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|PAPER Special Section on Discrete Mathematics and lts Applications

Universal Graphs for Graphs with Bounded Path- Wldth

Atsushi TAKAHASHI', Shuichi UENO' and Yoji KAJITANI, Members

SUMMARY A graph G is said to be universal for a family
F of graphs if G contains every graph in F as a subgraph. A
minimum universal graph for F is a universal graph for # with
the minimoum number of edges. This paper considers a minimum
universal graph for the family F% of graphs on n vertices with
path-width at most k. We first show that the number of edges
in a universal graph for 7% is at least Q (knlog(n/k)). Next, we
construct a universal graph for F¥ with O (knlog(n/k)) edges,
and show that the number of edges in a minimum universal graph
for F% is @ (knlog(n/k)).

key words: universal graph, path-width, k-path, parallel com-
puting

1. Introduction

Given a family F of graphs, a graph G is said to be
universal for F if G contains every graph in F as a
subgraph. A minimum universal graph for F is a uni-
versal graph for F with the minimum number of edges.
We denote the number of edges in a minimum universal
graph for F by f(F). f(F) is O(n?) for any family F
of graphs on n vertices, since a complete graph on n
vertices is trivially a universal graph for F. Determin-
ing f(F) has been known to have applications to the
circuit design, data representation, and parallel com-
puting[2],[3],[10],[12],[14]. Bhatt, Chung, Leighton,
and Rosenberg showed a general upper bound for f(F)
for a family F of bounded-degree graphs by means
of the size of separators[3]. For general families of
(unbounded-degree) graphs, the following three results
have been known:

(I) If F is the family of all planar graphs on n vertices,
f(F) is Q(nlogn) and O(ny/n) [1];

(I1) If F is the family of all trees on n vertices, f(F) is
©(nlogn)[6];

(III) If F is the family of all 2-paths on n vertices, f(F)
is ©(nlogn) [13]. (A 2-path is a special kind of
outerplanar graph.)

This paper shows a generalization of (III).
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We consider finite undirected graphs without loops
or multiple edges. We denote the vertex set and edge
set of a graph G by V(G) and E(G), respectively. Let
X = (X1, Xs,...,X,) be asequence of subsets of V(G).
The width of X is maxjc;<,|X;| — 1. X is called
a path-decomposition of G if the following conditions
are satisfied: (i) For any distinct ¢ and j, X; € X;
(i) U, X; = V(G); (iii) For any edge (u,v) € E(G),
there exists an ¢ such that u,v € X;; (iv) For all a,b,
andewithl £a<b<Lcec<r, X,NX,CX,. The path-
width of G, denoted by pw(G), is the minimum width
over all path-decompositions of G[11]. We denote the
family of all graphs on n vertices with path-width at
most k by FF,

The purpose of this paper is to prove the following:
Theorem 1: For any integer k¥ (k > 1) and n (n =
12k), f(FF) is © (knlog(n/k)). 0

We will prove this theorem by showing that
F(FEY is Q(knlog(n/k)) in Sect.3, and f(FF) is
O (knlog(n/k)) in Sect.4. It follows from Theorem 1
that if F is the family of all planar graphs on n vertices
with bounded path-width then f(F) is © (nlogn).

Many related results can be found in the litera-
ture[ 1 ][ 10],[12]-[14].

