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Abstract
This paper examines F0 modeling and generation techniques
for spontaneous speech synthesis. In the previous study, we
proposed a prosodic-unit HMM where the synthesis unit is de-
fined as a segment between two prosodic events represented by
a ToBI label framework. To take the advantage of the prosodic-
unit HMM, continuous F0 sequences must be modeled from
discontinuous F0 data including unvoiced regions. The con-
ventional F0 models such as the MSD-HMM and the contin-
uous F0 HMM are not always appropriate for such demand.
To overcome this problem, we propose an alternative F0 model
named discontinuous observation HMM (DO-HMM) where the
unvoiced frames are regarded as missing data. We objectively
evaluate the performance of the DO-HMM by comparing it with
the conventional F0 modeling techniques and discuss the re-
sults.
Index Terms: HMM-based speech synthesis, F0 modeling,
prosody generation, discontinuous observation HMM, sponta-
neous speech.

1. Introduction
With diversification of speech synthesis applications, such as
a human-like spoken dialog system, it is essential to develop
a technique which can model variability of speech. In reality,
however, since spontaneous speech has a lot of prosodic vari-
ability owing to turn-taking, speech acts, and other factors, it is
not an easy task to model its variability.

Toward solving this problem, we have proposed an F0 mod-
eling technique using prosodic-event-based HMM in an HMM-
based speech synthesis framework [1]. Prosodic-event-based
HMM uses segments, such as pitch falling by accent and rising
by boundary pitch movement (BPM), as the modeling units of
HMMs. We refer to it as prosodic-unit HMM whereas the ordi-
nary phone-unit-based HMM as phone-unit HMM. We showed
that incorporation of the prosodic-unit HMM enabled us to re-
duce the number of model parameters of F0 significantly while
keeping the naturalness of the generated F0.

In the prosody modeling using the prosodic-unit HMM, it is
assumed that one prosodic unit has a certain continuous F0 pat-
tern. However, in real speech, F0 observations are often discon-
tinuous even in one prosodic unit. To model discontinuous F0
observation, several approaches have been proposed for HMM-
based speech synthesis [2–4]. A widely accepted approach is
the use of multi-space probability distribution HMM (MSD-
HMM) [2]. Although it has been shown that MSD-HMM can
be applied successfully to phone-unit HMMs, it is not always
appropriate for prosodic-unit HMM because its assumption of
continuous F0 observations does not always meet. Another ap-
proach is the use of continuous F0 HMMs [3, 4]. In this ap-
proach, the model parameters are trained using continuous ob-
servation sequences in which unvoiced regions are replaced by
the best candidates of F0 extraction or interpolated using a cer-
tain method. One of the issues of this approach is that the

modeling performance could depend on the interpolation per-
formance.

To overcome these problems in the conventional ap-
proaches, we propose an alternative F0 modeling technique for
prosodic-unit HMM which optimizes the model parameters us-
ing only actually observed F0 sequences. We apply a method
which utilizes missing data of unvoiced region [5] to the model-
ing of prosodic-unit HMM. We also examine two F0 generation
approaches in which F0 values are generated in whole region or
voiced regions only.

2. F0 modeling for prosodic-unit HMM

2.1. Speech synthesis using prosodic-unit HMM

In the prosodic-unit HMM, synthesis unit is defined as a speech
segment between two prosodic events. For the prosodic events
of Japanese speech we focus on in this study, we employ X-
JToBI [6], an extension of ToBI, which includes tone tier labels
with timing information of the folding points of F0 contours.
It is noted that the prosodic-unit HMM of other languages can
be constructed in a similar way by preparing the annotations of
prosodic events. In the previous study [1], spontaneous speech
was modeled and synthesized using both the prosodic-unit and
the phone-unit HMMs. The prosodic unit was used for mod-
eling continuous F0 sequences, and the phone-unit HMM was
used for modeling spectral features and voice/unvoiced regions.
Though a time alignment between two HMMs is required in the
parameter generation process, the prosodic variability is well
modeled using the prosodic-unit HMM with a smaller number
of parameters than the conventional F0 modeling technique us-
ing the phone-unit HMM.

2.2. F0 modeling problem in prosodic-unit HMM

Let Sv and Su be sets of voiced and unvoiced frame indexes, re-
spectively. Ov represents discontinuous F0 sequence of voiced
frames and is dependent on S = (Sv, Su). Let A be a set
of transition matrices of the prosodic-unit HMM and B be a
set of output probability density functions (pdfs) for the voiced
space of the prosodic-unit HMM. To represent the prosodic-unit
HMM, we can use either MSD-HMM or continuous F0 HMM.
However, there are some problems. When the MSD-HMM is
applied to the prosodic-unit HMM, it is necessary to use a set of
weight parameters, w, for the voiced/unvoiced space. Although
w is optimized in the model training, it is ignored in the F0
generation step. Therefore the other parameter sets, A and B,
are not optimized appropriately when we generate continuous
F0 sequence in the parameter generation step. The continuous
F0 HMM maximizes the likelihood of continuous observation
sequence Oc which is obtained by interpolating unvoiced re-
gions. However the observations of the unvoiced regions are
not always reliable and some parameters are optimized using
such unreliable observations in the model training.



