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ILETTER

On the Proper-Path-Decomposition of Trees

Atsushi TAKAHASHI', Shuichi UENOT and Yoji KAJITANITT, Members

SUMMARY We introduce the interval set of a graph G
which is a representation of the proper-path-decomposition of G,
and show a linear time algorithm to construct an optimal inter-
val set for any tree 7. It is shown that a proper-path-
decomposition of T with optimal width can be obtained from an
optimal interval set of T in O(nlog n) time.

key words: proper-path-width, proper-path-decomposition, path-
width, path-decomposition, polynomial time algorithm

1. Introduction

Graphs we consider are connected, have at least two
vertices, and may have loops and multiple edges. Let
G be a graph, and ¥ (G) and E (G) denote the vertex
set and edge set of G, respectively. Let ¥ = (X3, X3, -,
X,) be a sequence of subsets of V' (G). The width of
¥ is maxizi< | X:|—1. ¥ is called a proper-path-
decomposition of G if the following conditions are
satisfied: (i) For any distinct i and j, X, & X;; (ii)
Uiet Xi=V (G); (iii) For any edge (u,v)EE(G),
there exists an 7 such that u, v X;; (iv) For all a, b,
and ¢ with [£a=<b=c=<r, X,NX.EX,; (v) For all
a, b, and ¢ with 1Za<b<c=r, |X,NX|=|X,| 2.
The proper-path-width of G, denoted by ppw(G), is
the minimum width over all proper-path-
decompositions of G. If ¥ satisfies (1), (ii), (iii), and
(iv), & is called a path-decomposition of G. The
path-width of G, denoted by pw (@), is the minimum
width over all path-decompositions of G. Notice that
& satisfies condition (iv) if and only if each vertex of
G appears in consecutive X;’s [11]. It is not difficult to
see that a path-decomposition ¥ satisfies condition
(v) if and only if | X;_1 M Xi11|<|X,|—2 holds for any
i with 2<i<r—1 [12]. A (proper-)path-decom-
position with width k is called a k-(proper-)path-
decomposition. Many graph parameters which are
equivalent to the path-width or proper-path-width can
be found in the literature [1], [3], [5], [6], [8], [10]-
[12].

It is known that the problems of computing
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pw(G) and ppw(G) are NP-hard for general graphs
but can be solved in linear time for trees [4], [8], [10],
[12]. It is also known that for any fixed integer %, a
k-path-decomposition of G with path-width at most &
can be obtained, if exists, in O(nlosn) time for
general graphs by combining the results in [1] and [9],
and in O (n—+e) time for cographs [2], where n=
|V (G)| and e=|E (G)].

In this paper, we give an O (nlog n) time algo-
rithm to obtain a ppw (T') -proper-path-decomposition
of a tree T with n vertices. It should be noted that our
algorithm works for any tree with unbounded proper-
path-width, and it is a linear time algorithm for trees
with a bounded proper-path-width. We introduce the
interval set of a graph G which is a representation of
the proper-path-decomposition of G, and show a lin-
ear time algorithm to construct an optimal interval set
for any tree T. We show that a pw (T')-proper-path-
decomposition of T can be obtained from an optimal
interval set of T in O(nlogn) time. By a similar
argument, a pw (T')-path-decomposition can be found
in O(nlog n) time for any tree I° with n vertices.

2. Interval Set and Proper-Path-Decomposition

Let Z be the set of integers. We denote an inferval on
integers by I. Two intervals I, and L on integers are
said to be adjacent if there exist integers i<, and j&
L such that |i—j|<1, and said to be independent if
there exists no integer i< L L such that {i—1, i+1}<&
L and {i—1,i+1}£L A set ¢ of distinct non-
singleton intervals on integers such that any two dis-
tinct intervals are independent is called an inferval set
of a graph G if there exists a one-to-one correspon-
dence J: V(G)— ¢ such that J(u) and J(v) are
adjacent if (u, v) €EE(G). Forany i< Z and a set ¢
of intervals on integers, define ¢ (i) ={I|i<I, 1< ¢}.
The density of ¢ is max;ez| % (i)|. An interval set ¢
of G is said to be optimal if the density of ¢ is
minimum over all interval sets of G.

In the following, we denote a < A4 if @ is a member
of a sequence A. The sequence obtained by con-
catenating sequences A; (1=<i=r) is denoted by (4,,
As, -+, Ay).

