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q-Gaussian Mixture Models for Image and Video Semantic Indexing

Nakamasa Inoue, Koichi Shinoda

Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Abstract
Gaussian mixture models which extend Bag-of-Visual-Words (BoW) to a probabilistic framework have been proved to be effective
for image and video semantic indexing. Recently, the q-Gaussian distribution, derived from Tsallis statistics [12], has been shown
to be useful for representing patterns in many complex systems in physics. We propose q-Gaussian mixture models (q-GMMs),
mixture models of q-Gaussian distributions with a parameter q to control its tail-heaviness, for image and video semantic indexing
[1]. The long-tailed distributions obtained for q > 1 are expected to effectively represent complexly correlated data, and hence, to
improve robustness against outliers. The main improvements over our previous study [1] are q-GMM super-vector representation
to efficiently compute the q-GMM kernel, and detailed experimental analysis showing accuracy and testing-cost comparison with
recent kernel methods. Our proposed method outperformed BoW and achieved 49.42% and 10.90% in Mean Average Precision on
the PASCAL VOC 2010 and the TRECVID 2010 Semantic Indexing, respectively.

c© 2011 Published by Elsevier Ltd.

Keywords: Semantic indexing, Gaussian mixture models, q-Gaussian mixture models.

1. Introduction

Recent years have seen extensive growth of image and video archives on the Internet. For example, Flickr stores

more than 6 billion photos in its database. A specific object or a scene can be easily detected on the Flickr if the

photos have detailed meta data such as semantic tags. However, each photo usually only has a few tags since tagging

is very time-consuming for users. Further, for video archives, not only tags but also video summarizations in text are

needed as meta data in order to search a specific scene precisely.

Semantic indexing is necessary to automatically generate meta data, since semantics are the most important part

of the meta data to describe contents of images and videos. Semantic indexing aims to detect objects, scenes, and

actions, e.g. “airplane”, “cityscape”, and “flying”. It has been a challenging task due to the semantic gap between

low-level features and high-level semantic concepts.
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Current approaches to semantic indexing are typically based on bag-of-visual-words (BoW) [2]. In BoW, each

low-level feature (e.g. SIFT [9]) extracted from an image is assigned to a visual word, i.e., a code word obtained by

vector quantization (VQ). To reduce quantization errors in VQ, a Gaussian mixture model (GMM) [11] which extends

BoW to a probabilistic framework is often utilized. For example, the Fisher vector [23] and the GMM supervector

[6, 5] represent an image as a concatenation of the GMM parameters and outperform BoW.

Recently, the q-Gaussian distribution, which is derived from Tsallis statistics [12], has been shown to be effective

for representing patterns in many complex systems in physics such as fractals and cosmology. Tsallis statistics is

a generalization of the standard Boltzmann-Gibbs (BG) statistics. It introduces Tsallis q-entropy [12] which has a

real-valued parameter q. The q-Gaussian distribution is derived by maximizing the Tsallis q-entropy [12] while the

Gaussian distribution is derived by maximizing the BG entropy. For the q-Gaussian distribution, q is a parameter that

controls its tail-heaviness as shown in Fig. 1. A long-tailed distribution obtained for q > 1 is expected to effectively

represent complexly correlated data, and hence, to improve the robustness against outliers. Note that since Tsallis q-

entropy represents the BG entropy when it takes a value of q→ 1, the q-Gaussian distribution represents the Gaussian

distribution when q → 1. Many statistical frameworks including BoW can be extended to Tsallis statistics by using

the q-Gaussian distribution.

In this paper, we propose a q-Gaussian mixture model (q-GMM) based on the Tsallis statistics and its application

to image and video semantic indexing systems [1]. The q-GMM is a mixture model of q-Gaussian distributions and

is an extension of the GMM to a mixture of long-tailed distributions. This paper proposes two separate methods

based on the q-GMM: a histogram-based representation and a q-GMM kernel. The first method, histogram-based

representation, is a direct extension of BoW to the q-GMM. It represents an image as a histogram of low-level features

in the same way as BoW but the q-GMM is used as a visual codebook. The second method, q-GMM kernel, is an

RBF-kernel in which each image is represented by a q-GMM. The q-GMM super-vector representation is introduced

to efficiently compute the q-GMM kernel. The main improvements over our previous study in [1] are this q-GMM

super-vector representation and detailed experimental analysis to show accuracy and testing-cost comparison with

recent kernel methods, as well as the influence of parameters.

This paper is organized as follows. Related work is described in Sec. 2. The proposed method with the definition

of q-GMMs is described in Sec. 3. Experimental results on PASCAL VOC and TRECVID datasets are described in

Sec. 4. Conclusion and future work are described in Sec. 5.

2. Related work

One of the most popular approaches to image and video semantic indexing is the bag-of-visual-words (BoW)

approach [2]. In BoW, an image is represented as a histogram of visual words obtained by applying vector quantization

(VQ) to each low-level descriptors, e.g. SIFT [9], SURF [10]. k-means clustering is often used for training a visual

codebook that consists of several thousands of visual words.
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Figure 1. The q-Gaussian distributions. The (normal) Gaussian distribution is obtained when q = 1. The tail of a q-Gaussian distribution is longer
than that of a Gaussian distribution when q > 1.

