
論文 / 著書情報
Article / Book Information

Title A Multi GPU Read Alignment Algorithm with Model-based Performance
Optimization

Author Aleksandr Drozd, Naoya Maruyama, Satoshi Matsuoka

Journal/Book name Springer's Lecture Notes in Computer Science N7851 (2012), vol. 7851,
, pp. 270-277

発行日 / Issue date 2013, 1

DOI http://dx.doi.org/10.1007/978-3-642-38718-0_27

権利情報 / Copyright The original publication is available at www.springerlink.com.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Tokyo Institute Research Repository)

http://dx.doi.org/10.1007/978-3-642-38718-0_27
http://t2r2.star.titech.ac.jp/

A Multi GPU Read Alignment Algorithm with
Model-based Performance Optimization

Aleksandr Drozd1 and Naoya Maruyama1 and Satoshi Matsuoka1

Tokyo Institute of Technology, 2-12-1-W8-33, Ookayama, Meguro-ku, Tokyo 152-8552
(alex@smg.is.titech.ac.jp, naoya@matsulab.is.titech.ac.jp, matsu@is.titech.ac.jp)

Abstract. This paper describes a performance model for read align-
ment problem, one of the most computationally intensive tasks in bion-
formatics. We adapted Burrows Wheeler transform based index to be
used with GPUs to reduce overall memory footprint. A mathematical
model of computation and communication costs was developed to find
optimal memory partitioning for index and queries. Last we explored the
possibility of using multiple GPUs to reduce data transfers and achieved
super-linear speedup. Performance evaluation of experimental implemen-
tation supports our claims and shows more than 10fold performance gain
per device.

1 Introduction

Faster and faster computing systems are developed every day to cope with ever-
increasing complexity of problems that emerge in various areas of science and
technology. Performance growth comes from technological advancements and
mainly form architectures facilitating parallel data processing in various forms
(i.e. recently GPUs). At the same time algorithms known to solve particular
tasks themselves have many possibilities of improvement, taking into consider-
ation fact that overall performance comes not just from better algorithm, but
also on how it fits certain peculiarities of hardware platform and different pat-
terns of data distribution in heterogeneous systems. GPUs and clusters of GPUs
have recently become one of the main threads of supercomputing. Their compu-
tational characteristics are different from those of traditional systems and they
are relatively new to software developers, which makes the above-stated issues
even more important. Also while some applications have a pretty uniform data
model, like those solving various matrix-based mathematical problems, in other
applications data model itself is heterogeneous and its decomposition requires
a profound study of balancing storage and distribution of workload parts so
that we could better meet the platform characteristics and improve the overall
performance.

This paper focuses on the pairwise local DNA sequence alignment problem.
It is extremely computationally intensive as constant progress in sequencing
technology leads to ever-increasing amounts of data to be processed. We target
GPU-based systems that have been shown to allow for greater performance in
sequence processing tasks due to their extreme parallel capacities [1].

Read alignment is basically a string matching problem and is typically done
by building index of a reference and then matching queries against it. There are
several types of indexes and corresponding match algorithms which were being
used for alignment problem. We made a survey of existing solutions [2],[3],[4],
and found that memory limitation is the performance bottleneck in all cases.
Workload size for both reference sequence and query set can dramatically sur-
pass available device memory and each index subdivision into smaller chunks
to fit into memory simply doubles execution time. For example human genome
contains approximately 3 billion of bases. Suffix array (array of integers giv-
ing the starting positions of suffixes of a string in lexicographical order) needs
9 bytes per base, so it will require 27 gigabytes of memory, while top modern
GPUs have about 6GB. To index bigger references 64 bit integers are required
and suffix array space complexity will be 17 bytes per base.

To reduce memory consumption we propose using matching algorithm based
on Burrows Wheeler Transform. This algorithm is mainly used for data com-
pression, but possibility of pattern matching using this transform was recently
described[5]. Index based on BWT is more than ten times smaller than index
based on suffix array. We perform an analysis of how this algorithm fits GPU
characteristics and do model implementation to see if we can actually get sig-
nificantly better execution time with this smaller memory footprint algorithm.
This is the first contribution of this paper.