Suppose that ¢ is an interval set of G with a
one-to-one correspondence J: ¥V (G)— ¢. For any
vertex vE ¥V (G), define that / (v) (respectively, »(v))
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is the integer i such that i€ J(v) and i—1€E J(v)
(respectively, i+1€=J (v)). A sequence (v, v, -+, ¥4
of V'(G) is called the left (respectively, right) terminal
sequence of ¢ if [ (w) <I(wm) <---<I(vy) (respective-
ly, ¥ (v) <r(wm)<---<r(wg)). A sequence (L, Ry, La,
Ry, -+-, Ly, R,) is called the terminal sequence of ¢ if
the following conditions are satisfied: (L, Ly, +-+, L)
and (Ry, Rs, -+, R;) are the left and right terminal
sequences of ¢, respectively; both I, and R, are
nonempty (1=i=r); for any vertices = L; and v&
R: (1=i=<r), [ {u)<r(v); for any vertices v& R, and
uc Ly (1Si<r—1), r(v)<I(u). Notice that /{(u)
+=I(v), r(uw)=Fr(v), and [(u)=+r(v) for any distinct
vertices u, vV (G).

Before proving Theorem 1 below, we need the
following lemmas.
Lemma 1: For any graph G, there exists an optimal
interval set of G with the terminal sequence (L, Ry, -,
L-, R;) such that |L,|=1 and r=2.
Proof: Suppose that ¢ is an optimal interval set of G
with a one-to-one correspondence J: V (G)— ¢ and
the terminal sequence (L., Ry, -, L,, R,). Since
|V (G)|=2,if |L,|=1 then r=2. Thus we assume that
|L,|=2. Let v be the vertex in ¥ (G) such that / (v) =
maxyer, ! (w), and u be the vertex in ¥ (G) such that
r(u) =mingegp,—¥ (w). Define that J'(v) ={i|/ (v)
+l=iSmaxperr(w)+1,i€Z}, J (u) ={i|l(u) <i
=[/(v),i€Z}, and J' (w)=J(w) for any we V(G)
—{u, v}. Let L; be the sequence obtained from L, by
deleting v, and R be the sequence obtained from R, by
deleting # and moving v into the last. Then it is not
difficult to see that {J (w)|wE ¥V (G)} is an optimal
interval set of G with the terminal sequence (L, Ry, -+,
R,_y, Ly, u, v, R;). Thus we have this lemma. ]
Lemma 2: For any (proper-) path-decomposition (Xj,
Xo, -, Xp) of G| Xi|Z2 (1Zi<r).
Proof: Suppose that X,={v} for some / (1<[=r).
Since G is connected and contains at least two vertices,
there exists u< V (G) —{v} such that (v, u) EE(G).
Thus {u, vi€ X; for some i (1<i<r) by condition
(iii) in the definition of proper-path-decomposition.
But this is contradicting to condition (i) in the
definition of proper-path-decomposition since X;C X

]

Theorem 1: For any graph G and an integer & (k=1),
there exists a proper-path-decomposition of G with
width & if and only if there exists an interval set of G
with density k. ‘
Proof: Suppose that %= (X, X3, -, Xy) is a k-
proper-path-decomposition of G. Let V=X, V,=X;
— X1 22029, Ui=X;— X1 (1£i<r—1),and U,
=X,. Let &€V, and u;= U, such that v;&=u, (1<i<
r). Notice that V,#, U;=0, and | VU U,|/=2 by
Lemma 2 and conditions (i) and (v) in the definition
of the proper-path-decomposition. Let ¢ be the set of
intervals defined as follows:
[. Leti=I1 and j=—1,;
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2. For each vertex w& V;—{v;}, define /(w)=j and
et j=j+1;
3. Define r(#;) =j and [ (v;) =j+1, and let j=j+2;
4. For each vertex w& U;,—{u;}, define (w)=j and
let j=j+1;
5. If i<r then let i=i+1 and return to 2;
6. Define J (w) ={i|l (w) <i<r(w),iEZ} for any w
EV(G), and let I={J(w)|lwEeV (G}

