TER2 ERIgALUS-FURI I

Tokyo Tech Research Repository

Jo /0000
Article / Book Information

Title A liability tracking approach to long term management of pension funds

Authors Masashi leda, Takashi Yamashita, Yumiharu Nakano

Citation Journal of Mathematical Finance, Vol. 3, , pp. 392-400

Pub. date 2013, 8
P
Creatve Commons | Seenetpage.

Powered by T2R2 (Tokyo Institute Research Repository)


http://dx.doi.org/10.4236/jmf.2013.33040
http://t2r2.star.titech.ac.jp/

License

©09]

Creative Commons : CC BY-NC



http://creativecommons.org/licenses/by-nc/3.0/

Journal of Mathematical Finance, 2013, 3, 392-400

o5 Scientific
http://dx.doi.org/10.4236/jmf.2013.33040 Published Online August 2013 (http://www.scirp.org/journal/jmf)

#3% Research

A Liability Tracking Approach to Long Term
Management of Pension Funds

Masashi leda’, Takashi Yamashita®, Yumiharu Nakano®
Graduate School of Innovation Management, Tokyo Institute of Technology, Tokyo, Japan
2The Government Pension Investment Fund, Tokyo, Japan
Email: ieda@craft.titech.ac.jp

Received May 28, 2013; revised July 2, 2013; accepted July 11, 2013

Copyright © 2013 Masashi leda et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

We propose a long term portfolio management method which takes into account a liability. Our approach is based on
the LQG (Linear, Quadratic cost, Gaussian) control problem framework and then the optimal portfolio strategy hedges
the liability by directly tracking a benchmark process which represents the liability. Two numerical results using em-
pirical data published by Japanese organizations are served: simulations tracking an artificial liability and an estimated
liability of Japanese organization. The latter one demonstrates that our optimal portfolio strategy can hedge his or her
liability.

Keywords: Pension Fund Management; Long Term Portfolio Optimization; Quadratic Hedging; Stochastic Optimal
Control; Hamilton-Jacobi-Bellman Equations; LQG Control

1. Introduction

In the management of pension funds, a long term portfo-
lio strategy taking into account a liability is one of the
most significant issues. The main reason is the demo-
graphic changes in the developed countries: if the work-
ing-age population is enough to provide for old age, the
liability is a minor issue in the portfolio management of
pension funds. Since the life expectancy has increased in
recent decades, it becomes insufficient to provide for old
age. Furthermore, the low birth rate continues and drives
up this problem for decades. Thus pension funds face a
challenging phase to construct long term portfolio strate-
gies which hedge their liabilities.

A lot of pension funds except a few ones [1] determine
their portfolio strategies by the traditional single time
period mean variance approach which excludes an eva-
luation of a liability. Its intuitive criterion attracts man-
agers of pension funds. However the single time period
approach is unsuitable for a long term portfolio manage-
ment in the sense that it is unable to change the strategy
excepting the initial time. The multi time period ap-
proach which arrows the change of the strategy has a
problem that the computational complexity grows expo-
nentially. Hence if we employ this approach, we are usu-
ally unable to obtain the optimal portfolio strategy in rea-
listic time.

Copyright © 2013 SciRes.

Therefore the aim of this paper is to propose a long
term portfolio strategy which 1) involves an evaluation
of a liability, 2) admits changes of the strategy at any
time, and 3) is obtained in realistic time. To tackle this
problem, we employ the LQG (Linear, Quadratic cost,
Gaussian) control problem (see, e.g., Fleming and Rishel
[2]). The LQG control problem is a class of stochastic
control problem and is able to provide the control mini-
mizing the mean square error of a benchmark process
and a controlled process. Roughly speaking our tactic is
that we compute the optimal portfolio strategy with the
benchmark process which represents the liability. Then
we can track the liability by using our optimal portfolio
strategy. Although it is difficult to obtain the solution of
stochastic control problem in general, the LQG control
problem has the analytical solution which assures that we
are able to obtain the solution in realistic time and thus it
meets our purpose.

A continuous time stochastic control approach is one
of the most popular methods to obtain the suitable long
term portfolio strategy. The literature about this approach
is quite rich. The papers treating the management of pen-
sion funds are, for instance, as follows: Deelstra et al. [3]
and Giacinto et al. [4] discuss the portfolio management
for pension funds with a minimum guarantee; Menoncin
and Scaillet [5] and Gerrard et al. [6] deal with the pen-
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sion scheme including the de-cumulation phase. Our stu-
dy is on the cutting edge in the sense that deals with
tracking liabilities directly and constructs a suitable long
term portfolio at the same time.

