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Event detection in consumer videos using
GMM supervectors and SVMs
Yusuke Kamishima, Nakamasa Inoue* and Koichi Shinoda

Abstract

In large-scale multimedia event detection, complex target events are extracted from a large set of
consumer-generated web videos taken in unconstrained environments. We devised a multimedia event detection
method based on Gaussian mixture model (GMM) supervectors and support vector machines. A GMM supervector
consists of the parameters of a GMM for the distribution of low-level features extracted from a video clip. A GMM is
regarded as an extension of the bag-of-words framework to a probabilistic framework, and thus, it can be expected to
be robust against the data insufficiency problem. We also propose a camera motion cancelled feature, which is a
spatio-temporal feature robust against camera motions found in consumer-generated web videos. By combining
these methods with the existing features, we aim to construct a high-performance event detection system. The
effectiveness of our method is evaluated using TRECVID MED task benchmark.

Keywords: Multimedia event detection; Feature extraction; GMM supervector; Support vector machines;
Camera motion cancelled features

1 Introduction
The amount of consumer-generated web videos we can
access over the Internet has been rapidly increasing. For
example in Youtube, more than 72 h of video are uploaded
per a minute. Since such videos often do not have text
tags, there has been a strong demand for automatic video
retrieval systems based on video contents. In particular,
detecting events depicted in a video enables us to get sig-
nificant information. Here, events are characterized by the
combination of several concepts such as objects, scenes,
and human motions. For example, an event birthday party
consists of concepts such as cake, indoor, singing, and
peoplea.

Most studies for event detection have been aimed at
identifying events in professionally produced videos such
as sports [1] and movies [2], or in surveillance videos
[3]. These studies used event-specific methods which rely
heavily on the spatial-temporal structures of the target
events. By Assfalg et al. [1], for example, three types
of highlights in soccer games such as penalty kick were
modelled by three-state HMMs, using constant camera
motions and the location of players as features. Li et al. [2]

*Correspondence: inoue@ks.cs.titech.ac.jp
Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552,
Japan

detected dialog events in movie videos by shot clustering
and audio analysis. Adam et al. [3] modelled the stream of
people in surveillance videos from optical flows to detect
unusual events such as running in the mall. While these
methods can be applied when the target events are speci-
fied and the spatial-temporal structures of the events are
always stable, it is difficult to apply them to general events
appearing in consumer-generated videos due to two major
reasons. First is that general events widely vary and the
definitions of them are not always clear. Second is that
consumer-generated videos do not have stable spatial-
temporal characteristics since they are taken by amateurs
from different points of view and often include unsettled
camera motions or haphazard editing.

Our aim is to detect an event consisting of multiple con-
cepts from a large amount of consumer-generated videos.
One attempt at tackling such complicated event detection
is the TRECVID [4] multimedia event detection (MED)
task [5]. In this task, several events are described in text
using more than one concept. Some examples are shown
in Figure 1. The MED dataset for this task consists of
a large amount of clips, which includes various types of
videos such as home videos and demonstration videos.

© 2013 Kamishima et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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Figure 1 Examples of event clips in TRECVID2010 and TRECVID2011 MED dataset.

For example, the number of clips in the 2011 task was
44,904.

Many studies for this kind of task have been based on
the bag-of-words (BoW) framework [6-9]. In these meth-
ods, low-level features are converted into a fixed-length
BoW histogram [10,11], based on the assignment of each
feature to one code in a codebook. This histogram is
used as the input to an support vector machine (SVM).
However, since this BoW method uses hard-assignment
(i.e., a feature vector is assigned only to the nearest code-
word), quantization errors often degrade the detection
performance.

Some event detection methods used not only low-level
features and BoW methods but also high-level features
such as a semantic concept model, which models the
relationship between events and concepts [6,12]. Jiang
et al. [6] applied the domain-adaptive semantic diffusion
(DASD) method [13] to MED, where the labels of the
concepts related to the target events were manually anno-
tated to positive clips for MED events and the relation-
ship was modelled using a weighted graph. The weights

were estimated using training samples and automatically
adapted to testing data. While such a method can give
us the contextual information and fill the semantic gap
between low-level features and detection results, it does
not have extensibility since we do not know what/how
many concepts are needed for such kind of event mod-
elling. To address this problem, Ma et al. [12] proposed
event detection using a classifier-specific intermediate
representation, where the correlation of an event and
concepts is automatically learned and utilized for event
detection. It used both event-based and concept-based
datasets. Although the use of other datasets is cost effi-
cient, the differences in the characteristics of datasets such
as video quality and semantic contents make it difficult
to learn the relationship between an event and concepts
precisely.

To address this data insufficiency problem, the combi-
nation of GMM supervectors and SVMs (GSSVM) was
recently proposed [14,15] for detecting concepts in video
shots. In this method, a Gaussian mixture model (GMM)
represents the distribution of local features extracted from
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a video shot and a GMM supervector is created from the
GMM parameters. The GMM supervector for each shot
is used as the input to an SVM.