First, we show that the intervals in ¢ are well-defined.
Since both of (Vi, Vs, -+, Vi) and (U, Us, -+, U,) are
partitions of V' (G), both [(w) and #(w) are defined
for any vertex w&E V (G). Assume that weV; (1=<i<
r)and we U; (1=j=<r). If j<ithen wE X, X; and
w€E X;11. But this is contradicting to condition (iv) in
the definition of the proper-path-decomposition since
X;NX:E X Thus i<j. If i<j then trivially /(w)
<r(w) by the definition of [(w) and »(w). If i=j
then also /(w) <r(w) since v;#=u;. Thus J(w) is a
non-singleton interval on integers for any vertex w&
V(G). Hence ¢ is a set of distinct non-singleton
intervals on integers such that any two distinct inter-
vals in ¢ are independent, and J: V(G)— % is a
one-to-one correspondence. Next, we show that ¢ is
an interval set of G. For some edge (u, v) € E(G),
assume that {u, v}SX; by condition (iii) in the
definition of the proper-path-decomposition. If {u, v}
S X;—{v;} then intervals J (u) and J(v) are adjacent
to each other since {J (1), J (v)}= ¢ (r(u;)). Similar-
ly, if {u, v}S X;—{u;} then intervals J (u) and J(»)
are adjacent to each other since {J(u),J(v)}<
F (I (v;)). Otherwise ({u, v}={u,;, v;}) intervals J (u)
and J (v) are adjacent to each other since /(v;) —
r(u;) =1. Thus for any edge (u, v) EF (G), intervals
J (u) and J (v) are adjacent to each other. That is, .¢
is an interval set of G. Finally, we show that the
density of ¢ is k. It is easy to see that maXyev,| ¥ (/
W) =[S (r(u))|=|.% ([ (%)) =maxyer| I (r(w))]
for any 7 (1<i=<r). Since maxiz;=-| £ (v.))|=
maxi<;<| X;—{u;}|=k, the density of ¢ is k. Thus ¢
is an interval set of G with density .

Conversely, suppose that ¢ is an interval set of G
with the terminal sequence (Li, Ry, -+, Ly, R,) and
density k. By Lemma I, without loss of generality, we
assume that =2 and |L,|=1. Let v; be the vertex such
that [ (v;) =minger, [ (w) for any [ (1£i<r). We
define a sequence ¥ = (X1, Xz, =+, Xr—1) as follows:
(i) Define X1=L,U{w);

(i1)) Given X; (1=i=r—2), define X; ;.= (X;UL,;,;U

{Vi+z}) —R;;

Since R;NL;i=0 (1<i=r—2) and L,={v}, ¥
satisfies conditions (ii) and (iv) in the definition of
the proper-path-decomposition. Since v ;€ X ;1
—X; and XZ"XZ.H:R;:;:G (1§l§r—2), Xi$Xi+1
and X, £ X;. Thus X;EX; for any distinct 7 and J,
for otherwise X;=X; N X;E X;11 (i<j) or X;=X;NX;
CX,.1 (i>j). Hence ¥ satisfies condition (i) in the
definition of the proper-path-decomposition. Let v; be
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the vertex such that / (v}) =maxwer,/ (w), and u; be the
vertex such that r(u}) =maxyerr (W) (1Si=r). Let
J: V{(G)— ¢ be a one-to-one correspondence. Since
Uwer (1 (W) =Uyer I (r(w))=¢([(v})) for any
i (1<i<r),iftwo intervals I;, LE ¢ are adjacent then
L, Le ¢ (I (¥)) or {11, IZ}Z{J(uz{): J(vi+1)} (a=ir
—1). Notice that % (I (v})) S{J (v)|vE X, 1} since v,
=yiC Xy Since {J(W)|veE X j= U (v))U
{J ()} (I<i<r—1), if two intervals J (u), J (v) €
¢ are adjacent then u, v& X;. Notice that ;€ X; (1=
i<r—1). Thus by definition of an interval set, ¥
satisfies condition (iii) in the definition of the proper-
path-decomposition. Since v;1€F X;1UR; and #=+R;
$Xz‘+1, we have |Xi_1ﬁXl‘+1|§|Xi|_2 (2§l§i’_2)
Thus ¥ satisfies condition (v) in the definition of the
proper-path-decomposition.  Since maxi<;sr-1|X:|=
maxléiépl\j (Z(VZ)) U{J(V;+1)}|:k+ 1, the Wldth of
X is k. Therefore ¥ is a k-proper-path-
decomposition of G. ]
Corollary 1: For any graph G on n vertices, a k-
proper-path-decomposition of G can be obtained in
O (kn) time if the terminal sequence of an interval set
of G with density k is given.