The organization of the present paper is as follows.
We introduce continuous time models of assets and a
benchmark in Section 2. To fit in the LQG control prob-
lem, they are defined by the linear stochastic differential
equations (SDEs). We mention that our portfolio strategy
is represented by the amounts of assets. In Section 3, we
define a criterion of the investment performance and
provide the optimal portfolio strategy explicitly. Several
numerical results are served in Section 4 Throughout the
section the parameters related to the assets are deter-
mined by an empirical data provided by the Government
Pension Investment Fund in Japan. The simulation using
an artificial data is discussed in Section 4.1 and this re-
sult gives conditions that our optimal portfolio strategy
works well. Section 4.2 provides a case study using an
empirical estimation published by the Japanese Ministry
of Health, Labour and Welfare. It demonstrates that our
strategy is able to hedge the liability well.

2. Continuous Time Models of Assets and a
Benchmark

In this section, we present mathematical models of assets
and a benchmark. The market which we are considering
consists of only one risk-free asset and n -risky assets
and we have m -benchmark component processes.

Let (Q FAR} }P’) be a filtered probability space
{W }1>0 be a d dlmensmnal Brownian motion where
d=n+m and £*(g xL) be a space of stochastic
processes {Z,}_, which satisfy

B[ (2 ot <o

We denote price process of the risk-free asset, those of
the risky assets and the penchmark component processes
by S¢S =(S,+S) and Y, =(Y!-- ") respec-
tively, where the asterisk means transposition. To fit in
the LQG control problem, we assume that S°,S, and
Y, are governed by the following SDEs:

dsy
—L=r(t)dt,
s () M
Sy =5, €R,
ds; j

=b'(t)dt dw/’, i=1,2,---,n,
oY e Sot o @
S, =s; R,
dY, = (a(t)Y, +h(t))dt+o, (t)dw,, @)
Yo=Y, €R",
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where r:[0,T] >R, b:[0,T]>R", o4 :[0,T]—>R™,
a:[0,T]>R™™, h:[0,T] >R" and
oy :[0,T]>R™ are deterministic continuous func-
tions and T <oo represents the maturity. Coefficients
r, b' and o4 stand for the risk-free rate and the ex-
pected return rate of the i -th asset and the volatility.

Let a class of portfolio strategy A be the collection
of R"-valued F -adapted process {u} __. Wwhich

satisfies
B[ [l o] <o

& €R" be the amount of the risky asset held by an
investor at time t,and X, be the value of our portfolio
at time t. Then the amount of the risk-free asset held by
the investor is represented by X, —Zi":l;‘ . Hence,
{X}ouer 15 governed by

dS' ds;
dX th t| [ thj SO 1 {§I}O<I<T A’ (4)
Xy =X, = So +58,1,
where 1= (1,~--,1)* e R" . To emphasize the initial wealth

and the control variable, we may write X, = X/~
The solution X, of the SDE (4) is given as follow:

X, = glhre)a X, + jteﬁr(“)d” (b(s)-r (s)l)k £.ds

+_[e Cfs S

Moreover since r, b, and oy are continuous func-
tionson [0,T] and e A, X, isin £ (u xP):

U detJ<ED ( eh'l ) dt}

E{j;(j;efs"”)d“ 3)_r(s)1)*§sds)zdt}

[j(je &og( dW)dt}

<TK, X2 +T2K1E[ [ ;’SdsJTKZEUOTf: 11*§Sds}
< oo

where K;,, K, and K, are constants.

3. Optimal Investment Strategy

We define the criterion of investment performance J
by

e8| [na) v -xo)

2 )
+72(AY; —xTXO'f) } Ee A,
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where », >0 and y,>0 are constants, AeR" is a
constant vector, and a:[0,T]—R" is a deterministic
continuous function. Hence our investment problem is to
find the control & st. J [5} <J[&], &eA.Sincethe
performance criterion is represented by quadratic func-
tions, our investment problem becomes the LQG control
problem. We determine a(t), A and the parameters
of Y, to be able to regard a(t ) Y, and AY; as a li-
ability.