2. Preliminaries

A k-clique of a graph G is a complete subgraph of G
on k vertices. For a positive integer k, k-trees are de-
fined recursively as follows: (1) The complete graph on
k vertices is a k-tree; (2) Given a k-tree () on n vertices
(n = k), a graph obtained from Q by adding a new
vertex adjacent to the vertices of a k-clique of Q is a
k-tree on n + 1 vertices. A k-tree Q is called a k-path
if either |[V(Q)] £ k+ 1 or Q has exactly two vertices
of degree k. A k-separator S of a connected graph G
is an induced subgraph of G on k vertices such that
G\V(S) has at least two connected components where
G\V(S) is the graph obtained from G by deleting V'(S5).
It is well-known that a k-separator of a k-tree @ is a
k-clique of Q. For a positive integer k, k-intercats (inte-
rior k-caterpillars) are defined as follows: (1) A k-path
is a k-intercat; (2) Given a k-intercat () on n vertices
(n = k+2), a graph obtained from ¢ by adding a new
vertex adjacent to the vertices of a k-separator of @ is
also a k-intercat on n + 1 vertices.
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A 1-path, l-intercat, and l-tree are an ordinary
path, caterpillar, and tree, respectively. A subgraph of a
k-path, k-intercat, and k-tree are called a partial k-path,
partial k-intercat, and partial k-tree, respectively.

It is well-known that any k-intercat R on n vertices
(n = k) can be obtained as follows: (1) Define that Q
is the complete graph on k vertices Cy; (2) Given Q; and
C; (k €4 £ n—1), define that ;4 is the k-intercat ob-
tained from Q; by adding vertex v;+1 ¢ V(Q;) adjacent
to the vertices in C;, and let Cj 11 = (C;U{viq1})—{w:}
where w; € C; U {v;41}; (3) Define R = Q.

A path-decomposition with width k is called
a k-path-decomposition. A k-path-decomposition
(X1, X2,...,X,) is said to be full if | X;| = k+1
(1<i<r)and |[X;NX;1|=k(Q<j<r—1).
Lemma 1: For any graph G with path-width k, there
exists a full k-path-decomposition of G.

Proof: Let X = (Xi,Xo,...,X,) be a k-path-
decomposition of G such that Y., (| X;| — k) is max-
imum. We shall show that X is a full k-path-
decomposition of G. If r = 1 then X is trivially a
full k-path-decomposition of . Thus we assume that
r=2.
‘Suppose that |X;] £ k for some ¢ (2 < i <
r). Let v € X;1 — X;. The sequence &' =
(X1, Xa,..., X1, X;U{v}, Xip1, ..., X,) satisfies con-
ditions (ii), (iii), and (iv) in the definition of path-
decomposition. Assume that X; C X; U {v} for some
j(# 4). Ifj > i then X;CX; since v ¢ X, con-
tradicting the condition (i) in the definition of path-
decomposition. Thus 7 = ¢ — 1 since X; = X; N
(X; U {v}) C X,_1. Therefore, (X1, Xs,...,X; 2, X; U
{v}, X1, .., X,) is a k-path-decomposition of G. But
this is contradicting the choice of X since | X;_1| £ &,
for otherwise X; C X;_;. Thus X’ satisfies condition (i)
in the definition of path-decomposition, and X’ is a
k-path-decomposition of G. But again this is contra-
dicting the choice of X. Thus |X;| = k + 1 for any
i (22< 4 < 7). Since (X,,...,X1) is also a path-
decomposition of G, | X;| =k+1 forany i (1 <i<r).
Suppose next that |X; N X; 41| < k — 1 for some %
1 <igr—1). Letw € X;11 —X; and w €
X; — X;.1. The sequence X' = (Xi,...,X;,(X; U
{v}) —{w}, X1, ..., X,) satisfies conditions (ii), (iii),
“and (iv) in the definition of path-decomposition. As-
sume that X; C (X;U{v})—{w} or (X;U{v})—{w} C X;
for some j (1 < j < r). Since |(X; U {v}) — {w}| =
|IX;l = k+1, X; = (X; U{v}) — {w}. Then j =1
or j =i+ 1since X; = X; N ((X; U{v}) —{w})CX;
if j < 1, Xj = ((Xl U {’U}) — {w}) n Xj C X1 oth-
erwise. But this is contradicting the assumption that
|X; N X;yq1] £ k—1. Thus &' satisfies condition (i)
in the definition of path-decomposition, and X" is a k-
path-decomposition of G. But this is contradicting the
choice of X since |(X; U {v}) — {w}| = &k + 1. Thus
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|X; N Xspq|=kforany: (1<i<r—1).
Therefore X is a full k-path-decomposition of G.
a