Notice that » = n—k for any k-proper-path-
decomposition (X, Xz, -+, X;) of G on n vertices.

3. The Algorithm

We define the path-vector pv (v, T) = (p, ¢, n) for any
tree 7' with a vertex v& V (T) as the root to compute
ppw(T). p describes the proper-path-width of 7. ¢
and »n describe the condition of T as follows: If there
exists u€ V (T)—{v} such that T\{u}, the graph
obtained from 7 by deleting u, has two connected
components with proper-path-width ppw(T) and
without v, then ¢=3 and # is the path-vector of the
connected component of T\{u} containing v; other-
wise, ¢ is the number of the connected components of
T\{v} with proper-path-width ppw (T) and n=nul. It
should be noted that for any vertex w& V (T) the
number of connected components of T\{u} with
proper-path-width ppw (T) is at most two [11]. Notice
also that if there exists u such that T\{u} has two
connected components with proper-path-width
ppw (T) and without v then u is uniquely determined.
If there is no such u then the number of connected
components of T\{w} with proper-path-width
ppw (T') and without v is not more than the number of
connected components of 7T\{v} with proper-path-
width ppw (T). In the following, we denote an ele-
ment x in pv (v, T) by pv (v, T)|x.

Let 7p be a tree with root v& V' (T;) and P, be the
path-vector of T;. We recursively define 7; and P; (1
<i</[) while P;,_;|c=3 as follows: Let u;.1& V (T;-1)
—{v} be the vertex such that T;_,\{#;_1} has two con-
nected components with proper-path-width ppw (T;_1)
and without v, T; be the connected component of T;_;\
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{u;_1} containing v as the root, and P; be the path-
vector of T;. Assume that Pjc==3. We call such
path-vectors Py, Pi, ---, P; the chain of the path-vector
P,. We define b, n*, b*, and bim in the chain of P, as
follows: Define that Plb=P;_; (1=i<1); define that
Pn*=P; if i=0or Plp<P;_i|p—1 (1=i=1) where j
is the maximum integer such that j—i=P:|p—Plp;
define that P;|b*=P; if P;jn* is defined and Pj|n*=P;;
define that Pylbtm=P,. Thus we extend a path-vector
as pv (v, T)=(p, c, n, b, n*, b*, btm) to reduce the
time to traverse the chain as used in [7]. It was shown
that we can compute ppw (7) in linear time for any
tree T by computing path-vectors of subtrees of 7" [12].

As shown in Figs. | and 2, we can modify the
algorithm in [12] to construct the terminal sequence of
an optimal interval set of a tree.

Let T, be a tree with root w& V (Tp) and proper-
path-width k. Suppose that pT(vo, To)|c=2. Let T be
a connected component of Tp\{w} with proper-path-
width &, and w& V (T3) be the vertex adjacent to ¥ in
T,. We recursively define T; and v.€ V (T;) 2=i<a)
while T;_;\{v;-1} has a component with proper-path-
width & as follows: Let T; be a connected component
of T, :\{v:_i} with proper-path-width & and v.&
V (T;) be the vertex adjacent to v,y in Ty, To\{va}
has no connected component with proper-path-width
k. Let T,., be the other connected component of Tp\
{w} with proper-path-width &, and ve1 € V (T,41) be
the vertex adjacent to w in 7. Define recursively 7
and v,V (T:) (a+2=<i<b) as above. Notice that
TA\{v;} (1<i<b) has at most one connected compo-
nent with proper-path-width k, for otherwise To\{v:}
has three or more connected components with proper-
path-width k. Let H/ (0=<i=b) be the union of
components of T;\{v;} with proper-path-width <k —1,
and H; (0<i<b) be the induced subgraph of 75 on ¥V
(H/) U{v;}. Let W/ be the terminal sequence of an
optimal interval set of H/. Since ppw (H{) <k—1 (0=
i<h), W= (v,, W{, v;) is the terminal sequence of an
interval set of H; with density at most k£ by Theorem 1.
It is easy to see that there exists an interval set ¢ of T
with density k such that the terminal sequence of ¢ is
(Wa, Wa—l, T Wl, I’VO, Wa+1, sz+2, T, Wb)-

Thus, if pv (w, Tb)|c=2, we assume that the termi-
nal sequence of an interval set of 1; with density & is
(W, vo, W5, vo, W) where Wi=(Wa, Wy_y, -+, W)
and Wp= (Wu+1, Wasz, =+, Wb)« If pv (Vo, To) |C:1
then To\{w} has just one connected component with
proper-path-width &, the sequence W} above is empty,
and we assume that the terminal sequence of an inter-
val set of Ty with density & is (W7, w, W5, w). Similar-
ly, if pv (w, To)|c=0 then Ty\{w} has no connected
component with proper-path-width k&, and we assume
that the terminal sequence of an interval set of 7, with
density k& is (v, W5, w).