3. Discontinuous observation HMM
For the MSD-HMM and continuous F0 HMM, it is difficult to
model the continuous F0 sequences without the influence of the
unobserved data in unvoiced frames. In contrast, the advantage
of discontinuous observation HMM (DO-HMM) described in
the following is that the likelihood calculation in the DO-HMM
depends only on the observed F0 data Ov in voiced frames and
is not affected by the unobserved data.

3.1. Definition

We utilize the idea of the F0 modeling proposed in [5] where the
values of unvoiced regions are regarded as missing data. This
enables us to deal with continuous F0 sequence. Let the miss-
ing F0 sequence be Ou and the whole F0 sequence be Oc =
(o1, . . . , oT ) which is determined by (Ou, Ov, S). The DO-
HMM is represented by a model parameter set λ = (A,B),
and likelihood is given by

P (Ov|S, λ) =

Z
P (Ou, Ov|S, λ)dOu

=

Z
P (Oc|λ)dOu. (1)

3.2. Parameter estimation algorithm

By introducing the missing observation Ou into the parameter
estimation of an EM algorithm, Q-function is defined by

Q(λ, λ̃) = E

h
log P (q,Ou, Ov|S, λ̃)|Ov, S, λ

i
(2)

and decomposed into Q-functions of the state transition proba-
bility aij and the output pdf bi(o):

Q(λ, ã) =
X

q

Z
P (q,Ou|Ov, S, λ) log P (q|S, λ̃)dOu

=
X

q

P (q|Ov, S, λ) log P (q|S, λ̃)

=

NX
i=1

NX
j=1

T−1X
t=1

ξ
(v)
t (i, j) log ãij , (3)

Q(λ, b̃) =
X

q

Z
P (q,Ou|Ov , S, λ) log P (Ou, Ov|S, λ̃)dOu

=

NX
i=1

TX
t=1

Z
P (qt = i, Ou|Ov , S, λ) log b̃i(ot)dOu

=

NX
i=1

 X
t∈Sv

P (qt = i|Ov , S, λ) log b̃i(ot)

+
X
t∈Su

Z
P (ot = x|qt = i, Ov , S, λ)

P (qt = i|Ov , S, λ) log b̃i(x)dx

!

=
NX

i=1

 X
t∈Su

γ
(v)
t (i)

Z
bi(x) log b̃i(x)dx

+
X
t∈Sv

γ
(v)
t (i) log b̃i(ot)

!
. (4)

Here, N is the number of states, T is the total number of frames,
and q = [q1, . . . , qT ] is a state sequence. γ

(v)
t (i) represents the

state occupation probability given the discontinuous observa-
tion Ov . γ

(v)
t (i) and ξ

(v)
t (i, j) are calculated by

γ
(v)
t (i) = P (qt = i|Ov , S, λ)

=
α

(v)
t (i)β

(v)
t (i)PN

k=1 α
(v)
t (k)β

(v)
t (k)

, (5)

ξ
(v)
t (i, j) = P (qt = i, qt+1 = j|Ov , S, λ)

=
α

(v)
t (i)aijb

′
j (ot+1) β

(v)
t+1(j)

P (Ov|S, λ)
, (6)

b′i (ot) =

j
bi(ot) (t ∈ Sv)

1 (t ∈ Su)
(7)

where α
(v)
t (i) is the forward probability defined by α

(v)
t (i) =

P (O
(α)
v , qt = i|S, λ). O

(α)
v is the voiced observation sequence

before the frame t. In a similar manner, β
(v)
t (i) is the back-

ward probability defined by β
(v)
t (i) = P (O

(β)
v |qt = i, S, λ)

and O
(β)
v is the voiced observation sequence after the frame t.

α
(v)
t (i) and β

(v)
t (i) are calculated using a forward-backward

algorithm as

α
(v)
1 (i) = πib

′
i(oT ), (8)

β
(v)
T (i) = 1, (9)

α
(v)
t (i) =

 
NX

j=1

α
(v)
t−1(j)aji

!
b′i(ot), (10)

β
(v)
t (i) =

NX
j=1

aijb
′
j(ot+1)β

(v)
t+1(j). (11)

Here, we assume that the output probability bi(o) is expressed
by a single Gaussian pdf N (o;µi, Vi) to simplify the descrip-
tion. In this case, an integral included in Eq. (4) becomesZ

bi(x) log b̃i(x)dx = −1

2

“
d log(2π) + log |Ṽi|

+Tr(ViṼ
−1

i ) + (µ − µ̃i)
�Ṽ −1

i (µ − µ̃i)
”

