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Abstract
To provide an efficient means of communication for those
who cannot move muscles of the whole body except eyes
due to amyotrophic lateral sclerosis (ALS), we are devel-
oping a speech synthesis interface that is based on elec-
trooculogram (EOG) input. EOG is an electrical signal
that is observed through electrodes attached on the skin
around eyes and reflects eye position. A key component
of the system is a continuous recognizer for the EOG sig-
nal. In this paper, we propose and investigate a hidden
Markov model (HMM) based EOG recognizer applying
continuous speech recognition techniques. In the exper-
iments, we evaluate the recognition system both in user
dependent and independent conditions. It is shown that
96.1% of recognition accuracy is obtained for five classes
of eye actions by a user dependent system using six chan-
nels. While it is difficult to obtain good performance by
a user independent system, it is shown that maximum
likelihood linear regression (MLLR) adaptation helps for
EOG recognition.
Index Terms: electrooculogram, hidden Markov model,
amyotrophic lateral sclerosis, continuous speech recogni-
tion, maximum likelihood linear regression

1. Introduction

Amyotrophic lateral sclerosis (ALS) is an intractable mo-
tor neuron disease that causes significant decrease in the
mass of muscles of the whole body [1]. The patients
eventually lose the ability of breathing due to paralysis
of respiratory muscles and are required to use mechan-
ical ventilation, which makes it impossible to produce
a speech sound. Other popular communication methods
such as hand writing are also disabled and only eye mo-
tion is specifically kept. On the other hand, there is usu-
ally no damage to the brain and consciousness is clear.
Therefore, establishing a communication method through
eye motions is essential for the patients.

A conventional communication method uses a trans-
parent alphabet board [2]. A patient and a carer face
each other through the board. The carer slowly moves
the board and reads a character that he thinks the patient
is gazing at. The patient sends pre-decided yes or no sign

for the read character. By repeating this, arbitrary sen-
tences can be transmitted. However, a problem is that
it requires the cooperation of a skillful carer. Therefore,
several automated systems have been developed using a
computer. The basic idea is to use a software keyboard
projected on a computer display with a mechanism that
allows patients to control the keyboard with their eyes.

There are mainly two types of such systems. One is
based on a sweeping cursor interface, in which a cursor
on a software keyboard repeatedly moves from one side
to another. The patient selects a column of the keyboard
by sending a sign when the cursor crosses the column.
Once a column is selected, then a row is selected based
on a similar process. This approach is simple and works
by detecting only a single sign. However, its input speed
is slow since the long waiting period to wait for the cur-
sor is indispensable. As a detection method of the eye
sign, electrooculogram (EOG), which is a weak electrical
potential caused by eyes, has been used.

The other is based on key gazing interface, in which
a key is selected based on detecting the patient’s gazing
point on the keyboard. The success of this approach de-
pends on the precision of the gazing point detection. To
cope with low precision, incremental precision method
has been proposed in which a key is selected by first spec-
ifying a region containing several keys. Then, the speci-
fied region is automatically magnified and the target key
is specified. While it does not need a waiting period un-
like the sweeping cursor interface, it still requires a cer-
tain pause period for the gazing point detection. To detect
the gazing point, reflection of infra-red rays by eyes is
used. However, there is a health concern about exposing
infra-red rays to eyes. Another detection method uses a
image camera and estimates eye directions by image pro-
cessing. The input speed measured for a system with this
interface is around 3.1 second per character for Japanese
Hiragana alphabet [3].

In this research, we propose a speech synthesis inter-
face that is based on eye motion recognition using EOG
input focusing on realizing efficient means of speech con-
versation having high interactivity. Compared to the con-
ventional interfaces, the proposed interface does not use
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Figure 1: Corneo-retinal potential.

a software keyboard and no display is needed. There-
fore, patients do not need to face a large display installed
in their room nor wear a heavy head mounted display.
There is also a potential advantage for the input speed
since there is no intrinsic waiting period.

The organization of this paper is as follows. In Sec-
tion 2, the basics of EOG are briefly reviewed. In Sec-
tion 3, the proposed system is explained. Section 4 de-
scribes a database used to train and evaluate our system.
Experimental conditions are described in Section 5 and
the results are shown in Section 6. Summary and future
works are given in Section 7.