If pv(w, To)lc<2 then we denote a terminal
sequence, Wi, Wy, We, v, and (W., W5, Wz) by W, L,
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Procedure MERGE( P,, P, )
Input: P, (path-vector of tree T, rooted at s )
P, (path-vector of tree T} rooted at ¢ )
Output: the path-vector of tree rooted at s
obtained from T, and T; by adding an edge (s, t).
1. if Pilp > Pip then
1.1 if Pilc <2 then P, :=(p,c,—,{L,r,—,(P:|W, C),r, R}, (L, P|W,C, R));
1.2 else if Pyn’|p < Pilp then P, := (p+1,0,—,{—,r,—, (P|W,D),r,-}, (P|W, D));
1.3 else if P,|n*|p = P|p then
1.3.1 if PyJn*|c>2 or Pc>2 then P, := (p+1,0,—, {=:7,—, (F:|W, D), r, =}, (P,|W, D));
1.3.2 else if Pyn*|c =0 then Pyln*:= (p,1,—, {P|W,r,—,C,r, -}, (P|W, D));
1.3.3 else if P,in*|c =1 then P,|n” := (p, 2, —,{L,7,—,C, 7, B|W}, (D, P,|W));
endif .
1.4 else if Pyn*|lc < 2 then Pjn*:= (p,c,—,{L,7,—,(P:|W, C),7, R}, (L, P|W,C, R));
1.5  else if P,|n*|c=3 then

endif
1.6 return( P, );
2. else if P,|p = Pijp then

P,|n*n := MERGEC P|n*|n, P, );

3

1
.2 if P,n*|n|p = P;|n*|p then P, := (p+ 1,0,—,{—,7,—, D,r,~},D);

2.1 if Pife > 2 or Pifc> 2 then P, :=(p+1,0,—,{~,r,—,(B|W,D),r, -}, (P|W, D));
2.2 else if P,jc=0 then P, := (01, = {RW,r,—,C,7, =}, (P|W,D));
2.3 else if Pifc=1 then P;:= (p,2,—,{L,r,—,C,r, P|W},(D, P|W));

endif
2.4 return( P, );
3. else if P,|p < Pyp then

3.4 if Ble<1 then P::= (p,1,—,{W,Pylr,—, P,|D, P.lr,—},(W, P,|D));

8.2 else if Pyjc=2 then P, :=(p,3,P,{L,r,P.|W,C,r,R},(L,7, P,|D,C,r, R));

3.3 else if P,|p > Pyn*|p then P;:= (p+1,0, = {—= Ps|r, —, (W, P,| D), P,|r, -hL{W, P,|D));
3.4

else if P;|p= Pjn*|p then
if P,Jc > 2 or Pyn*|c > 2 then

Pi = (p+ 1707 _7{_7PS|T7 ) (I/Vv P,ID),Psl’I', _}7 (W PSID));

else if P,jc =0 then Pn*:

endif

.2 (:m1,—7{VV7P3|77—,P3|C7Ps|ﬁ—}7(W’Ps|D))i
.3 else if P,jc=1 then BPjn*: (P727_,{Plea-PslTv_7PS|07P8|T!W}7 (P3|DvW));

3.5 else if Pyn*|c <1 then B|n*:= (p,1,—,{W, P,Jr,—, P,|C, Py|r, -}, (W, P,\D));
3.6 else if Py|n*|c=2 then Pn*:= (p,3,Ps,{L,r, Ps|W,C,r, R}, (L, 1, P|D,C,r, R));
3.7

else if Py|n*|c =3 then

3.7. Fy|n*|n := MERGEC P,, Pn*|n );
3.7
endif
3.8 return( P; );
endif
END

1
.2 if Pyn*|nlp = Py|n*|p then P,:=(p+1,0,—,{—, Ps|r,—, D, Py|r, -}, D);

Fig.1 Procedure MERGE.

C, R, r, and D, respectively.