It can be regarded as one of the recent high-dimensional
image representations such as Fisher vector [16] and
super-vector [17]. Fisher vector represents an image
by the gradient of the log-likelihoods obtained using a
GMM. Supervector, which uses the first order differences
between low-level features and visual words, is a simpli-
fication of the Fisher vector. For a video representation,
since the number of low-level features varies depend-
ing on the length of a video, GMM supervector which
is derived based on maximum a posteriori (MAP) esti-
mation is expected to be effective and be robust to such
variation.

We consider to apply this GSSVM method to event
detection. In event detection, data collection presents
a difficulty. Since the contents of consumer-generated
videos widely vary, the amount of positive samples
tends to be smaller than the negative samples. In the
TRECVID2011 MED training dataset, the number of pos-
itive clips for each event (mean, 139) is relatively smaller
than that of negative clips (mean, 12,944). In such a case,
since it is difficult to learn an event precisely with a hard-
assignment like BoW, GMM is expected to be effective.
On the other hand, GSSVM might not fill the semantic
gap between low-level features and detection results while
the semantic event models such as [6,12] might, if we have
an efficient amount of concept data. However, collecting
concept data manually costs a lot and may be endless since
target events vary. In the current situation, where we do
not have sufficient amounts of data, we need an event
model such as GSSVM, whose parameters can be robustly
estimated even when the amount of training data is small.
Another difficulty in event detection is that consumer-
generated videos do not have the spatial-temporal struc-
ture specific to each event due to the variety of video
characteristics such as durations, camera motions, and
editing. Thus, our method does not explicitly utilize the
spatial-temporal structure of each event, which is difficult
to model from consumer-generated videos. We expect
that, even without them, the combination of GMMs and
SVMs will have high detection performance.

Thus, in this paper, we propose an event detection
method based on GSSVM [18] and aim at constructing an
event detector robust against the data insufficiency. Event
detection using GMMs of scale-invariant feature trans-
form (SIFT) features [19] from unconstrained news shots
was proposed in [20]. To the best of our knowledge, we are
the first to apply this framework to general event detection
in consumer-generated videos.

Another important factor in event detection is what
low-level features should be used. Many local features
have been proposed for image and video recognition.

SIFT [19] has been effective in several image (e.g., [21])
and video application (e.g., [20]). SURF [22] needs sev-
eral times less computation than SIFT. MFCC features,
which have been often used for speech recognition, were
proven to be effective for video recognition. In video
recognition, the combination of more than one feature has
been shown to be more effective than each feature alone
[23]. In addition to visual and audio features, motion fea-
tures such as space time interest points (STIP) [24] have
often been used for event detection. STIP, originally pro-
posed for action recognition, are regions detected using
a Harris 3D detector that have significant local spatial-
temporal changes. Each interest point is described with
either of two types of descriptors: histograms of oriented
gradients (HOG) or histograms of optical flows (HOF).
Wang et al. [25] extended this feature and found the dense
sampling of these two descriptors was also effective for
action recognition. Kläser et al. [26] proposed 3DHOG,
which is an extension of HOG to spatial-temporal
space. Chen and Hauptmann [27] proposed motion SIFT
(MoSIFT), which combines information from SIFT and
optical flow. Such spatial-temporal features were intro-
duced to event detection in [6,8], and they improved
the detection rate when combined with visual and audio
features.

However, these motion features may be affected by
camera motions. When the camera has motions such
as translation and zoom, the motions of the foreground
objects are different from their true motions and accord-
ingly, spatial-temporal features do not represent the true
foreground motions. Some previous studies for action
recognition have addressed this problem. Foreground
motions, background motions, and camera motions are
decomposed based on pixel trajectories in [28]. Motion
boundary histogram (MBH) [29] based on the deriva-
tives of optical flows around the trajectory of pixels was
also proposed as a robust feature against camera motion.
Mikolajczyk and Uemura’s work [30] used matching of
feature points for camera motion estimation. Ikizler-
Cinbis and Sclaroff [31] used the segmentation of frame
images for separation of foreground objects and back-
ground planes, and then, camera motions are estimated
from background planes. However, since these methods
are computationally expensive and the target events are
limited to simple ones such as ‘walking’ and ‘diving,’ it is
difficult to apply them to large-scale event detection.

Li et al. [32] categorized camera motions into four cat-
egories (static, pan, tilt, zoom). The categories are used
as features combined with other types of features such as
foreground object motions, background object motions,
and scale of foreground objects. While it is a sophis-
ticated algorithm dealing with camera motions, major
foreground objects that have important meaning in multi-
media events are expected to be detected by capturing
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only translations since they are often in the center of a
video with camera panning.