The second one is the performance model of possible memory utilization
strategies. This model allowed us to find best proportions and succession of
memory allocations and data transfers to maximize overall performance. We
found that optimal performance is possible to achieve by using multiple GPU
devices.

2 Background

In most living organisms the genetic instructions used in their development are
stored in the long polymeric molecules called DNAs. To decipher this information
we need to determine the order of nucleotides - the elementary building blocks
of a DNA that are also called bases. This task is important for many emerging
areas of science and medicine.

Modern sequencing techniques split the DNA molecule into pieces that are
also called reads. Reads are processed separately to increase the sequencing
throughput. Then they are aligned to the reference sequence to determine their
position in the molecule. This process is called read alignment and is extremely
computationally intensive, as a complete genome of such complex organisms as
humans is billions of bases long, and the amount of reads data produced by
sequencing machines is usually an order of magnitude bigger [6][7].

Technically read alignment is a substring matching operation: we search for
a pattern of length m in reference string of length n, where n >> m. Straight-
forward naive approach has daunting asymptotic performance of O(mn), so
aligning is done by building index and than matching reads against it.

While theoretically fastest search algorithm uses suffix tree, its space com-
plexity makes it inefficient for big references[8]. There were successful attempts
to decrease memory footprint of matching algorithm or even to trade compu-
tational complexity for space consumption. In MummerGPU++ the authors
replaced search algorithm based on suffix tree with one based on suffix array,
which lead for another performance improvement[4].

Space complexity of suffix array is also linear, and constant multiplier under
O(n) is 9 bytes per symbol in case of two-bit implementation. Search complexity
for suffix array is O(m+log n) where m is the length of query and n is the length
of reference.

Evaluation of MummerGPU++ showed that on references over 100MB the
memory limit is still taxing performance, since it leads to splitting the index into
small pieces to fit into GPU memory and repeating search for each part. Search
complexity does not depend (or depends very little) on index size, so splitting
index in chunks increases computation time linearly. Copying index and queries
to the device also takes its share of time of time. We will provide a more detailed
analysis of time consumed by data transfers later on.

As the chief way to increase performance we propose using an algorithm
with lesser memory footprint. Such an algorithm can be based on Burrows-
Wheeler transform and some additional data structures (FM-Index) instead of
suffix array. BWT was introduced in 1994 by Burrows and Wheeler[9] and was
used mainly for data compression. There are some recent sequence alignment
solutions using BWT, some of them are not parallel (Bowtie [10]), some are
using GPUs, but for different class of alignment [11]. Also in [12] authors discuss
the potential of using GPUs for exact sequence matching on single GPU.

3 BWT Based Aligner

The Burrows-Wheeler Transformation of a text T, BWT(T), is constructed as
follows: The Burrows-Wheeler Matrix of T is the matrix whose rows are all
distinct cyclic rotations of T$ sorted lexicographically. BWT(T) is the sequence
of characters in the rightmost column of the matrix[9]. It is possible to use
BWT for substring search. We adopted backward search algorithm proposed by
Manzini and Ferragana [5] for GPU. Here Occ is the number of occurrences of
given symbol before given position in transformed sequence. Array C contains
total number of occurrences of each symbol.

BWT has a property called LF mapping: the ith occurrence of character X
in the last column of the BWT matrix corresponds to the same character in
original text as the ith occurrence of X in the first column. Backward search
procedure (fig. 1) uses LF mapping to calculate in rounds the rows of the matrix
that begin with progressively longer suffixes of the query string.

The running time of the Backward search procedure is dominated by the
cost of evaluating Occ(c, q). If we build a two-dimensional array OCC such that
OCC[c][q] = Occ(c, q) the backward search procedure runs in O(m) time and it
requires O(|Σ|n log n) = O(n log n) bits.