The optimal portfolio strategy is represented in the
following form:

Theorem 1 We define the portfolio strategy cf as
follows:

e g7 (o))
<[ (b(t)-r(t)1) (6)
(2F® (1) X, +2F” (1)Y, +G° (1))

+20, (t)oy (t)F° (t)]

where F®,G°:[0,T]>R and F°:[0,T]>R" are
solutions of following ordinary differential equations
(ODEs):

&=

d
EF°°+71+2r(t)F°°

B(1) (o (o (1) ) B(1)F” =0 )

FOO (T):}/zi

b (1) (o (t)os (1)) B(1)F(t)=0, ®)

B (1) (0 (Vo (1)) B (0)S°(1) ©

Here we have written b (t)=b(t)-r(t)1.
Then & satisfies £eA and J [EJ <J[&] ceA.
The proof of Theorem 1 is given in the appendix.

We note that & has feedback terms of X, and Y,.
This implies that our optimal strategy has delays to catch

up the the benchmark process a(t)*Yt . Hence the pref-
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erable situation applying our strategy is the case that
a(t ) Y, does not fluctuate violently.

4. Numerical Results

We apply our method to an empirical data provided by
the Japanese organizations. This section is divided to two
subsections according to the type of liabilities: an artifi-
cial liability and the liability constructed by the estima-
tions published by the Ministry of Health, Labour and
Welfare of Japan. The former one suggests the situation
that our optimal strategy works well and the latter one
demonstrates that our portfolio strategy is able to hedge
the liability.

Before we move on the each subsection, we determine
the common parameters in following subsections. The
first task is to determine the parameters relating to the
benchmark component processes. They consist of the
income of a pension fund C, and his or her expense
B, and thus n=2 and Y, = (C B ) We set the pa-
rameters constructing the benchmark process as follows:

n=7=1 a(t):(—l,l)*, A:(—l,l)*.

Hence, the benchmark process is B, —-C, which
represents a shortfall of the income and then we regard
this shortfall as the liability. To discuss the performance
of the strategy, we introduce a hedging error function of
the i-th sample path E and its average E, as fol-
lows:

=z

E =|(B,-C,)-X!|, E, =) -,

t |( t t) t| t =l N

where X/ isthe i-th sample path of X, and NeN
is the number of the sample paths. We set N =1000
except as otherwise noted.

The next task is to determine the risk-free rate and the
expected return rates and volatilities of risky assets. We
invest the following four assets: indices of the domestic
bond, the domestic stock, the foreign bond and the for-
eign stock; we number them sequentially. According to
the estimations of return rate and volatilities by the Gov-
ernment Pension Investment Fund in Japan [7], we con-
struct b(t) and oy (t) asfollows: b'(t)=3%,
b®(t)=4.8%, b*(t)=3.5% and b*(t)=5.0%;

so-ff et

. (10)
0  otherwise,

where % the Cholesky decomposition of X, a vari-
ance-covariance matrix of the assets:

29.7 182 -439 -541

18.2 495 -778 119 »
3= x107".

-439 -77.8 181 147

-541 119 147 394
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We choose a money market account as the risk-free
asset and we set r(t)=0.0%.
4.1. Simulation with an Artificial Liability

In this subsection, we consider the following an artificial
deterministic liability model:

dcC, = 0.01C,dt,
- (11)
C, =80[trillion yen],
dB, =0.01B,dt,
. 12)
B, =100[trillion yen],

ie, we set ¢’ (t)=0.015 and h(t)=0. We assume
that our wealth coincides with the benchmark at the ini-
tial time: X, =B, —C,. We construct the optimal port-
folio strategy over three decades, i.e., T :=30. Then we
determine the functions F®, F° and G° by solving
the ODEs (7)-(9) numerically. and simulate N paths of
(S..Y,) on [0,T] according to Equations (1)-(3) using
a standard Euler-Maruyama scheme with time-step
At =0.25. Figure 1 describes an investment result of a
sample path. The black and red lines in Figure 1 re-
present B, —C, and X, respectively.

