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Abstract

We propose a simple time-discretization scheme for multi-dimensional optimal stochas-
tic control problems in continuous time. It is based on a probabilistic representation for
the convolution of the value function by a probability density function. We show the con-
vergence results under mild conditions on coefficients of the problems by Barles—Souganidis
viscosity solution method. Resulting numerical methods allow us to use uncontrolled Markov
processes to estimate the conditional expectations in the dynamic programming procedure.
Moreover, it can be implemented without the interpolation of the value function or the ad-
justment of the diffusion matrix.

Key words: Stochastic controls, Hamilton-Jacobi-Bellman equations, Viscosity solutions,
Kernel density estimation, Monte Carlo methods.

1 Introduction

We consider the optimal stochastic control problems with a finite horizon T € (0,0) having value
function

v(t,x)
(1.1)

1,X,00 T s xa
= anf B {f(XtT?x’a)ef'Tg(s’X’ oS +/ g(s, X% o) I (X an)dr g g
’ t

for (¢,x) € [0,T] x R™, where the controlled process {X;**} is governed by

(12 {dxgvxv“ = (s, X% a)ds+ o (s, X% o)dWs, s e t,T),

X% =x e R™.
Here, : [0, T] xR" xA = R", 6 :[0,T] xR" xA = R™4 f:R" 3R, g:[0,T] xR"xA - R,

£:[0,T) x R™ x A — [0,0) and A C R*. The conditions imposed on these functions are described
in Section 2 below. The process {W, }o<;<7 is a d-dimensional standard Brownian motion on a



probability space (Q,.7,P) with a filtration {.%, }o<,<r satisfying the usual conditions. The
class .o of controls is the collection of A-valued {.%; }o<,<r-progressively measurable processes
{onfosi<r

One of the main approaches for optimal stochastic control problems is to solve the Hamilton-
Jacobi-Bellman (HJB) equation that the value function should satisfy, and then to construct a
control strategy via the verification argument. For our problem (1.1), the corresponding HIB
equation is given by

(1.3) —dv+F(t,x,v,Dv,D*v) =0, (t,x) €[0,T)xR™,
with the terminal condition v(T,x) = f(x), x € R™, where

F(t,x,r,p,M)

= sup {—,u(t,x,a)Tp - %tr(o(l,x,a)c(t,x,a)TM) +ré(t,x,a) — g(t,x,a)}
acA

forr €[0,T],x e R", r e R, p € R™, and M, a symmetric and nonnegative definite m x m matrix.
Here we have denoted by d, the partial differential operator with respect to the time variable 7,
by D/ the j-th order partial differential operator with respect to the space variable x, and by ¢
the transpose of a matrix c.

Since analytical solutions for HIB equations are rarely available, a number of authors have
been concerned with approximation schemes for the equations or corresponding control prob-
lems. For example, Kushner and Dupuis [18], Camilli and Falcone [7], Pages et al. [21], Fahim
et al. [10], Kaise and McEneaney [14], and Kohn and Serfaty [15]. However, for practical ap-
plications there still remain several challenging problems. First one is that in some schemes the
coefficients of the control problems have to be very restrictive for ensuring its convergence. For
examples, in the finite-difference scheme (see [18]), the diffusion matrix o0 in our notation
should basically be diagonally dominant. Although this restriction can be weakened by consider-
ing the generalized finite-difference that involves a nontrivial adjustment of the diffusion matrix,
we may need a large size of the stencil depending on a problem, as well as the further compu-
tational efforts for the implementation. See Bonnans and Zidani [5], Bonnans et al. [4] and the
references therein. The optimal quantization approach taken by [21] works under mild condi-
tions on the coefficients, in particular, under quadratic growth conditions on f and g. However,
their scheme requires most components of the process {X;™*} being actually control-free. In
[10], they extract an uncontrolled generator from the nonlinearity ', and then use a probabilistic
representation of the HIB equation based on the process associated with such generator. Then
the partial derivatives of the value function in that representation are computed by the expecta-
tions of random variables involving the value function itself via the integration-by-parts. These
tricks cost some strong non-degeneracy conditions on F.