Theorem 2: For any graph G and an integer k (k > 1),
pw(G) £ k if and only if G is a partial k-intercat.
Proof:  Suppose that pw(G) = h < k. There exists a
full h-path-decomposition X = (X1, X3,...,X,) of G
by Lemma 1. If r = 1 then G is a subgraph of a com-
plete graph on h + 1 vertices, and so we conclude that
G is a partial h-intercat. Thus we assume that r = 2.
We construct an h-intercat R from X as follows:

1. Let v; be a vertex in X; N X3. Define that Qg is
the complete graph on X; — {vi };

2. Define that Q) is the h-intercat obtained from Qq
by adding v; and the edges connecting v; and the
vertices in X7 — {v1 };

3. Given Q; (1 £ 4 < r — 1), define that Q41 is
the h-intercat obtained from @; by adding v;11 €
Xi11 — X; and the edges connecting v;4; and the
vertices in X1 — {vir1};

4. Define R = @Q,.

Since | X; 11— X;| = 1 from the definition of full ~-path-
decomposition, v;;1 is uniquely determined (1 < ¢ <
r—1). Since X1 —{vip1} = (X —{vi})u{vi}) —{wi}
where w; € X;— X;.1 (1 <4< r—1), R is an h-intercat.
Furthermore, we have V(R) = V(G) and E(R) 2 E(G)
from the definitions of path-decomposition and Q.
Thus G is a partial h-intercat, and so a partial k-intercat.

Conversely, suppose, without loss of generality, that
G is a partial h-intercat (h < k) with n' (n/ > h) ver-
tices and R is an h-intercat such that V(R) 2 V(G) and
E(R)D E(G). Let n = |[V(R)|. As we mentioned be-
fore, we can assume that R can be obtained as follows:

1. Define that Q;, is the complete graph on h vertices
Ch;

2. Given @; and C; (h £ i £ n — 1), define that
Qi1 is the h-intercat obtained from @; by adding
vertex v;1 & V(Q;) adjacent to the vertices in
C;, and let Cit1 = (CZ U {Uz‘+l}) — {wi} where
w; € C; U{vig1};

3. Define R = Q..

We define that X; = C; U {vg1} (B £ 4 £ n—1)
and X = (Xp, Xpt1,...,Xn—1). It is easy to see that
U::hl X,; = V(R) and each vertex appears in consecutive
X,;’s. Thus X satisfies conditions (ii) and (iv) in the def-
inition of path-decomposition. Since w; € X; — X1
and Vit € Xi+1 - X5, X % Xi+1 and Xz'—l—l g X;
(h £i < n—2). Thus X; € X; for any distinct 4
and j, for otherwise X; = X; N X; C X1 (i < jJ)
or X; = X;NnX;CX; 4 ( > j). Hence A satisfies
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condition (i) in the definition of path-decomposition.
Since each edge of R either connects v;1; and a vertex
in C; for some i (h < ¢ < m — 1) or connects vertices
in Cp, both ends of each edge of R are contained in
some X;. Thus X satisfies condition (iii) in the def-
inition of path-decomposition. It is easy to see that
|Xz| = h+1 (h <1< ’I’L—].) and |XiﬂXi+1‘ = |Ci+1| =h
(h £ 4 £ n—2). Thus the sequence X is a full
h-path-decomposition of R. Therefore, we have that
pw(G) Zpw(R) L h< k. ]

3. Lower Bound

Let dg(v) be the degree of a vertex v in G. Let
D(G) = (6,6%,...,6%) be the degree sequence for a
graph G with n vertices, where 65, > 62 = -+- = 6%. For
graphs G and H with m and n vertices, respecti\{ely, we
define D(G) = D(H) if and only if m = n and 84 > &%,
for any ¢ (1 <4 < n).

