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ABSTRACT 

We propose a long term portfolio management method which takes into account a liability. Our approach is based on 
the LQG (Linear, Quadratic cost, Gaussian) control problem framework and then the optimal portfolio strategy hedges 
the liability by directly tracking a benchmark process which represents the liability. Two numerical results using em- 
pirical data published by Japanese organizations are served: simulations tracking an artificial liability and an estimated 
liability of Japanese organization. The latter one demonstrates that our optimal portfolio strategy can hedge his or her 
liability. 
 
Keywords: Pension Fund Management; Long Term Portfolio Optimization; Quadratic Hedging; Stochastic Optimal 

Control; Hamilton-Jacobi-Bellman Equations; LQG Control 

1. Introduction 

In the management of pension funds, a long term portfo- 
lio strategy taking into account a liability is one of the 
most significant issues. The main reason is the demo- 
graphic changes in the developed countries: if the work- 
ing-age population is enough to provide for old age, the 
liability is a minor issue in the portfolio management of 
pension funds. Since the life expectancy has increased in 
recent decades, it becomes insufficient to provide for old 
age. Furthermore, the low birth rate continues and drives 
up this problem for decades. Thus pension funds face a 
challenging phase to construct long term portfolio strate- 
gies which hedge their liabilities. 

A lot of pension funds except a few ones [1] determine 
their portfolio strategies by the traditional single time 
period mean variance approach which excludes an eva- 
luation of a liability. Its intuitive criterion attracts man- 
agers of pension funds. However the single time period 
approach is unsuitable for a long term portfolio manage- 
ment in the sense that it is unable to change the strategy 
excepting the initial time. The multi time period ap- 
proach which arrows the change of the strategy has a 
problem that the computational complexity grows expo- 
nentially. Hence if we employ this approach, we are usu- 
ally unable to obtain the optimal portfolio strategy in rea- 
listic time. 

Therefore the aim of this paper is to propose a long 
term portfolio strategy which 1) involves an evaluation 
of a liability, 2) admits changes of the strategy at any 
time, and 3) is obtained in realistic time. To tackle this 
problem, we employ the LQG (Linear, Quadratic cost, 
Gaussian) control problem (see, e.g., Fleming and Rishel 
[2]). The LQG control problem is a class of stochastic 
control problem and is able to provide the control mini- 
mizing the mean square error of a benchmark process 
and a controlled process. Roughly speaking our tactic is 
that we compute the optimal portfolio strategy with the 
benchmark process which represents the liability. Then 
we can track the liability by using our optimal portfolio 
strategy. Although it is difficult to obtain the solution of 
stochastic control problem in general, the LQG control 
problem has the analytical solution which assures that we 
are able to obtain the solution in realistic time and thus it 
meets our purpose. 

A continuous time stochastic control approach is one 
of the most popular methods to obtain the suitable long 
term portfolio strategy. The literature about this approach 
is quite rich. The papers treating the management of pen- 
sion funds are, for instance, as follows: Deelstra et al. [3] 
and Giacinto et al. [4] discuss the portfolio management 
for pension funds with a minimum guarantee; Menoncin 
and Scaillet [5] and Gerrard et al. [6] deal with the pen- 
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sion scheme including the de-cumulation phase. Our stu- 
dy is on the cutting edge in the sense that deals with 
tracking liabilities directly and constructs a suitable long 
term portfolio at the same time. 

The organization of the present paper is as follows. 
We introduce continuous time models of assets and a 
benchmark in Section 2. To fit in the LQG control prob- 
lem, they are defined by the linear stochastic differential 
equations (SDEs). We mention that our portfolio strategy 
is represented by the amounts of assets. In Section 3, we 
define a criterion of the investment performance and 
provide the optimal portfolio strategy explicitly. Several 
numerical results are served in Section 4 Throughout the 
section the parameters related to the assets are deter- 
mined by an empirical data provided by the Government 
Pension Investment Fund in Japan. The simulation using 
an artificial data is discussed in Section 4.1 and this re-
sult gives conditions that our optimal portfolio strategy 
works well. Section 4.2 provides a case study using an 
empirical estimation published by the Japanese Ministry 
of Health, Labour and Welfare. It demonstrates that our 
strategy is able to hedge the liability well. 