Second problem is computational difficulties in high-dimensional cases. In general, the
finite-difference scheme needs a spatial grid with its size growing exponentially as the dimen-
sion m becomes large. As for the method by [21], the quantization error with respect to an
v-dimensional random variable is known to be O(N~!/) if we denote by N the number of dis-
cretizing points for the random variable. The scheme by [10] can be applied to high-dimensional
problems because it is based on Monte Carlo simulation for computing the conditional expec-
tation, but the kernel density estimation used in this procedure is in general suffered from the



curse-of-dimensionality. The finite-element like schemes studied by e.g., [7] and Debrabant
and Jakobsen [9], often called Semi-Lagrangian schemes, solve the first problem. That is, their
scheme converge to the original value functions under no special assumption on the diffusion
matrix 6o '. The difficulty in their scheme is that they require the interpolation of the value
functions in the state space, and need involved computational procedures for the implementation
in high-dimensional problems (see Carlini et al. [8]).

In this paper, we propose a new time-discretization scheme for the problem (1.1). It is based
on a probabilistic representation for the convolution of v by a probability density function. In
Section 2 below, we first give a rough derivation of the semi-discrete scheme, and then prove
its convergence results by the viscosity solution method presented in Barles and Souganidis [3].
With the choices of the kernel and with the estimation methods for the conditional expecta-
tions, various numerical methods can be generated. Resulting numerical methods allow us to
use uncontrolled Markov processes to estimate the conditional expectations in the dynamic pro-
gramming procedure. Moreover, they can be implemented without the interpolation of the value
function or the adjustment of the diffusion matrix. We present one of possible methods with
Gaussian distributions in Section 3. A numerical experiment is also performed there. We focus
on an artificial problem having two-dimensional state space, where an analytical solution for
(1.3) is easily obtained.

2 Approximation of the value function

First we introduce some notations. Throughout this paper, we write |a| = (¥, ; a% j)l/ 2 for a
matrix a = (a; ;). By C we denote positive constants that may not be necessarily equal with each
other.

We discuss the general stochastic control problem (1.1) under the following assumptions on
the coefficients:

Assumption 2.1. (i) The functions u, o, f,g,¢ are Borel measurable with respect to (z,x,a)
and continuous with respect to (¢,x) uniformly over a.

1) There exists a positive constant K such that, for every s,z € [0,T], x,y € R" and a € A,
p y Y

\u(t,x,a)|+|o(t,x,a)| < K(1+ |x]),
],u(s,x,a)—[,L(t,y,a)|+|6(s,x,a) _G(tay7a)| SK"S_I‘ +K|x_y|a
|f(O)|+|8(t,x,a) [+ |€(t,x,a)| < K.

With these conditions, the controlled stochastic differential equation (1.2) has a unique strong
solution for each control & € <7 (see, e.g., Fleming and Soner [11] or Krylov [16]) and the value
function v in (1.1) becomes bounded. Moreover, it is known that v satisfies the viscosity solution
property. To be precise, recall that an R-valued, upper-semicontinuous function « on [0,7] x R”
is said to be a viscosity subsolution of (1.3) if, for any (7,x) € [0,7) x R™ and any smooth
function ¢ such that u — ¢ has a local maximum at (,x) we have

—8,(p(t,x) —|—F(t,x,u(t,x),qu(t,x),Dz(p(t,x)) S 0.



Similarly, an R-valued, lower-semicontinuous function u on [0, 7] x R™ is said to be a viscosity
supersolution of (1.3) if, for any (¢,x) € [0,T) x R™ and any smooth function ¢ such that u — ¢
has a local minimum at (z,x) we have

—0,(1,x) + F (1,%,u(t,x),D9(t,x), D*p(1,x)) > 0

We say that u is a viscosity solution of (1.3) if it is both a viscosity subsolution and a viscosity
supersolution of (1.3). Then, Theorem 4.3.1 in Pham [23] tells us that our value function v
is indeed a viscosity solution of (1.3). In addition, by Theorem 4.4.5 in [23] the following
comparison principle holds: for every bounded, upper-semicontinuous viscosity subsolution u of
(1.3) and bounded lower-semicontinuous viscosity supersolution w of (1.3) such that u(7,x) <
w(T,x), x € R™, we have

u(t,x) <w(t,x), (t,x)€[0,T]xR™.