To overcome such problems, we propose camera
motion cancelled features. They are extracted by estimat-
ing camera motion for each frame from optical flows and
cancelling it before feature description. Optical flows are
computed in the peripheral region in a frame image. Since
no tracking process is needed, it is applicable to large-
scale event detection. We fuse this feature with other
existing low-level features, which have complementary
information, in a late fusion framework.

The new contributions of this paper are (1) the appli-
cation of our GMM supervector in [14,15] to MED and
(2) the camera motion cancelled features. In [14,15], we
have applied GMM supervector to video semantic index-
ing and have reported that GSSVM performs the best in
the TRECVID 2011 semantic indexing (SIN) task, where
word-level semantic concepts such as ‘airplane’ and ‘sky’
were targets. In this paper, we evaluate GSSVM using
datasets from the TRECVID 2010 and 2011 MED tasks,
where sentence-level events such as ‘making sandwich’
and ‘batting in a run in a baseball game’ were targets.
Here, to detect such events, we train GSSVMs not only
for appearance features such as SIFT as in our previous
study [14,15,33] but also for STIP motion features and its
camera-motion-cancelled version.

The rest of this paper is organized as follows. Section 2
explains the overview of our detection system. Section 3 ex-
plains the existing seven low-level features. Section 4
explains our proposed camera motion cancelled feature.
Section 5 explains GSSVM. Section 6 describes the exper-
imental conditions, results, and analysis. Finally, we con-
clude the paper in Section 7.

2 Overview of our event detection system
Figure 2 shows an overview of our system, consisting
of three major phases: feature extraction, modelling, and
detection. In the feature extraction phase, the video input
is processed to extract eight types of low-level features.
To increase the robustness against the camera motion, we
introduce camera motion cancelled features (CC-DSTIP).
In the modelling phase, a GMM supervector is created
for each clip using the extracted low-level features. For
visual features, the spatial pyramid matching is used. In
the detection phase, SVM scores for each feature are fused
by their weighted average. If the score is above a threshold,
the clip is predicted to include the event, otherwise not.

3 Low-level features
Since videos have multi-modality, it is important to use
multiple features to build a high-accuracy multimedia
event detection system. We use eight types of comple-
mentary features: five visual features, one audio feature,

and two motion features (STIP and CC-DSTIP). We
explain about CC-DSTIP, our new feature, in the next
section. To use the location information of feature vec-
tors, spatial pyramid matching is applied to visual features.
Principal components analysis (PCA) is applied to all fea-
tures in order to reduce the number of dimension for
saving computational costs in the training and detection
steps.

3.1 Visual features
• SIFT with Harris-Affine region detector (SIFT-Har):

Scale-invariant feature transform (SIFT) [19] has
been effective in many researches of image and video
analysis such as concept detection in video shots
[14,15], since it is invariant to image scaling and
illumination change. Before the computation of
feature vectors, Harris-Affine detector [34], which is
an extension of Harris corner detector, is applied to
gray-scale frame image. Then, a 128-dimensional
feature vector is computed from the intensity
gradients for each region. Since extracting SIFT
features from all the clips and all of the frames is
computationally too expensive, features are extracted
from one frame image every 2 s (similarly for
SIFT-Hes, SURF, and HOG). The dimension is
reduced to 32 by PCA.

• SIFT with Hessian-0Affine region detector
(SIFT-Hes): We also use SIFT features extracted
from the Hessian-Affine regions [34]. The
Hessian-Affine region detector is often used to detect
blobs and is known to be complementary to the
Harris-Affine region detector. The combination of
different detectors can improve a method’s
robustness to noise. PCA is applied to reduce the
dimension from 128 to 32.

• SURF features (SURF): Speeded up robust features
(SURF) [22], which are several times faster to extract
than SIFT, are extracted using sums of 2D Haar
Wavelet responses. It is often used for image
matching. The dimension is reduced from 64 to 32 by
PCA.

• HOG features with dense sampling (HOG): We also
use histogram of oriented gradients (HOG) [35]
features sampled densely from an image. The dense
sampling of HOG has less computational cost than
SIFT does. A vector consists of eight-bin histograms
of gradients extracted from 2 × 2 blocks (32
dimensions). Different from keypoint-based features
such as SIFT or SURF, dense sampling gives us a
fixed number of features. PCA is applied keeping the
number of dimensions the same.

• RGB-SIFT features with dense sampling (RGB-SIFT):
Color information is often helpful for video analysis.
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Figure 2 System overview. In the feature extraction phase, eight types of features are extracted for each clip. CC-DSTIP is our new feature. In the
modelling phase, GMM supervectors corresponding to eight features are constructed. In the detection phase, the GMM supervector for each
feature is used as the input to an SVM, and finally, SVM scores are fused by weighted average. If the fused detection score is higher than the
threshold, the clip is detected as an event and otherwise not.

