[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

Od/dodn
Article / Book Information

Title A File Recommendation Method Based on Task Workflow Patterns
Using File-access Logs

Author Qiang Song, Takayuki Kawabata, Fumiaki Itoh, Yousuke Watanabe,
Haruo Yokota

Journal/Book name Lecture notes in computer science, LNCS, 8056, , pp.410-417

DOI http://dx.doi.org/10.1007/978-3-642-40173-2_33
0000 /Copyright The original publication is available at www.springerlink.com.
Note OO000000000OO0DOO0DOOood

This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1007/978-3-642-40173-2_33
http://t2r2.star.titech.ac.jp/

A File Recommendation Method Based on Task
Workflow Patterns Using File-access Logs

Qiang Song!, Takayuki Kawabata?, Fumiaki Itoh?, Yousuke Watanabe!, and
Haruo Yokotal

! Tokyo Institute of Technology
2 Canon Inc.
{soukyou, watanabe}@de.cs.titech.ac. jp, {kawabata.takayuki,ito.fumiaki}
Q@canon.co. jp,yokota@cs.titech.ac. jp

Abstract. In recent years, office workers spend much time and effort
searching for the documents required for their jobs. To reduce these
costs, we propose a new method for recommending files and operations
on them. Existing technologies for recommendation, such as collaborative
filtering, suffer from two problems. First, they can only work with doc-
uments that have been accessed in the past, so that they cannot recom-
mend when only newly generated documents are inputted. Second, they
cannot easily handle sequences involving similar or differently ordered
elements because of the strict matching used in the access sequences. To
solve these problems, such minor variations should be ignored. In our
proposed method, we introduce the concepts of abstract files as groups
of similar files used for a similar purpose, abstract tasks as groups of sim-
ilar tasks, and frequent abstract workflows grouped from similar work-
flows, which are sequences of abstract tasks. In experiments using real
file-access logs, we confirmed that our proposed method could extract
workflow patterns with longer sequences and higher support-count val-
ues, which are more suitable as recommendations.

Keywords: File recommendation, File abstraction, Abstract task, Ab-
stract workflow, Log analysis

1 Introduction

The numbers of files in file systems have grown dramatically. As a consequence
of this increase, office workers now spend much time and effort searching for
files that include documents and data required for their business [1]. It is there-
fore important to find methods for reducing the time wasted in ineffective and
unproductive searching. Also, in office, the searching targets are not limited to
documents, the abstract working processes which we call them abstract work-
flows in this paper are also being searched by users.

Collaborative filtering is well known as an algorithm for making recommen-
dations. However, it only works with files accessed in the past. Recommendation
systems based on this algorithm do not work well on newly generated files. More-
over, collaborative filtering does not handle well sequences that include elements

2 Q. Song, T. Kawabata, F. Itoh, Y. Watanabe, and H. Yokota

Now New Ordering Instruction for P>y Frequent Abstract Workflow
g Company Z

PN / " | Abstract Task
userC(Newcomer)- -
Ordering BExample Product
‘ Instructions —=> @ Information
Past -
-
~
Ordering Instruction for - o
Ia user A [CompanyX J ﬁ Exampleofan EstlmateH lnformatlonofProductXJ .+
\
Information of ProductY Exampleof an Estimate I

=
Fig. 1. Our Challenges in File Recommendation

\

that are similar but not identical, or that have a different ordering of elements,
because the algorithm uses strict matching of elements in access sequences.

In this paper, we propose a method for recommending files and types of
operations on them (e.g. open, close), that supports creative business processes
as an operational tool. We consider the abstract workflows for a user. These are
different from the ordinary workflows described by users, being generated by
mining the file-access histories of the users. To obtain good recommendations,
it is important to ignore small variations in the matching process. In this paper,
we introduce for the first time the concepts of abstract files, abstract tasks,
and frequent abstract workflows. The differences between collaborative filtering
and our proposed method in this paper are that we add the concept of tasks
to weaken the constraint of strict matching for access sequences and we apply
abstraction to files, tasks, and workflows to handle newly generated files. The
evaluation results indicate that our method extracts workflow patterns with
longer sequences and higher support-count values (occurrence times of workflow
patterns), which are more suitable as recommendations. Moreover, the results
demonstrate that using the concepts of abstract tasks and abstract workflows
improves the quality of the recommendations.