. (12)

The model parameters are updated by maximizing Q-functions
Eqs. (3) and (4). The updating equations are derived as follows:

ãij =

PT−1
t=1 ξ

(v)
t (i, j)PN

k=1

PT−1
t=1 ξ

(v)
t (i, k)

, (13)

µ̃i =

P
t∈Sv

γ
(v)
t (i)ot +

P
t∈Su

γ
(v)
t (i)µiPT

t=1 γ
(v)
t (i)

, (14)

Ṽi =
1PT

t=1 γ
(v)
t (i)

(X
t∈Sv

γ
(v)
t (i)(ot − µ̃i)(ot − µ̃i)

�

+
X
t∈Su

γ
(v)
t (i)

“
Vi + (µi − µ̃i)(µi − µ̃i)

�
”)

.

(15)

Consequently, the transition probabilities are updated in a way
similar to the ordinary HMM. On the other hand, the parameters
of output pdfs are updated by the weighted sum of the observed
values and the previous parameter set before update. When we
use hidden semi-Markov model (HSMM) [7] which models the
state duration explicitly, the similar estimation equations are de-
rived in the same way.



3.3. Decision tree-based context clustering for DO-HMM

The tree-based context clustering is performed under assump-
tions that the assignment of states to observations does not
change during the clustering process and that the likelihood can
be approximated by the sum of log output probability weighted
by the state occupation probability [8]. It follows that the like-
lihood of Ov , L, is approximated by

L =
MX

m=1

X
i∈C(m)

KX
k=1

X
t∈Sk,v

γ
(v)
k,t (i) log bi(ok,t) (16)

where M and K are the total numbers of leaf nodes and speech
samples, respectively. C(m) represents a set of states included
in a leaf node m and Sk,v is a set of unvoiced frames of a speech
sample k. γ

(v)
k,t (i) is the state occupation probability of a state

i at a frame t in a speech sample k. The difference from the
conventional HMM is that the sum is calculated only for voiced
frames. Therefore, using the state occupation count

Γm =
X

i∈C(m)

KX
k=1

X
t∈Sk,v

γ
(v)
k,t (i) (17)

and covariance matrix Vm, the change of likelihood ΔL by di-
viding a leaf node mp into my and mn is given by

ΔL =
1

2
(Γmy log |Vmy | + Γmn log |Vmn |
− Γmp log |Vmp |). (18)

We choose the leaf node and question for contexts which max-
imize ΔL when dividing the node. The mean vector µm and
covariance matrix Vm of a clustered leaf node are calculated
under the assumption that the state occupation probability does
not change as follows:

µm =

X
i∈C(m)

KX
k=1

X
t∈Sk,v

γ
(v)
k,t (i)ok,t

Γm
, (19)

Vm =

X
i∈C(m)

KX
k=1

X
t∈Sk,v

γ
(v)
k,t (i)(ok,t − µm)(ok,t − µm)�

Γm
.

(20)

4. Generating discontinuous observation
sequence from HMMs

For the parameter generation of F0, we can consider two kinds
of likelihood as shown in Table 1. One method is whole re-
gion generation which maximizes the likelihood of F0 feature
sequence of the whole frames Oc and generates continuous F0
sequence Cc. After the parameter generation, the F0 values
of voiced frames are used for synthesizing speech. The other
is voiced region generation which maximizes only the likeli-
hood of discontinuous sequence of the voiced frames where
the voiced/unvoiced information for each frame is given by the
phone-unit HMM.

For the whole region generation, the conventional syn-
thesis method for the HMM-based speech synthesis can be
used. Hence, we only describe the algorithm for the voiced
region generation. The output sequence Cv is estimated by
maximizing the likelihood of voiced F0 frames Ov given the
voiced/unvoiced information S as follows:

C∗
v = argmax

Cv

log P (Ov|q, S, λ). (21)

Table 1: The likelihoods in each generation method.

Generation method Likelihood

Whole region generation P (Oc|A, B)

Voiced region generation P (Ov|S, A, B)

Here, let L and L′ be the mapping matrices which satisfy

Cv = LCc, (22)

Ov = L′Oc. (23)

Let Wc be a window matrix for whole region generation,
Mc = [μ�

q1 , . . . , μ�
qT

]�, and Vc = diag [Vq1 , . . . , VqT ]. We
define Wv = L′WcL

�, Vv = L′V L′�, and Mv = L′M ,
then we have

Ov = WvCv, (24)

log P (Ov|q, S, λ) = −(1/2) log |Vv |
− 1

2
(WvCv − Mv)�V −1

v (WvCv − Mv) + const . (25)

As a result, the optimal F0 sequence C∗
v is given by

C∗
v = (W �

v V −1
v Wv)−1W �

v V −1
v Mv . (26)

