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Abstract
Spectral subtraction (SS) is derived using maximum likelihood
estimation assuming both noise and speech follow Gaussian dis-
tributions and are independent from each other. Under this as-
sumption, noisy speech, speech contaminated by noise, also fol-
lows a Gaussian distribution. However, it is well known that
noisy speech observed in real situations often follows a heavy-
tailed distribution, not a Gaussian distribution. In this paper, we
introduce a q-Gaussian distribution in non-extensive statistics
to represent the distribution of noisy speech and derive a new
spectral subtraction method based on it. In our analysis, the
q-Gaussian distribution fits the noisy speech distribution better
than the Gaussian distribution does. Our speech recognition ex-
periments showed that the proposed method, q-spectral subtrac-
tion (q-SS), outperformed the conventional SS method using the
Aurora-2 database.
Index Terms: robust speech recognition, spectral subtraction,
Gaussian distribution, q-Gaussian, maximum likelihood

1. Introduction
Currently, automatic speech recognition (ASR) is able to
achieve high performance in clean environments. However, its
performance in noisy environments is still low. Spectral sub-
traction (SS) which removes additive noise from noisy speech,
is often utilized to improve the robustness of speech recognition
against noise [1]. Spectral subtraction is derived based on an ex-
tensive framework. In an extensive framework, we assume that
the sub-systems of a system are independent from each other,
and thus, the additivity between them holds. In spectral sub-
traction, it is assumed that noise and speech are uncorrelated.
Under this assumption, we assume that both speech and noise
spectra follow Gaussian distributions, and thus, noisy speech
will also follow a Gaussian distribution. By maximizing the
likelihood of the noisy speech distribution, the spectral subtrac-
tion formula can be derived [2].

The extensive framework however, fails to explain some
phenomena in complex systems. In a complex system, we do
not know about the sub-systems and their relations. In such a
system, the extensive property does not hold. Therefore, it is
often called a “non-extensive system”. A speech pattern is a
complex system. In clean speech, various long-term correla-
tions exist among its different spectral components in complex
ways in various time scales. Short-time speech spectra do not
follow Gaussian distributions [3] but show heavy-tailed distri-
butions instead. Laplace [4] and Gamma [5] distributions are
often used to model the speech distribution instead of the Gaus-
sian distributions. When speech is corrupted with noise, the use
of a short-time window in signal processing will also introduce
a cross-term, which exists when the speech and noise spectra
overlap in time-frequency space. Thus, noisy speech short-time

spectra are likely to follow heavy-tailed distributions and not
Gaussian distributions.

Therefore, it is not surprising that spectral subtraction may
not give sufficiently high performance when noise and speech
are correlated. A weighting factor is often introduced to im-
prove its performance. However, this factor is decided heuristi-
cally.

Recently, a theory of non-extensive statistics has been in-
troduced to explain several phenomena in complex systems [6].
This framework uses Tsallis entropy, which is a generaliza-
tion of Shannon entropy. By maximizing Tsallis entropy, a
q-Gaussian distribution can be obtained. This distribution can
represent a heavy-tailed distribution. The q-Gaussian distribu-
tion has successfully represented many phenomena in complex
systems in statistical mechanics, economics, finance, biology,
astronomy and machine learning.

In this paper, we derive spectral subtraction in a non-
extensive framework. In this framework, we still assume that
noise and speech follow Gaussian distributions, but we allow
noise and speech to be correlated. Accordingly, the distribution
of noisy speech follows q-Gaussian. We derive q-spectral sub-
traction in a similar way as spectral subtraction is derived using
maximum likelihood.

The remainder of this paper is organized as follows. In
Section 2, we explain how the spectral subtraction is derived.
We briefly describe the q-Gaussian distribution in Section 3. In
Section 4, our proposed method, q-spectral subtraction, is ex-
plained. The experimental results are described and discussed
in Section 5. Section 6 concludes this paper.