RGB-SIFT features [36] are the concatenated SIFT
features extracted from each of RGB channel of an
image. Features are sampled from one frame image
every 6 s. PCA is applied to reduce the dimensionality
from 384 to 64.

3.2 Audio feature
MFCC features (MFCC): Audio is an important clue
when analyzing video content. We use Mel frequency
cepstral coefficient (MFCC) features, which are often
used in speech recognition. In addition, we use �MFCC,
��MFCC, �power, and ��power. The dimension of a
feature vector is 38. We compute the MFCC feature over a
24-ms time window with a 12-ms overlap. PCA is applied
keeping the number of dimensions same.

3.3 Motion feature
Spatial-temporal features with Harris 3D detector (STIP):
Space-time interest points (STIP) [24] are the region
induced using Harris 3D detector, which is an extension of
Harris-corner detector to three dimensions: the horizon-
tal direction x, vertical direction y, and temporal direction
t. Features extracted from STIP are expected to repre-
sent motions since the regions detected as STIP have
significant spatial and temporal changes. We sample four-
bin HOG features and five-bin histograms of optical flow
(HOF) features from nx × ny × nt blocks in each STIP.
In this work, we set nx = 3, ny = 3, and nt = 2. Then,
a 72-dimensional HOG feature and a 90-dimensional
HOF feature are concatenated into a 162-dimensional
vector (HOGHOF). The dimension is reduced to 64
with PCA.

3.4 Spatial pyramid matching
Spatial pyramid matching [37] enables us to use the loca-
tion information of feature vectors. In this method, a fixed
length vector, such as bag-of-words histogram or GMM
supervector (Section 5), is constructed from low-level fea-
tures in each of the divided regions of a video clip. Then,
the fixed length vectors for all the regions in the clip are
concatenated into one vector. We apply the pyramids with
three levels (1 × 1, 2 × 2, and 3 × 1) like Figure 3 for five
types of visual features. As a result, a vector of eight times
the length of the original GMM supervector is computed
for each clip.

4 Camera motion cancelled features
Although motion analysis is necessary for event detection,
many clips contain camera motions, and thus, the motions
of the foreground objects in such clips are different from
their true motions.

For large-scale consumer-generated video archives, a
simple and fast method is effective since camera motions
in consumer-generated videos are often very simple com-
pared to those in professional videos. Our proposed
method uses voting of optical flows to capture cam-
era motions. It captures horizontal and vertical slow
panning, which is the most frequent camera motion in
consumer-generated videos, to remove camera motions.
While complicated camera motions such as zoom, tilt,
and their combinations cannot be captured, major fore-
ground objects that have important meaning in multi-
media events are expected to be detected since they are
often in the center of a video with camera panning.

Camera motion for each frame is estimated using opti-
cal flows. Since the center region of a frame tends to



Kamishima et al. EURASIP Journal on Image and Video Processing 2013, 2013:51 Page 6 of 13
http://jivp.eurasipjournals.com/content/2013/1/51

Figure 3 Three-level spatial pyramid.

include foreground objects, only the optical flows within
the peripheral region are used for camera motion esti-
mation. R(αW , αH) denotes the peripheral region having
αW width from the left and right of a video, and αH
height from the top and bottom (Figure 4a). Here, W and
H are the width and height of the video, respectively, and
α is an experimentally decided parameter. Optical flows
in R(αW , αH) are computed every five pixels. The camera
motion is decided by the voting of quantized optical flows

in a frame image. We quantize each two-dimensional
optical flow fi (i = 1, . . . , Nf ) as

qi,(u,v) ∈ {0, 1}, qi,(u,v) = 1 ⇐⇒ fi = (u, v), (1)

where Nf is the number of optical flows in R(αW , αH)

and the integer values, u and v, are the flows for the

Figure 4 An example of camera motion cancellation. (a) shows the frames before cancellation and (b) shows the frames after cancellation.
Optical flows are computed from the peripheral region R(αW , αH) in (a) and HOGHOF features are described from the target frame in (b).
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horizontal and vertical direction, respectively. Then, the
camera motion ω is given by

ω=
{

arg max(u,v)
∑Nf

i=1 qi,(u,v) if max(u,v)
∑Nf

i=1qi,(u,v) ≥εNf
(0, 0) otherwise.

(2)

where ε (≤ 1) is the parameter to avoid the false esti-
mation of camera motion. We move each frame image
to the same direction with the same length as the cam-
era motion ω and then extract spatial-temporal HOGHOF
features with dense sampling [25] from the target frame
(Figure 4b). The dimensionality of HOGHOF is reduced
from 162 to 64 by PCA. We call this feature CC-DSTIP in
the following sections.