The most significant issue it indicates is that the per-
formance of the strategy is quite poor near the maturity.
Figure 2 describing E, implies that this poor perform-
ance does not depend on the sample path. Figure 3 sug-
gests a key factor of this phenomenon: values of func-
tions F®, F° and G° change drastically between
t=25 and t=30; this time period coincides with the
term the hedging error becomes large rapidly. Figure 3
also implies that the existence of the stationary solutions
of the ODEs (7)-(9). As described in Figure 2, the strat-
egy relatively works well on the time period when the
functions F®, F° and G° reach the stationary state.
Hence the strategy will be improved by using the sta-
tionary solutions of the ODEs (7)-(9) on entire region.

{ — B-C
— X

45

[trillion yen]
35 40

30

25

20

0 5 10 15 20 25 30
t [year]

Figure 1. A sample path of B,—C, and X,. The black
and red lines represent B, —C, and X, respectively.
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Figure 2. Averaged hedging error E, .

i N

— FO00

— FO.tilde1
— FO.tilde2
— GO

coefficient functions
0

0 5 10 %5 20 25 30
t [year]

E® and G°. The
F"Ol F"UZ

Figure 3. The time evolution of F%,

black, red, green and blue lines represent F%,
and G° respectively.

To obtain the stationary solutions of the ODEs (7)-(9),
we replace T to a value large enough. We denote it by
T andset T =50. Figure 4 shows values of F®, F°
and G° obtained by solving the ODEs (7)-(9) with pa-
rameter T. We can find that the functions F®, F°
and G’ take the stationary solutions on [0,T].

Results of simulations using the improved strategy are
described as follows.

Figures 5 and 6 indicate that the performance near the
maturity is improved and it does not depend on the sam-
ple paths. This result leads us to the conclusion that we
should construct the strategy with the stationary solutions
of the functions F®, F° and G° if they exists.

At the end of this subsection, we mention about our
portfolio composition. Figure 7 displays the asset alloca-
tion on the sample path described in Figure 5. The mon-
ey market account, the domestic bond and the for- eign
stock indicated by light blue, black and blue lines respec-
tively dominate our portfolio. The optimal strategy is that
we keep the most part of the wealth as the money market
account and compensate for the increment of the bench-
mark by the investment for the domestic bond, low risk
and low return asset, and the foreign stock, high risk
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S - — GO
3
C
2
-E o
g
Qo
t ~
g
[$]

[

1

0 10 20 30 40 50
t [year]
Figure 4. The time evolution of F® , F° and G°

(improved case). The black, red, green and blue lines
represent F®, F™ F% and G° respectively.

— B-C
— X
©
Y
=
)
>
cN
9
E'
N
N
o |
3

0 5 10 15 20 25 30
t [year]
Figure 5. A sample path of B,—C, and X, (improved
version). The black and red lines represent B,—C, and
X, respectively.

0.2 0.3

Averaged hedging error [trillion yen]
0.1

0.0

O
(&)
N
[
N
[&)]

20 25 30
Figure 6. Averaged hedging error E, (improved version).

and high return asset. If X, is deficientin B, —C,, the
strategy increases the proportion of the domestic bond
and the foreign stock.

4.2. Simulation with an Empirical Liability

According to the Japanese actuarial valuation published

Copyright © 2013 SciRes.

in 2009 [8], the estimated income and expense of the
welfare pension are showed in the Figure 8.

We regard these estimations as C, and B, and si-
mulate the three decades investments using our optimal
strategy from 2040 when the shortfall of the pension fund
starts to expand drastically. The following reasons sup-
port that this situation is a valid case study: 1) a phase
expanding B, —C,, the shortfall of the pension fund, is
the most typical one expressing the demographic changes;
2) the behaviour of B, —C, in this term meets the con-
dition to apply our optimal strategy: B, —C, is increas-
ing in the entire region. Throughout this subsection we
set the start point as the year 2040, i.e., t=0 and
t =15 represent the year 2040 and the year 2055 respec-
tively.

To construct the optimal strategy, we first calibrate
a(t), oy, (t) and h(t) to fit the estimations. Setting
a(t)=0, (t)=0 and h(t) as a numerical differentia-
tion of the estimations is a simple method to accomplish
the purpose. Since we are discussing the three decades
portfolio, we determine T =30. As suggested in Section

domestic bond
domestic stock

foreign bond

foreign stock

money market account

15 20 25 30

10

5

Amount of each asset [trillion yen]

0 5 10 15 20 25 a0
t [year]
Figure 7. An amount of each asset on the sample path de-
scribed in Figure 5. The black, red, green, blue and light
blue lines represent the amount of a domestic bond, a do-
mestic stock, a foreign bond, a foreign stock and money
market account respectively.