2. Spectral subtraction
Spectral subtraction is a popular method to remove additive
noise from noisy speech in the spectral domain, assuming the
noise spectrum is known. Let y(t) denote noisy speech con-
sisting of clean speech x(t) and additive noise n(t). By taking
the short-time fourier transform of the signals, we obtain their
spectral representation.

Consider a spectral component at frequency f . We assume
a spectral component,Xf , of clean speech is a complex random
variable that follows a Gaussian distribution with zero mean
and variance σ(f). Similarly, a spectral component of noise
signal, Nf , is also a complex random variable that has a Gaus-
sian distribution with zero mean and variance τ(f). The vari-
ance of a distribution represents the power spectrum of the ob-
served signals. We denote |Xf |2 and |Nf |2 as the observed
power spectra of clean speech and noise respectively. There-
fore, |Xf |2 = σ(f) and |Nf |2 = τ(f). We also assume
that Xf and Nf are statistically independent, and hence, noisy
speech, Yf , also follows Gaussian distribution with variance
ν(f) = σ(f) + τ(f). Then, the probability density of Yf is



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
q
(Y

)

Y

 

 

q=0

q=1

q=1.5

q=2

Figure 1: q-Gaussian distribution for several q

given by:

P (Yf ) =
1

πν(f)
exp

(
−|Yf |

2

ν(f)

)
. (1)

We would like to find the estimation of the clean speech vari-
ance from an observation of |Yf |2 assuming τ(f) is known. By
differentiating P (Yf ) with respect to σ(f) and equating it to
zero, we obtain σ̂(f), the maximum likelihood estimation of
σ(f) as the following:

σ̂(f) = |Yf |2 − τ(f). (2)

Since σ̂(f) is the estimated power spectrum of clean speech,
|X̂f |2, Eq. (2) is basically power spectral subtraction. It main-
tains a linear relation between noisy speech, noise and clean
speech. Therefore, it is also called linear spectral subtraction
(LSS).

Berouti et al. [7] introduced an oversubtraction factor, α
with the original intention of reducing the effect of musical
noise caused by spectral subtraction. This parameter is an
SNR-dependent parameter. The spectral subtraction formula
becomes:

|X̂f |2 = |Yf |2 − α(SNR)|Nf |2. (3)

Since the introduction of αmakes the subtraction nonlinear, it is
called nonlinear spectral subtraction (NSS). Zhu and Alwan [8]
reported that this factor also compensates for nonlinear relation
between noise and speech. Since there exists no consistent ways
to optimize α, it is usually determined heuristically.

3. Q-Gaussian distribution
Recently, Tsallis has introduced a theory of non-extensive
statistics in the field of statistical mechanics [6]. This the-
ory generalizes Boltzmann-Gibbs statistics by utilizing q-
exponential function:

expq(x) = (1 + (1− q)x)
1

1−q , (4)

and its inverse, q-logarithmic function:

logq(x) =
x1−q − 1

1− q . (5)

These functions asymptotically approach exponential and nat-
ural logarithmic functions as q approaches 1. They are non-
extensive when q 6= 1 [9]. In the non-extensive framework,
entropy is redefined:

Sq = −k
∫
pi(x) logq pi(x). (6)

This entropy is called Tsallis entropy. It is a generalization of
Shannon entropy.

A q-Gaussian distribution can be obtained by maximizing
the Tsallis entropy in a similar way as a Gaussian distribution
can be derived from Shannon entropy. The density function for
a q-Gaussian distribution with zero mean and variance λq is
defined by:

Pq(Y ) =
AqBq√
λq

expq

(
−
B2
q |Y |2

λq

)
, (7)

where Aq is a normalization term and defined as:

Aq =


Γ
(

5−3q
2−2q

)
Γ
(

2−q
1−q

) √ 1−q
π

−∞ < q < 1

1√
π

q = 1

Γ
(

1
q−1

)
Γ
(

3−q
2q−2

)√ q−1
π

1 < q < 3,

(8)

and Bq is a scaling factor and in a normalized distribution
Bq = 1√

3−q . Figure 1 shows the probability distributions of
q-Gaussian for several q-values. The q-Gaussian distribution is
a compact support distribution when q < 1 and a heavy-tailed
distribution when 1 < q < 3. The q-Gaussian distribution is
identical with the Gaussian distribution when q = 1.

