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Detection of overlapped speech using lapel microphones in meeting

Ryo Yokoyamaa,∗, Yu Nasua, Koji Iwanob, Koichi Shinodaa

aDepartment of Computer Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152–8552, Japan
bFaculty of Environmental and Information Studies, Tokyo City University, 3–3–1 Ushikubo, Tsuzuki-ku, Yokohama 224–8551, Japan

Abstract

We propose an overlapped speech detection method for speech recognition and speaker diarization of meetings,
where each speaker wears a lapel microphone. Two novel features are utilized as inputs for a GMM-based detector.
One is speech power after cross-channel spectral subtraction which reduces the power from the other speakers. The
other is an amplitude spectral cosine correlation coefficient which effectively extracts the correlation of spectral com-
ponents in a rather quiet condition. We evaluated our method using a meeting speech corpus of four speakers. The
accuracy of our proposed method, 75.7%, was significantly better than that of the conventional method, 66.8%, which
uses raw speech power and power spectral Pearson’s correlation coefficient.

Keywords: Overlap speech detection, Spectral subtraction, Cosine distance

1. Introduction

In recent years, meeting speech recognition (Maganti et al., 2007; Nasu et al., 2011) and meeting speaker di-
arization (Boakye et al., 2008; Ben-Harush et al., 2009; Stolcke et al., 2010; Sun et al., 2010; Valente et al., 2010;
Vijayasenan et al., 2010; Boakye et al., 2011; Stolcke, 2011; Valente et al., 2011; Yella et al., 2011; Vijayasenan et
al., 2012; Zwyssig et al., 2012) have been effectively utilized to transcribe and browse meeting procedures. However,
their performance is usually low at the overlapped speech segments where more than one speaker is speaking. One
possible solution to this problem is to first detect the overlapped speech segments, and then to ignore them in the
following process or to apply special techniques such as source separation to recover the signal from each speaker.
We focus on overlapped speech detection (OSD) in this paper.

Several recording devices such as boundary microphones (Boakye et al., 2008; Ben-Harush et al., 2009; Boakye
et al., 2011; Sun et al., 2011) and microphone arrays (Moore et al., 2003; Yamamoto et al., 2006; Rozgic et al., 2010)
have been employed for meeting speech processing. Boundary microphones are easy to use and inexpensive, but it
is difficult to separate the speech signal of one speaker from those of the others. Microphone arrays can separate the
speech signals better but are expensive and need to be calibrated carefully. In this study, we use lapel microphones
for collecting meeting speech data. While the use of lapel microphones takes a little effort from each participant, it
enables the identification of each participant’s speech signal with relatively low costs. We can also use a smart phone
in one’s breast pocket or in front of him/her on the meeting table as a microphone.

Most conventional OSD methods successfully use a GMM-based classifier, which consists of one GMM for over-
lapped segments and one for non-overlapped segments, with a threshold set for their likelihood ratio. Then, the
problem is what features we should use as input. The power summed over all the frequency bands has proven to be
effective (e.g., Pfau et al., 2001; Wrigley et al., 2004; Xiao et al., 2011). Large powers in more than one microphone
indicate overlapping. Some studies (Pfau et al., 2001; Wrigley et al., 2004; Ghosh et al., 2010; Xiao et al., 2011)
focused on the similarity of the signals from different microphones. They tend to be similar with each other when
only one speaker speaks, and be different when more than one speaker is speaking.
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Pfau et al. (2001) proposed an OSD method using both of these two features sequentially. It first detects the speech
activity of signals from each microphone using the overall power. Then, if signals from more than one microphone are
active, it calculates short-time cross-correlation (XC), which is a measure for signal similarity, between them. Those
frames with short-time XC smaller than a certain threshold are detected as overlapping frames. In this method, the
error in the first step cannot be recovered in the second step. Then, Wrigley et al. (2004) proposed an OSD method
utilizing both of these features, the overall power and the short-time XC, at the same time as inputs to a detector
and proved its effectiveness. Ghosh et al. (2010) found that XC with a long-term window yielded better results in
cross-talk detection than that with a short-time window. Based on these studies (Wrigley et al., 2004; Ghosh et al.,
2010), Xiao et al. (2011) proposed Pearson’s correlation coefficient (PPC) as long-term XC, and reported that using
the overall power and PPC as inputs is effective for OSD.