Soft-assignment approaches are effective for reducing quantization errors in VQ and thus they outperform BoW.

Gemert et al. [25] proposed a kernel codebook in which each low-level descriptor is assigned to all visual words in a

soft manner with weighting. Hang et al. [26, 27] used sparse coding which assigns a low-level descriptor to several

tens of visual words by solving a constrained least square fitting problem. Perronnin et al. [11] used a Gaussian

mixture model (GMM) for a codebook which holds mean and variance information for each visual word. The GMM

is a straight-forward extension of BoW to a probabilistic framework.

Recently, high-dimensional image representations have been proven to be effective in image classification. Vector

of locally aggregated descriptor (VLAD) [29] and super-vector coding [4] use the first order differences between

low-level descriptors and visual words in addition to the BoW histogram. Fisher vector [21] represents an image

as a concatenation of parameters of a parametric probability model. Perronnin et al. [23, 22] achieved the best

performance in the PASCAL VOC image classification challenge by using a GMM as the parametric probability

model for the Fisher vector. They reported that an normalization technique [22] is needed since the Fisher vectors

become sparser as the number of Gaussians increases. They proposed the L2+power normalization to make the Fisher

vectors dense. The normalized fisher vector is called “improved Fisher kernel (IFK)”. Chatfield et al. [28] reported

that IFK is the best of these recent image representations.

Another direction to improve image classification performance is to develop discriminative learning methods.

With above image representations, an one-versus-all support vector machine (SVM) is most widely used since it is

a powerful classifier with theoretical foundations. Kernel tricks such as an RBF-kernel and χ2-kernel significantly

improve classification performance of the SVM. Some recent works focus on multi-label learning that aims to train

detectors of multiple objects at the same time. For example, Zha et al. proposed a multi-label and multi-instance

learning method using hidden conditional random fields for image classification in [30]. A graph-based method based

on semi-supervised learning for multiple concept detection in video is presented in [31]. On the other hand, some

works focus on reducing the human-labeling cost. For example, an interactive video indexing system using active
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Figure 2. The framework of image and video semantic indexing using q-Gaussian mixture models.

learning is proposed in [32]. Ayache et al. [33] proves a web-based active learning system for annotating video corpus

in TRECVID. More discussion of image retrieval and video retrieval can be found in survey in [34, 35].

On the other hand, several previous works focused on applying Tsallis statistics [14, 12, 13] to image processing.

Tsallis q-entropy, which is a generalization of the Boltzmann-Gibbs (BG) entropy, is used for image thresholding for

foreground extraction in [15, 16, 17, 18]. These works show that long-range correlation between foreground pixels can

be modeled by using the Tsallis q-entropy. Fabbrib et al. [19] applied Tsallis q-entropy to image texture classification.

They reported that texture classification accuracy is improved by using Tsallis q-entropies for multiple q-values as a

feature vector. To the best of our knowledge, we are the first to apply Tsallis statistics to the bag-of-visual-words

framework.

3. q-Gaussian Mixture Models

The procedure of the proposed image and video semantic indexing based on q-Gaussian mixture models (q-

GMMs) is shown in Fig. 2. First, low-level features (e.g. SIFT features) are extracted from image/video data. Second,

a q-GMM for a background model is estimated from low-level features in training data. Finally, each image is

represented by a histogram of low-level features in which the background model is used as a visual codebook.

3.1. q-Gaussian Mixture Models

The q-Gaussian distribution, which has a parameter q to control its tail-heaviness, is derived by maximizing Tsallis

q-entropy S q given by

S q = −
1

1 − q

(
1 −
∫

p(x)qdx
)
. (1)
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Figure 3. (a): Standardized histogram of the first elements of standardized SIFT descriptors. 1 million low-level descriptors are randomly sampled
from training data of PASCAL VOC 2010 dataset. (b-1), (b-2): A fitting result by a Gaussian distribution and its residuals. (c-1), (c-2): A fitting
result by a q-Gaussian distribution (q = 1.12) and its residuals.

The Boltzmann-Gibbs (BG) entropy is obtained from Tsallis q-entropy S q for q→ 1. The probability density function

of the q-Gaussian distribution Nq is given by

Nq(x | µ,Σ) =




1
Zq

(
1 − 1 − q

3 − q
(x − µ)TΣ−1(x − µ)

) 1
1 − q ,

if (x − µ)TΣ−1(x − µ) < 3 − q
1 − q

,

0, otherwise,

(2)

where µ is a mean vector, Σ is a covariance matrix, and Zq is a normalizing constant to make the integral over Eq. (2)

to 1. Note that the q-Gaussian distribution asymptotically approaches to the Gaussian distribution when q→ 1.