As a previous work, we compared several file similarity calculation methods
[5]. In this paper, we focus on how to abstract tasks and workflows for recom-
mendation.

2 Goal and Approach

Figure 1 illustrates an example of the type of workflow pattern we are investi-
gating. We assume that user C creates a new file. The goal is to predict the files
required, for recommendation to user C.

In our approach, we search for similar patterns of operation in logs and
make recommendations based on them. For example, in the two patterns of user
A and B, different files were accessed in different orders, but it is considered
that users A and B were doing essentially the same work. Therefore, we expect

A File Recommendation Method Based on Task Workflow Patterns 3

to extract an abstract pattern of work. Using this abstract workflow pattern,
it becomes possible to recommend files such as “Example of an estimate” or
“product information file” to user C.

While users access files located on a file server, file-access histories are stored
in a log file. Each record in the log file includes timestamp, user, operation
and filename information. Our method extracts abstract tasks and workflows
from the log file, and reserves them in a database. The method then monitors
the current file accesses by a user, and searches for workflows in the database
that match the access patterns of that user to infer the user’s current workflow
pattern. Based on the inferred workflow, the method recommends those files,
together with operations on them.

3 Definition of Workflow Model

In general, the orders of sequences of individual operations will vary, even if
the outlines of the workflows are the same. To ignore such subtle differences in
operational order in similar workflows, we introduce the concept of an abstract
task as a group of similar combinations of file and operation, and an abstract
workflow as a sequence of abstract tasks.

[Task]: A task is a subsequence of records in the log file. It is the basic unit in
a working process’s workflow. For example, from the log below, we set TGBT=3
minutes.

— Record 1: 12:00 [Open File A
— Record 2: 12:01 [Open File B
— Record 3: 12:10 [Open File C
— Record 4: 13:00 [Open File D

Three tasks will be extracted from these four records.

— Task 1: {[Open File A], [Open File B|}
— Task 2: {[Open File C
— Task 3: {{Open File D

[Abstract Task]: An abstract task is a set of combinations of file and oper-
ation derived by clustering similar tasks, in order to ignore small variations in
between tasks. In the above example, three abstract tasks would be derived as
follows.

— Abstract Task 1:
— Abstract Task 2:
— Abstract Task 3:

Open File-Cluster 1
Open File-Cluster 1
Open File-Cluster 3

, [Open File-Cluster 2]

[Abstract Workflow]: An abstract workflow is a sequence of abstract tasks.
For the above example, we set TGBW=30 minutes and can extract two abstract
workflows that are sequences of the abstract tasks.

— Abstract Workflow 1: [Abstract Task 1] — [Abstract Task 2]
— Abstract Workflow 2: [Abstract Task 3

[Frequent Abstract Workflow]|: Frequent abstract workflows are groups
of similar workflows, in which sequences of abstract tasks appear frequently.

4 Q. Song, T. Kawabata, F. Itoh, Y. Watanabe, and H. Yokota
4 Proposed method

The process flow comprises two parts, namely the offline and online parts.

Extraction of Tasks \ Abstraction of Tasks \ Extraction of 5]
and Workflows and Workflows Frequent Abstract o the Abstract > Frequent Abstract ecummende(.un
Workflow: Tasks Workflows

TR tonger ! [TF
1longer ! [File A =
FIeB || than A [File B |- > F"C) m o? » » 0) G) [File]
flec], ™87 1| [File C | ™y . 2 (D © m Flle :
leb File D File % m \ N

S
File £ Cluster
File A 2 HeD
Ele il IM ; " @ -
File] i ey g ® . Recommend files
i .F.f‘.e.c. | . ® and operation
File U = types from
File D i ini
o IF:IiIZ L[; Task DB Workflow DB unfinished tasks
Fig. 2. Offline Part Fig. 3. Online Part

4.1 Offline Part

The aim of offline part is to extract abstract tasks and frequent abstract work-
flows from file-access logs.