However, each of these features, the overall power and PPC, has a serious problem. The overall power may be
contaminated by speech signals from the other speakers and detect overlapping segments incorrectly when only one
speaker is speaking. PPC is normalized by the mean of the power spectral components over all the frequency bands of
nearby frames. This normalization process is indeed effective when there exists stationary environmental noise which
should be subtracted. However, it may also normalize speech signals when more than one speaker is speaking, and
hence, may make the PPC large, leading to false detection of overlapped segments.

To solve the first problem, we focused on the source separation methods (e.g., Bell et al., 1995; Smaragdis, 1998;
Aoki et al., 2001; Rickard et al., 2001) utilizing multiple channel signals from multiple microphones. Some of them
used independent component analysis (ICA) (Bell et al., 1995; Smaragdis, 1998) and others employed binary masks in
the spectrogram (Aoki et al., 2001; Rickard et al., 2001). The ICA-based methods, however, need high computational
costs to calculate higher-order statistics. Signals separated by binary masking may include the other speaker’s speech
signals when the source signals are not sparse enough or when the estimation of masks is not reliable. Recently, cross-
channel spectral subtraction (CCSS) was proposed (Nasu et al., 2011). It is based on spectral subtraction (Boll, 1979)
and has less computational costs than ICA-based methods. It is also more robust than binary masking methods since it
effectively estimates and suppresses interference components, while binary masking methods force all time-frequency
components to be allocated to one channel.

In this paper, we propose two new features for OSD in meeting speech. One is CCSS power, which is an overall
power obtained by CCSS. It is very effective at excluding the speech signals from other speakers in meeting speech
using lapel microphones. The other is an amplitude spectral cosine correlation coefficient (ACC) which does not
include a feature normalization process and hence remains small when more than one speaker is speaking. We use
these two features as inputs to a GMM detector and examine their effectiveness using a meeting speech data with four
speakers.

This paper is organized as follows. Section 2 review frequency analysis and spectral subtraction for speech signals.
The two features used in this paper, CCSS power and ACC, are explained in Section 3 and Section 4, respectively.
The experimental results are reported in Section 5. Finally, Section 6 concludes the paper.

2. Speech analysis

Let x(t) be a recorded signal at timet. It can be written as:

x(t) = s(t) + n(t), (1)

wheres(t) andn(t) are the speech signal and the environmental additive noise, respectively.
It is generally assumed that speech is quasi-stationary, and hence, it can be analyzed in the frequency domain by

the short-time Fourier transform (STFT). STFT transforms the recorded signal Eq. (1) to:

X( f , t) =
∫ ∞
−∞

x(τ)w(τ − t)e− j2π f τdτ, (2)

whereX( f , t) represents the STFT of the recorded signal in a frequency bandf at timet, andw(t) is a window function.
In speech processing, the Hamming window function is typically used.
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Since the recorded signal is usually discrete, discrete short-time Fourier transform (DSTFT) is often used for
computation. It is calculated as:

X( f , t) =
∞∑
τ=−∞

x(τ)w(τ − t)e− j2π f τ, (3)

and is denoted as STFT in this paper.
Spectral subtraction (Boll, 1979) is widely used for single channel speech enhancement. The power spectrum of

the observed signal is approximated as:

|X( f , t)|2 ≈ |S( f , t)|2 + |N( f , t)|2, (4)

where f andt are the frequency and frame indices, andS( f , t) andN( f , t) are spectra of speech and additive noise,
respectively. With the estimated noise power spectrum|N̂( f , t)|2, the power spectrum of speech is estimated as:

|Ŝ( f , t)|2 = |X( f , t)|2 − α|N̂( f , t)|2, (5)

whereα is the subtraction factor.

3. CCSS power

3.1. Cross-channel spectral subtraction (CCSS)

In order to reduce the power from the other speakers, we introduce cross-channel spectral subtraction (CCSS)
(Nasu et al., 2011), a source separation method based on spectral subtraction.