Let {t;}}' , be a fixed set of time indices such that 0 =1y <1, < --- <t, =T with h =
ti—ti_y =T/n,i=1,...,n. We consider n sufficiently large so that 4 € (0,1]. To find a time
discretization scheme for the value function, first we write down the dynamic programming
principle as follows:

v(t;,X)

it ti+1 " X
— inf E |v(fio, x5 e—j,i'“E(s,X}‘x’“,aA.)ds_’_ " g X50 e—j,;f(r,X,”‘a7a,<)drdS .
i+1, 8\8, A , s
I

Py lit1
Replacing X;"}"* by its Euler-Maruyama approximation X;""}** defined by

X = x4 u(t,x,a)(s—t)+o(t,x,a)Vs—tG, t<s<t+h, acA,

formally we have

lit1

ol X, 1 s X,
E |v(t: Xtivxva e—j,:.'“f(&X.sL a,as)ds_i_ i s Xt,-,x,(x a e—fti«ﬂ»(’ﬂxﬁ a7ar)d”ds
i+1 8\S, Ay s Us
t,

~F |:V(li+1 7)211;,;:)16,061,- )] e*hf(li,X,OCti) + hg(t,-,x, a[i)‘
Here, G = (Gy,...,G,)* is a random variable such that G;’s are mutually independent and that
(2.1) E[G]=0, E[GiGj] =&, E[|G’] <o, i,j=1,....d,

where §; ;j denotes the Kronecker’s delta.

Now we consider the convolution ¢ x v(#;,1,-) by some kernel ¢" to approximate v(t;,1,-).
To this end, let ¢ be a probability density function on R with full support and finite first moment,
i.e., ¢(y) > 0forall y € R™ and

/ z|¢ (2)dz < os.
Rm
Then define

_ 9(x/A(h)) m
¢h(x).—W, xeR™,
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where A is a positive function on (0, 1]. Then, for any bounded function u, the convolution ¢h *U
can be represented as

_ ¢ ((x+S—2)/A(h))
(@t 8) = [ a0 T

:/Rmu(x—i—l(h)z)(l) (/Ifh)—z) dz, x,&eR".

Let 2" be a subset of R™ satisfying SUPg e S g @ (& /A (h) —2)dz — 0, h ™\, 0, and let v be
an another probability density function having 2" as the support set. Then, roughly speaking,
(¢"+u)(x+ &) is approximated by [, u(x+ A(h)z)¢ (& /A (h) — z)dz and this can be written as

/@ILM(X—Fl(h)ZW (lfh) —Z> dz = /@h u(x+A(h)z)o (lfh) —z> gzggdz
=2 |utcs 20290 (7552 ) iz

t,.x,a 1

where Z" is a random variable with probability density y”, which is assumed to be independent
of G. Thus, denoting H,™ = pi(t,x,a)h+ o (t,x,a)v'hG, we have
ueAmze (B ) 1| e
A(h) yh(zhy |
Ht.,x.,u 1
A (1) Z" h g 1
vt ())¢<zw> Vi)

The last expression might be useful since the argument of u is control-free. Then, as A (k) \, 0,

the quantity E[(¢" xu)(X/7;")] converges to E[u(X;";")] under mild conditions on u, so we expect

that the scheme defined by

Ekw*m@mﬁ}wEF

=K

Vi (t,x) = "V (i1, )] (11,x)

with

@ [u)(1,x)

= inf {IE
acA

gives an approximation for the value function v.
Let 3 be a function on (0, 1] defined by

Ht, a
2.2 h) = E / h 7 )dz.
(2.2) B(h) o Rm\@,ﬁ ( 20 z> z

acA

u(x+ 2 ()20 (;Ih( h’) - zh> i (12,1)] e M0x) 4 pos x,a) }

Then we are able to state the following convergence result.



Theorem 2.2. Let v: [0,T] x R” — R be defined by (1.1). Suppose that Assumption 2.1 is
satisfied. Suppose also that
A(h h
lim B

AN0) h

Then,
Vit x) — v(t,x)

as h ™\, 0, and t; — t, uniformly on any compact subset of R"™.

