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Abstract

We propose an overlapped speech detection method for
speech recognition and speaker diarization of meetings,
where each speaker wears a lapel microphone. Two novel
features are utilized as inputs for a GMM-based detec-
tor. One is speech power after cross-channel spectral sub-
traction which reduces the power from the other speak-
ers. The other is an amplitude spectral cosine correla-
tion coefficient which effectively extracts the correlation
of spectral components in a rather quiet condition. We
evaluated our method using a meeting speech corpus of
four speakers. The accuracy of our proposed method,
74.1%, was significantly better than that of the conven-
tional method, 67.0%, which uses raw speech power and
power spectral Pearson’s correlation coefficient.
Index Terms: overlap speech detection, spectral subtrac-
tion, cosine distance

1. Introduction
In recent years, meeting speech recognition [1, 2] and
meeting speaker diarization [2, 3, 4] have been effec-
tively utilized in real applications in order to transcribe
and browse meeting procedures. However, their perfor-
mance is usually low at the overlapped speech segments
where more than one speaker is speaking. One possible
solution for this problem is first to detect the overlapped
speech segments, and then to ignore them in the follow-
ing process or to apply special techniques such as source
separation to recover the signal from each speaker. We
focus on overlapped speech detection (OSD) in this pa-
per.

Several recording devices such as boundary micro-
phones and microphone arrays have been employed for
meeting speech processing. Boundary microphones are
easy to use and inexpensive, but it is difficult to separate
the speech signal of one speaker from those of the others.
Microphone arrays can separate the speech signals bet-
ter but are expensive and need to be calibrated carefully.
Here we assume that each meeting participant wears a
microphone. In this study, we use a lapel microphone for
collecting meeting speech data. While the use of lapel

microphones takes a little effort from each participant,
it enables the identification of each participant’s speech
signal with relatively low costs. We can also use a smart
phone in one’s breast pockets or that in front of him/her
on the meeting table as a microphone.

Most conventional OSD methods successfully use a
GMM-based classifier, which consists of a GMM for
overlapped segments and that for non-overlapped seg-
ments, and set a threshold for their likelihood ratio. Then,
the problem is what features we should use as its in-
put. The power summed over all the frequency bands
has proven to be effective (e. g., [5]). Large powers in
more than one microphone indicate overlapping. Some
studies [5, 6] focused on the effect of cross-talk. The sig-
nals from microphones tend to be similar with each other
when only one speaker speaks, and to be different when
more than one speaker is speaking. For example, Xiao et
al. [5] reported that Pearson’s correlation coefficient be-
tween the power spectra of two microphones (PPC) is an
effective input feature.

However, both of these features, the overall power
and PPC, have a serious problem. First, the overall power
may be contaminated by speech signals from other speak-
ers and detect overlapping segments incorrectly when
only one speaker is speaking. Second, PPC is normal-
ized by the mean of the power spectral components over
all the frequency bands of nearby frames. This normal-
ization process is indeed effective when there exists sta-
tionary environmental noise which should be subtracted.
However, it may also normalize speech signals when only
one speaker is speaking, and hence, may not show good
performance.

In this paper, we propose two new features for OSD in
meeting speech. One is a CCSS power, which is an over-
all power obtained by cross-channel spectral subtraction
(CCSS) [1]. CCSS is a source separation method and has
proved to be very effective at excluding the speech signals
from other speakers in meeting speech using lapel micro-
phones. The other is an amplitude spectral cosine corre-
lation coefficient (ACC) which does not include a feature
normalization process and hence remains large when only
one speaker is speaking. We use these two features as in-



puts to a GMM detector and examine their effectiveness
using a meeting speech data with four speakers.

This paper is organized as follows. The two features
used in this paper, CCSS power and ACC, are explained
in Section 2 and Section 3, respectively. The experimen-
tal results are reported in Section 4. Finally, Section 5
concludes the paper.

2. CCSS power
2.1. Cross-channel spectral subtraction (CCSS) [1]

In order to reduce the power from the other speakers,
we introduce cross-channel spectral subtraction (CCSS),
a source separation method based on spectral subtrac-
tion [7].

Let the number of speakers be N . Consider that
one lapel microphone is prepared for each speaker. We
use the same suffix for one speaker and his/her micro-
phone. Then, assuming the speech signals from multiple
speakers are linearly mixed and ignoring noise, the signal
recorded by the i-th microphone (of the i-th speaker) can
be modeled as:

Xi(f, t) =
N∑
j=1

Gij(f, t)Sj(f, t), (1)

where Sj(f, t) is the speech in a frequency band f at time
t of the j-th speaker and Gij(f, t) is the transfer function
from the j-th speaker to the i-th microphone. The trans-
fer functions are time-variable, since they may change
when speakers move around, while they are regarded as
stationary in most conventional studies.