3.1.1. Algorithm
Let the number of speakers beN. Consider that one lapel microphone is prepared for each speaker. We use the

same suffix for one speaker and his/her microphone. Then, assuming the speech signals from multiple speakers are
linearly mixed and ignoring noise, the signal recorded by thei-th microphone (of thei-th speaker) can be modeled as:

Xi( f , t) =
N∑

j=1

Gi j ( f , t)S j( f , t), (6)

whereS j( f , t) is the speech in a frequency bandf at time t of the j-th speaker andGi j ( f , t) is the transfer function
from the j-th speaker to thei-th microphone. The transfer functions are time-variable, since they may change when
speakers move around, while they are regarded as stationary in most conventional studies.

The target signal is thej-th speaker’s speech recorded by thej-th microphone for eachj. By defining it as:

Yj( f , t) = G j j ( f , t)S j( f , t), (7)

and substituting the transfer function with:

Hi j ( f , t) =
Gi j ( f , t)

G j j ( f , t)
, (8)

the recorded signal can be written as:

Xi( f , t) = Yi( f , t) +
∑
j,i

Hi j ( f , t)Yj( f , t). (9)
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Then, the power spectrum of the recorded signal is calculated as:

|Xi( f , t)|2

=

∣∣∣∣∣∣∣∣Yi( f , t) +
∑
j,i

Hi j ( f , t)Yj( f , t)

∣∣∣∣∣∣∣∣
2

= |Yi( f , t)|2 +
∑
j,i

|Hi j ( f , t)Yj( f , t)|2

+

N∑
k=1

∑
j,i

|Hik( f , t)Yk( f , t)Hi j ( f , t)Yj( f , t)| cosθk j,i ,

(10)

whereθk j,i is the phase difference between the speech of thek-th and j-th speakers observed with thei-th microphone.
Since the phases of different speakers are uncorrelated in each time-frequency bin, the expectation of cosθk j,i is

zero. Assuming that the sparseness of speech holds approximately, i. e., the following equation holds:

S j( f , t)Sk( f , t) ≃ 0 ( j , k), (11)

the third term of Eq. (10) becomes sufficiently small and can be ignored. Hence, the speech signal of thei-th speaker
is represented as:

|Ŷi( f , t)|2 = |Xi( f , t)|2 −
∑
j,i

|Ĥi j ( f , t)|2|Ŷj( f , t)|2, (12)

in the same manner as in Eq. (5).
We will discuss the ways to estimate the transfer function|Ĥi j ( f , t)|2 and the separated signal|Ŷj( f , t)|2 in the next

two subsections.

3.1.2. Estimation of transfer functions
We estimate the transfer functions|Ĥi j ( f , t)|2 using frames in which only one speaker is speaking. It can be safely

assumed that such frames exist in meetings. The signal channel recorded by thej-th microphone is expected to have
the largest power when only thej-th speaker is speaking. Thus we calculate the target signal of thei-th channel as:

|Ŷi( f , t)|2 = max

|Xi( f , t)|2 −
∑
j,i

|X j( f , t)|2,0
 , (13)

and select the frames which suffice both of the following conditions:

1
|F1|
∑
f∈F1

|Ŷj( f , t)|2 > T j(t), (14)

1
|F1|
∑
f∈F1

|Ŷk( f , t)|2 < Tk(t), ∀k , j (15)

as the frames where only thej-th speaker is speaking, whereF1 is a set of frequency bands andT j(t),Tk(t) are
predetermined thresholds. The thresholds were set as:

T j(t) =
2
|F1|
∑
f∈F1

|N̂ j( f , t)|2, (16)

Tk(t) =
1
|F1|
∑
f∈F1

|N̂k( f , t)|2, ∀k , j (17)
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where|N̂ j( f , t)|2, |N̂k( f , t)|2 are the estimated noise power spectra of thej-th andk-th microphone. The noise power
spectra are updated as:

|N̂i( f , t)|2 = ρn|N̂i( f , t − 1)|2 + (1− ρn)|Xi( f , t)|2, (18)

using predetermined initial values|N̂i( f ,0)|2 and forgetting factorρn ∈ [0,1]. This update is carried out during the
noise frames in which nobody is speaking. When the signal at timet does not have a large power at any frequency
band, it is estimated as a noise frame. We select the framet which suffices the following condition:∑

f∈F1

|Ŷi( f , t)|2 < ϵ
∑
f∈F1

|Xi( f , t)|2, ∀i (19)

whereϵ ∈ [0,1) and|Ŷi( f , t)|2 is calculated in Eq. (13), as a noise frame. Since the noise power is usually large in
lower frequency bands, we selectF1 from the low frequency region.

