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Abstract. Current works on power-proportional distributed file systems
have not considered the cost of updating data sets that were modified
(updated or appended) in a low-power mode, where a subset of nodes
were powered off. Effectively reflecting the updated data is vital in mak-
ing a distributed file system, such as the Hadoop Distributed File System
(HDFS), power proportional. This paper presents a novel architecture,
a NameNode and DataNode Coupling Hadoop Distributed File System
(NDCouplingHDFS), which effectively reflects the updated blocks when
the system goes into a high-power mode. This is achieved by coupling the
metadata management and data management at each node to efficiently
localize the range of blocks maintained by the metadata. Experiments us-
ing actual machines show that NDCouplingHDFS is able to significantly
reduce the execution time required to move updated blocks by 46% rel-
ative to the normal HDFS. Moreover, NDCouplingHDFS is capable of
increasing the throughput of the system that is supporting MapReduce
by applying an index in metadata management.

Keywords: power-proportionality, HDFS, metadata management

1 Introduction
Energy-aware commercial off-the-shelf (COTS)-based distributed file systems for
cloud applications are increasingly moving toward power-proportional designs,
as the configuration of the systems is changeable on demand. Specifically, the
system is designed to operate in multiple gears and each gear contains a different
number of active nodes. Multi-gear operation is made possible through a number
of recent works that focus on power-proportional data placement layouts [1, 2].
However, those works have not yet dealt with the reflecting of an updated data
set that is modified (or appended) in a low gear mode when several nodes are
powered off. In low gear, the currently active nodes should update the modified
data instead of the inactive nodes. When the system moves to a high gear, to
share the load equally to all active nodes, it is necessary to let the reactivated
nodes catch up with the modification of the data set.

In addition to normal operations, the process of reflecting the updated data
set increases several costs of metadata management (MDM) and data transfer-
ence inside the system. Carrying out this process effectively is vital in realizing
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power proportionality for a distributed file system, such as the Hadoop Dis-
tributed File System (HDFS) [3], which is already widely used as a distributed
file system for effective big data processing in the cloud. In the current HDFS
architecture, reflecting updated files is ineffectively restrained at the NameNode
because of access congestion in the metadata information of blocks.

This paper presents a novel architecture called the NameNode and DataNode
Coupling HDFS (NDCouplingHDFS), which is designed to effectively reflect up-
dated data in the power-proportional HDFS. NDCouplingHDFS couples MDM
and data management to localize the range of blocks maintained by the meta-
data. Through this idea, the process is effectively distributed to multiple nodes
as the load is shared among the nodes and each node can focus on its own work
because all the necessary information is located locally.

Moreover, to raise the efficiency of reflecting updated data, it is preferable to
eliminate the bottleneck of MDM at the single NameNode in a normal HDFS by
using distributed MDM. Taking the locality of the file system into consideration,
we suggest two approaches of distributed MDM based on a tree structure, namely
static directory partitioning and the B-tree-based index method. In the first
approach, we divide the namespace of the system among all the nodes, as each
node will maintain a subpart of the directory hierarchy. In the second approach,
we apply the parallel index technique, called Fat-Btree [4], which is used in
current database management to manage the metadata of the file system. Our
main contributions are the following.
– NDCouplingHDFS is proposed to solve the problem of reflecting updated

(or appended) data sets when the power-proportional file system shifts from
low gear to a higher gear.

– NDCouplingHDFS improves the IO throughput of the metadata operation
of the HDFS by implementing distributed MDM with an index technique.

– An empirical experiment to evaluate NDCouplingHDFS is performed on
actual machines. The empirical experimental results show that NDCou-
plingHDFS is able to significantly reduce the execution time to transfer
updated blocks by 46% relative to a normal HDFS.

The remainder of this paper is organized as follows. Related work is introduced in
Sect. 2. Section 3 describes our proposed system with the architecture and data
flow. Section 4 presents a performance evaluation of our proposals. Conclusions
and future work are discussed in Sect. 5.

2 Related Work

RABBIT [1] is the first work that aims to provide power proportionality to
an HDFS by focusing on read performance. RABBIT uses the equal-work data
layout policy using data replication. However, RABBIT does not yet consider
the cost of reflecting updated data in low gear. Kim et al. [2] suggest a fractional
replication method to achieve a balance between the power consumption and
performance of a system. Their work considers the problem of identifying a
suitable time to gear down and save power.

Write Off-loading [5] is motivated by the goal of saving power through spin-
ning down unnecessary disks. It allows write requests on spun-down disks to be
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Fig. 1. A NameNode and DataNode Coupling HDFS architecture and data flow

temporarily redirected to other active disks in the file system. As a result, this
technique lengthens the spin-down durations, thereby achieves additional power
saving. Although not aiming to provide power proportionality, the idea could
be considered as a solution for multigear file systems dealing with updated data
when the system operates in low gear.