2. Continuous Time Models of Assets and a 
Benchmark 

In this section, we present mathematical models of assets 
and a benchmark. The market which we are considering 
consists of only one risk-free asset and -risky assets 
and we have -benchmark component processes. 

n
m
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3. Optimal Investment Strategy 

ine he n erformance We def  t  criterio of investment p J  
by 

    * ,T x

 

2

2,* 0
2

d

,  ,x
T T

0
10 t tJ a t Y X t

A Y X 

 

   


 
       ( ) 5

Copyright © 2013 SciRes.                                                                                 JMF 



M. IEDA  ET  AL. 394 

 are constants, mAwhere 1 0   and 2 0   is a 
constan , ant vector d  : 0

 Hence
, ma T  
 our invest

 is 
contin ction. ment
find the l 

a determin
 p

istic 
roblem is to uous fun

 contro ̂  s.t.  ˆJ J     ,  
by 

 . Sinc
quadratic f

LQG co

e the 
perfor unc- mance cri

ur inve
terion is re

t probl
e 

presented 

 a t , 
tions, o stmen em becomes the ntrol 
problem. We determin TA  

t

and the parameters 
of tY  to be able to regard  *a t Y  and *

T TA Y  as a li- 
ability. 

The optimal portfolio strategy is represented in the 
following form: 

Theorem 1 We define  p tfolio strategy ˆ the or   as 
follows: 

       1*

00

1ˆ
2t S St t

F t

    b t r t

  




      
     

00 0* 0

* 0

2 2

2

t t

S Y

F t X F t Y G t

t t F t 

  

 





where 

  1        (6) 

 00 0, : 0,F G T    and  0 : 0,F T
nary differential equations

m   are 
 solutions 

(ODEs): 
of following ordi

 

        
1* * 00

00

d

0,S Sb t t t b t F 




 


         (7) 

 

00 00
1

2

d
2

,

F r t F
t

F T





  




           

          

 

*0 0
1

1* * 0

0
2

d

d

0,

2 ,

S S

0F t a t r t F t t
t

b t t t b t F t

F T A

 

 





   

 


 


 





    (8) 

F t

         

          

            

 

*0 0 0

1* * 0

1* * * 0

0

d
2

d

0,

0.

S S

S S S Y

G t r t G t h t F t
t

b t t t b t G t

b t t t t t F t

G T

 

   





  











 

  (9) 

Here we have written      b t b t r t  1 . 

Then ̂  satisfies ̂   and ˆ  J J     ,   . 

The proof of Theorem 1 is given in the appendix. 
We note that t̂  has feedback terms of tX  and

mal strategy has  to catch  

up the the benchmark process . Hence the pref-  

er tu ying o tegy is the case th

4. R

pirical
 section

cial liab ted by the estima- 
nistry of Health, Labour and 
er one suggests the situation 

 tY . 
This implies that our opti delays

 * ta t Y

able si ation appl ur stra at 
* a t Y  t does not fluctuate violently. 

 Numerical esults 

We apply our method to an em  data provided by 
the Japanese organizations. This  is divided to two 
subsections according to the type of liabilities: an artifi- 

ility and the liability construc
tions published by the Mi
Welfare of Japan. The form
that our optimal strategy works well and the latter one 
demonstrates that our portfolio strategy is able to hedge 
the liability. 

Before we move on the each subsection, we determine 
the common parameters in following subsections. The 
first task is to determine the parameters relating to the 
benchmark component processes. They consist of the 
income of a pension fund tC  and his or her expense 

tB  and thus 2n   and  *, B . We set the pa- 
ra

t t tY C
meters constructing the benchmark process as follows: 

     * *

1 2 1,  1,1 ,  1,1 .a t A        

Hence, the benchmark process is t tB C  which 
represents a shortfall of the come and then we regard 
t is shortfall as liabilit s the performance 
of the strategy, we introduce a hedging error function of 
the i -th sample path i and its average 

in
h  the y. To discus

tE  tE  as fol- 
lows: 

 
1

,  ,
N

i i
t t t t t

i

E
E B C X E

N

      

where i
t

i
t

X  is the i -th sample path of tX  and N   
is the number of the sample paths. We set 1000N   
except as otherwise noted