[Extraction of Tasks and Workflow]: We first partition the log file in
terms of user ID. If there are no file operations by a user during an interval
longer than a certain time (TGBT for task, TGBW for workflow), we infer
that the previous task/workflow had finished before the interval and the next
task/workflow has started after it. We cut out tasks by parameter TGBT (150
seconds in experient) and workflows by parameter TGBW (1800 seconds in ex-
perient). In Figure 2, We partition the log into four tasks and two workflows.

[Abstraction of Tasks and Workflows]: To treat files with small dif-
ferences as the same work, we want to cluster similar files used for the same
purposes together. Instead of simply using the contents of the files, we calculate
files’ similarity based on the copy relationship and the similarity in filenames.
Using the similarity between files, we apply agglomerative hierarchical clustering
[2] to the files. Abstraction of files means replacing files, which appeared in the
access log, with the corresponding clusters. We calculate the similarity between
tasks by using the similarity between files. The similarity between tasks is a met-
ric representing the degree of matching of two tasks in terms of file operations.
It is large when two tasks have numerous abstract file operations in common.
Here, we use Dice’s Coeflicient to calculate the degree of similarity. The formula
for the similarity between T'askA and TaskB is

2|TaskA N TaskB| (1)
|TaskA| + |TaskB|’

sim(TaskA,TaskB) =

A File Recommendation Method Based on Task Workflow Patterns 5

Based on the degree of similarity between tasks, we group tasks with a high
degree of similarity together in a cluster as abstract tasks. We set two thresholds
to filter out small clusters and unnecessary items inside clusters. First, only when
a cluster contains more than Minimum Number of Tasks (MNT, 2 in experiment)
tasks, will it be treated as an abstract task. Second, only the files inside a cluster,
which occurrences ratio in tasks is more than a Minimum Emergence Ratio
(MER, 0.5 in experiment), will be included in the abstract task. After the task
abstraction, we simply replace each task in a workflow with the corresponding
abstract task to obtain the abstract workflow.

[Extraction of Frequent Abstract Workflows]: To remove any infre-
quent abstract workflows created, we extract those that appear frequently as
frequent abstract workflows. Two parameters are used, namely the Minimum
Occurrence Time (MOT, 2 in experiment) and the Minimum Sequence Length
(MSL, 2 in experiment) of the workflow sequence.

4.2 Online Part

The aim of online part is to find matching abstract tasks and frequent abstract
workflows in database while monitors user’s current operation, and then recom-
mends files and operations on them to the user. As mentioned in Section 3, even
when users are doing the same type of work, different files are usually being han-
dled. For this reason, we abstract files being operated on currently by the user.
We then estimate the abstract task and the frequent abstract workflow (Figure
3).

[Abstraction of Files|: We abstract files by the method explained in Section
4.1. If the user is accessing a file that has a corresponding file-cluster, we simply
replace the being accessed file’s filename in the log by the corresponding file-
cluster. However, in some cases, such as newly created files, some files do not
own corresponding file-clusters. In such cases, we first replace the file being
accessed by the most similar file that does have a corresponding file-cluster.

[Estimation of Abstract Tasks|: We estimate the current abstract task
being operated on by the user from the abstract files being accessed. We group
the abstract files being accessed into a task, and then compare this task with
tasks in the database to find the most similar task.

[Estimation of Frequent Abstract Workflows]: After estimation of the
abstract task, we estimate the frequent abstract workflow. Because there are
several abstract workflows that contain the estimated abstract task, we score
each frequent abstract workflow in the database according to these three criteria.