5. Experiments
5.1. Experimental conditions

Spontaneous speech data with rich prosodic labels was used for
the evaluation experiments and X-JToBI tone tier labels [6] are
used as prosodic labels. We chose speech data of two non-
professional female speakers (#19, #514) included in the Cor-
pus of Spontaneous Japanese (CSJ) [9]. Two speech sets, lec-
ture and conversation, were used. Conversational speech con-
sists of two interviews and a task-oriented dialog. The total
length of speech samples of each speaker and set is approxi-
mately 25 minutes. Speech signals were sampled at a rate of
16 kHz. F0 was extracted by SWIPE [10] and spectral feature
was extracted by STRAIGHT [11] with 5-ms frame shift. The
feature vector of prosodic-unit HMM consisted of log F0, and
their delta and delta-delta coefficients. In the case of continu-
ous F0 HMM, the F0 sequence of unvoiced region was made
by linear interpolation and smoothed. The feature vector of
phone-unit HMM consisted of 0-39th mel-cepstral coefficients,
5-band aperiodicity, their delta and delta-delta coefficients, and
a voiced/unvoiced information. We used hidden semi-Markov
model (HSMM) which has explicit duration distributions for
both prosodic-unit and phone-unit HMM. The model topology
was 5-state left-to-right context-dependent HSMM without skip
paths. Each state had a single Gaussian distribution with a di-
agonal covariance matrix. MDL was used for the stopping cri-
terion and minimum number of observations [12] was also used
to alleviate over-fitting. We set the minimum number of obser-
vations to 50 from the result of a preliminary experiment.

For training and testing, the phonetic and prosodic contexts
were automatically converted from the labels given in CSJ. Al-
though speech synthesis using prosodic-unit HMM needs align-
ment of label timings with phone-unit HMM [1], we used the
F0 patterns generated from the annotated label timings to focus
on F0 models in this study. Five-fold cross-validation tests were
performed in the evaluations.



Table 2: Average F0 distortions and correlation coefficients of synthetic speech and leaf node sizes of F0 model.

Training method Generation method F0 RMSE [ms] Correlation coefficient Ave. # of leaf nodes

Phone-unit HMM 281.2 0.609 563.7

MSD
Whole region 279.7 0.613

277.9
Voiced region 284.2 0.595

Continuous
Whole region 279.3 0.621

309.0
Voiced region 286.3 0.595

DO
Whole region 280.3 0.616

241.8
Voiced region 288.0 0.594

5.2. Results

The three training methods and F0 generation methods for
prosodic-unit HMM described in Sec. 2.2 were evaluated ob-
jectively. The conventional phone-unit HMM was also evalu-
ated. The measurements for evaluation were average F0 distor-
tion and correlation coefficient. The average F0 distortion was
calculated by RMS error between generated and original log
F0s.

Table 2 shows the results with the average number of leaf
nodes of F0 decision trees. Each RMS error and correlation
coefficient are the average values of all data sets. RMSEs us-
ing voiced region generation were larger than that using whole
region generation. A possible reason is that the generated F0
contour using voiced region generation was not smoothed well
between the adjacent voiced regions, because each contour of a
voiced region is determined using only the parameters included
in that region rather than considering influence of preceding
and succeeding voiced regions. In the case using the whole
region generation, the distortion and correlation of DO-HMM
were comparable to that of the MSD-HMM and the continu-
ous F0 HMM. However some differences are seen in the num-
ber of leaf nodes of F0 decision trees which implies how com-
pact the model is. We can see that the DO-HMM has smaller
F0 trees than the MSD-HMM and the continuous F0 HMM.
This is because the total number of frames of the DO-HMM
are calculated using only voiced frames and the MDL criterion
changed. Consequently, DO-HMM expressed F0 patterns with
a more compact parameter set than the other methods. Since it is
not always easy to prepare a sufficient amount of spontaneous
speech data manually labeled with rich prosodic information,
this advantage of DO-HMM is important for estimating reliable
parameters in the model training or the model adaptation.

6. Conclusion

We proposed the DO-HMM to train the continuous F0 model
from the discontinuous F0 data including unvoiced regions for
spontaneous speech synthesis using the prosodic-unit HMM. In
the training of DO-HMM, the model parameters were optimized
using only actually observed F0 sequence which avoid the in-
fluence of the unobserved data in unvoiced frames. The prelimi-
nary experimental results showed that the DO-HMM gives com-
parable performance to the conventional models using a smaller
number of model parameters. In addition, we examined suit-
able parameter generation methods for the prosodic-unit HMM.
In the future work, we will incorporate trajectory model in or-
der to improve generated F0 since the current HMM framework
is frame-based modeling. The dependency of observations of
frames defined by the trajectory model is expected to enhance
the usefulness of missing data.
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