5 GMM supervectors and SVMs
The combination of GMM supervectors and SVMs
(GSSVM) was first proposed for speaker verification [38].
In [14,15,33], we have applied it to video semantic index-
ing and have reported that GSSVM performed the best in
the TRECVID 2011 SIN task. However, since TRECVID
SIN aims at detecting word-level semantic concepts such
as ‘airplane,’ ‘car,’ ‘sky,’ and ‘cityscape,’ it has not been clear
whether the GSSVM is effective for MED aiming at detect-
ing sentence-level events consisting of multiple concepts
and actions such as ‘making a sandwich’ and ‘batting in
a run in a baseball game.’ Here, to detect such events,
we train GSSVMs not only for appearance features such
as SIFT as in our previous studies [14,15,33] but also for
STIP motion features and its camera-motion-cancelled
version.

We first make a GMM for a set of (a type of) feature vec-
tors. Then, we construct a GMM supervector from each
GMM by MAP adaptation. In the detection phase, we use
it as an input for a SVM classifier. Finally, we fuse the
outputs of the SVMs for the eight feature types and use
the weighted average of them as the detection score. We
explain each step in this section.

5.1 Gaussian mixture models
A GMM, whose probability density function is given by

p(x|θ) =
K∑

k=1
wkN (x|μk , �k), (3)

is used to model a video clip. Here, x is a feature vector
for one of the low-level feature types, θ = {wk , μk , �k}K

k=1
is a set of GMM parameters, K is the number of Gaussian
mixture components (vocabulary size), wk is the weight
for mixture component k, and N (x|μk , �k) is a Gaussian

probability density function with a mean vector μk and a
covariance matrix �k for mixture component k given by

N (x|μk , �k) = 1
(
√

2π)d√|�k|
e− 1

2 (x−μk)T�−1
k (x−μk),

(4)

where d is the dimension of x.

5.2 MAP adaptation
The GMM parameters are estimated for each clip using
the MAP criterion. This process is often called MAP
adaptation [39]. In this adaptation, the parameters of
a universal background model (UBM), which are esti-
mated from all video clips using expectation maximiza-
tion (EM) algorithm, are utilized as the prior distribution
for Gaussian means. This adaptation is particularly effec-
tive when the amount of data available is small. Let θ(U) =
{w(U)

k , μ(U)

k , �(U)

k }K
k=1 be the parameter set of UBM U,

where w(U)

k is the weight, μ
(U)

k is the mean vector, �
(U)

k
is the covariance matrix for the mixture component k of
U, respectively.

Then, the MAP estimate μ̂k for the Gaussian mean is

μ̂k = τμ
(U)

k + ∑n
i=1 cikxi

τ + ∑n
i=1 cik

, (5)

cik = w(U)

k N (xi|μ(U)

k , �(U)

k )∑K
k=1 w(U)

k N (xi|μ(U)

k , �(U)

k )
, (6)

where X = {xi}n
i=1 is a feature vector set of one of the

eight feature types extracted from a video clip, cik is the
contribution rate of xi for the k-th Gaussian component
(the posterior probability of xi being at the k-th Gaussian
component), and τ is a hyper-parameter which controls
the weight of the prior against the maximum likelihood
estimate.

5.3 GMM supervector
After MAP adaptation, a GMM supervector φ(X) is con-
structed for each video clip by concatenating the mean
vectors of all the mixture components in the correspond-
ing GMM as:

φ(X) = (μ̃T
1 μ̃T

2 . . . μ̃T
K )T, μ̃k =

√
w(U)

k (�
(U)

k )−
1
2 μ̂k .

(7)

Here, each mean vector is normalized by its related weight
and variance. This GMM supervector is then input to the
support vector machine.
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5.4 Detection using support vector machines
We use support vector machines (SVMs) with the follow-
ing RBF-kernel for each of the low-level feature types to
detect each event:

k(Xi, Xj) = exp(−γ ‖φ(Xi) − φ(Xj)‖2
2), (8)

where ‖x‖2
2 is the squared 2-norm of x, Xi, and Xj are sets

of feature vectors and γ is an experimentally optimized
control parameter. We set γ to the inverse of the aver-
age distance between two GMM supervectors. The SVM
discriminative function is given by

f (X) =
L∑

l=1
alk(X, Xl) + b, (9)

where Xl is the set of feature vectors corresponding to a
training video clip. L is the number of the training video
clips. al and b are the SVM parameters set during the
training step. We train an SVM for each event and each
feature.

5.5 Late fusion of features
The detection score for the event E is given by

sE(X) =
∑

F
βE,FfE,F(X), (10)

where fE,F is the prediction score, which is the output of
an SVM discriminative function for event E trained using
feature type F ∈{SIFT-Har, SIFT-Hes, SURF, HOG, RGB-
SIFT, MFCC, STIP, CC-DSTIP}, and βE,F is the fusion
weight for E and F. We decide βE,F by twofold cross valida-
tion using training data. The scores are finally normalized
into [0,1] domain using the sigmoid function.