In previous work, we have taken into consideration the cost of updated data
reflection relating to the size of moving data in a power-proportional HDFS [6].
As the size of moving data is small, the reflection process could be shortened.

3 NDCouplingHDFS

In this part, the assumptions employed in this paper is given. Then, the architec-
ture of our system and two methods for distributed MDM are described. Finally,
we present the system’s behavior in reflecting updated data.

3.1 Assumptions and Conditions
In our proposal, we employed the following assumptions and conditions.

1. Data layout policy: The scope of this paper is limited to the MDM and the
cost of reflecting updated data at power-proportional file systems. In low
gear, the data from inactive nodes are replicated at other, active nodes.

2. Replication: When data are replicated at other nodes, their metadata are
also replicated at the same node.

3. Failure: We suppose that all nodes in the system operate without failure.

3.2 Architecture and Data Flow of NDCouplingHDFS

The architecture and the data flow of NameNode and DataNode Coupling HDFS
(NDCouplingHDFS) are shown in Figure 1. NDCouplingHDFS contains a cluster
of NDCouplingNodes. There are two types of modules at each node in NDCou-
plingHDFS: the NameNode Management (NM) and the Storage Management
(SM). The NM includes the new distributed MDM and other unmodified mod-
ules (such as Block Placement, Block Mapping) as in a normal HDFS. The
important difference from a default HDFS is that the namespace of the file sys-
tem is divided among all the nodes and the local distributed MDM only manages
the metadata for files that are locally located. The SM at NDCouplingNode is
the SM at DataNode in a normal HDFS.
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Next, the data flow for the client interacting with NDCouplingHDFS is ex-
plained using Fig. 1. At first, the client randomly connects to a node to access
the file system (open weather.dat). At this node, the request is forwarded to
the corresponding node that contains the metadata of this file by distributed
MDM. Then, the distributed MDM at this node looks for the file’s metadata
and sends the result back to the client. Finally, based on this result, the client
opens connections to the responsible nodes to retrieve or store the file’s blocks.

3.3 Distributed Metadata Management
In this part, we describes two approaches of employing distributed MDM to
identify the responsible NDCouplingNode that contains the metadata for the
accessed files.

Static Directory Partitioning Method. In this paper, we first try the static
directory partitioning (SDP) method in distributing the namespace to multi-
ple nodes in the system. Here, subparts of the directory hierarchy are manually
assigned to individual nodes. All the nodes in the system have the mapping in-
formation about which node is responsible for what subpart of the file system
directory. The system can process the request at most one hop to determine the
appropriate nodes because the subparts of the hierarchy are treated as indepen-
dent structures.

Fat-Btree-based Method. This method applies Fat-Btree to perform dis-
tributed MDM. Fat-Btree is an update-conscious parallel B-tree structure that
was originally proposed in database management as an indexing technique for
efficient data management [4, 7]. Because of the parallel tree structure, the dis-
tributed MDM based on Fat-Btree achieves higher performance for search query
processing while maintaining good locality tracking of the file system.

Alternative Techniques. To realize good performance with distributed MDM,
many recent systems distribute the metadata across multiple nodes utilizing dis-
tributed hash table [8,9]. However, distributing metadata by hashing eliminates
all hierarchical localities such as the POSIX directory access semantics.

3.4 Updated Data Reflection

Here, we describe the behavior of NDCouplingHDFS in serving the updated-data
requests in low gear and reflecting the updated data when the system changes to
high gear by reactivating a subset of nodes. In the normal HDFS, basically all the
operations are similar however because there is only a single NameNode that is
in charge of MDM, all the metadata operations are proccessed at the NameNode.
Figure 2 shows an example of a four-node system in which each node maintains
a subNamespace of the system. In low gear, Node 1 and Node 4 are inactive,
and their maintenance data are consequently replicated at Node 2 and Node 3.
During low gear, the part of the new updated data that is maintained by inactive
nodes are reflected at predefined active nodes. Information about the data, the
temporary node, and the intended node is saved into a Log file. In this example,
Node 2 will update the data (here is a1) that should be updated by Node 1.

When the system changes to high gear by reactivating nodes (Node 1 and
Node 4), the following four-step operations are carried out.
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Fig. 2. Operations at updated data reflection processes of NDCouplingHDFS

Step 1: Transfer updated metadata. The active nodes check the Log files
and transfers only the different metadata to the reactivated nodes.