Let |Xi( f , t)|2 be the power spectrum which includes the environmental noise. The clean power spectrum is calcu-
lated as:

|X′i ( f , t)|2 = max
(
|Xi( f , t)|2 − |N̂i( f , t)|2,0

)
, (20)

using the noise estimated in Eq. (18). Since the transfer function is considered to be time-variable, we update it in
some time intervals as:

|Ĥi j ( f , t)|2 = ρh|Ĥi j ( f , t − 1)|2 + (1− ρh)
|X′i ( f , t)|2

|X′j( f , t)|2 . (21)

This update is carried out when only thej-th speaker is speaking, using the predetermined initial values|Ĥi j ( f ,0)|2
and forgetting factorρh ∈ [0,1].

3.1.3. Estimation of separated signals
The separated signals are estimated by an iterative process using the estimated transfer functions. We set the initial

value as|Ŷ(0)
i ( f , t)|2 = |X′i ( f , t)|2 for i = 1, . . . ,N and iteratively update it as:

|Ŷ(c)
i ( f , t)|2 = max

|X′i ( f , t)|2 − α(c)
∑
j,i

|Ĥi j ( f , t)|2|Ŷ(c−1)
j ( f , t)|2,0

 , (22)

wherec is the number of iterations andα(c) is the subtraction factor of each iteration.
If we use Eq. (22) only once, some speech components of the targeti-th speaker may be subtracted from the signal

of the i-th microphone. This may cause large distortion in the target speaker’s speech. We can obtain less distorted
signals by improving the estimates of the second term of Eq. (22) with this iterative process.

Figs. 1 and 2 show examples of the raw signals recorded by 4 speakers’ lapel microphones in meeting and the
signals separated by CCSS. In Fig. 1, the 4th speaker is mainly speaking from 15 s to 65 s, and their attenuated signal
appeared in the signals of the other microphones. When we use the power of raw signals for OSD, the segment where
only one speaker is speaking may be detected incorrectly as a segment with overlapped speech. Whereas in Fig. 2,
the signals of the other three microphones are much smaller than those in Fig. 1. Using the power of signals separated
by CCSS is effective for achieving high OSD performance.

Nasu et al. (2011) evaluated the performance of CCSS using speech recognition. CCSS achieved significantly
better recognition accuracies than the use of raw signals. They concluded that CCSS has high performance in source
separation.

We evaluated the subjective overall quality of the signal separated by CCSS, using mean opinion score (MOS)
that takes into account both the level of speech distortion by noise and the level of the target speech intelligibility. In
this experiment, we selected two types of signals, the raw signal and the signal separated by CCSS, of 4 short time
segments, making 8 signal samples in total. We asked 8 listeners to listen to them. Each listener chooses one of the
five scores shown in Table 1 for each of the three questions about the signal quality. The results showed in Fig. 3
indicate that the overall signal quality of them is almost the same. Thus, it can be concluded that CCSS achieves high
source separation performance without any significant degradation of the overall signal quality.
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3.2. Implementation to OSD

The raw power (P) used as the feature for OSD in the previous methods (e.g., Xiao et al., 2011) is calculated as:

Pi(t) =
∑
f∈F2

|Xi( f , t)|2, (23)

whereF2 is the set of all frequency bands in STFT.
Since signals of one microphone contain the speech from the other speakers, more than one microphone’s power

may be large even when only one speaker is speaking. In this case, false detection may occur.
To solve this problem, we use the power of the signal estimated in Eq. (22) by CCSS. It is defined as:

CCSSPi(t) =
∑
f∈F2

|Ŷ(c)
i ( f , t)|2. (24)

The CCSS power is not expected to include the power from the other speakers, and only one of microphone’s
CCSS power will be large when only one speaker is speaking. Thus, it can be used to distinguish between overlapped
and non-overlapped segments.