Suppose that pv (ve, To)|c=3. Let uc V (To)
—{w} be the vertex such that Tp\{u} has two connected
components with proper-path-width k. Let T; and T%
be two connected components of To\{u} with proper-
path-width k, T* be the connected component of Tp\
{u} containing w, and T’ be the union of the other
connected components of To\{u}. Let u,& T, and u, &
T be the vertices adjacent to « in Tp. Since T:\{u;}
has at most one connected component with proper-
path-width &, pv (u;, T.)|c<1 and pv (ur, Te)|c=1.
Thus we assume that the terminal sequences of optimal
interval sets of 7, and Ty are W, = (W{, u;) and Wr=
(ur, W%), respectively. Then it is easy to see that there
exists an interval set ¢ of T, with density k such that
the terminal sequence of & is (W, u, W*, W', u, Wx)
where W* and W’ are the terminal sequences of
optimal interval sets of T*, and T, respectively.

If pv(w, To)|c=3 then we denote a terminal
sequence, Wy, W* W', Wi, and u by W, L, N, C, R,
and r, respectively. Moreover, the sequence obtained
from the terminal sequence by deleting v is denoted by
D. o

We extend a path-vector as pv (v, T) = (p, ¢, n, b,
n*, b* btm,{L,r, N, C,r, R}, D). Notice that W=
(L,r,N,C,r,R).

In the procedure, we omit the description of sub-
stitutions for b, n*, b*, and btm in the path-vector
because no confusion is caused. Moreover, after substi-
tutions, we can update »*, b*, and btm in the path-
vectors in the chain in constant time. So we also omit
the description of these operations. Thus we denote
the path-vector pv (v, T)=(p, c,n,{L,r, N, C, r, R},
D). The reverse of a terminal sequence is denoted by
W, and maintained in the procedure together with the
reverses of L, N, C, R, and D. But we also omit the
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Procedure LMERGE( P,, P )

Input: P, (path-vector of tree T rooted at s )
P, (path-vector of tree T} rooted at t )
Output: the path-vector of tree rooted at s

135

obtained from T, and T} by adding an edge (s,1).

1. if Pip > Pp and Psjc=3 then
1.1
1.2 else

if Py|btm|b*|p > P|p then let P’ be P,|btm|b™;

let P’ be the path-vector P in the chain of P, such that Pln~ is defined and Plp > Plp >

Pln"|nip;
1.3 P':= MERGE( P, P );
1.4 return{ P, );
endif
2. if Plp < Pip and Pijc=3 then

1
.2 else

if P;|btm|b*|p > Ps|p then let P’ be Py|btm|b*;

let P’ be the path-vector P in the chain of P; such that P|n* is defined and Plp > P,|p >

Pln*np;
2.3 P’ := MERGE( P,, P’ );
2.4 return( P; );

endif .
3. return( MERGE( P,, P, ) );
END
Procedure DFS( s )
Input: a vertex s
Output: the path-vector of the maximal subtree rooted at s ]
1. Py:=(1,0,—,{—,5,—,—, 5 —},—); /* path-vector of a tree with one vertex s */

2. for all children ¢ of s in T do
1 P,:= DFS( t );
2 P,:= LMERGE( P,, P, );
endfor
3. return( P, );
END
Procedure MAINC T )
Input: atree T
Output: " the proper-path-width of T
1. Letr be a vertex in V(T');
2. po(r,T) := DFsC 7 );
3. return( pu(r,T)|W );
END

2.
2.

Fig.2 The algorithm to construct the terminal sequence of an interval set of a tree.

description of these operations. For the simplicity, if
the substitution for P uses P|x, we abbreviate P|x to x.

Procedure MERGE shown in Fig. 1 recursively
calculates the path-vector of T; from the path-vector Ps
of Ts and the path-vector P, of T; in O (max (ppw (T5s),
ppw(T:))) time. Note that the time complexity of
Procedure MERGE is O (1) except for recursive calls.
In Procedure LMERGE shown in Fig.2, we can
determine P’ in O (min(ppw (Ts), ppw(T:))) time by
using btm and b* in the chain of the path-vector. If P’
is determined at 1.2 or 2.2 in Procedure LMERGE then
the number of recursive calls of Procedure MERGE is
at most P’|n*|n|p<min(ppw (Ts), ppw(T:)). Other-
wise Procedure MERGE returns the path-vector in
O(1) time. Thus Procedure L.MERGE -calculates
the path-vector of the join of two subtrees in
O (min (ppw (Ts), ppw (T))) time. Procedure DFS
shown in Fig. 2 computes the path-vector of a maximal
subtree rooted at s in T from the path-vectors of
maximal subtrees rooted at children of s in T by using
Procedure LMERGE. Procedure MAIN shown in Fig.