Lemma 2: If a graph G is a universal graph for a fam-
ily F of graphs, D(G) = D(H) for any graph H in F.
Proof:  For otherwise, G cannot contain H as a sub-
graph. O
Lemma 3: For any integer k (k =2 1) and s (1 <5 <
[(n — 2k)/k]), there exists a k-intercat R(k, s) on n ver-
tices such that 655, > [(n —2k)/s] + k.

Proof: letr = |(n—2k)/s|. R(k,s) can be con-
structed as follows:

1. Define that Q(k, k) is the complete graph on the
vertices Cp, = {v1,v2, ..., vk };

2. Given Q(k,7) and C; (k £ i < 2k), define that
Q(k,7+ 1) is the k-intercat obtained from Q(k,?)
by adding vertex v;41 adjacent to the vertices in C;,
and let Ci—l—l = (Cz U {vi+1}) - {rUiJr]__k:};

3. Given Q(k,i) and C; 2k+jrLi<r+k+jr,0<
Jj £ s —2), define that Q(k,¢ + 1) is the k-intercat
obtained from Q(k,4) by adding vertex v;y; adja-
cent to the vertices in C;, and let C; 1 = Cjy;

4. Given Q(k,%) and C; (r+ k+4r < i < r+
2k + jr,0 £ j £ s — 2), define that Q(k,7 + 1)
is the k-intercat obtained from Q(k,7) by adding
vertex v;4+1 adjacent to the vertices in C;, and let

Ciy1 = (C; U{via}) —{vizaio b

5. Given Q(k,i) and C; 2k + (s— L)r <i<n—1),
define that Q(k,7 + 1) is the k-intercat obtained
from Q(k,i) by adding vertex v;,; adjacent to the
vertices in C;, and let C; 11 = C;;

6. Define R(k, s) = Q(k, n).

It is easy to see that |C;| = k and Q(k, 1) is a k-intercat
for any 7 (k < ¢ < n). It is also easy to see that
AR(k,s) (Vhtijr) =7+ k(L €4 < k0= 5 <5 -2),

IEICE TRANS. FUNDAMENTALS, VOL. E78—A, NO. 4 APRIL 1995

and dR(k,s)(Uk+i+(s—1)r) >2r+k (1 <:i< k) Thus we
have 55%8(19,5) >r+k. O

Theorem 3: For any integer k (k 2 1) and n (n = 3k),
F(FEY is Q (knlog(n/k)).

Proof: Let G be a universal graph for ¥ and t =
L(n — 2k)/k]. Notice that 2[E(G)| = 3 cv(g) da(v) =

S 6E > Y 6k > kY 6k By Lemmas 2, 3,

and Theorem 2,
¢ ¢ n— 2k
k ki —
Z&G kzq - J+k>
=1 =1
' -2k
k—1

> k(n — 2k)log, (” ;2’“)
+(k —1)(n — 3k).
Thus |E(G)| is Q (knlog(n/k)). O

|

Y

4. Upper Bound

We show an upper bound by constructing the graph GF
with n vertices and O (knlog(n/k)) edges, and proving
that G% is a universal graph for F~.

Let k* = 20°8*1 b, be the maximum power of
2 such that b4, and b;; = max(b;,b;). Notice that
k < k* < 2k. Let GE (k = 1,n = 1) be the graph
obtained by the following construction procedure:

(1) Let uy,us,...,u, ben vertices;

(2) For any distinct ¢ and j, join u; and u; by an edge
if|j—i] £3k*b,; + k1.

Theorem 4: For any integer k¥ (k =2 1) and n (n =
12k), |E(GE)| = O (knlog(n/k)).