4. Spectral similarity

4.1. Difference of similarity

Some studies have focused on the effect of cross-talk and use a spectral similarity between the signals from
microphones to detect overlapped speech segments. In meetings, the similarity becomes high when only one speaker
is speaking, and becomes low when more than one speaker is speaking. In the following explanation, the number of
participants is fixed at two for simplicity.

Let the participants bei, j and only speakeri is speaking. The power spectrum of the recorded signals from
microphonei, j is calculated as:

|Xi( f , t)|2 = |Ŷi( f , t)|2, (25)

|X j( f , t)|2 = |Ĥ ji ( f , t)|2|Ŷi( f , t)|2, (26)

from Eq. (12).
Then, the power spectrum of thej-th microphone becomes:

|X j( f , t)|2 = |Ĥ ji ( f , t)|2|Xi( f , t)|2, (27)

and it becomes highly similar to|Xi( f , t)|2, the spectrum of thei-th microphone.
On the other hand, consider the situation when both speakersi, j are speaking. The power spectrum of the recorded

signals from microphonei, j is calculated as:

|Xi( f , t)|2 = |Ŷi( f , t)|2 + |Ĥi j ( f , t)|2|Ŷj( f , t)|2, (28)

|X j( f , t)|2 = |Ĥ ji ( f , t)|2|Ŷi( f , t)|2 + |Ŷj( f , t)|2. (29)

Since|Ŷi( f , t)|2 and|Ŷj( f , t)|2 are different, the similarity between|Xi( f , t)|2 and|X j( f , t)|2 becomes low.

4.2. Measurement of similarity

4.2.1. Power spectral Pearson’s correlation coefficient
In the previous method (Xiao et al., 2011), the power spectral Pearson’s correlation coefficient (PPC) is employed

to measure the similarity between the power spectra of thei-th microphone and thej-th microphone. It is defined as:

PPCi, j(t) =

(
Pi(t) − P̄i(t)

)
·
(
P j(t) − P̄ j(t)

)∥∥∥Pi(t) − P̄i(t)
∥∥∥ ∥∥∥P j(t) − P̄ j(t)

∥∥∥ , (30)
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whereF3 is a set of frequency bands andPi(t) is the|F3| × (2T + 1) dimensional vector of power spectral components
|Xi( f , τ)|2 for f ∈ F3, t−T ≤ τ ≤ t+T, andP̄i(t) is its mean over all the|F3| bands of all the 2T+1 frames. Since most
speech information is represented in the spectrum under 4 kHz, the setF3 includes only the frequency bands under 4
kHz. Since PPC represents the similarity between two signals, it becomes large when only one speaker is speaking
and becomes low when more than one speaker is speaking.

Normalization usingP̄i(t) in Eq. (30) is expected to be effective when there exists additional noise which should
be subtracted. However, since speech signals are also normalized even when more than one speaker is speaking, PPC
tends to become higher than without normalization. This may cause false detection of a single speaker when more
than one speaker is speaking.

4.2.2. Amplitude spectral cosine correlation coefficient
Instead of PPC, we employ an amplitude spectral cosine correlation coefficient (ACC) to measure similarity be-

tween the amplitude spectra of thei-th microphone and thej-th microphone. It does not include the normalization
process. It is defined as:

ACCi, j(t) =
Ai(t) · A j(t)∥∥∥Ai(t)
∥∥∥ ∥∥∥A j(t)

∥∥∥ , (31)

whereAi(t) is the|F3| × (2T + 1) dimensional vector of amplitude spectral components|Xi( f , τ)| for f ∈ F3, t − T ≤
τ ≤ t + T. We use amplitude instead of power to keep the dynamic range of the coefficients small.

While ACC may not be better than PPC under noisy conditions, it is expected to be better in a rather quiet condition
such as that of meeting speech data recorded by lapel microphones in a meeting room.

