
論文 / 著書情報
Article / Book Information

論題

Title Basic Study on Element Administration in Robotics Middleware -2nd
Report: An HTML5 based GUI for cross-middleware elements
integration-

著者 Ceron Lopez Arturo E., 福島 E. 文彦

Author Arturo E. Ceron Lopez, Edwardo F. Fukushima

掲載誌/書名 , , No. 13-2,

Journal/Book name Proceedings of the 2013 JSME Conference on Robotics and
Mechatronics, , No. 13-2,

発行日 / Issue date 2013, 5

URL http://www.jsme.or.jp/publish/transact/index.html

権利情報 / Copyright 本著作物の著作権は日本機械学会に帰属します。

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://www.jsme.or.jp/publish/transact/index.html
http://t2r2.star.titech.ac.jp/

Basic Study on Element Administration in Robotics Middleware
2

nd
 Report: An HTML5 based GUI for cross-middleware elements integration

Arturo E. CERON LOPEZ and Edwardo F. FUKUSHIMA

Tokyo Institute of Technology, aceron@robotics.mes.titech.ac.jp, fukusima@mes.titech.ac.jp

The Intelligent Cross-Platform Interface (ICPI) provides linking and administrative services to the state of the

art robotics middleware platforms by making use of the “role definitions” concept. This work introduces an HTML5
based GUI which provides an accessible and intuitive way of using the services currently supported by the ICPI.
Validity was proven through experiments for controlling a robot.
Key Words: Service Robot, Robotics Middleware, Role Definition, GUI.

1. Introduction
Service robots require integration of a heterogenic set

of hardware and software elements, and for this reason

the use of middleware, e.g., Robotics Technology

Middleware (RTM) [1], Robot Operating System (ROS)

[2] and Microsoft Robotics Developer Studio (MSRDS)

[3], is getting increasingly importance.

Robotics middleware is the “glue” joining distributed

software programs in order to make them work in a

parallel and cooperative way. The authors are developing

a new interface called Intelligent Cross-Platform

Interface (ICPI) [4] which provides linking and

administrative services to the state of the art middleware

platforms; the ICPI is based on the client-server model.

The ICPI use the “role definitions” concept, from where

the base infrastructure of the interface is derived. Various

modules contained in the server give its functionality; this

is the case of the previously proposed Administration by

Roles module, which enables the linking among Software

Elements in a classified and automatic way.

In this article, an HTML5 based GUI module is

proposed, which provides a visualization and

manipulation tool to give the user an intuitive way of

interacting with the proposed ICPI, and consequently,

with its connected middleware platforms.

2. GUI implementation

2.1 Advantages of HTML5

Most popular and complete middleware platforms up to

date require the user to install the platform’s main

features on a machine, including their supported GUI for

monitoring and manipulating the system and platform;

e.g. ROS’ rqt_console, rqt_graph and Gazebo [5],

OpenRTM-aist’s RT System Editor (RTSE) [6] and

MSRDS’ Visual Programming Language [7]. This task

becomes daunting for users that are not completely

familiarized with robotics middleware, representing a

high cost in terms of time and human resources. For these

reasons, in this project it is proposed that the setup phase

for a service robot development framework should be as

transparent as possible to the user, at the same time its

GUI should be able to work from any machine without

depending on a full platform installation and/or the OS.

With the recent HTML5 specification [8], new

possibilities for dynamic web applications have been

brought. The HTML5 has gained wide acceptance and is

now being supported by the major web browsers, which

can run on a PC, Tablets and Smartphones with nearly

same behaviors. For this reason, the authors have decided

to make an implementation of the ICPI-GUI based on

HTML5; this is to provide an intuitive tool where the user

only requires of basic informatics knowledge.

2.2 ICPI-GUI Specification

The ICPI-GUI is a server module with access to the

ICPI features and to the participating middleware

platforms (Fig. 1.). By this, a new way of interacting with

Robotics Middleware is proposed. Access to Software

Elements and data is given in the same way for every

middleware platform participating in the ICPI; an

example of how the proposed abstractions are applied to

middleware platforms is shown in table 1.

2.2.1 Core

The core makes requests to the server and process

server's responses. All requests are triggered by events.

The ICPI Server offers a series of functions for

interacting with the Software Elements (SE) and

Structured Data sets (SD), among the relevant ones the

following are included: Initialize, Discover, Connect,

Disconnect, Activate, and Deactivate.

Events include the following: on device input (e.g.

mouse click or textual command), on startup, on

connection, on disconnection. Events are mapped with

Fig. 1 Conceptual diagram of ICPI implementation.

Table 1. ICPI abstractions applied to middleware platforms

ICPI RTM ROS MSRDS

Software

Elements

RT-

Components
Nodes

Activities

(DSS Services)

Structured

Data

Ports as data

sources
Topics Messages

ICPI Server

Adm. by
Roles m.