Proof. First, the functions ¢ and y” are positive, so we have
(2.3) @ [u1](1,x) < ®"[us](t,x)

for bounded functions u, up with u; < u,.
Next, it is straightforward to see that

[V (1;,x)| < supE | Vi (i1, Z’;’f“+€)l¢h(€)d£+hsu§|g(n,x,a)l
ac

acA
< sup [V!(t31,x)| +hsup |g(1i,x,a)|.
X' eRm acA
Thus, by Assumption 2.1,
(2.4) Wit x)| < (1+T)K, he(0,1], x€R™, i=0,1,...,n

Let u be a smooth function with bounded derivatives. Then,

S| =

{Cbh[u(s—i-h, I(s,y) — u(s,y)} —{Qu(t,x) —F(t,x,u(t,x),Du(t,x),Dzu(t,x))}‘

O fu(s+h, )] (s,) — inf E [u (s + n,X37) ‘““’y’“)+hg(s,y,a)]'+
ac

i 3‘\’—‘

(2.5)
’h {infE [ (s+h, X720 e Ml +hg(s,y,a)} —M(S,y)}

acA

— {Qu(t,x) — F(t,x,u(t,x),Du(t,x),D*u(t,x)) } ‘

Since u has bounded derivatives, the first term of the right-hand side in (2.5) is at most

lsupEH(‘P su(s+h,- ))( ;ﬁha) —M(S+h ng+yha)

haEA
H
—i—/Rm\@h\ u(s+h,y+A(h )\(l)( 20 )—z)dz}

< E [ s+ R0+ Ah)2 ) —us+h R0t S B

€ (A (h)+ B(R))




On the other hand, by Assumption 2.1 and by the standard application of Taylor’s theorem, we
see that the second term of the right-hand side in (2.5) converges to zero as (s,y) — (¢,x) and
h 0. Moreover, we find that

[P [u(s +h, ) + ] (5,) = P"[u(s +h, )] (s,5) | < [elB(h)
for every ¢ € R. Therefore, for (z,x) € [0,T) x R™,
tim (@ fuls )+ €l(5,9) — (u(5.9) +¢)
(2.6) c—>011\0

= Ju(t,x) — F(t,x,u(t,x), Du(t,x),D?u(t,x)).
Next, notice that
V(T —hox+2) - f(x)]

<E [ suplf (X;’fh,xﬂ,a +7L(h)§) e MI=hxi2a) _ r() ¢(E)dE + Kh.

Rm acA

Then, for fixed &€ € R™ and o € Q, it follows from Assumption 2.1 that X7 ") + A (h)&
lies in a compact set in R” that is independent of a for sufficiently small % and |z|. So the
continuity of f implies that

sup |/ (&7 75 (@) + A(1)E ) e M40 — f(2)| 50, AN0, 0.

acA

Hence, by the dominated convergence theorem we obtain

2.7 1 T—h R™.
(2.7) h\(gr?HXV( ) =flx), xe

We have verified the monotonicity (2.3), the stability (2.4), the consistency (2.6), and (2.7).
With these properties and the comparison principle, we can apply the viscosity solution method
as stated in [3] to prove our convergence result. Here, for completeness we give a full proof of
the convergence. To this end, we consider

¥(t,x) = limsupV'(s,y), (t,x) € [0,T] x R™
(5.3)=(t.x)
N0

and show that v is a viscosity subsolution of (1.3). Let ¢ be a smooth function with bounded
derivatives such that v — ¢ has a local maximum at (¢,x) € [0,7) x R™. Then, take r > 0 such
that

(V=9)(s,y) <(V=9)(t,x), (s,y) € B(t,x).
where B, (t,x) denote the closed ball at (z,x) with radius r. Next, for (s,y) € B,(t,x) set
(p(S’y) = (P(s,y) - ((p(t,x) —V(t,x)) + |S—t’2 + |y_x|2'

It follows that (,x) is a strict maximum of v — @ on B,(t,x). Also, for (s,y) outside the ball, we
choose @ so that @(s,y) > 2sup,¢(q 1] [V'(s,y)| and that @ is still a smooth function on [0, 7] x R™

7



with bounded derivatives. Thus (7,x) is a global strict maximum of ¥ — @. By abuse of notation,
we write ¢ for @.
By definition of v, there exist iy, (Sy,9n) € B,(t,x) such that, as N — eo,

hy =0, (Sn,9n) = (t,x), V'V (S, Iv) — V(%)