6 Experiments
6.1 Conditions
We used the video dataset of the MED task in
TRECVID2010 and TRECVID2011. The TRECVID2010
MED (MED10) dataset has 3,468 videos, of which 1,744
videos are for training and 1,724 are for testing. The target
events are manually annotated and consist of ‘Assembling
a shelter,’ ‘Batting a run in,’ and ‘Making a cake.’ The posi-
tive clips of each event amount to about 50 for training and
50 for testing. The TRECVID2011 MED (MED11) dataset
has 44,904 videos, of which 13,083 videos are for train-
ing and 31,821 videos are for testing. Ten target events are
listed on Figure 1. Each event has between 78-231 positive
clips for both training and testing.

The evaluation criteria are the same in both TRECVID
MED tasks. These criteria are mainly based on the missed
detection rate (PMD), false alarm rate (PFA), and normal-
ized detection cost (NDC). The NDC is a linear combina-
tion of the probabilities of two types of errors: PMD and
PFA. NDC, PMD, and PFA are given by

NDC(T) = wMDPMD(T) + wFAPFA(T), (11)

PMD(T) = NMD(T)/Npos, (12)

PFA(T) = NFA(T)/Nneg, (13)

where wMD and wFA are parameters which control the
weights of the missed detection rate and false alarm rate,
respectively. In TRECVID MED and this work, wMD =
1.0, wFA = 12.49. T is the detection threshold. NMD is the
number of positive clips with the score under the thresh-
old T, and NFA is the number of negative clips with score
above T. Npos and Nneg are the number of the positive
clips and negative clips, respectively. Note that lower NDC
indicates better performance. Further, we have another
type of NDC, minimum NDC (MinNDC). This is the min-
imum of NDC over the detection threshold T, which is
the value when the detection threshold T is optimized
posteriorly as:

MinNDC = min
T

NDC(T). (14)

The comparison of NDC and MinNDC gives us how close
the detection threshold is to the optimized one under the
NDC criteria and the potential performance when the
threshold is appropriately decided.

SIFT, SURF, RGBSIFT, STIP, and MFCC features were
extracted using the implementations in [22,24,36,40], and
[41], respectively. HOG was extracted using our own
implementation. The description of dense HOGHOF fea-
tures in CC-DSTIP was also done using [24]. For the SVM
training and prediction, libSVM [42] was used.

The number of Gaussian components K was selected
from 256, 512, and 1, 024 by twofold cross validation (CV)
on the training set in which we obtained mean NDC of
0.743, 0.731, and 0.731, respectively. Since using a smaller
number is computationally efficient, we selected K =
512 which performed as well as K = 1, 024. The fusion
weight βE,F and the detection threshold are selected by
grid search with a step size of 0.01 with twofold CV. The
hyper-parameter τ is set to 20.0, which is the default value
of Hidden Markov Toolkit (HTK) [41]. In camera motion
cancellation, parameters α and ε were set to 0.2 and 0.7,
respectively, since our preliminary experiment with 20



Kamishima et al. EURASIP Journal on Image and Video Processing 2013, 2013:51 Page 9 of 13
http://jivp.eurasipjournals.com/content/2013/1/51

training video clips showed that estimation of the camera
motion is robust to these parameters when 0.1 ≤ α ≤ 0.3
and 0.5 ≤ ε ≤ 0.9.

6.2 Results
6.2.1 Comparison of GSSVM with bag-of-words and

semantic concept model-based methods
We compared our method with the previous method pro-
posed by Jiang et al. [6] which combined BoW and DASD.
It should be noted that it had the best performance in
the original TRECVID2010 MED competition. We show
the result in Table 1. Since we used different features
from theirs, it is difficult to directly compare the per-
formance. Our method achieved mean MinNDC 0.558
when we used three features: SIFT-Hes, MFCC, and STIP.
Their method had mean MinNDC 0.579 when they used
not only the same three features but also another feature,
SIFT with difference of Gaussian (SIFT-DoG in Table 1)
[43], which is more likely to detect edges than the Harris-
Affine detector and the Hessian-Affine detector. The per-
formance of their method improved to mean MinNDC
0.565 when they additionally used earth mover’s distance
(EMD) [44] as a metric between two BoW histograms.
The performance of our method was significantly better
than these two results, and thus, the effectiveness of our
method was confirmed. Furthermore, our performance
was improved to mean MinNDC 0.510 when all eight
types of low-level features in Section 3 and 4 were used.