Proof: Let E; (1 £ 7 £ n) be the set of edges
(uj,u;) € GE such that |j —i| < 3k*b; +k— 1. It
is easy to see that |E;| < min(2(3k*b, + k —1),n — 1)
for any ¢ (1 < i < n), and |, F; = E(GE). Notice
that [{i | b = 2",1 < i < n}| = [(n+2")/2""] and
[{i | b; = 2",1 < i < n}| = |n/2"] for any integer h
(h 2 0). Since 2(3k*2°8(»/(6k")) 4 k — 1) > n, the total
number of edges added in (2) is at most

n |log: 2 |
Z 'El| < IZ
=1 h=0

+(n—1) Lpog GZ*JHJ

]
(3k*2" + &k — 1) (23,1 + 1)

2h
2(3k*2" + k — 1) {” + J

2h+1

\_log ¥

< 2
h=0
+6k*(n —1)
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< (6kn+k—1)log % + (20k — D)n
—(6k% + 8k + 1).

Thus [E(GE)| = O (knlog(n/k)). O
Theorem 5: For any integer k (k> 1) and n (n 2 1),
G¥ is a universal graph for FF.

Proof: By Theorem 2, it is sufficient to show that any
k-intercat is a subgraph of GE. Let R be a k-intercat
in FF. We shall show that R is a subgraph of G¥. If
n < 4k, R is a subgraph of G since G is the complete
graph on n vertices. Thus we assume that n > 4k + 1.
As we mentioned before, we can assume that R can be
obtained as follows:

1. Define that @)y, is the complete graph on the vertices
Cp = {v1,va,..., 0 };

2. Given @); and C; (k £ 7 £ n — 1), define that
Qit1 1s the k-intercat obtained from @Q; by adding
vertex v;41 € V(@) adjacent to the vertices in
C;, and let Ci+1 = (Cz U {Uz‘+1}) — {wz} where
w; € C; U {’L}i+1};

3. Define R = @Q,.

For the construction above, we have the following two
lemmas.

Lemma 4: If (v, v.) € F(R) then (vy,v,) € E(R) for
any distinct @,b, and ¢ (1 < a<b< c<n).

Proof:  Assume contrary that (v,,vs) ¢ F(R). Since
Uy & Ch—1 and v, € Ce—y, vy = w1 for some i
(b—1<14 < c¢—2), contradicting that v;.1 ¢ V(Q;). O

Define I; = max(d | (v;,vi1q) € E(R)V d =0) for
any i (1 <4< n).

Lemma 5: For any integeri (1 <7< n 1), I, =0if
and only if [{v; | (vj,vit1) € E(R),j <i}| =

Proof: First, assume that 1 < 72 < k. Since
(vi,vk+1) € E(R), I; > 0. Since Qj is the com-
plete graph on the vertices vy,va,..., and vy, |{v; |
(Uj;'Ui—i—l) € E(R),j < ?,}| =1—1<k.

Next, assume that £ +1 < ¢ < n — 1. Notice
that v;yq is adjacent to the vertices in C; in Q;y1,
{Uj [ (Ujvvi+1) € E(R),_] < 7‘} = C; — {Ui}a and
|C;] = k. Suppose that I; = 0. By the definition
of l;, we have (v;,v;11) € E(R), and v; ¢ C;. Thus
H{vj | (vj,vie1) € E(R),j < i}| = |C;] = k. Conversely,
suppose that |{v; | (vj,vi41) € E(R),j <4}| = k. Since
|Ci| = k, we have v; &€ C;, and (v;,v;41) € E(R). Thus
l; =0 by Lemma 4. O

Let I} 2Moglil if |, > 1, I¥ = 1 other-
wise. Let m; = [IF/(2k*)]. Now we define mapping
¢:{1,2,...,n} — {1,2,...,n} as follows:

Step 1: Let Dy =0, Uy ={1,2,...,n},and i = 1.
Step 2: Define that ¢(i) is the minimum integer such
that ¢(i) € U;—1 and m;|6(3).

Step3:  Let D; = D;_1U{¢(i)} and U; = Us_; —{¢(3)}.
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Step 4 If i = n, halt. Otherwise, set i = i + 1, and
return to Step 2.