Take sy and yy so that

(2.8) ™ —@)(syyv) = sup (VY —@)(s,y) — hy.
(s,y)€[0,T] xR™

The sequence (sy,yn), N > 1, can be taken from the bounded set B,(¢,x), so there exists a limit
point (7,%) € B,(t,x) possibly along a subsequence. Thus, denoting cy = (V¥ — @) (sy,yy), we
have

hy ~

—@)(Sn,yn) <liminfey < limsupey < (v — @)(7,X).
N—eo N—soo

0={—¢)(t,x)= lim (v

N—oo

Since (,x) is a strict maximum, we deduce that (7, %) = (¢, x). Therefore, it follows that (sy,yy) —
(t,x) and cy — 0.
By (2.8), for any y € R",

@(sn+hy,y) + oy +hy >V (sy 4+, y).

Thus, using the monotonicity (2.3),

1

1
7q>hN[(p<sN+hN7‘) +cN+h12V](SN7yN) > 7vhN(sN7yN)
hN hN

1
= E(‘P(SN»)’N) +en+hy) —hy.

Combining this with the consistency (2.6), we find that
al(p _F(t7x7 (p7D(P7D2(p) > 0.

This means the subsolution property of V.
By a similar argument, we can show that
v(t,x) = liminf v (s,y), (t,x) € [0,T] x R™

(5.3)=(t.x)
N0

is a viscosity supersolution of (1.3). The comparison principle now implies that v < v. However,
by definition, v > v. Hence we obtain v = v, as asserted. O

To obtain the rates of convergence of our schemes, we impose more regularity conditions on
the coefficients.

Assumption 2.3. There exist positive constants K’ such that, for every s,7 € [0, T}, x,y € R™ and
acaA,

() = FO)|+ g (s,x,a) — &(t,y,0)| + [€(s,x,a) = £(t,y,0)| < K'|x—y|+ K'|s —1]'/2,
u(t,xa) <K', |o(t,xa) <K'



Theorem 2.4. Let v:[0,T] X R" — R be defined by (1.1). Suppose that Assumptions 2.1 and
2.3 are satisfied. Suppose also that E[G}] =0, E[G}] < e, i=1,...,d. If A and B satisfy
A(h)+ B (k) < Ch'/%, then we have

Orgla<xn|v (t;,x) —v(1;,x)] < Ch'/°, xeR™.

Furthermore, if A (h) + B(h) < Ch*/? then we obtain
—Cch'/® < v(ti,x) =V (1;,x) < Ch'/*, xeR" i=0,1,...,n

Proof. To show the first assertion, let A and B satisfy A(h) + B(h) < Ch’/®. We consider the
another scheme 7" defined by, for x € RY,

V' (t,x) = ;gE [ (X )e —hi(tix.a) +hg(ti,x,a)] , i=0,1,...,n—1,
(T, x) = f(x).
Then, by Theorem 5.7 in Krylov [17], we have
v(t,x) — " (t,x)| < Ch'/®.

Moreover, Lemma 5.8 in [17] implies that, for every € > 0 we can find a function #™¢ on [0, 7] x
R™ satisfying

| (2,x) =¥ (2,y)| < Clx—yl,  |u"(1,x) — 7" (1;,x)| < Ce.
In view of these facts, we see

V(1,5) =V (1,0)| < [l ) = P (a1, 2)] 1V 01,2) = 71,
<Ch/OsupE [ (11 X+ A()E) ~ (11,8 9(E)

acA
H*
+PE fogn 1+ 2010 (l_ )
<Ch1/6+supE {‘Vh (li+17X+k (h)& ) (ti+1vx+l(h)§)‘
acA

[ (11, X+ A(R)E) — " (11, %) | +Ce } 9 (E)dE +CB (k)
< ChVO + sup V! (ti1,y) = 7 (ti1,5) |+ C(A(h) + € + B(h)).
yeRY

Here, we have denoted X = X' ” a

and x € R"

. Repeating these arguments, we have, for any i =0,1,...,n

v(t;,x) =V (t;,x)| < ChY® +C(A(h) + €+ B(h))/h.

Taking € < h!/ 6 we obtain the desired result.
To prove the second claim, let A and B satisfy A(h) + B(h) < Ch*/?, and let &(z,x) be a
C> positive function on R ! with support set [0,1] x {x € R™ : |x| < 1} and with unit integral.



