node e.

4.1 Candidate Reduction

By focusing the design rule on layer 1, redundant grid nodes
in Ni can be removed without losing any feasible routing
patterns. Accordingly, arcs in Di can be reduced since the
redundant candidates of radiate routes on layer 2 for net i
are removed.
lower(u) and upper(u) are a lower bound and an up-

per bound of net number such that the via of the net can be
placed to grid node u under the wire clearance constraint,
respectively. In our method, grid node u is removed from
Ni before generating radiate graph Di if i < lower(u) or
upper(u) < i. The modification is called Candidate Reduc-
tion (CR).

Again, let r be the radius of a via. c is the maximum
number of possible wires on layer 1 per unit length. The
capacity of an interval is the maximum number of possible
routes intersecting the interval.

The capacity of a row is decreased by 2cr − 1 for each
via placed on the row. It must be more than or equal to the
number of nets since routes of all nets pass through each
row on layer 1. The maximum number of vias placed on
a row to keep the capacity of the row enough is calculated
by 
 cdist(dl,dr)−N

(2cr−1) �, where dl and dr are left and right dummy
nodes on the row, respectively. While, the number of grid
nodes is limited, and a lower bound of the number of vias
placed on a row is defined by using the maximum number
of vias placed on each row. Similarly, a lower bound of the
number of vias placed on an interval on a row is defined. Let
u be a grid node on the row, and dl be the left dummy node
on the row. An upper bound of the capacity of the interval
between u and dl, denoted by ucap(u, dl), is defined by using
the lower bound of the number of vias placed on the interval.
If the via of a net whose net number is more than ucap(dl, u)
is placed at u, then the design rule is violated at the interval
between u and dl. Therefore, upper(u) is set to ucap(dl, u).

4.2 Arc Replacement

Let e be any extra vertex on the routing graph, and let s and
t be any adjacent vertices of e. If I(e) consists of only arcs
incident from vertex s, then a pair of arcs (s, e)i and (e, t)i for
any net i can be replaced an arc (s, t)i since constraint (10)
of e is equivalent to constraint (10) of s. Similarly, if O(e)
consists of only arcs incident to vertex t, then a pair of arcs
(s, e)i and (e, t)i for any net i can be replaced an arc (s, t)i.
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In Fig. 8 I(e) = {(bi, e)i, (bj, e) j} and O(e) =

{(e, v)i, (e, v) j}. (bi, e)i, (bj, e) j, (e, v)i, and (e, v) j can be re-
placed by (bi, v)i and (bj, v) j since constraint (10) of e is
guaranteed by constraint (10) of v.

In experiments, the replacement is iteratively per-
formed until no modification is possible. The modification
is called Arc Replacement (AR).

Table 1 Input data.

data |ΩS | |BP | #row #column
data1 45 2 5 16
data2 51 4 5 18
data3 61 6 5 20
data4 70 8 5 22
data5 78 10 5 24
data6 86 11 5 26
data7 94 12 5 28

Table 2 The comparison of PM with SSA.

data wire length vio. time
L1 L2 SUM ([%]) V U [h:m:s]

data1 PM 355.2 76.9 432.1 (99.8%) 0 0 00:00:02
SSA 358.5 74.3 432.9 (100.0%) 2 0 00:00:03

data2 PM 402.0 95.7 497.7 (101.7%) 0 0 00:00:10
SSA 393.6 95.6 489.2 (100.0%) 3 3 00:00:00

data3 PM 480.2 116.0 596.2 (99.2%) 0 0 00:00:25
SSA 484.4 116.5 600.9 (100.0%) 3 0 00:00:17

data4 PM 572.6 141.6 714.3 (96.6%) 0 0 00:02:32
SSA 564.0 173.2 737.2 (100.0%) 4 8 00:00:06

data5 PM 619.3 152.4 771.7 (96.9%) 0 0 00:16:10
SSA 621.2 175.4 796.6 (100.0%) 0 2 00:00:02

data6 PM 691.1 178.3 869.4 (102.0%) 0 0 00:04:55
SSA 678.6 173.5 852.1 (100.0%) 0 1 00:00:19

data7 PM 754.1 183.4 937.5 (98.2%) 0 0 11:02:37
SSA 744.3 210.3 954.6 (100.0%) 2 4 00:00:06

Table 3 The effectiveness of each arc reduction technique.