Notice that m; < by;y for any 7 (1 <4 < n) since
both m; and by(;) are power of 2 that divide ¢(i). No-
tice that {; <[} < 2l; if |; > 1.

Lemma 6: ¢ is a 1-1 mapping satisfying that —k <
p(i) —i < [lF/2] —1foranyi (1 <5< n).

Proof: By induction on ¢, we show that

() —kzet)-iz 5] -1
and

Assume that the algorithm have determined ¢(1),
#(2),...,¢(i — 1) satisfying conditions (%) and (%),
and {1,2,...,i — h — 1}EDZ_1 and 7 — h € Ui~1
(0 £ h £ kh < i). Notice h depends on 7 and
that these assumptions are trivially true if ¢« = 1, since

= and 1 € Up. We show that the conditions (%)
and (x) hold also for ¢(z) (¢ = 1), and there exists A’
(0<h < kW <i+1)such that {1,2,...,5— A’} C D,
andi—h' +1€U;.

First, suppose that 0 < A < k — 1. It is easy to see
that

—h < @(i)—i £ ~h+ (b4 L)m; — 1
o I
h —Sig 2.
<(hHlgpsy [21
Notice that ¢(i) < ¢+ [I/2] -1 < i+, -1 < n if
l; 2 1, and ¢(3) < i+ [l/2] — 1 = i otherwise. Thus

¢(%) is uniquely determined in Step 2 in the algorithm.
If m; = 2 then

(i) —i < (h+1) <2l]; - 1)
< (rpiTETl

<lL—-k—-1

Thus the conditions () and (x) hold also for ¢(z). Since
h<k—1,thereexists ' (0 <A < h+1< kA <i+1)
such that {1,2,...,i —R'}CD;andi— K +1 ¢ U,.
Next, suppose that h = k. We will show that m; =
land ¢(i)—i=—k. Let W ={j | 9p(f) = i—k+1,j <
i}. Since i — k € Uy, |W| = k and m, = 2 for
any j € W. Notice that j <i+1< ¢(j)+k+1<j+1;
for any j € W by the definition of W and the con-
dition (x). Since (v;,v;41;,) € E(R) for any j € W
by the definition of [;, (v;,v;41) € E(R) by Lemma 4.
Thus [; = 0 by Lemma 5, and we have m; = 1 and
¢(i) —1 = —k. Therefore the conditions (x) and (%)
hold also for ¢(¢). Since ¢(i) = 7 — k, there exists A’/



462

(0<h <k, <i+41)suchthat {1,2,...,i—-h}CD;
and: — A +1e€U,.

Thus ¢ is a -1 mapping satisfying (*) for any ¢(4).

‘ ‘ O

Lemma 7. If (v;,v;) € E(R) then (ug(),uss;)) €
E(GF).
Proof: Without loss of generality, we assume that
i< j. Noticethat 1 £ j—4¢ <[, L[ Since ¢ isa 1-1
mapping, ¢(:) # #(j). From Lemma 6, we have —k <
¢(1) —i < 1f/2] =1 and —k < ¢(j) —j < [1;/2] - 1.
Thus — (1} /2] +k—2) < ¢(j) = (i) < I +[17 /2] +k—1
and |¢(j) — ¢(i)| < I + [13/2] +k — 1.

If ¥ > I¥ then |¢(j) — ¢(i)| < [37/2] +k —~ 1 <
3*m; + k-1 < 3k*b¢(i)7¢,(j) + k — 1. Notice that
m; < bo(g) < bagi).e() Thus (s, ue()) € B(GE) by
the definition of GX. The same type of argument applies
when l;-‘ <Ir O

By Lemmas 6 and 7, we conclude that R is a sub-

graph of G¥. This completes the proof of Theorem 5.
O

Theorem 1 follows from Theorems 3, 4, and 5.
We conclude with the following open problems.

1. Close up the gap between upper and lower bounds
in (D).

2. Generalize (I1) to k-trees (k = 2).
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