Proposition 2.1 in Barles and Jakobsen [2] tells us that v is actually Lipschitz in x and 1/2-Holder
continuous in 7. For a given € > 0, we consider the function {¢ and w® defined by

CE(t,x) =& ™28 (e, %), wo(t,x) = (v £5)(1,x).
Then,
(2.9) [v(t,x) —w®(t,x)| < Ce, |8,€°8f11 ---8,£jjwe(t,x)| < Ccgl 2Lt

where Bf denotes the ¢-th order partial differential operator with respect to a variable y. Using
these facts and the moment conditions on G, we can show that, as in the proof of the previous
theorem,

DM wé(t +h,-)](t,x) — wé(t,x)
h
h2h

he es € &3

— Wt (t,x) + F(t,x, wE(t,x), DwE (1,x), D*w® (1,x))

(2.10)
<C

In addition, it follows from the appendix in Barles and Jakobsen [1] that w® is a subsolution of
(1.3). This and (2.10) imply

Wg (tivx) - cI)h [Wg(tiJrlv )] (ti’x)
< w(1;,x)
(2.11) — D" WE (1141, )] (11, X) 4+ IwE (t1,x) — F (1, %, W (1;,x), DWE (t;, x), D*WE (1;, X))
}3/2 h2
<C—+C—.
& &

Since V'(T,x) = v(T,x), from (2.9) we have wé(T,x) < V'(T,x) 4+ Ce. Taking ®" in the both
side, we obtain
O [wE(T, )] <V'(t,_1,x) +Ce.

Combining this with (2.11), we have

h3/2 h2
W (tp_1,x) < V'(t,_1,x)+Ce +C——+C 5.
Repeating this argument, we deduce that, fori =0,...,n,
h2 o h

€ h
w (ti,x) <V (li,x)—l—CS—i—CT +CE'

Therefore, by (2.9), for any i = 0,...,n and x € R",
N N hl/Z h
v(ti,x) =V (t;,x) < v(t;,x) —wE (t;,x) +wE (t;,x) =V (t;,x) <C | e+ — T

Then, the minimization of the right-hand side over & > 0 gives v(;,x) — v (t;,x) < Ch'/4, as
required. O

10



3 A fully numerical method

Throughout this section, we suppose that Assumptions 2.1 and 2.3 are satisfied. We take the
R?-valued random variable G = G™ as an optimally quantized random variable in the sense
that GM+4 is a minimizer of

E[IX -al]

over finite random variables G with M-supporting points, where g > 1 and X is a d-dimensional
standard Gaussian random variable. We refer to Graf and Luschgy [12] for a detailed account
of optimal quantization theory, and to Pagés and Printems [22] for numerical procedures for
obtaining G2, Set

GMQ) ={n,....,mu}, P(GMY=y)=p;, i=1,....M.

In most of numerical realizations, the random variables G¥+9’s approximately satisfy the moment
condition (2.1). A reason why we use the quantization is that we need sufficiently many points of
H;l’x ““ /A (h)’s near its mean to be shot by Monte Carlo simulations of Gaussian random variables,
with less number of computations. See the comment made just after (3.2) below.

We choose the function A as

A(R)/h—0, h\,0.

For example, we may take A (h) = h / (— logh).
To describe the reahzatlons of H , we put

T[,-h(t,x,a) = u(t,x,a)h—i—cr(t,x,a)\/ﬁyi, i=1,...,M.
As the functions ¢ and y", we examine

o~ DP/2 o DI/ (h)

h m
- D R
(2r)y” Cre(ry 7S

vi(y) =

where T(h) > 0.
Let Z be an m-dimensional standard Gaussian random variable. Then, we consider the oper-
ator ®"[u] approximating ®"[u], defined by

M
- . _
D" u](t,x) = ;relﬁ{j;p]E
efhﬂ(t,x#)
X —
yh (« /r(h)Z)

Here, 0(h) is a positive function on (0, 1] such that 6(h) — oo as A\, 0. Furthermore, we
introduce the uncontrolled Markov process {Si}}_, defined by

Sk+1 Sk+)y \/ Zk+17 = ,...,I’l*l,

u (A0 V/T0)Z) 6 (W _ Fz)

+hg(t,x,a)}.
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where {Z; }}_, denote an i.i.d. sequence with Z; ~ Z. With this process, dh [u] can be written as