Step 2: Issue block transfer commands. Next, the MDM searches for up-
dated file blocks using the information in Log file. It then issues the block transfer
command by filling the block transfer queue of each SM with the block and desti-
nation node paired information. After each constant heartbeat, the SM receives
a command and transfers the blocks to the destination nodes. There are two con-
siderable approaches for issuing a command. The sequential issuance method
repeats the above search-and-issue operation for each transferred file, while the
batch issuance method first looks for all the blocks and their destination
nodes and then places them into a queue.

Step 3: Transfer updated blocks. When the SM receives the command issued
by MDM, it sends the blocks to the destination nodes. However, in the current
implementation in this part of the HDFS, for each block, the system has to open
a new connection to the destination node. In order to reduce the cost of opening
new network connection, we suggest the batch transfer method which sends
all the blocks through just a single connection. The current implementation in
the HDFS is called the sequential transfer method.

Step 4: Reflect updated metadata. The MDM updated the metadata for the
newly arrived files as in the default HDFS based on the notifications from SM.

4 Experimental Evaluation
We carried out an empirical experiment with actual machines to verify the ef-
fectiveness of NDCouplingHDFS in terms of reducing the cost of updated-data
reflection when the system shifts to higher gear. Next, we examined the effec-
tiveness of distributed MDM relating to the scalability of metadata operations.

4.1 Updated-data Reflection

To verify the effectiveness of each contribution proposed in Sect. 3, we prepared
five configurations which are formed from the combinations of distributed MDM,
command issuance method and block transference method. Table 1 shows the
characteristics of these configurations.
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Table 1. Characteristics of the configurations used in updated-data reflection experi-
ments

Configuration NormalHDFS SSS SBS SBB FBB
Metadata management Centralized SDP SDP SDP Fat-Btree
Command issuance Sequential Sequential Batch Batch Batch
Block transference Sequential Sequential Sequential Batch Batch
Updated metadata transference - © © © ©

Table 2. Experimental en-
vironment

# Gears 2
# nodes Low Gear 8
# nodes High Gear 16

# updated files 16000
file size 1MB

Table 3. Specification of a
node

CPU TM8600 1.0GHz
Memory DRAM 4GB

NIC 1000 Mb/s
OS Linux 3.0 64bit

Java JDK-1.7.0

Table 4. HDFS informa-
tion and parameters

version 0.20.2
max.rep-stream 100

heartbeat interval 1

Experimental Environment. We compare the proposed NDCouplingHDFS
with the normal HDFS by changing the configuration of the system (Tab. 2).
Both systems operate in two gears, a Low Gear and a High Gear with different
number of active nodes (eight and 16 nodes). For NormalHDFS, there is one
further node to be in charge of the NameNode. Because we address MDM in
this paper, the number of appended files when the system operates at Low
Gear is fixed at 16000 dividing equally to 16 nodes. Here, we use low-power-
consuming ASUS Eeebox EB1007 machines, whose specifications are given in
Tab. 3. The max.rep-stream, which specifies the maximum number of blocks
that can be replicated by a SM at the same time, is set to 100. To efficiently
perform the updated data reflection, the communication frequency between NM
and SMs is maximized by setting heartbeat interval to one (Tab. 4).

Experimental Results. Figure 3(a) shows the execution time for reflecting
the updated data with different configurations. The left vertical axis shows the
execution time from the time that the system begins to change from low gear to
high gear until all the just-activated nodes catch up with the most current status
of the updated data set. The right vertical axis shows the maximum number of
transfer block command issuances, which is the number of times that the SM
has to make a connection with the MDM to drain the block transfer queue.

Performance of NDCouplingHDFS. To confirm the NDCouplingHDFS’s
performance, we focus on the experimental results of NormalHDFS and SSS,
the simplest configuration of NDCouplingHDFS, in Fig. 3(a). We see that ND-
CouplingHDFS has significantly reduced cost (nearly 41%) in reflecting updated
data. In the HDFS, because of the high load at the NameNode with the process-
ing of 8000 files that should be replicated to eight nodes, it requires about 40
connections between the NM and SM to drain the block transfer queue of the
SM (about 58 seconds). Meanwhile, the process is distributed to eight nodes in
NDCouplingHDFS, hence overall is completed in only about 34 seconds.

Performance of the command issuance. From the results of SSS and SBS,
we see that the batch command issuance provided a slightly worse result than
did sequential command issuance. The reason is that the SMs in SBS wasted
several first connections to the NM before it had finished retrieving all 1000
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Fig. 3. Experiment results

updated files’ data. On the other hand, the SM in SSS can perform the block
replication process immediately from the very first communication.