ICPI-GUI

Middleware
Platform A

ICPI Client A

Middleware
Platform B

ICPI Client B

Websocket

HTML5
Canvas

Middleware
Platform B

ICPI Client B

Middleware
Platform B

ICPI Client B

Middleware platform’s
communication link

requests to these functions (e.g. mouse click on Discover

button will trigger Discover request to the server).

Requests are sent through a Websocket connection.

The program flow is as follows:

a) On startup: Connect to Websocket server

b) On connection: Send Initialize request to server

c) On device input event from screen:

c.1) Match event with mapped request(s).

c.2) Send request(s) to the server.

c.3) Wait for server’s response:

c.3.1) On reception of SE, SD and connection

list: Update internal GUI’s database.

c.3.2) On reception of debug event: Store

information temporally.

c.4) Buffer the screen with graphical (SE, SD and

connection diagrams) representations and textual

information (for debug messages).

d) On disconnection: Attempt to reconnect to server

and buffer reconnection message on screen.

e) Display: Screen buffer.

f) Loop program: From c), or from b) if disconnection

event happened.

2.2.2 Communication

By using Websocket connections, a full-duplex

communication using a single socket is possible, which

enables the development of real-time and event-driven

applications [9]. The ICPI-GUI uses Websockets for

gaining access to the ICPI Server. In order to format

requests and responses between the server and the GUI, a

sub-protocol is defined. A first version of it is represented

as a character string and is constructed as follows:

Sender + Process ID + Request/Response Name + Args

Where Sender is the name of the entity sending the

request/response (e.g. icpigui); Process ID is the label of

the involved process (e.g. main0!id!); Request/Response

Name is the label of the pertinent function or variable (e.g.

ACTIVATE); Args are the related arguments to that

function or variable, which are indexed with numbers in

parenthesis in case of being a vector of values (e.g.

args(1)1(2)3); and the plus “+” operator represents a

string concatenation function. An example of a request:

“icpiguimain0!id!ACTIVATEargs(1)1(2)3”.

2.2.3 Screen

The GUI uses the Canvas element [10]; with this, many

graphical entities are drawn dynamically into a webpage.

Also input events are detected (e.g. mouse and keyboard).

Screen buffer is drawn into the Canvas. In this

implementation five panels have been provided to interact

with the ICPI as well as debugging its status: Menu panel,

Software Elements panel, Structured Data panel,

Diagram View panel and Console View panel.

3. Testing and evaluation

For testing, three RT-Components from the RTM

Fig. 2 Test with Smartphone and Robot.

platform were used; one for reading a joystick, one for

multiplying the joystick data by a predefined value (i.e.

0.5) and other for controlling the motors of a robot.

Transferred data was formatted in character strings. The

test was performed on a Smartphone (Android 2.3/Opera),

and on a standard PC (Win7/Firefox) (Fig. 2).

The ICPI Server and ICPI Client for RTM were

executed. The Administration by Roles module made all

connections automatically inside the RTM platform. Then

the ICPI-GUI followed the program flow previously

described. The user made requests to the server by

clicking on different objects on the GUI screen (e.g.

clicking on the Joystick icon to activate or deactivate it).

The requests and responses were sent using the

Websocket and the sub-protocol previously defined.

4. Conclusion
In this article an HTML5 based GUI was proposed for

interacting with the ICPI in an intuitive way. Such GUI is

able to work in a variety of devices, increasing its

accessibility. Testing was made for building and

manipulating a system that controls a robot with

successful results. Future works include giving full

support to the “role definitions” concept, as well as

reducing communication overhead.

Acknowledgement

The first author acknowledges support from CONACyT-I
2
T

2
 and

Roberto Rocca Education Program through scholarships for graduate

studies at Tokyo Institute of Technology.

References

[1] Ando, N.; Suehiro, T.; Kitagaki, K.; Kotoku, T. & Woo-Keun Yoon;

"RT-middleware: distributed component middleware for RT (robot
technology)", 2005 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp.3933-3938, Aug. 2005.
[2] Quigley, M. et al.; “ROS: an open-source Robot Operating System”,

ICRA Workshop on Open Source Software, 2009.
[3] Microsoft Robotics Developer Studio 4,

http://www.microsoft.com/robotics
[4] Ceron Lopez, A., Fukushima, E.: Proposal of Intelligent

Cross-Platform Interface for Robotics Middleware, Proceedings of
the 2012 IEEE International Conference on Cyber Technology in

Automation,Control and Intelligent Systems,pp.382-387,May 2012.
[5] Gazebo, http://gazebosim.org/wiki/Main_Page

[6] OpenRTM-aist, http://www.openrtm.org/
[7] Microsoft Robotics: Visual Programming Language (VPL),

http://msdn.microsoft.com/en-us/library/bb483088.aspx
[8] HTML5.1 Nightly, http://www.w3.org/html/wg/drafts/html/master/

[9] HTML5 Web Sockets, http://www.websocket.org/quantum.html
[10] HTML Canvas, http://www.w3.org/html/wg/drafts/2dcontext/

html5_canvas/