2 obtains the proper-path-width of T from the path-
vector of 7 obtained by Procedure DFS. The algorith-
m starts with the isolated vertices obtained from T by
deleting all edges in T and reconstruct 7 by adding
edge by edge while computing path-vectors of con-
nected components. Thus we can obtained the termi-
nal sequence of an interval set of 7" with width ppw
(T) in linear time.
Theorem 2: For any tree T with proper-path-width %,
the terminal sequence of an interval set of T with
density £ can be obtained in linear time.

By Corollary 1 and Theorem 2, we obtain the
following theorem.
Theorem 3: For any tree T with proper-path-width £,
a k-proper-path-decomposition of T can be obtained
in O(nlogn) time.

Notice that ppw (T) =0 (log n) for any tree T on
n vertices. It should be noted that a k-proper-path-
decomposition of 7, if exists, can be obtained in linear
time if k& is fixed. By a similar argument, a
pw(T)-path-decomposition can be obtained in
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O (nlog n) time for any tree 7 with »n vertices.

References

[1]

Bodlaender, H. L. and Kloks, T., “Better algorithms for
the pathwidth and treewidth of graphs,” in J. L. Albert, B.
Monien, and M. R. Artalejo, eds., Proc. the 18th Interna-
tional colloquium on Automata, Languages and Pro-
gramming, vol. 510 of LNCS, pp. 544-555, Springer-
Verlag, Berlin, New York, 1991.

Bodlaender, H. L. and M&hring, R. H., “The pathwidth
and treewidth of cographs,” SIAM J. Disc. Math., vol. 6,
no. 2, pp. 181-188, 1993.

Kirousis, L.M. and Papadimitriou, C.H., “Interval
graphs and searching,” Discrete Mathematics, vol. 55, pp.
181-184, 1985.

Kirousis, L. M. and Papadimitriou, C. H., “Searching and
pebbling,” Theoretical Computer Science, vol. 47, pp. 205~
218, 1986.

Korach, E. and Solel, N., “Tree-width, path-width, and
cutwidth,” Discrete Applied Mathematics, vol. 43, pp. 97-
101, 1993.

Kornai, A. and Tuza, Z., “Narrowness, pathwidth, and
their application in natural language processing,” Dis-
crete Applied Mathematics, vol. 36, pp. 87-92, 1992.
Megiddo, N., Hakimi, S. L., Garey, M. R., Johnson, D. S.

IEICE TRANS. FUNDAMENTALS, VOL. E78-A, NO. 1 JANUARY 1995

[9]

[10]

[11]

[12]

and Papadimitriou, C. H., “The complexity of searching a
graph,” Journal of the Association for Computing
Machinery, vol. 35, no. 1, pp. 18-44, Jan. 1988.

Mgéhring, R. H., “Graph problems related to gate matrix
layout and PLA folding,” in G. Tinhofer, E. Mayr, H.
Noltemeier, and M. Syslo, eds., Computational Graph
Theory, pp. 17-51, Springer-Verlag, Wien, New York,
computing suppl. 7 edition, 1990.

Reed, B.A., “Finding approximate separators and
computing tree width quickly,” in Proc. 2Ist ACM
Symposium on the Theory of Computing, pp. 221-228,
1992.

Scheffler, P., “A linear algorithm for the pathwidth of
trees,” in R. Bodendiek and R.Henn, eds., Topics in
Combinatorics and Graph Theory, pp. 613-620, Physica-
Verlag, Heidelberg, 1990.

Takahashi, A., Ueno, S. and Kajitani, Y., “Minimal
acyclic forbidden minors for the family of graphs with
bounded path-width,” Discrete Mathematics, vol. 127, pp.
293-304, 1994.

Takahashi, A., Ueno, S. and Kajitani, Y., “Mixed-
searching and proper-path-width,” in W. L. Hsu and R.
C.T. Lee, eds., IS4 91 Algorithms: Proc. 2nd Interna-
tional Symposium on Algorithms, pp.61-71, Springer-
Verlag, 1991. (LNCS 557).




