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A 24-membered cyclic decanedisulfide dimer (1,2,13,14-
tetrathiacyclotetracosane) was effectively synthesized by resin-
supported cyclization of 1,10-decanedithiol. Despite the for-
mation of a series of cyclic oligomers, no monomeric
decanedisulfide resulted. The crystal structure of the dimeric
macrocycle was reported.

Macrocyclic molecules have recently drawn great interest
due to the structural uniqueness to form noncovalently bound
molecular architectures such as catenanes and rotaxanes, which
show extraordinary properties unattainable by traditional cova-
lently linked molecules.1­4 To construct such macrocyclic
structures with a sufficient ring size, typically a 24-membered
ring for threading of an oligomethylene or oligooxyethylene
chain as well as dialkylammonium and bipyridinium units,
appropriate end-to-end coupling of a linear molecule is essential.
For this purpose, the reversible conversion of thiol to disulfide is
considered suitable, and the properties of cyclic molecules with
disulfide linkages have been extensively investigated.5­9 More-
over, rotaxane was recently constructed by “clipping” via a
disulfide linkage to form a 22-membered ring.10 Therein, the
optimized combination of the axle and wheel components is a
crucial factor to assemble such supramolecular structures. As
cyclic disulfide molecules including peptides are often prepared
by solid-phase synthesis,11 the dynamics to control the ring size
of oligomers was studied.12,13 Here we report the effective
synthesis of a macrocyclic decanedisulfide dimer (1,2,13,14-
tetrathiacyclotetracosane) by resin-supported cyclization. Inter-
estingly, a series of cyclic decanedisulfide oligomers formed
with exception of the monomeric cycle contrasting the previous
report.14 Furthermore, single crystals of the decanedisulfide
dimer were successfully obtained, and the crystal structure
was resolved to show a 24-membered macrocyclic molecular
architecture.

Resin-supported cyclization of ¡,½-alkanedithiol with
various methylene chain lengths was previously reported to
form monomeric cyclic alkanedisulfide of 6-, 7-, 9-, 11-, 12-,
and 14-membered rings.14 This method allowed for a prefer-
ential intramolecular reaction via the pseudo-dilution effect as
follows. One of the thiol groups of ¡,½-alkanedithiol is first
attached onto the resin. The resulting 1-alkanethiol-appended
resin through a sulfide linkage is reacted with a complex of N-
chlorosuccinimide (NCS) and dimethyl sulfide to induce cy-
clization by the reaction between the activated thiol group and
internal sulfide linkage. In consequence, cyclic disulfide is
liberated from the resin, while the unreacted linear starting
material stays on the resin for easy separation. We therefore
investigated the cyclization reaction in detail by using commer-
cially available 1,10-decanedithiol with a bromo-Wang resin
(Scheme 1).15 First, 1,10-decanedithiol was reacted with a

bromo-Wang resin (0.5­1.5mmol g¹1 loading) in the presence
of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to immobilize one
of the dithiol chain ends. A preformed complex of NCS and
dimethyl sulfide was added to the resin to cause cyclization.
The 1HNMR spectra of the crude mixture of the cyclized
products (Figure S1b)27 in comparison with 1,10-decanedithiol
(Figure S1a)27 showed that the disappearance of a triplet signal
from the thiol protons at 1.33 ppm and downfield shift of the
methylene protons adjacent to the thiol groups from 2.52
(doublet of triplets) to 2.7 (triplets) ppm, indicating the
formation of disulfide bonds. Size-exclusion chromatography
(SEC) of the crude mixture showed a series of resolved peaks,
where the peak area decreased with increasing molecular weight
with a significant proportion of the smallest species, along with
an unresolved broad hump at a much higher molecular weight
region (Figure 1b). This indicated that the formation of smaller
oligomers is favored, but the reaction was not selective for
a single structure, suggesting the intermolecular disulfide
exchange may also have taken place under the reaction
conditions.16,17 The ratio of the smallest product (having
turned out to be a dimer, vide infra):second smallest product
(trimer):third smallest product (tetramer):forth smallest product
(pentamer):fifth smallest product (hexamer):sixth smallest prod-
uct (heptamer) were 63%:20%:9%:4%:2%:1% determined by
the peak areas. Polymeric species appeared as the broad hump
likely formed irrelevant to the resin-supported reaction. Note-
worthy, the smallest product formed had a higher peak molecular
weight (Mp = 300 in Figure 1b), or a hydrodynamic volume,
than the linear starting material (Mp = 260 in Figure 1a).
Considering that a cyclic polymer has a smaller hydrodynamic
volume than a linear counterpart,18,19 this result implied the
absence of monomeric cyclic decanedisulfide despite a small
ring strain energy (ca. 3 kcalmol¹1) of cyclododecane.20 These
suggested that the entropic effect to prefer the formation of
smaller oligomers and the ring strain to circumvent the
construction of the monomeric cycle are both in effect in the
present reaction. Noteworthy, although the reaction conditions
performed in the present study were essentially the same as
those in the literature,14 in which monomeric cyclic disulfide
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Scheme 1. Synthetic scheme of macrocyclic decanedisulfide
oligomers by resin-supported cyclization.
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molecules were reported to be selectively formed, we reprodu-
cibly obtained a mixture of oligomers.