& [u](1,x) =
2
f XCl
inf m/2§ E | u(S Uil "’ —VT(h)Z
3.1) ;IGIA{ pi k+1 CXP( 2' k+1

1
+2’Zk+1‘2_h€(tk7x7a)) Sk=x +hg(tk7x7a)}'

To compute the conditional expectation in (3.1), we use the kernel density estimators with
samples from Monte Carlo simulation. We refer to Longstaff and Schwartz [20], a landmark
study of this approach in American option pricing, and to Bouchard and Touzi [6] and Lemor et
al. [19] in the context of backward stochastic differential equations. It should be mentioned that
this regression method is also adopted in [10] for the numerical study of HIB equations.

In our framework, an estimator KV [Y | S, = x] for E[Y | Sy = x] can be taken as

, )
jjv—lym’(<x A )
EN[Y | Sy =x] =

N ” fo,((j)
j=1 A

if the denominator is nonzero. Otherwise the estimator is defined as zero. Here,

2
nh tk,x a) 1
Y = u(Sgy1)exp —2 " = V1) Zs1 | + E\Zkﬂlz :
Yy, . yW), Z,El), . ,Z,EN), and S,El) . ,S,({N) are samples from Monte Carlo simulations for Y,

Zi, and Sy respectively, and A denotes the bandwidth for the kernel function k. A typical example
for k is the naive kernel defined by

K(z) = 1{\z\§1}7 zeR™.

We refer to Gyorfi et al. [13] for other estimators and its convergence analyses.
Consequently, our scheme can be implemented as follows: Vn(v) =f (Sflv)), v=1,...,N,and

(v) _ . m/2M al () n; (fk, k ,a
Vi :}gﬁ t(h) Zl’i ZVkHeXP 2 — gy V7 Zk+1
=l j=1

(v) () N v) )
1) W) Si =S 5. =5,
(3.2) +§|ZKI+1‘ —M(tk,Sk ,a) K T j:ZlK T

+hg(tk,s,ﬁv),a)}, v=1,....N, k=0,....n—1.
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We note that in general we need to set T(h) large so that the values

2

. n, (tk7 k ,Cl
exp 2 71( V7T Z

v)

actually contribute to the computation of V,,
As for control strategies, a minimizer a,(cv) of the right-hand side in (3.2) is a numerically
optimal control at (7, S,({v)). In case one needs the values of reasonable control at given grids, the

average values of a,EV) distributed around the each grid point can be used.

Example 3.1. As an illustration of our scheme, we examine the test problem described by

T=01, d=1, m=2, A={a=(a,a)" €eR*:a}j+d}=1},
u(r x) 0, o(t,x,a)=V2(ar,a)",
f(x)=(14+T)Tsinx;sinxy, £(t,x,a) =0,
g(t,x,a) = =2(1+1)Tajap cosx cosx; 417 sinx; sinx,

fort € [0,T], x = (x1,x2)*, and a = (a1,a2)* € A. This example is adopted in [9]. It is straight-
forward to see that the value function v in this problem is explicitly given by

v(t,x) = (1 +1)T sinx; sinxy,

and that any point in A is an optimal control.

In implementing our numerical method (3.2), we take 2 = 0.01, and set A (h) = h/(—log(h))
and t(h) = (v/2h/A(h))?. With this choice we can expect that Monte Carlo paths shoot most
realization of 7;’s since the set {n;(t;,x,a) : x € R™ a € A} isincluded in {y € R™ : [y| < v/2hy:}.
We use N = 3 x 10° samples to estimate the kernel density with the naive kernel and A = 0.1.
The quadratic quantization with M = 100 points is adopted for G ). The initial value of t??
¢

controlled process is set to be (/2,7/2)*. The resulting average absolute error between V.
and v(,S\), £=1,...,N, at k = 9 is 0.0064.

Figure 3.1 compares v(f,x) and an estimated value function using Vk(z)’s at k =9. We use
the average values of Vk(f)’s in suitable clusters to estimate the value function at uniform grid
points. The figure indicates that our method on the whole underestimates the analytical solution.
This may be because the number of Monte Carlo paths shooting 0’ (#,S k ) a a)/A(h)’s is still

insufficient.
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Figure 3.1: The analytical (left) and estimated (right) value functions at # = 0.09 around x =

(m/2,m/2)*".
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