SCV in Table 1 is our trial of semantic event model using
concept detectors. We aggregated the detection score of
346 concepts defined in TRECVID2011 SIN task [45] and
constructed a 346-dimensional score vector (SCV) for
each of MED clips. The concept detectors were learned
from GMM supervectors with HOG features using the
SIN dataset. The score vectors were used as the input to
an event SVM. As a result, the mean MinNDC of HOG-
SCV (0.719) was much higher than that of the combina-
tion of HOG-GSSVM (0.614). It is because the number

Table 1 Mean MinNDC on TRECVID2010 MED

Features - methods Mean MinNDC

SIFT-DoG + SIFT-Hes + MFCC + STIP - BoW [6] 0.586

SIFT-DoG + SIFT-Hes + MFCC + STIP - BoW + DASD [6] 0.579

SIFT-DoG + SIFT-Hes + MFCC + STIP - BoW + DASD +
EMD [6]

0.565

SIFT-Hes + MFCC + STIP - GSSVM 0.558

All 8 low-level features - GSSVM 0.510

HOG - SCV 0.719

HOG - GSSVM 0.614

Mean MinNDCs of the bag-of-words (BoW) and domain-adaptive semantic
diffusion (DASD) [6] and our GSSVM over three events in TRECVID2010 MED
dataset are reported.

of concepts was not enough and most of the 346 con-
cepts, which had been selected independently of the MED
events, were not useful for event detection.

6.2.2 Comparison with Fisher kernel
Table 2 compares the RBF-kernel GSSVM with a linear-
kernel GSSVM and the improved Fisher kernel (IFK) [46].
For IFK, L2 normalization and power normalization are
applied to a Fisher vector. The parameter α of the power
normalization is set to 0.5 as reported in [46]. As can be
seen, the GSSVM with an RBF kernel outperformed the
others. However, for some applications such as real-time
event detection, the linear kernel is more reasonable than
the RBF kernel in terms of scalability since it only requires
a calculation of inner products to obtain a detection
score.

6.2.3 Performance of camera motion cancelled feature
Table 3 shows the mean MinNDCs of each of the three
types of motion features and combination of them: STIP,
CC-DSTIP, and DSTIP in MED11 dataset. DSTIP is
the dense STIP features without our camera motion
cancellation.

As the single features, CC-DSTIP outperformed DSTIP
in six events. The differences between CC-DSTIP and
DSTIP are expected to be the effectiveness of camera
motion cancellation. The major causes to make these
differences are (1) the performance of camera motion
cancellation and (2) the sizes of objects or motions in
video clips. Events which have large improvement by cam-
era motion cancellation are Changing a vehicle tire and
Repairing an appliance. In these events, the foreground
objects are often in the center part in a video clip and
accordingly, the performance of camera motion cancel-
lation is higher than other events. In Parkour and Flash
mob gathering, dynamic motions such as jumping or danc-
ing are included. On the other hand, in Parade, many
people walking to one direction are often in video clips.
In such a case, it is difficult to estimate camera motions
since the peripheral regions in a video clip often include
foreground motions. In Birthday party, Grooming an ani-
mal, or Making a sandwich, since foreground objects

Table 2 Comparison of the RBF-kernel GSSVM, the
linear-kernel GSSVM, and the improved Fisher kernel [46]

Method Mean MinNDC

RBF-kernel GSSVM 0.680

Linear-kernel GSSVM 0.693

Improved Fisher kernel 0.703

Minimum normalized detection cost (MinNDC) on TRECVID2010 MED for each
kernel method is reported. STIP is used for low-level features.
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Table 3 Comparison of STIP, DSTID, and CC-DSTIP

STIP STIP DSTIP STIP

Event STIP DSTIP CC-DSTIP + + + +DSTIP

DSTIP CC-DSTIP CC-DSTIP +CC-DSTIP

Birthday party 0.829 0.853 0.873 (+0.020) 0.839 0.807 0.831 0.820

Changing a vehicle tire 0.834 0.844 0.777 (−0.067) 0.810 0.760 0.783 0.762

Flash mob gathering 0.441 0.500 0.455 (−0.045) 0.436 0.388 0.435 0.387

Getting a vehicle unstuck 0.697 0.683 0.664 (−0.019) 0.664 0.619 0.638 0.608

Grooming an animal 0.785 0.842 0.859 (+0.017) 0.778 0.773 0.782 0.754

Making a sandwich 0.823 0.876 0.873 (+0.003) 0.811 0.785 0.836 0.767

Parade 0.610 0.597 0.673 (+0.076) 0.580 0.576 0.594 0.556

Parkour 0.425 0.497 0.449 (−0.048) 0.444 0.413 0.468 0.446

Repairing an appliance 0.568 0.594 0.533 (−0.061) 0.549 0.537 0.565 0.541

Working on a sewing project 0.760 0.777 0.781 (+0.004) 0.722 0.688 0.762 0.722

Mean 0.677 0.706 0.694 (−0.012) 0.663 0.635 0.669 0.636

Minimum NDCs of (1) three motion features, (2) combination of two of them, and (3) combination of three of them for each TRECVID2011 MED events are reported.
The italic figures indicate the feature with the best performance in each category. Figures inside the parenthesis indicate the difference between CC-DSTIP and DSTIP.

such as cake, animal, and sandwich in video clips are
often small in video clips compared with those of other
events, the effectiveness of camera motion cancellation is
not high.