—— Income
| —— Expense

140

[trillion yen]

40 60 80 100

2020 2040 2060 2080 2100
[year]

Figure 8. Estimations of the income and the expense of the
Japanese welfare pensions. The black and red lines repre-
sent estimations of their income and the expense respec-
tively.
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4.1, we set T =50 to obtain the stationary F* and
F°. We are unable to expect the stationary G° because
h(t) explicitly depends on t. We assume that our
wealth coincide with the benchmark at the initial time:
Xo,=B,—C,. Then we simulate N paths of (S,Y,)
on [0,T] according to Equations (1)-(3) using a stan-
dard Euler-Maruyama scheme with time-step At =0.25
which means that we can rearrange our portfolio every
quarter. Results of the simulations are as follows.

We are able to argue that our strategy hedges the
shortfall well since Figure 9 suggests that E,, the aver-
aged hedging error, is approximately 3% of B, —C,, the
shortfall, in every quarter.

Figure 10 displays the asset allocation on the sample
path described in Figure 11. In the same manner as in
the case of the artificial liabilities discussed in Section
4.1, our optimal portfolio is dominated by the money
market account, the domestic bond and the foreign stock.
However the proportion of the domestic bond and the
foreign stock is much higher. We can understand this
phenomenon intuitively: since the shortfall increases
more rapid than that discussed in Section 4.1, the hedg-
ing portfolio is rearranged to become more profitable.
The practical suggestion from this fact is that we have to
take a risk to track the increasing liability and this is

1.0

Averaged hedging error [trillion yen]

00 02 04 06 038

0 5 10 15 20 25 30
t

Figure 9. Averaged hedging error E, .

o
-3
& —— domestic bond
>Q .
c @ —— domestic stock
2o —— foreign bond
S —— foreign stock
2 ,\A A N money market account
8 ]! A Lz
5 A i
§ o
'46 |
€
3
ES
< |

0 5 10 15 20 25 30
t [year]

Figure 10. An amount of each asset on the sample path de-
scribed in Figure 11. The black, red, green, blue and light
blue lines represent the amount of a domestic bond, a do-
mestic stock, a foreign bond, a foreign stock and money
market account respectively.
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w| — B-C
[\
— X
=3
— N
c
)
>
c
cw ]
et
‘=
=
o]
e
0

0 5 10 15 20 25 30
t [year]

Figure 11. A sample path of B,—C, and X,. The black
and red lines represent B, —C, and X, respectively.

quite natural.

5. Summary

We have proposed a long term portfolio management
method which takes into account a liability. The LQG
control approach allows us to construct a more suitable
long term portfolio strategy than myopic one obtained by
the single time period mean variance approach in the
sense that we are able to change the strategy at any time.
Our optimal portfolio strategy hedges the liability by
directly tracking the benchmark process which represents
the liability. The strategy is evaluated by the mean square
error from the benchmark and hence it is intuitive. Two
numerical simulations are served: the former one sug-
gests the situation that our portfolio strategy works well;
the latter one provides the result with the empirical data
published by Japanese organizations. The result demon-
strates that our portfolio strategy is able to hedge the li-
ability, the shortfall of the income of the Japanese wel-
fare pension, over three decades.

This study leaves ample scope for further research.
Since our criterion is the mean square error, our portfolio
strategy inhibits that our wealth exceeds a liability. This
is the similar problem with the traditional mean variance
approach. One of approaches to avoid it is that we extend
criterion which is able to hedge only the case that our
wealth goes under the liability. Then we again face the
problem of computability as mentioned in the introduc-
tory section.
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M. IEDA

Appendix
Proof of Theorem 1

The value function corresponding to our problem (5) is
defined by

Vi(xy)= LnEE{ftT71(a(5)*Ys - XS“”)Z ds
7, (A*YT - XTXO'§)2|XtXO'§ =XY, = y}-

Hence the corresponding Hamilton-Jacobi-Bellman
(HJB) equation is given by
" 2
ién]; {atvt (% y)+ 7V (X, y)+7n (a(t) y— x) } =0,
(13)
with terminal condition V; (x,y)=7,(A’y— x)2 ,

(x,y)e RxR™, where 9, is partial differential opera-
tor with respect to t and < is the infinitesimal gen-
erator of the process (X,,Y,):