5. Experiments

5.1. Experimental conditions

We recorded a sit-down meeting of 19 minutes long, conducted in Japanese language by four speakers, one female
and three male speakers. We divided the meeting data into two in the middle, and the first half is used as a training
set and the latter half is used as a test set. The speakers’ positions are shown in Fig. 4. The participants did not move
from their seats, but they were allowed to change their posture as they desired. A lapel microphone was attached to
the lapel of each speaker. The speech segments were hand-labeled, including laughter and coughing, and the label for
overlapped speech (Wo) or that for non-overlapped speech (Wn) is given to each frame (every 25 ms). Their statistics
are given in Table 2.

The recording was done at 16 kHz sampling frequency. STFT was performed using Hamming window with 50 ms
width with 25 ms frame shift. We experimentally set the following factors which achieved the highest performance.
In Eq. (14) and Eq. (15), the frequency bands are set toF1 = [60,4000] Hz. For noise estimation in Eq. (18), the
opening 500 ms segments are used as the initial value of|N̂i( f ,0)|2 with ϵ = 0.1 andρn = 0.98. The transfer functions
in Eq. (21) were calculated on 10 divided frequency ranges of the overall frequency bands|F2| = 400 to reduce the
error and were updated withρh = 0.98, |Ĥi j ( f ,0)|2 = 0.20. In the estimation of separated signals, we performed two
iterations and set the subtraction factor atα(1) = 1.0,α(2) = 4.0 in Eq. (22). In the calculation of the spectral similarity,
we set the window widthT = 10 and used 200 bins in the lower half frequency of the overall frequency bands. The
frequency range isF3 = [20,4000] Hz. Each component in the GMM has a diagonal covariance matrix, and the
number of Gaussian components in each GMM is 8.

The raw power (P) used in the previous method (Xiao et al., 2011), the CCSS power (CCSSP) of the proposed
method, the power spectral Pearson’s correlation coefficient (PPC), and the amplitude spectral cosine correlation
coefficient (ACC) are extracted from each frame. The dimensions of P and CCSSP feature vectors are both 4, one
from each of the four microphones, and those of PPC and ACC feature vectors are both 6, which is the number of pairs
among the four speakers. The previous method (Xiao et al., 2011) is denoted as P+PPC, and our proposal method is
denoted as CCSSP+ACC.

7



The log likelihood ratio ofWo to Wn is calculated as:

Λ(s) = ln
P(s|Wo)
P(s|Wn)

= ln[P(s|Wo)] − ln[P(s|Wn)],

(32)

whereP(s|Wo) is the likelihood ofsgivenWo, andP(s|Wn) is the likelihood ofsgivenWn. We decided the overlapped
speech according to:

s=

{
Overlapped speech, Λ(s) ≥ Tborder

Non-overlapped speech, otherwise
(33)

with the thresholdTborder.
We used average precision (AP) (Zhu, 2004) as the measure of detection performance. We calculatedΛ(s) of all

frames in Eq. (32), and listed them in descending order asΛr (s), wherer is the rank in this list. The AP is calculated
as:

AP =
M∑
r

P(r)
(
R(r) − R(r − 1)

)
(34)

whereM is the total number of frames,P(r) andR(r) are the precision and the recall respectively whenTborder= Λr (s)
in Eq. (33), and letR(0) = 0. This AP corresponds to the area size inside the recall-precision curve. The closer the
recall-precision curve is to the upper-right corner, the higher the detection performance is.

5.2. Results

The detection results are shown in Fig. 5. As can be seen, the proposed method, CCSSP+ACC, achieves the
highest performance. Its AP is 75.7% which is better than the 66.8% of P+PPC by 26.8% relative reduction of error.

We conducted experiments using part of the test dataset in which only two speakers participate to compare the
performance of P and CCSSP in Fig. 6. The overlapped region and the non-overlapped region in CCSSP are more
clearly separated than those in P. These results indicate that CCSSP reduces the speech power from the other speakers,
and thus, contributes to the high OSD performance of our method.

We also compare the performance of PPC, ACC, an amplitude spectral Pearson’s correlation coefficient (APC),
and a power spectral cosine correlation coefficient (PCC) in Table 3. The highest AP of ACC is 50.6%. In Fig. 7, it
is shown that the ACC histogram of the overlapped frames and that of the non-overlapped frames are more clearly
separated than those of PPC.