— Degree of matching between work flow being accessed and work flow in database
— Frequent occurrence score for work flow in database
— Number of possible tasks in work flow in database for recommendation

[Recommendation]: The aim of this step is to recommend files and oper-
ations based on the estimated abstract task and frequent abstract workflow. If
we know about the user’s current abstract task and frequent abstract workflow,
we can identify and recommend subsequent abstract tasks. However, a frequent

6 Q. Song, T. Kawabata, F. Itoh, Y. Watanabe, and H. Yokota

abstract workflow is a sequence of abstract tasks, while an abstract task is a set
of pairs of operations and file-clusters. Each file-cluster contains several files. The
problem is how to rank the recommendation candidates. Therefore, the proposed
method extracts the last access time stamp of each file, ranking files belonging
to the same file-cluster by most recent access time stamp.

5 Experiments

5 1
® 0.9

1 08
12 0.7
10 06

0.5 0.431

0.4 0321 0341
03 §
02 0.098 \\
R 01 - 0.073 0.078
100 0 \

Precision Recall F-measure

Length of Sequence
(Number of File Operation)

Support Score (Occurrence Times)
eProposed method - Basic method 7 Basic method & Proposed method

Fig. 4. Comparison of Workflow Char-Fig. 5. Comparison of Precision, Re-
acteristics call, and F-measure for all Test Cases

The goal of our exteriment is to investigate the effectiveness of the features
of our proposed concept, namely the abstraction of tasks and workflows. So we
set up a basic method that did not use abstract tasks for comparison. The basic
method simply extracts sequences of file operations as workflows and calculates
those that are frequently used for recommendation.

The experimental data came from actual file-access logs provided by a com-
mercial organization. There are 22 users in our log data. The record term is
about 8 months and 9917 records and 1750 files are recorded in the log data.
We split the log in a ratio of 70% to 30%. The first 70% of the log was for
learning tasks and workflows and the other 30% was for evaluation. We divided
the log for evaluation in terms of user IDs, using the same TGBW parameter to
obtain workflows as used by the proposed method and created 151 test cases.
Each test case is a workflow sequence. For each test case, the first 2 records
from the beginning were input into our recommendation system to acquire a set
of recommendation results. The remaining records in the test case were used
as a correct answer set. By matching the examinees set and the results set, we
obtained values for Precision, Recall, and F-measure. A comparison between the
proposed method and the basic method was then made using the average values
for all test cases.

We compared the workflows extracted by the two methods in bubble chart
Figure 4. The horizontal axis represents the occurrence value (support-count
value) for workflows, the vertical axis represents the number of file operations in

A File Recommendation Method Based on Task Workflow Patterns 7

workflow sequences (sequence length), and the size of the bubbles represents the
number of workflows. Note that basic method’s bubbles are more concentrated
in the lower left corner than proposed method’s bubbles, which means that the
workflows extracted by the basic method have smaller support-count values and
shorter sequence lengths. Workflows with a small support-count value are more
contingent and tend not to be reusable working patterns. In addition, workflows
with small sequence lengths are undesirable because of the small amount of
information available for the recommendation. Our proposed method can extract
workflows with higher support-count values and greater sequence lengths than
the basic method, which are more suitable for making recommendations.

We now describe the recommendation results for the evaluation experiment.
Figure 5 shows the average Precision, Recall, and F-measure for all 151 test
cases. Note that the proposed method performs much better than the basic
method for all metrics. In particular, the F-measure score was improved from
0.078 to 0.341. The reason for this large difference is that the numbers of test
cases that can be recommended are overwhelmingly different. Because the basic
method can only recommend files that have been used in the past, only 25.8%
of the test cases returned a result. On the other hand, because of our proposed
method’s abstract file operations, the proposed method can recommend files
from similar file operations undertaken in the past. This enables more files to be
available for recommendation. About 57.0% of the test cases returned results. We
then focuses on the test cases that returned results. Our proposed method still
performs considerably better than the basic method. The F-measure score was
improved from 0.301 to 0.598. The reason for this is considered to be the quality
of the workflows used in the recommendations. We therefore investigated the
average support-count value for frequent abstract workflows that are used in the
recommendations. The basic method’s average support-count value for frequent
abstract workflows is 4.833, while the proposed method’s value is 20.186. We
can conclude that the proposed method’s workflows have higher support-count
values and more suitable for making recommendations, which will improve the
recommendation accuracy greatly.