The
. 

 next task is to determine the risk-free rate and the 
expected return rates and volatilities of risky assets. We 
invest the following four assets: indices of the domestic 

he ond he for
ording to
 the Gov- 

bond, t domestic stock, the foreign b  and t - 
eign stock; we number them sequentially. Acc  
the estimations of return rate and volatilities by
ernment Pension Investment Fund in Japan [7], we con- 
struct  b t  and  S t  as follows:  1 3%b t  ,  

 2 4.8%b t  ,  3 3.5%b t   and  4 5.0%b t  ; 

      , 1, , ,

0      otherwise,

ijij
S

i j n
t

  


 
          (10) 

where   the Cholesky decomposition of  , a vari- 
ance-co ance m f the assets: 

29.7 4.39

vari atrix o

410 .

18.2 5.41

18.2 495 77.8 119

4.39 77.8 181 147

5.41 119 147 394



  
   
  
 

  

 

Copyright © 2013 SciRes.                                                                                 JMF 



M. IEDA  ET  AL. 395

We choose a money market account as the risk-free 
asset and we set 

4.1. Simulation with an Artificial Liability 

In this subsection, we consider the following an artificial 
deterministic liability model: 
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Figure 4. The time evolution of 00F , 0F  and 0G  
(improved case). The black, red, green and blue lines 

represent 00F , 01F , 02F  and 0G  respectively. 
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version). T bl  a  red lin  represent t tBhe ack nd es C  and 

tX  respectively. 

 

 

gure 6. AveragedFi  hedging error tE  (improved version). 

nd high return asset. If 
 
a tX  is deficient in t tB C , the 
strategy increases the p tion of the do  
and the foreign stock. 

4.2. Simulation with an Empirical Liability 

According to the Japanese actuarial valuation published 

in 2009 [8], the estimated income and expense of the 
welfare pension are showed in the Figure 8. 

We regard these estimations as  and  and si-
mulate the three decades investme n optimal 
strategy from 2040 when the shortfall of the p  fund 
starts to expand drastically. The following r s sup- 
port that this situation is a valid dy: 1  a phase 
expanding 

ropor mestic bond

tC
nts usi

 case stu

tB
g our 

ension
eason

)

t tB C , the shortfall of pe fund, is 
the most typical one expressing the dem ; 
2) the beha  

 the nsion 
ographic changes

viour of t tB C  
optima

on. Th

in this  meets the con- 
dition to apply l strategy: increas- 
ing in the entire roughout t we 

2

term

h
0

 our 
regi

t tB C  is 
is subsection 

set the start point as the year 40, i.e., 0t   and 
15t   represent the year 2040 an he year 2055 respec- d t

tively. 
To construct the optimal strategy, we first calibrate 
 t ,  Y t  and  h t  to fit the estimations. Setting 
    0Yt t    and  h t  as a numerical differentia- 

plish 
cades 

tion of the estimations is a simple method to accom
the purpose. Since we are discussing the three de
portfolio, we determine 30T  . As suggested in Section 
 

 

Figure 7. An amount of each asset on the sample path de- 
d in Figure 5. The black, red, green, blue and light 

blue lin
scribe

es represent the amount of a domestic bond, a do- 
m
mark c n tive
 

estic stock, a foreign bond, a foreign stock and money 
et a cou t respec ly. 

 

Figure 8. Estimations of the income and the expense of the 
Japanese welfare pensions. The black and red lines repre- 
sent estimations of their income and the expense respec- 
tively. 
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4.1, we set 50T   to obtain the stationary 00F  and 
0F . We are unable to expect the stationary 0G  because 
 h t  explicitly depends on t . We assume that our 

wealth coincide with the benchmark at the initial time: 

0 0 0X B C  . Then we simu te  pathla N s of  ,t tS Y  
on  0,T  

 Euler-
according to Equations 

a sc e-ste
(1)-(3) using a 

p 
stan- 
0.25dard Maruyam heme with tim t   

which means that we can rearrange our portfolio every 
quarter. Results of the simulations are as follows. 