We analyze how CCSSP and ACC complement each other in our proposed OSD. The power histogram of the non-
overlapped frames misdetected as overlapped frames when recall= 0.7 is shown in Fig. 8. CCSSP tends to misdetect
the frames whose power is relatively large. In these frames, CCSSP’s of more than one microphone become large
because the power from the other speaker, who is speaking loudly, cannot be reduced enough by CCSS. For example,
it can be seen in the upper-left region of Fig. 6(b) that CCSSP1(t) in framest, where only the 2nd speaker is speaking,
tends to be larger when CCSSP2(t) is relatively large and that there are some mixtures of the non-overlapped and the
overlapped frames. On the other hand, ACC tends to misdetect the frames whose power is relatively small. In these
frames, ACC between any microphones becomes small because, when only one speaker speaks quietly, the power
from the other speaker is almost silence. In this way, CCSSP and ACC make up for each other.

5.3. Evaluation with ICSI meeting corpus

5.3.1. Evaluation data
We evaluated our method using the first 20 minutes of the ICSI meeting data set (Bro027), which is in English

with four male speakers (Janin et al., 2003). We divided the data into two in the middle, and used the first half as a
training set and the latter half as a test set. The speech segments were hand-labeled, in which labels include laughter
and coughing, and the labelWo or Wn was given to each frame (every 25 ms). Their statistics are given in Table 4.
The other experimental conditions are the same as in Subsection 5.1.
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5.3.2. Results
The detection results are shown in Fig. 9. As can be seen, the proposed method, CCSSP+ACC, achieves the

highest performance. Its AP is 73.3%, which is better than 64.4% of P+PPC. It reduced errors by 25.0%.

6. Conclusion

In this study, we have proposed CCSSP and ACC as the features for OSD in meeting speech. In our evaluation
experiments, we compared our features with the previously proposed features, P and PPC. The AP of the proposed
method is 75.7% which is better than 66.8% of the previous method by 26.8% relative reduction of error.

In spite of these improvements, misdetected frames still exist and more features are required to improve the OSD
performance. One promising applicant would be entropy. In addition, we used hand-labeled speech segments in this
study. An overlapped detection method with unsupervised learning is required to reduce the annotation costs.
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Score Distortion Intelligibility Total quality
5 Not distorted Excellent Excellent
4 Slightly distorted Good Good
3 Somewhat distorted Fair Fair
2 Fairly distorted Poor Poor
1 Very distorted Bad Bad

Table 1: Mean opinion score (MOS) evaluation criteria.

Length Wn Wo

Train 9.7 min 70% 30%
Test 9.7 min 68% 32%

Table 2: Statistics of overlapped speech (Wo) and non-overlapped speech (Wn) in the training and test dataset of the self-recorded meeting.

PPC ACC APC PCC
AP 44.5 50.6 49.6 44.7

Table 3: AP (%) of the overlapped detection results using each spectral similarity features.

Length Wn Wo

Train 10 min 75% 25%
Test 10 min 69% 31%

Table 4: Statistics of overlapped speech (Wo) and non-overlapped speech (Wn) in the training and test dataset of the ICSI meeting corpus.
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Fig. 1: Waveform of the raw signals.
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Fig. 2: Waveform of the signals separated by CCSS.
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Fig. 5: Recall-precision curve of the OSD result in the test dataset of the self-recorded meeting.
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Fig. 7: Correlation coefficient histogram of the overlapped and non-overlapped frames. The horizontal axis is the value of PPC and ACC, and the
vertical axis is the normalized count of overlapped and non-overlapped frames in each correlation coefficient value.
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Fig. 8: Power histogram of the misdetected frames. The horizontal axis is the power of the non-overlapped frame misdetected as overlapped frame,
and the vertical axis is the number of frames in each frame power level. The powers Pi (t) of the different channels (i = 1,2,3,4) are separately
counted and summed up in this histogram.
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Fig. 9: Recall-precision curve of the OSD result in the test dataset of the ICSI meeting corpus.
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