Performance of the block transfer method. Figure 3(a) shows that SBB
reduces the execution time of the process to 31 seconds compared with SBS. This
means that batch block transfer was able to reduce the cost of opening a new
network connection for sending blocks. In total, SDP-based NDCouplingHDFS
was able to reduce the execution time required for reflecting the updated data
by 46% relative to NormalHDFS.

Fat-Btree-based method. There was little difference between the performance
of FBB and SBB. The cost of the latter is slightly less by 0.5 seconds owing
to the lower cost of MDM operations. This is due to the process of transfer-
ring incremental metadata, as the Fat-Btree-based method has to transfer more
information than SDP because of the complex structure.

4.2 Distributed MDM Performance

In this part, we report the performance evaluation relating to the scalability of
metadata operations to confirm the effect of SDP and Fat-Btree-based methods.
The configurations of this experiment are shown in Tab. 5.

Experimental Results. Figure 3(b) and 3(c) show the read and write through-
put of two evaluated methods. Here, the operation includes searching/creating
for the metadata and reading/writing the physical data of the query file. Fig-
ure 3(b) shows that the read performance of the Fat-Btree method significantly
scales out. The good balance of the parallel B-tree structure means that the read
requests are effectively distributed to all the nodes; hence, the overall through-
put increased as the number of nodes increased. In contrast, in the SDP method,
the throughput slightly decreased as the number of nodes increased from one to
two. The reason is that the cost of opening a new connection to other responsible

Table 5. Workload used in distributed MDM performance evaluation experiment

Fat-Btree leaf fanout 16
Data size (#files) 3000
Number of nodes 1, 2, 4, 8

File size 1KB

#write accesses per node #files
#nodes

#read accesses per node #files
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nodes is much larger than the cost of searching for the responsible metadata.
From Fig. 3(c) which describes the overall throughput for write requests, the
Fat-Btree method is seen not to provide such a considerable efficiency compare
with the SDP method because of the high synchronization cost inside the B-tree
structures during an update. Overall, the Fat-Btree is believed more suitable for
the read-mostly workloads in MapReduce applications.

5 Conclusion and Future Work
In this paper, we first described the problem of inefficient reflection of up-
dated data in power-proportional distributed file system and then proposed
the NDCouplingHDFS architecture, which couples metadata management and
data management at each node to solve it. Empirical experiments verified that
our solution was able to shorten the execution time required to reflect updated
data by 46% relative to the time required by the default HDFS. Moreover, ND-
CouplingHDFS was able to increase the throughput of the system supporting
MapReduce by applying an index in metadata management. In the future, we
would like to carry out more experiments with different workloads and a larger
scale of nodes. Moreover, we would like to develop a system that integrates ND-
CouplingHDFS with suitable data placement to provide power proportionality.

Acknowledgements
This work is partly supported by Grants-in-Aid for Scientific Research from
Japan Science and Technology Agency (A) (#22240005).

References

1. Hrishikesh, A., James, C., Varun, G., Gregory R., G., Michael A., K., Karsten, S.:
Robust and Flexible Power-proportional Storage. In: Proc. the 1st ACM Symposium
on Cloud Computing. SoCC ’10 (2010) 217–228

2. Kim, J., Rotem, D.: Energy Proportionality for Disk Storage using Replication. In:
Proc. the 14th Int’l Conference on Extending Database Technology. (2011) 81–92

3. Apache Hadoop: HDFS Hadoop Wiki. http://wiki.apache.org/hadoop/HDFS
4. Yokota, H., Kanemasa, Y., Miyazaki, J.: Fat-Btree: An Update Conscious Parallel

Directory Structure. In: Proc. the 15th Int’l Conference on Data Engineering, IEEE
Computer Society (1999) 448–457

5. Narayanan, D., Donnelly, A., Rowstron, A.: Write Off-loading: Practical Power
Management for Enterprise Storage. In: Proc. 6th USENIX Conference on File and
Storage Technologies. (2008) 253–267

6. Le, H.H., Hikida, S., Yokota, H.: An Evaluation of Power-proportional Data Place-
ment for Hadoop Distributed File Systems. In: Proc. Cloud and Green Computing,
IEEE Computer Society (2011) 752–759

7. Yoshihara, T., Kobayashi, D., Yokota, H.: A Concurrency Control Protocol for
Parallel B-tree Structures Without Latch-coupling for Explosively Growing Digital
Content. In: Proc. the 11th Int’l Conference on Extending Database Technology:
Advances in Database Technology, ACM (2008) 133–144

8. Rodeh, O., Teperman, A.: zFS-a Scalable Distributed File System using Object
Disks. In: Proc. 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST 2003), IEEE (2003) 207–218

9. Braam, P.: The Lustre Storage Architecture