The target signal is the j-th speaker’s speech recorded
by the j-th microphone for each j. By defining it as:

Yj(f, t) = Gjj(f, t)Sj(f, t), (2)

and substituting the transfer function by:

Hij(f, t) =
Gij(f, t)

Gjj(f, t)
, (3)

the recorded signal can be written as:

Xi(f, t) = Yi(f, t) +
∑
j ̸=i

Hij(f, t)Yj(f, t). (4)

Then, the power spectrum of the recorded signal is
calculated as:

|Xi(f, t)|2

=

∣∣∣∣∣∣Yi(f, t) +
∑
j ̸=i

Hij(f, t)Yj(f, t)

∣∣∣∣∣∣
2

= |Yi(f, t)|2 +
∑
j ̸=i

|Hij(f, t)Yj(f, t)|2

+
N∑

k=1

∑
j ̸=i

|Hik(f, t)Yk(f, t)Hij(f, t)Yj(f, t)| cos θkj,i,

(5)

where θkj,i is the phase difference between the speech of
the k-th and j-th speakers observed with the i-th micro-
phone.

Since the phases of different speakers are uncor-
related in each time-frequency bin, the expectation of
cos θkj,i is zero. Assuming that the sparseness of speech
holds approximately, i. e., the following equation holds:

Sj(f, t)Sk(f, t) ≃ 0 (j ̸= k), (6)

the third term of Eq. (5) becomes sufficiently small and
can be ignored. Hence, the speech signal of the i-th
speaker is estimated as:

|Ŷi(f, t)|2 = |Xi(f, t)|2 −
∑
j ̸=i

|Ĥij(f, t)|2|Ŷj(f, t)|2.

(7)

2.2. Implementation to OSD

It can be safely assumed that, in the power obtained by
the i-th microphone, the i-th speaker’s voice is much
larger than that of the other speakers when more than one
speaker is speaking. Then |Ŷj(f, t)|2 = |Xj(f, t)|2 and
0 ≤ |Ĥij(f, t)|2 ≤ 1. In OSD, speech power is impor-
tant, not distortion. In order to subtract most of the other
speakers’ speech power, letting |Ĥij(f, t)|2 = 1, in the
second term of Eq. (7), the target signal of the i-th chan-
nel is calculated as:

|Ŷi(f, t)|2 = max

|Xi(f, t)|2 −
∑
j ̸=i

|Xj(f, t)|2, 0

 ,

(8)
and define a CCSS power as:

CCSS Pi(t) =
∑
f∈F

|Ŷi(f, t)|2, (9)

where F is a set of frequency bands.
The previous method [5] used a raw power |Xi(f, t)|2

instead of |Ŷi(f, t)|2 in Eq. (9).

3. Spectral similarity
3.1. Power spectral Pearson’s correlation coefficient

In the previous method [5], power spectral Pearson’s cor-
relation coefficient (PPC) is employed to measure simi-
larity between the power spectra of the i-th microphone
and the j-th microphone. It is defined as:

PPCi,j(t) =

(
P i(t)− P̄ i(t)

)
·
(
P j(t)− P̄ j(t)

)∥∥P i(t)− P̄ i(t)
∥∥ ∥∥P j(t)− P̄ j(t)

∥∥ ,

(10)

where P i(t) is the |F | × (2T + 1) dimensional vector of
power spectral components |Xi(f, τ)|2 for f ∈ F , t −
T ≤ τ ≤ t + T , and P̄ i(t) is its mean over all the |F |
bands of all the 2T + 1 frames.



Since PPC represents the similarity between two sig-
nals, it becomes large when only one speaker is speaking
and becomes low when more than one speaker is speak-
ing. Normalization using P̄ i(t) is expected to be effec-
tive when there exists additional noise which should be
subtracted. However, speech signals are normalized even
when only one speaker is speaking too, and hence PPC
becomes lower than that without normalization.

3.2. Amplitude spectral cosine correlation coefficient

Instead of PPC, we employed an amplitude spectral co-
sine correlation coefficient (ACC) to measure similarity
between the amplitude spectra of the i-th microphone and
the j-th microphone. It does not include the normaliza-
tion process . It is defined as:

ACCi,j(t) =
Ai(t) ·Aj(t)

∥Ai(t)∥ ∥Aj(t)∥
, (11)

where Ai(t) is the |F | × (2T + 1) dimensional vector
of amplitude spectral components |Xi(f, τ)| for f ∈ F ,
t − T ≤ τ ≤ t + T . We use amplitude instead of power
to keep the dynamic range of the coefficients small.