The result of the Backward search procedure is not the position(s) of matches
in the reference sequence but the range of elements in the corresponding suffix
array, containing indexes of actual matches in the reference. We suggest using
suffix array on a host (which usually has enough memory to store it entirely) to
decipher output of Backward search procedure in O(1) time. While it is possible
to resolve positions of matches using the transformed text and OCC, generat-
ing all match positions on GPU will provide unpredictable amount of results per
query, i.e. each execution thread will need to use unpredictable amount of device
memory, and that is unsuitable for CUDA execution model. It will also cause
additional overhead for moving data from device to host. To decipher search re-
sults on the host side we simply iterate suffix array elements bound by backward
search procedure output values.

We use straightforward 2bits en-
i:=p, c:=P[p],
First:=C[c]+1, Last:=C[c+1];
while ((First <= Last)

and (i >= 2)) do
c:=P[i-1];
First:=C[c]+Occ(c,First -1)+1;
Last:=C[c]+Occ(c,Last);
i:=i-1;
if (Last <First)

then return no matches
else return <First ,Last >.

Fig. 1: Procedure Backward search.

coding for BWT itself. To compress
OCC we split the transformed text
into buckets of arbitrary size. For each
bucket we will store the number of oc-
currences of each symbol in the trans-
formed text before the first symbol of
this bucket. For example, in 64 bit im-
plementation for buckets of 32 sym-
bols we will need 8 bits per symbol
to store compressed OCC and 8 con-
sequent memory reads to count the number of occurrences for any symbol. It
gives us 10 bits of index per 8 bits of reference sequence and it is possible to
change this ratio by varying OCC bucket size. 64 bit suffix array need 17bytes
of memory, which is 13.5 times bigger. By merely replacing suffix array with
BWT we already achieved 3-4 times performance improvement for cases where
the size of data is too big to fit in memory for suffix-array based software but
can be processed in one pass with our approach. Fig.2a) show how increasing
reference size affects performance whether index can (BWT) or can not (suffix
array) fit into GPU memory. We used NVIDIA Tesla 2050 card (2.6Gb memory)
on the machine with 2.67GHz 4 cores Intel Core i7 920 CPU and 12GB of RAM
running under CentOS 5.4.

Experimental implementation takes reference and a set of named queries in
FASTA format as input. Output is a set of positions in the reference where
queries are mapped. We chose CUDA as target architecture as it is de facto
standard for GPGPU programming. The algorithm was implemented in C++
for CUDA programming language.

The CUDA kernel that performs the query search is an almost straight-
forward implementation of procedure Backward search, where each thread is
processing its own query independently. Each thread stores results in its own
preallocated global memory and accesses the reference index only by reading.
Therefore there are no race conditions and no need for synchronization. Perfor-
mance profiling showed that major share of time is consumed by loading data

from global memory. On references over 100mb MummerGPU++ starts to sub-
divide index and loses performance, while with our approach index up to several
gigabytes (i.e. complete human genome) can be stored in GPU memory. For big-
ger reference sequence still must be subdivided. In the next chapter we present
mathematical model of how memory partitioning affects performance and use it
to find optimal parameters.

(a) Vs MummerGPU++ (b) Effect of memory partitioning

Fig. 2: Performance evaluation

4 Performance Model and Workload Balancing on
single-GPU

The theoretical complexity of matching algorithm itself is O(q), where q is query
length. In case of sequential execution increasing number of queries to process
obviously increases execution time in the same linear manner. So we can say
that the overall execution time depends linearly on the overall size of query set.
We just need to keep in mind need to have query set bigger than amount of data
necessary to saturate GPU parallel capacity (which is in our case approximately
10mb, much is negligibly small).

Let us call memory size Smem, index size Sidx and query set size Sqry. The
overall execution time consists of the computation time itself and the time spent
on moving data between host and device: T = Tcmp + Tmem. This formula as-
sumes the worst case scenario when there is no overlapping between computation
and data transfers. Cases where such overlapping is possible will be discusses be-
low.