Data CR+AR (PM) CR AR
#var #cons time #var #cons time #var #cons time

data1 2221 (64.9%) 1578 (69.4%) (15.0%) (73.2%) (83.7%) (18.3%) (92.0%) (86.5%) (105.3%)
data2 2612 (78.7%) 1798 (77.0%) (20.0%) (90.8%) (96.3%) (28.4%) (89.3%) (83.1%) (35.6%)
data3 2818 (76.2%) 1967 (74.2%) (11.5%) (90.2%) (95.6%) (10.5%) (87.5%) (81.0%) (54.3%)
data4 2943 (74.4%) 2090 (72.3%) (10.4%) (90.3%) (95.8%) (29.5%) (85.8%) (79.1%) (59.2%)
data5 2931 (72.3%) 2160 (70.6%) (2.9%) (89.7%) (95.6%) (3.0%) (84.0%) (77.2%) (23.8%)
data6 3093 (72.4%) 2300 (70.1%) (8.5%) (91.8%) (97.1%) (14.9%) (81.7%) (74.5%) (112.8%)
data7 3086 (71.2%) 2381 (69.4%) (17.4%) (91.4%) (96.9%) (14.4%) (80.4%) (73.4%) (126.4%)
ave. (72.9%) (71.8%) (12.2%) (88.2%) (94.4%) (17.0%) (85.8%) (79.3%) (73.9%)

The percentages of #var, #cons, and exe. time of PM without CR and AR are shown.

Fig. 9 The feasible routing pattern of data4 obtained by PM.

5. Experiments

We implemented the proposed method in C++ language and
applied it to seven test cases which are artificially generated.
The program ran on a personal computer with a 2.93-GHz
CPU and 2 GB of memory. CPLEX 11.0.0 of the ILOG Co.
[11] is used as the solver of mixed integer linear program-
ming.

The input data is shown in Table 1. |ΩS | and |BP| are the
number of signal nets and power supply nets, respectively.
#row and #column are the number of rows and columns of
the ball grid array, respectively.

The candidate set of net i is set to

Ni =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{u ∈ NG | x(u) ≤ l + 2} if x(bi) ≤ l + 2,
{u ∈ NG | x(u) ≥ r − 2} if x(bi) ≥ r − 2,
{u ∈ NG | d(bi, u) = 1} otherwise,

where the x-coordinates of the lower-left grid node and the
lower-right grid node are l and r, respectively.

First, we compared the proposed method (PM) and the
sequential search algorithm [9] (SSA). In both of the meth-
ods, the plating leads of power supply nets are routed by
ripup and reroute technique on the routing graph described
in Sect. 2.4 after generating via assignment and routing of
nets in ΩS .

Experimental results are shown in Table 2. L1 and L2
are the total wire length on layer 1 and on layer 2, respec-
tively. V is the number of intervals such that the wire clear-
ance constraint is violated. U is the number of unconnected
nets in signal nets and power supply nets. Although the ex-
ecution time of PM is longer than SSA, some data where
violations of wire clearance constraint and/or unconnected
nets have occurred exist in SSA. If an obtained routing pat-
tern has some violations, then it cannot be immediately used
in practical design. On the other hand, PM obtains feasible
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Fig. 10 The infeasible routing pattern of data4 obtained by SSA. (Unconnected nets are indicated by
dotted lines).

routing patterns where the total wire length is as small as
that of SSA. The execution time of CR and AR is within
1 sec. in all data, and it is included in Table 2.

Second, we checked the effectiveness of the modifica-
tions of radiate graphs by CR and AR. Experimental results
are shown in Table 3. #var and #cons are the number of vari-
ables and constraints with modifications, respectively. Com-
pared to the case that neither CR nor AR is used, CR and AR
improve the execution time to 17.0% and 73.9% on average,
respectively. Moreover, the execution time is improved to
12.2% on average by using CR and AR at the same time.

The via assignments and the global routing of data4
obtained by PM and SSA, are shown in Fig. 9 and Fig. 10,
respectively. In Fig. 10, unconnected signal nets and uncon-
nected balls of power supply nets are indicated by dotted
lines.

6. Conclusion

In this paper, we propose a routing method for 2-layer ball
grid array packages satisfying design rule, in which the via
of a net is placed near to the ball of the net. In experiments
with several data, we obtain a routing pattern that satisfies
the design rule within a practical time by using a mixed in-
teger linear programming solver.

In our future works, the reduction of the number of
variable and the partition of problem will be investigated.
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