For detailed analysis, each of the six smallest oligomers was
fractionated by preparative SEC. The analytical SEC traces of
these isolated oligomers showed Mp’s of 280, 510, 730, 960,
1200, and 1500 (Figure S2).27 The 1HNMR spectra showed that
the chemical shifts of the signals from the methylene groups
adjacent to the sulfur atoms (2.71­2.68 ppm) and those second
adjacent (1.70­1.67 ppm) shifted upfield as the size of the
oligomers increased (Figure S1).27 Also, the peak at 1.25 ppm
became relatively larger along with the ring size. The FAB mass
spectra of the six smallest oligomers exactly matched calculated
values for the dimer through heptamer of decanedisulfide with
appropriate isotope distributions (Figure S3).27 For example, the
smallest oligomer had peaks at m/z 408, 409, and 410, which
well-matched the calculated isotope distribution of the decane-
disulfide dimer (Figure S3a).27 Based on these results, the
formation of the macrocyclic decanedisulfide oligomers without
the presence of the monomeric form was confirmed.

X-ray diffraction studies are arguably the most important
means to elaborate molecular structures, especially for nontradi-
tional and unique structures owing to the visualization of an
atomic arrangement. Among the series of the macrocyclic
oligomeric products, single crystals of the decanedisulfide dimer
were successfully obtained for crystal structure analysis. The
dimer with high purity was dissolved in n-hexane, and the
solution was cooled to ¹25 °C to give single crystals with
sufficient quality for X-ray diffraction, where the crystallo-
graphic studies even allowed for the determination of the
positions of the hydrogen atoms. On the other hand, the trimer
and larger oligomers did not show sufficient crystallinity to form
single crystals likely due to the ring size.

The crystallographic data of the dimer are shown below.21

The space group is Pccn (#56) with lattice constants of
a = 8.6278(13)¡, b = 28.918(3)¡, c = 9.459(2)¡, and V =

2360.0(7)¡3. A unit cell contains four molecules; a half of the
molecule is crystallographically independent and located on a
general position, and a twofold axis exists at the center of the
macrocycle (Figure 2). The macrocycle is in a rectangle-like
flattened form, where the structure is folded at around the
disulfide bonds (Figure 2a).22 The long and short axes of the
rectangular form of the macrocycle are 12.9 and 3.1¡,
respectively. This conformation is similar to those of large
cycloalkanes (C24H48,23 C26H52,23 and C34H68

24) and uncom-
plexed 30-crown-10 ether,25 suggesting that cyclic molecules
consisting of long methylene or oxyethylene chains, which do
not show any strong interactions, prefer to be packed in this
manner to minimize the energy. On the other hand, the cavity of
dibenzo-24-crown-8 ether, one of typical crown ethers used as
the wheel component of rotaxane,1­4 is rather outspread by the
rigid phenylene moieties.26 The side view of the long axis of the
present decanedisulfide macrocycle shows the zigzag conforma-
tion of the decylene chains similar to the aforementioned large
cycloalkanes (Figure 2b).22­24 The macrocycles are stacked
along the c axis, where adjacent macrocycles in the direction
are staggered by approximately 40° (Figure 2c).

In conclusion, a cyclic decanedisulfide dimer was efficiently
synthesized by resin-supported cyclization. Although a series
of oligomers was produced, no formation of monomer was
confirmed. The macrocyclic structure of the decanedisulfide
dimer was revealed by crystal structure analysis. Since the size
of a 24-membered cyclic structure is known to allow for
threading, coupled with reversible disulfide bonding, the present

(a)

(b)

(c)

Figure 2. Crystal structure of a macrocyclic decanedisulfide
dimer. ORTEP drawing and atomic numbering scheme of the
(a) top and (b) side views.22 (c) Projection onto the ab plane.
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Figure 1. SEC traces of (a) 1,10-decanedithiol, (b) a crude
mixture of cyclized decanedisulfide oligomers, and (c) a
fractionated dimer.
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macrocyclic decanedisulfide dimer as well as other oligomers is
expected to be a versatile component for the construction of
physically entangled molecular architectures such as catenanes,
rotaxanes, and knots.
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