Suppose we have to split the index into Nidx chunks of size Pidx each and the
query set into Nqry chunks of Pqry bytes. There is an obvious correlation between
Nidx and Nqry, but for the time being we shall not include it in the model to
keep it simpler. We have to match each chunk of query set against each part
of index, one such iteration (kernel launch) taking C ∗ Pqry time as complexity

does not depend on index size. We have to repeat the matching procedure for
each part of index and for each part of query set, which gives as execution time
Tcmp = C ∗Nidx ∗Nqry ∗ Pqry = C ∗ Sqry ∗Nidx.

Now let’s consider the communication expenses of moving index and query
set parts from host to device. We have two basic options here. One option is to
place one part of index on device, processing all subsets of query set one by one
and then doing the same procedure for next part of index. The other option is to
do the matching vice versa, i.e. matching one part of query set against all parts
of index and then proceed to the next chunk of query set.

In the first case we need to copy Pidx bytes for each part of index, then
Nqry times Pqry bytes of query subsets which equals to Sqry bytes and then
to repeat this process Nidx times. Given host-to-device transfer bandwidth β
communication will take Tmem = β(Pidx + Sqry) ∗ Nidx = βSidx + βSqryNidx

time. The overall time will be T = C ∗ Sqry ∗ Nidx + βSidx + βSqryNidx =
(C + β)SqryNidx + βSidx.

For the second case using the same logic we get T = C ∗Sqry ∗Nidx +βSqry +
βSidx ∗Nqry overall execution time.

Let α be the share of memory occupied by index. Then each chunk of index
will use αSmem bytes and each chunk of queries (1 − α)Smem bytes. We will
have to split index into Nidx = Sidx/αSmem chunks and query set into Nqry =
Sqry/(1−α)Smem chunks. Figure 2b shows how variation of α changes the overall
execution time and that the first case allows for a potentially higher performance.

Actual value of C is retrieved form experiment and it depends on many
parameters, like minimal required match length etc, but the asymptotic behavior
will be the same. Performance of test implementation on big workloads confirms
the predicted model (figure 2b).

So in the first case the overall performance increases as the index size is in-
creased. This process continues up to the point where the memory remaining for
queries is enough to run kernels with full memory saturation, which is relatively
small and is not shown in figure2b.

In the second case we increase index size up until the point where communi-
cation expenses of repeating transfers of big index chunks are equal to the time
spent on processing queries on extra number of index chunks. Maximal perfor-
mance is better in the first case and it seems preferable from the point of view
of pure GPU productivity. Moreover, it allows us to overlap communication and
computation, as we can split queries without much penalty making performance
even closer to ideal.

However, in this model we do not take into account the fact that results of
matching of each subset of queries against each part or index need to be merged
with each other. In the first case we have to store results of matching against
each part of index somewhere until we process all queries and it will tax CPU-
side memory/storage. This approach is completely inapplicable in a situation
where queries are being streamed from some source (i.e. a sequencing machine)
and we need to process each query block as it comes so we have to stay with
worst case model - or we can try using multiple GPUs.

5 Multiple GPUs

Index chunk distribution among multiple GPU devices allows for smaller amount
of repeatedly loaded index chunks per device. Ideally index chunks are not being
moved at all. In this case theoretical performance in terms of pure GPU produc-
tivity will be even better, though not significantly, than that provided by the
first approach on a single GPU device. On each device we spend C ∗Sqry +βSqry

time for moving and processing all queries (once again, overlapping is possible
in this case).