2. Electrooculogram

There is electrical potential in the eyeball between the
cornea and the retina as shown in Figure 1, which is
called corneo-retinal potential (CRP). The cornea side
has positive charge and the retina side has negative
charge. CRP is observed as EOG through electrodes at-
tached on the skin around eyes. EOG changes accord-
ing to movements of the eye. Therefore, it can be used
to estimate eye movements. The magnitude of EOG is
around 290 µV/rad to 1100 µV/rad. EOG based eye mo-
tion detection works even when eyes are closed. It is re-
ported that there is no big difference between EOG of
able-bodied persons and ALS patients [4]. EOG detector
is non-invasive and generally simpler than that for elec-
troencephalogram (EEG) as EOG has larger signal mag-
nitude.

3. Proposed system

Figure 2 shows an overview of the proposed eye-input
speech interface. It consists of an EOG input module,
a recognition module, and an output module. The EOG
input module detects EOG signal using biopotential elec-
trodes and digitizes it. The recognition module recog-
nizes eye motions using a hidden Markov model (HMM)
based decoder and maps eye motions to pronunciation
symbols. The output module takes the sequence of pro-
nunciation symbols and synthesizes speech sound. The
synthesized speech is then output via a loudspeaker. In
our implementation, the speech synthesizer is also based
on HMM. The details of the EOG detection and recogni-
tion are described in the following subsections.
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Figure 2: System overview.

Figure 3: Arrangement of electrodes.

3.1. EOG detection

To detect EOG signal, nonpolarizable biopotential elec-
trodes are used. In this research, eight electrodes are ar-
ranged around eyes as shown in Figure 3. Among them,
one is ground electrode, another is reference electrode,
and the others are measurement electrodes. EOG signals
are obtained through the six measurement electrodes rel-
ative to the reference electrode. Two of the measurement
electrodes (1ch and 6ch) are attached above eyes, another
two (3ch and 4ch) are attached below eyes, and the others
(2ch and 5ch) are attached at left and right sides of eyes.

Figure 4 shows an example of EOG signal that was
observed when eyes were moved in the order of up, down,
left, and right. As can be seen, EOG reflects the eyes
motions. However, it is rather noisy and not trivial to
accurately estimate eye motions based on the signal.

3.2. EOG recognition

An isolated eye sign recognition system using HMM has
been proposed by Bulling et al. [5]. The EOG recognizer
used in our system can be regarded as an extension of that
system, and can recognize a sequence of eye motions by
applying continuous speech recognition techniques. The
recognizer is based on T 3 WFST decoder which supports
live decoding where partial output is obtained when a pre-
fix of recognition hypotheses is determined without wait-
ing for the end of the input [6]. This is important for
interactive systems.



Figure 4: Example of EOG signal.

Figure 5: Definition of eye motions.

In our system, five eye motions are used as units
for recognition, which correspond to phones in a speech
recognition system. Figure 5 shows the motions, which
are up, down, left, right, and center. In order to express
arbitrary Japanese pronunciations, Hiragana symbols ex-
pressing syllables are treated as words in the recognition
system. More precisely, 48 basic symbols are each ex-
pressed by a sequence of three motions of the five cate-
gories, and other derivative symbols are each expressed
by an escape character and a corresponding original sym-
bol. To make the recognition easier, a constraint is intro-
duced that the center eye motion must exist between mo-
tion sequences expressing two symbols. For the recogni-
tion, a six dimensional feature vector is simply formed by
gathering the six channels of EOG signal, and a sequence
of the vectors is input to the decoder.

4. Database

Since there is no existing database that can be used for
our purpose, we have recorded data by ourselves. The
data were recorded from three able-bodied persons who
were male and were in their twenties. They were asked
to move their eyes following indications given by voice.
The indication speed was about 0.7 second per motion.
This was relatively slow and the speed could be increased
with the practice of subjects.

We defined a set of eye motions that consisted of eight
types of sequences such as five repetitions of “up” and
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Figure 6: Number of channels and recognition accuracy.

“down”. In total, the set consisted of 64 motions. The
first subject, who is referred to as subject A, had two
sessions of recording performed on different days. The
amount of data recorded in the first session was 10 sets
and that of the second session was 40 sets. The second
subject, referred to as subject B, had three sessions on
different days, in which 15, 10, and 25 sets of data were
recorded, respectively. The last subject, subject C, had a
session in which 15 sets of data were recorded.