In this non-extensive framework, the q-value is used to rep-
resent the degree of complexity [10] of a system. However, up
to our knowledge, an automatic method to optimize q does not
yet exist. Usually, in the implementation, it is chosen empiri-
cally.

4. Q-Spectral subtraction
In this section we derive our proposed method. We assume
that the spectral component of noisy speech follows the q-
Gaussian distribution with variance νq(f). Let YR = Re(Yf )
and YI = Im(Yf ) be the real and imaginary parts of the speech
spectrum respectively. Both YR and YI follow q-Gaussian and
are identically distributed with variance νq(f)/2. Then, the
probability density functions for YR and YI are as follow:

Pq(YR) =

√
2AqBq√
νq(f)

expq

(
−

2B2
q |YR|2

νq(f)

)
, (9)

Pq(YI) =

√
2AqBq√
νq(f)

expq

(
−

2B2
q |YI |2

νq(f)

)
. (10)

We assume that the real and imaginary part of each Yf are inde-
pendent since it was reported that their dependency was small
in average [11]. The distribution for noisy speech can be for-
mulated as follows:

Pq(Yf ) =
2A2

qB
2
q

νq(f)
expq

(
−

2B2
q |Yf |2

νq(f)

)
. (11)

Equation (11) is identical with Eq. (1) when q = 1. By differ-
entiating Pq(Yf ) with respect to σq(f), and equating to zero,
we obtain the maximum likelihood estimate, σ̂q(f), as the fol-
lowing:

σ̂q(f) =
2(2− q)

3− q |Yf |
2 − τq(f). (12)

Since, |Xf |2 = σq(f) and |Nf |2 = τq(f), Eq. (12) becomes:

|X̂f |2 =
2(2− q)

3− q |Yf |
2 − |Nf |2. (13)



Eq. (13) is the q-spectral subtraction (q-SS) formula. This
method will be the same as LSS when q = 1.

It can be seen from Eq. (13) that q-SS closely related to
NSS. In q-SS, a factor of 2(2−q)

3−q is introduced. By dividing
Eq. (13) with this factor we obtain:

3− q
2(2− q) |X̂f |

2 = |Yf |2 −
3− q

2(2− q) |Nf |
2. (14)

Since scaling does not affect the performance of speech recog-
nition, we can relate α in Eq. (3) with Eq. (14):

α =
3− q

2(2− q) . (15)

Thus, our q-SS formulation gives a consistent way to estimate
the control parameter α in NSS.

5. Experiments
5.1. Experimental setup

Our proposed method was evaluated in speech recognition ex-
periments using the Aurora-2 database [12]. In this database,
eight types of noise: subway, babble, car, exhibition hall, restau-
rant, street, airport and train station, were added to clean speech
artificially. It has two training conditions: clean-condition and
multi-condition. In this paper, we used the clean condition
training data for training the acoustic model. For testing, this
database provides three test sets: A, B and C where noise is
added at SNRs of 20 dB, 15 dB, 5 dB, 0 dB and -5 dB.

We used 38 dimensional MFCC features: 12 static features,
their 1st-order and 2nd-order derivatives, ∆ log energy and ∆∆
log energy. An HMM-based decoder is used for speech recog-
nition. Each digit is modeled by an HMM with 16 states, left-
to-right, with three Gaussian mixtures for each state.

5.2. Evaluation procedure

In this paper, we implemented the minimum tracking algo-
rithm [13] for estimating the noise spectrum, |N̂f |2. We also
implemented the voice activity detector (VAD) in [14] for noise
updating.