The process of deciphering and join-

Fig. 3: Performance details

ing results consists of following stages.
We get the ranges of suffix array ele-
ments as output of each GPU matching
routine and restore actual positions of
matches in reference sequence. For each
device output we will have such list of
positions. Then we need to merge these
lists together and sort resulting list. It
does indeed look like time consuming routine, but it obviously has O(Nidx) com-
plexity, the same as complexity of search procedure itself. The exact multiplier
depends on implementation, CPU characteristics and average number of matches
for each query. However, given realistic search output, our sequential test imple-
mentation performed merging of 8 chunks of one million results in less then one
second, which is definitely faster than processing corresponding amount of data
on GPU (fig. 3). In previous experiments we used queries of 100 bases long, so
1 million results correspond to 100Mb of query data. In tests on both real and
generated sequences multi GPU performance per device was same as for single
GPU case 1. We performed benchmarking on one of the Tsubame 2.0 supercom-
puter nodes with 2 six-core Intel Xeon X5670 CPUs and 54GB of RAM running
under SUSE Linux Enterprise Server 11 SP1 for this test. The node has three
NVIDIA Tesla 2050 GPUs connected with 16 lanes of PCI Expression 2 on it.
We used 100 bases long queries and set minimal match length to 40 bases. For
6GB reference sequence aligning efficiency per device was 3.55 million bases per
second for single GPU and 3.7 for multi GPU implementation when all 3 de-
vices were used. So 3 GPUs compared to single one gave us 3.11 times speed-up,
i.e. 1.04 efficiency. Optimal number of devices is equal to the number of index
chunks of optimal size. Increasing number of GPUs further will negatively affect
the efficiency as index chunk size will be decreased.

6 Conclusion

Better software performance does not necessarily come from computational com-
plexity of underlying algorithms. Choice of particular data structures and corre-
sponding algorithms depends on how they meet characteristics and features of
target hardware. This is particularly true for GPU devices.

This paper shows that using more compact data structures can lead to per-
formance improvement in short read alignment problem. We refactored Mum-
merGPU++, previous highly-efficient GPU exact-matching read alignment soft-
ware by replacing suffix array with BWT and rewriting the corresponding search
algorithms and get 3-4 times performance improvement. The analysis of applica-
tion behavior for the case of workload size considerably exceeding device memory
proves that higher performance can me achieved by intelligent strategy for data
decomposition. We also showed that best performance per device for read align-
ment problem can be achieved by using multiple GPUs, and the optimal number
of GPU devices for a particular task can be estimated from reference size.

References

1. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohm, and
T. J.Purcell, “A survay on general-purpose computation on graphics hardware,”
Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

2. A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L.
Salzberg, “Alignment of whole genomes,” Nucleic Acids Res., vol. 27, p. 2369,
1999.

3. M. C. Schatz, C. Trapnell, A. L. Delcher1, and A. Varshney, “High-throughput
sequence alignment using graphics processing units,” BMC Bioinformatics, vol. 8,
p. 474, 2007.

4. A. Gharaibeh and M. Ripeanu, “Size matters: Space/time tradeoffs to improve
gpgpu applications performance,” in SC ’10 Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Computer Society, 2010.

5. P. Ferragina and G. Manzini, “Indexing compressed text.” Journal of the ACM,
vol. 53, no. 4, pp. 552–581, 2005.

6. M. Pop, “Genome assembly reborn: recent computational challenges,” Briefings in
Bioinformatics, vol. 10, p. 354, 2009.

7. J. M. Rothberg, W. Hinz, T. M. Rearick et al., “An integrated semiconductor
device enabling non-optical genome sequencing,” Nature., no. 475, pp. 348–352,
2011.

8. D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

9. M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algo-
rithm,” Digital Equipment Corporation, Technical Report 124, 1994.

10. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-
efficient alignment of short dna sequences to the human genome.” Genome Biology
10 (3)., vol. 10, no. 25, 2009.

11. R. Li, C. Yu, Y. Li et al., “Soap2: an improved ultrafast tool for short read align-
ment,” Bioinformatics, vol. 15, no. 25, pp. 1966–1967, 2009.

12. S. Chen and H. Jiang, “An exact matching approach for high throughput sequenc-
ing based on bwt and gpus,” in 2011 IEEE 14th International Conference on Com-
putational Science and Engineering (CSE). IEEE Computer Society, 2011.