We are able to argue that our strategy hedges the 
shortfall well since Figure 9 suggests that tE

 
, the aver- 

aged hedging error, is approximately 3% of t tB C , the 
shortfall, in every quarter. 

Figure 10 displays the asset allocation on the sample 
path described in Figure 11. In the same manner as in 
the case of the artificial liabilities discussed in Section 
4.1, our optimal portfolio is dominated by the money 

ncr
 

ing p

market account, the domestic bond and the foreign stock. 
However the proportion of the domestic bond and the 
foreign stock is much higher. We can understand this 
phenomenon intuitively: since the shortfall i eases 
more rapid than that discussed in Section 4.1, the hedg- 

ortfolio is rearranged to become more profitable. 
The practical suggestion from this fact is that we have to 
take a risk to track the increasing liability and this is 
 

 

Figure 9. Averaged hedging error tE . 

 

 

Figure 10. An amount of each asset on the sample path de- 
scribed in Figure 11. The black, red, green, blue and light 
blue lines represent the amount of a domestic bond, a do- 
mestic stock, a foreign bond, a foreign stock and money 
market account respectively. 

Figure 11. A sample path of t tB C  and tX . The black 

and red lines represent t tB C  and tX  res ectively. 

 
quite natural. 

5. Summary 

We have proposed a long term portfolio management 
method which takes into account a liability. The LQG 
control approach allows us to construct a more suitable 
long term portfolio strategy than myopic one obtained by 
the single time period mean variance approach in th

d hence it is intuitive. Two 
numerical simulations are served: the former one sug- 
gests the situation that our portfolio strategy works well; 
the latter one provides the result with the empirical data 
published by Japanese organizations. The result demon- 
strates that our portfolio strategy is able to hedge the li- 
ability, the shortfall of the income of the Japanese wel- 
fare pension, over three decades. 

This study leaves ample scope for further research. 
Since our criterion is the mean square error, our portfolio 
strategy inhibits that our wealth exceeds a liability. This 
is the similar problem with the traditional mean variance 

to avoi ha

liability. Then he 
putability as mentioned in the introduc- 

gements 

p

e 
sense that we are able to change the strategy at any time. 
Our optimal portfolio strategy hedges the liability by 
directly tracking the benchmark process which represents 
the liability. The strategy is evaluated by the mean square 
error from the benchmark an

approach. One of approaches d it is t t we extend 
criterion which is able to hedge only the case that our 
wealth goes under the we again face t
problem of com
tory section. 
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Appendix 

roof of Theorem 1 

he value function corresponding to our problem (5) is 
efined by 

P

T
d

    
 

0

0 0

2* ,
1

2, ,*
2

, dinf

, .

T x
t s st

x x
T T t t

V x y a s Y X s

A Y X X x Y y





 







 
    




 

Hence the corresponding Hamilton-Jacobi-Bellman 
JB) equation is given by 

0,

(13) 

(H

       2*

1, ,inf t t tV x y V x y a t y x





   L


 

with terminal condition 
m

   2*
2,TV x y A y x  , 

 ,x y    , where t  is partial differential opera- 
tor with respect to t  and L  is the infinitesimal gen- 
erator of the process  ,t tX Y : 

        

      

     

 

* 2

*

,
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   

  
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  

  

  

L

for . Here 

*

 2 mC    j
x  and j

y  are the 
l operators with respect 

j -th 
order partial differentia to x  
and y . As   t t  *S S

 

 is positive ni
fim

defi te, the in- 
um of (13) is attained at 

    
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and hence (13) can be written as 

1*
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(ii) 

Let us try a value function of the form 
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2
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 00 0, , : 0,F G g T   ,  0 , : 0, mF G T    and  

F  is a time-dependant symmetric matrix. It is straight-  
forward to see that 
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and then the associated candidate strategy is represented 
by 
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Since (14) and (15) are linear ODEs, they have 
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As tX  and Y  are in  2
T   and Y , 0F , 

F  and G  are continuous functions on  0,T , the last 
term vanishes: 
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By the HJB Equation (13) and its term
we obtain 

inal condition, 
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which means that    0 0 0,V x y J  ,   . In the 
me manner we find that  0 0 0

ˆ,V x y Jsa    and then 
the claim is established. 
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