For our evaluation, we also implemented the conventional
NSS method [7], in which the control parameterα is determined
in a heuristic way as:

α =


1 if NSNRf ≥ 20dB,
α0 − 3

20
NSNRf if −5dB ≤ NSNRf < 20dB,

4.75 if NSNRf < −5dB.
(16)

Parameter α0 is the desired value of α at 0 dB SNR. Usually it
is set between 4 to 6. In this paper we use α0 = 4. NSNRf is
the noisy signal to noise ratio:

NSNRf = 10 log
|Yf |2

|N̂f |2
. (17)

To avoid having negative values in the estimate of the clean
speech spectrum, |X̂f |2, we applied the following flooring rule:

|X̂f |2 = β|Yf |2 if |X̂f |2 < β|Yf |2. (18)

Parameter β is usually set between 0.1 to 0.001. We set
β = 0.01. This rule is applied for the three spectral subtrac-
tion methods, LSS, NSS and q-SS.

For evaluation measure, we used a word accuracy rate. For
the Aurora-2 database, the average accuracy denotes the aver-
age over SNR 0dB to 20dB.
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Figure 2: Estimation of q based on the mean square error for
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Figure 3: Gaussian and q-Gaussian distributions fitted to his-
tograms of speech corrupted with subway noise at 0 dB SNR

5.3. Q-Gaussian representation of noisy speech

In this section, we will show how a q-Gaussian distribution bet-
ter fits the noisy speech distribution and estimate the optimum
q. Let S(YR) be the empirical distribution of noisy speech. We
obtain this distribution from the histograms of the real part of a
DFT coefficient from 200 utterances of female speakers for each
SNR condition from Test Set A of the Aurora-2 database. We
only consider a single DFT coefficient (50-th coefficient) from
a total of 256 coefficients. Then, we normalize the histograms
so that the total area of the histograms is 1. Based on the data,
we obtain its variance and S(YRi) where i = 1, 2, ..., n are
the center point of each histogram bin. Then, we calculate the
Pq(YRi) for 1 ≤ q < 3 using Eq. (9). The optimum q, q̃, is
the q-value that minimizes the mean squared error between the
normalized histogram, S(YRi) and the q-Gaussian distribution,
Pq(YRi):

q̃ = argmin
q

1

n

n∑
i=1

(S(YRi)− Pq(YRi))
2 . (19)

Figure 2 shows the estimated q-value for each noise condi-
tions and for each SNR condition. As we can see, the optimum
q-value is higher when the SNR is lower. Figure 3 shows that
the q-Gaussian distribution with q = 1.9 better fits the noisy
speech than a Gaussian distribution (q = 1) does.

5.4. Recognition results

We conducted several experiments to compare the performance
of q-SS to those of LSS and NSS. Figure 4 shows the average
accuracy of q-SS when the q-value is varied from 1 to 2. We
found that when 1 < q ≤ 1.9, q-SS is better than LSS. The
best accuracy is obtained when q = 1.9, where we achieved
17.9% relative improvement compared to LSS. Compared to
NSS, q-SS was also better for some q-values. Figure 5 shows
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Figure 5: Performance comparison (Word Accuracy) of q-SS
with LSS and NSS for different SNR conditions of the Aurora-
2 database

the performance of q-SS for different SNR conditions when q =
1.9. The performance of q-SS was better for all SNR conditions
than LSS, especially for the conditions 0dB to 15dB SNR. From
Fig. 6, the same optimum q-value was found for almost all SNR
conditions except 20 dB SNR.

As shown in Eq. (15), we can relate the nonlinear factor
in q-SS with the oversubtraction factor, α, in NSS. When q =
1.9, we obtain α = 5.5. The results when α is fixed at 5.5 is
shown in Table 1. The slight difference between q-SS and NSS
is because of the flooring process is not scaled as well.

6. Conclusions
We have derived q-spectral subtraction based on the q-Gaussian
distribution assumption for noisy speech. The q-Gaussian dis-
tribution has been shown to fit noisy speech better than a Gaus-
sian distribution. Our speech recognition results showed that
our method is better than nonlinear spectral subtraction when q
is 1.9. It gives a consistent way to estimate the control parame-
ter α in NSS from the spectra of observed noisy speech.

We plan to investigate how to optimize q. We are also in-
terested in extending the q-Gaussian assumption to other tech-
niques used in robust speech recognition such as the minimum
mean squared error (MMSE)-based method.
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