Comparing STIP with DSTIP, STIP outperformed
DSTIP in eight events. While recent studies have reported
that dense sampling often outperforms keypoint-based
sparse sampling (e.g., dense HOG in [33]), this shows that
DSTIP does not always perform better than STIP as also
shown in [25] on the KTH actions dataset. This is because

the histogram of optical flow (HOF) in STIP extracted
from flat regions is often noisy.

In the combination of two features, STIP and CC-
DSTIP outperformed other combinations in all the events.
Further, it outperformed the combination of all the three
features in five events. It means CC-DSTIP provided
us complementary information to STIP while the infor-
mation of DSTIP was slightly complementary to STIP.
This difference should be the effectiveness of camera
motion cancellation.

Figure 5 Normalized detection cost (NDC) for each event in TRECVID2011 MED. White bars: minimum NDC obtained using the most optimal
thresholds for each event; black bars: NDC obtained using our thresholds.
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6.2.4 Error ratios for TRECVID2011 MED events
Figure 5 shows NDC for each of the ten events in MED11.
Looking at the results for each event, Flash mob gather-
ing was the best event and Making a sandwich was the
worst one. It is because Making a sandwich was diffi-
cult to distinguish from similar types of undefined events
such as Making a pizza and Making a cookie, since their
difference is only whether a sandwich appears or not in
video clips. Figure 6 shows the detection result of Making
a sandwich. Some of the video clips incorrectly detected
have a kitchen but do not have a sandwich. For such
events, semantic event model may be a desirable way to
detect.

The comparison of NDC and MinNDC gives us how
close the detection threshold is to the optimized one
under the NDC criteria. The mean NDC with pre-
determined thresholds was 5.6% greater than that with the
optimized threshold (MinNDC).

6.2.5 Our systems in TRECVID2011 MED
Figure 7 shows the comparison of our results to
the median, average, and minimum (best) in original

TRECVID2011 MED task. In total, 60 runs from 19 teams
were submitted in this task. Our results consist of four
types of fusions: visual features (Visual), audio feature
(Audio), motion features (Motion), and all the features
(All). CC-DSTIP was included in motion features. The
performance of all the features performed significantly
better than the median and average in all the events.
In Changing a vehicle tire and Getting a vehicle unstuck,
visual features showed the large gain compared to audio
and motion features. It is because visual features captured
the concept car, which characterizes these events. Motion
features were effective particularly in Parkour, which often
include jumping. Audio features performed better than
the motion features in Birthday party, which often include
singing. While each of visual, audio, and motion features
showed some effectiveness by themselves in such events,
they showed improvement when added with other types
of features.

7 Conclusions
In the general event detection from consumer-generated
videos, we do not have enough training data due to a

Figure 6 The top 25 clips in detection of Making a sandwich. The video clip on the first row and the first column has the highest detection score,
the video clip on the first row and the second column has the second highest score, and the video clip on the second row and first column has the
sixth highest score. The video clips with black frame are incorrectly detected. Others are correctly detected.
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Figure 7 The comparison of minimum NDCs with TRECVID2011 MED runs. ‘All’ is the fusion of eight low-level features, ‘Visual’ is the fusion of
five visual features, ‘Audio’ is MFCC features, and ‘Motion’ is the fusion of two motion features. ‘Median,’ ‘Average,’ and ‘Min’ is the median, average,
and minimum (best) of MinNDCs over 60 runs submitted in TRECVID2011 MED task, respectively.

variety of video contents. To deal with this problem, we
devised a general framework for multimedia event detec-
tion using GMM supervectors and SVMs (GSSVMs).
Using a GMM, each clip is expected to be modelled pre-
cisely and GSSVM is expected to be robust against against
the data insufficiency. Additionally, as one of the low-level
features, we introduced camera motion cancelled features,
which negate the affects of camera motions often included
in consumer-generated videos. We combined GSSVM
methods and camera motion cancelled features with seven
types of existing complementary low-level features.

The GSSVM method performed better (mean Min-
NDC 0.510) than the previous studies using bag-of-words,
domain-adaptive semantic diffusion, and earth mover’s
distance (mean MinNDC 0.565) in TRECVID2010 MED
dataset. Further, our camera motion cancelled dense STIP
features outperformed dense STIP features without the
cancellation. As we assumed that camera motions were
often useful for event detection, the combination of cam-
era motion cancelled features and non-cancelled features
were effective. The combination of multiple features,
GMM supervectors, and SVMs showed effectiveness in
the comparison of other methods in TRECVID2011
MED task.

For the future work, we will compare camera motion
cancelled features with other motion features and cam-
era motion cancellation methods. Other work includes

detecting where an event occurs within a clip. Speed-
ing up the GMM estimation and SVM training are also
important work for large-scale event detection.

Endnote
a The work presented in this paper extends our prior

approach published in [18].
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