6 Related Work

Okamoto et al. proposed a Web-page recommendation method using Web-access
logs [4]. By extracting patterns in combinations of multiple attributes of the
accessed pages, their method can also recommend new Web pages. Although
each Web page is abstracted in their study, there is no concept of abstract tasks.

Tanaka et al. proposed a personalized document recommendation system
via collaborative filtering [6]. In their system, documents viewed within a short
period of time are considered to be related to the same working unit for the
same purpose. They partition the access logs using the time gap between two
records. We adopted this idea when extracting tasks from logs. Another file
recommendation system was proposed by Lai et al. [3]. Their work proposes
recommendation methods based on the knowledge-flow (KF) model. There are

8 Q. Song, T. Kawabata, F. Itoh, Y. Watanabe, and H. Yokota

two differences between their work and our proposed methods. First, the aims of
file abstraction are different. In their work, files with similar topics (keywords)
are grouped together. On the other side, we group files not depending on topics,
but the purpose of use, which is more suitable for extracting meanful workflows.
Second, their study groups similar files and then calculates KFs (workflows)
directly, whereas our proposed method first groups similar files into tasks and
then calculates the sequences of tasks as workflows. By introducing the concept
of abstract task, our method can extract patterns with difference in order.

SUGOI [7] is for searching files using file access logs. SUGOI finds related
files using file-access logs. In their study, a task is defined as the file set contain-
ing related files in simultaneous use. However, their method does not perform
abstraction on tasks, which is the main difference from our study.

7 Conclusion and Future Work

In this paper, we propose a method to extract frequently used abstract-workflow
patterns from the history, and to recommend files and operations by monitoring
the current workflow of the target user. There are two points in our proposed
method. First, our proposed method is able to extract general patterns, which
are more suitable for making recommendations by abstracting such files. Second,
the proposed method introduces abstract tasks to eliminate sequential relations
inside tasks. The experiment results demonstrate that our proposed method is
more suitable for recommendation. Consequently, the F-measure of the recom-
mendation results was improved significantly from 0.301 to 0.598. In the future,
we plan to consider a better algorithm for partitioning logs instead of simply
using a fixed time. This might involve using information such as the frequency
and type of operations.

References

1. Feldman, S., Duhl, J., Marobella, J.R., Crawford, A.: The hidden costs of informa-
tion work. IDC WHITE PAPER (March 2005)

2. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, Second Edi-
tion. Morgan Kaufmann (2006)

3. Lai, C., Liu, D.: Integrating knowledge flow mining and collaborative filtering to
support document recommendation. The Journal of Systems and Software pp. 2023—
2037 (2009)

4. Okamoto, H., Yokota, H.: Access log based web page recommendation using multiple
attributes of web pages (in japanese). Proc. WebDB Forum 2009 (Nov 2009)

5. Song, Q., Kawabata, T., Itoh, F., Watanabe, Y., Yokota, H.: Recommendation
method for files and operations based on workows of abstract tasks from access
log (in japanese). IPSJ (2013)

6. Taguchi, H., Sakojo, S., Iwata, M.: Personalized document recommendation for field
engineers (in japanese). DEIM (2011)

7. Wu, Y., Otagiri, K., Watanabe, Y., Yokota, H.: A file search method based on
intertask relationships derived from access frequency and rmc operations on files.
DEXA pp. 364-378 (2011)