For a safety reason (electrodes attached to the skin)
as well as a technical reason (to avoid electrical noise),
the recording system was operated using batteries without
connecting to outlets. As for the electrodes, silver-silver
chloride electrodes were used, which were fixed on the
skin with conductive paste using a tape. The sampling
frequency for the A/D conversion was 100 Hz. In this
paper, we focus on recognition of the five classes of eye
motions.

5. Experimental setup

Each of the five eye motions was modeled by a four state
16 mixture HMM. Recognition experiments were per-
formed both in user dependent and independent condi-
tions. The effect of session variability was also evaluated.
Experiments were performed using HTK [7].

6. Experimental results

Figure 6 shows the number of channels and recognition
accuracy. The result was obtained by five-fold cross-
validation using 50 sets of data per subject and using two
channels (1ch and 2ch), three channels (1ch, 2ch, and
3ch), and all of the six channels. While two channels
theoretically suffice to recognize two-dimensional mo-
tions, it can be seen that higher recognition performance
is obtained by using more channels compensating for the
noisy signal. When six channels were used, the averaged
accuracy was 96.1%. The rest of the experiments were
performed using the six channels.

Table 1 shows session independent recognition accu-
racy using 25 and 40 sets of data as training set. As the
test set, 10 sets of data were used, which was recorded in



Table 1: User-dependent EOG recognition results with
session-independent condition.

Training data Subject A Subject B Average
25 sets 92.8 89.1 91.0
40 sets 93.8 90.9 92.4

Table 2: User-independent EOG recognition results.
Train Test W/o adapt With adapt

Subject B+C Subject A 79.2 80.8
Subject A+C Subject B 74.5 76.7

Average 76.9 78.8

a session different from the training set. This is a realis-
tic condition for the proposed system considering session
variability. That is, variations can arise in EOG signal
recorded in different sessions because of physiological
conditions of the subjects, and because it is impossible
to arrange the electrodes exactly on the same place on
the skin. The averaged recognition accuracy was 91.0%
when 25 sets of training data were used. By increasing
the amount of training data to 40 sets, the accuracy was
improved to 92.4%.

Finally, we have evaluated EOG recognition with a
user independent condition. To recognize subject A’s 10
sets of data, a model was trained using 50 sets of data
from subject B and 15 sets of data from subject C. Sim-
ilarly, to recognize subject B’s 10 sets of data, 50 sets
of subject A’s data and 15 sets of subject C’s data were
used. Table 2 shows the result. As can be seen, the
performance decreases substantially compared to that of
the user dependent systems. The averaged accuracy was
76.9%. To improve the performance, maximum likeli-
hood linear regression (MLLR) [8] based supervised user
adaptation was tested using 5 sets of data. The results
are shown in the right hand side column of the same ta-
ble. With the adaptation, 78.8% of averaged accuracy
was obtained. This result indicates MLLR is effective
not only for speech recognition but also for EOG recog-
nition. However, the accuracy is still low and further
improvement is required to make the user independent
system practical. Although, it is not necessarily required
for this application to make the system user independent
since the cooperation of users is expected.

7. Summary and future work

We have proposed a speech interface that is based on
EOG input to provide a means for speech based conversa-
tion for ALS patients. The system works by recognizing
eye motions based on EOG using HMM based decoder
that supports live decoding. The combinations of eye
motions are mapped to pronunciation symbols, which are
then converted to speech sound. We performed pioneer-

ing continuous EOG recognition experiments for several
conditions. When six channels were used in session de-
pendent cross-validation condition, 96.1% accuracy was
obtained. In session independent experiments, accura-
cies for user dependent and independent conditions were
92.4% and 76.9%, respectivelly. MLLR adaptation was
useful to improve the accuracy in the user independent
condition. Future work includes integrating a language
model to the recognizer. It will be effective to improve
the coding to map motions to pronunciations so that more
accurate and faster input is realized. For example, error
correcting codes can be adopted. From a user’s point of
view, the code needs to be easily remembered, which has
been pointed out by a subject who has evaluated our pre-
liminary system incorporating a speech synthesizer. Our
future work includes objective and subjective evaluation
of the total system. It is also interesting to evaluate how
the users can adapt to the system to improve the accuracy
and the input speed.
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