While ACC may not be better than PPC under noisy
conditions, it is expected to be better in a rather quiet
condition such as that of meeting speech data recorded
by lapel microphones.

4. Experiments
4.1. Experimental conditions

We recorded a sit-down meeting of 19 minutes long, con-
ducted in Japanese language by four speakers, one female
and three male speakers. The speakers’ positions are
shown in Figure 1. The participants did not move from
their seats, but they were allowed to change their posture
as they desired. A lapel microphone was attached to the
lapel of each speaker. The speech segments were hand-
labeled, including laughter and coughing, and the label
for overlapped speech (Wo) or that for non-overlapped
speech (Wn) is given to each frame (every 10 ms). Their
statistics are given in Table 1.

The recording was done at 16 kHz sampling fre-
quency. STFT was performed using Hamming window
with 20 ms width with 10 ms frame shift. Then, |F | =
160 in Eq. (9). We set the parameters in Eq. (11) T = 25
and used the lower half frequency 80 points, between 50
Hz and 4000 Hz. The number of Gaussian components
in each GMM is 8.

A raw power (P) used in the previous method [5], a
CCSS power (CCSS P) of the proposed method, a power
spectral Pearson’s correlation coefficient (PPC), and an
amplitude spectral cosine correlation coefficient (ACC)
are extracted from each frame. The dimension of P and
CCSS P feature vectors are both 4, one from each of

Figure 1: Position of speakers in sit-down meeting.

Table 1: Training and test dataset.

Length Wn Wo

Train 9.7 min 70% 30%
Test 9.7 min 68% 32%

the four microphones, and those of PPC and ACC fea-
ture vectors are both 6, which is the number of pairs
among the four speakers. The previous method [5] is de-
noted as P+PPC, and our proposal method is denoted as
CCSS P+ACC.

The log likelihood ratio of Wo to Wn as:

Λ(s) = ln
P (s|Wo)

P (s|Wn)

= ln[P (s|Wo)]− ln[P (s|Wn)],

(12)

where P (s|Wo) is the likelihood of s as Wo, and
P (s|Wn) is the likelihood of s as Wn. We use average
precision (AP) as the measure of detection performance,
since it includes both recall and precision.

4.2. Results

The detection results are shown in Figure 2. As can be
seen, the proposal method, CCSS P+ACC, achieves the
highest performance. Its AP is 74.1% which is better than
the 67.0% of P+PPC by 10.6% relative improvement.

We conducted the following experiments with a part
of the test dataset in which only two speakers participate.
We compare the performance of P and CCSS P in Fig-
ure 3. The overlapped region and the non-overlapped
region in CCSS P are more clearly separated than those
in P. We also compare the performance of PPC, ACC,
an amplitude spectral Pearson’s correlation coefficient
(APC), and a power spectral cosine correlation coeffi-
cient (PCC) in Table 2. The AP of ACC achieves the
highest score. And in Figure 4, it is shown that the ACC
histogram of the overlapped frames and that of the non-
overlapped frames are more clearly separated than those
of PPC.

We analyze how CCSS P and ACC complement each
other in our proposed OSD. The power histogram of the
non-overlapped frames misdetected as overlapped frames



Figure 2: Recall-Precison curve of overlapped detection
in meeting.

Figure 3: A scatter diagram of frame labels obtained by
OSD. The horizontal axis is the power recorded by the 1st
microphone, and the vertical axis is the power recorded
by the 2nd microphone.

when Recall = 0.5 is shown in Figure 5. CCSS P tends
to misdetect the frames whose power is relatively large,
and ACC tends to misdetect the frames whose power is
relatively small. Thus, CCSS P and ACC make up for
each other.

5. Conclusion

In this study, we have proposed CCSS P and ACC as the
features for OSD in meeting speech. In our evaluation ex-
periments, we compared our features with the previously
proposed features, P and PPC. The AP of the proposal
method is 74.1% which is better than 67.0% of the previ-
ous method by 10.6% relative improvement.

In spite of these improvements, misdetected frames
still exist and more features are required to improve the
OSD performance. One promising applicant would be
entropy. In addition, we used the hand-labeled speech
segments in this study. An overlapped detection method
with unsupervised learning is required to reduce the an-
notation costs.

Table 2: AP (%) of each correlation coefficient.

PPC ACC APC PCC
AP 40.5 46.4 42.7 39.4

Figure 4: Correlation coefficient histogram of the over-
lapped and non-overlapped frames.

Figure 5: Power histogram of the misdetected frames.
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