() =(r()x+B (1) &)o.6(xy)
+(a(t)y+h(1) 2,4(x.y)
+2[Eo o) sl(xy) O
+2& g (t) oy, (1) 0,0,8(x,Y)
+Tr(o (Yo (1) 239(x, y))]

for ¢eC?(RxR"™). Here 0] and o) are the j-th

order partial differential operators with respect to x

and y. As o5 (t)os(t) is positive definite, the in-

fimum of (13) is attained at
-1

é=m(% (t)os (t))
x[B()aV (xy)+ o5 (e, (1) 2,0M (%),

and hence (13) can be written as

-1

81Vl(x,y)+r(t)x8xvt(x,y)+(a(t)y h(t )) Vv, (xy)
2 oy (s o () BN (x)
AACSY)

aivt(x,y)
B (1) (0 (1) (1)) 0 (1), (1) 2,0, (x,Y)

i ey P [ (00 () B0 ()
(8,0.V, (% ¥)) oy (V)5 (1) o5 (V) (1) 2,0, (x,Y)
+c(x -2xa(t) y+ya( )a(t)* y)=0.
(ii)

Copyright © 2013 SciRes.
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Let us try a value function of the form
V, (% y)=F(t)x* +2xF°(t) y+y'F(t)y
+G (1)x+G(t) y+g(t),

where F*,G%g:[0,T]>R, F°G:[0,T]>R" and

F is a time-dependant symmetric matrix. It is straight-
forward to see that

Do ()4 cr2r(t)FO (1)

(14)

(15)

(16)

(A7)

(18)
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%g(t)+h(t)é(t)-‘rTr(UYU:'E(t))

_(fFO(ot()t)) (1) (o (Yo (1)) B (1)

t) (os (o (1)) (19)

and then the associated candidate strategy is represented
by

-1

N

S :m(% (t)os (t))
x[bO(2F™ (t)+2F° (1)+G°(t)) (i)
120, (t)oy (1) FO (1)

Since (14) and (15) are linear ODEs, they have unique
solutions on [0,T]. The existence of unique F°(t)
suggests that (16) and (17) are linear ODEs. Hence (16)
and (17) also have unique solutions on [0,T]. In the
same manner, the existence of unique solutions of (18)
and (19) are guaranteed. Therefore & €A since X,
and Y, in £ (u xP).

We now start the verification, i.e., we show that
Vo (X, ¥e)<JI[&], é€A and Vo(xo,yo):J[f] To
this end, we introduce a sequence of stopping “times

{Tl}leN s.t.
r,=inf{u20:j;|xt(§t|2dtzl, j:|Yt§t|2dt2I}.

Applying the Ito formula to V. (XTMI ,YTMl) and
taking expectation, we have
Vo (X1 Yo)
:]E.UOT”' (—0 (X, Y,) = LV, (X, Y,) )t
WV (Xp g Yo, )] (iv)

—EUOT”'aXVt (X, Y,)E o (t)th}

—EUOT”' (BN (X.Y)) & (t)dwt]
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As X, and Y are in £’ (4 xP) and o, F°,
F and G are continuous functions on [0,T], the last
term vanishes:

EUOT”' (Y, (X, Y,)) o (t)dwt}
- ZEUOTM'XJEO (t) o (t)thJ
+2E[ [ E(t)e, (t)th]

+B][[6(t) oy (t)aw, |0,

By the definition of 7, the continuity of the functions
F®, F° and G°, and the fact that &< A, the re-
maining stochastic integral term also vanishes:

IF«J,UOT”'aXVt (X, Y,)E o (t)th]

_ ZEUOTM' FO (1) X, o, (t)th]

+28] [} E (1) Vg o () aw (vi)
+B| 116" (1) o (t)aw,

=0.
Since 7, /"o when | goes to infinity, we get

VO(Xovyo)
- E[jg(—atv, (X Y0 =LV, (X Y))dt (vii)

(X7, Y5 ) ].

By the HJB Equation (13) and its terminal condition,
we obtain

. 2 . 2
Vo(xo,yo)gE[j;yl(a(t) y—x) dt+;/2(A y—x) }
which means that V,(X,,Y,)<J[¢], €A . In the

same manner we find that V, (X,, Y, )= [5] and then
the claim is established.

JMF