Fig. 1 shows the shape of q-Gaussian distributions for some q-values. The q-Gaussian distribution has a longer

tail than the Gaussian distribution when q > 1. The long-tailed distribution obtained for q > 1 is expected to be

effective for representing complexly correlated data. Fig. 3 shows a histogram of the first values of 1 million low-level

descriptors with fitting results. The q-Gaussian distribution is more suitable than the Gaussian distribution to represent

distribution of the low-level descriptors.

To further improve the expressiveness of the q-Gaussian distribution, we introduce a mixture model of q-Gaussian

distributions, namely a q-Gaussian mixture model (q-GMM), by

pq(x | θ) =
K∑

k=1

wkNq(x | µk,Σk), (3)

where K is the number of mixtures, wk is a mixture coefficient, and θ = {wk, µk,Σk}Kk=1 is a set of q-GMM parameters.
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3.2. Training q-GMM for a Background Model

From a set of low-level features X = {xi}Ni=1 in training data, we estimate q-GMM parameters for a background

model which is used instead of a codebook for BoW. We propose the expectation maximization (EM) algorithm for

q-GMMs as follows.

E-step

Evaluate posterior probabilities cik as follows:

cik =
ŵkNq(xi | µ̂k, Σ̂k)

∑K
k=1 ŵkNq(xi | µ̂k, Σ̂k)

. (4)

M-step

To derive the parameter-update rules for the M-step, we introduce a Q-function given by

Q(θ) = log
∏

i

pq(xi | θ) + λ

1 −
∑

k′
wk′


 (5)

where pq is a pdf of a q-GMM defined by Eq. (3). A lagrangian multiplier λ is introduced to obtain wk such that

∑

k′
wk′ = 1. (6)

The derivations of the Q-function for each parameter are given by

∂

∂wk
Q(θ) =

∑

i

Nq(xi | µk,Σk)
∑

k′ wk′Nq(xi | µk′ ,Σk′)
− λ (7)

=
1

wk

∑

i

cik − λ, (8)

∂

∂µk
Q(θ) =

∑

i

aikwkNq(xi | µk,Σk)
∑

k′ wk′Nq(xi | µk′ ,Σk′)
Σ−1

k (xi − µk) (9)

= Σ−1
k

∑

i

aikcik(xi − µk), (10)

∂

∂Σk
Q(θ) =

1
2

∑

i

wkNq(xi | µk,Σk)
∑

k′ wk′Nq(xi | µk′ ,Σk′ )
Σ−2

k

(
aik(xi − µk)(xi − µk)T − Σk

)
(11)

=
1
2
Σ−2

k

∑

i

cik
(
aik(xi − µk)(xi − µk)T − Σk

)
, (12)

where

aik =
2

3 − q − (1 − q)(xi − µk)TΣ−1
k (xi − µk)

. (13)
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The parameter-update rules for the M-step are obtained by setting the derivatives of Q to zero. For mixture

coefficients wk, we obtain

ŵk =
Ck∑K

k=1 Ck
, (14)

from Eq. (8) where Ck =
∑

i cik.

However, µ̂k and Σ̂k can not be obtained from Eqs. (10) and (12) analytically since µk and Σk appear in aik. Our

preliminary experiments show that numerically solving those equations by the steepest descent (SD) method is time-

consuming and it’s difficult to optimize step size in SD in a high-dimensional space. Hence we assume aik is a constant

A for all i and k, and analytically solve the equations as

µ̂k =
1

Ck

N∑

i=1

cik xi, (15)

Σ̂k =
A

Ck

N∑

i=1

cik(xi − µ̂k)(xi − µ̂k)T . (16)

We determine the value of A so that the expectation of Σ̂k, E[Σ̂k], is equal to Σk, a covariance matrix of a q-Gaussian

distribution Nq(· | µk,Σk). The expectation of Σ̂k is calculated as

E
[
Σ̂k
]
= E



A
Ck

N∑

i=1

cik(xi − µ̂k)(xi − µ̂k)T


 (17)

=
A

Ck

N∑

i=1

cikV[xi] (18)

= A
3 − q
5 − 3q

Σk. (19)

where we use the fact

V[xi] =
3 − q
5 − 3q

Σk. (20)

Therefore, A is set to

A =
(

3 − q
5 − 3q

)−1

. (21)

Here, we assume q < 5
3 since a q-Gaussian distribution has an infinite variance if q ≥ 5

3 .
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Figure 4. Assignment hardness h with different q-values.

3.3. q-GMM for histogram-based image representation

To represent an image by a feature vector, we create a histogram of low-level features H(X′) from a set of low-level

features X′ = {xi}N′i=1 extracted from an image as follows:

H(X′) =




C1

C2
...

CK




, Ck =
∑

i

cik, (22)

where cik is the posterior probability of xi being at the k-th q-Gaussian component. It is given by

cik =
ŵkNq(xi | µ̂k, Σ̂k)

∑K
k=1 ŵkNq(xi | µ̂k, Σ̂k)

. (23)

where ŵk, µ̂k, and Σ̂k are q-GMM parameters for the background model. The posterior probabilities cik can be viewed

as weights in soft-assignment of visual words since they satisfy

K∑

k=1

cik = 1, 0 ≤ cik ≤ 1. (24)

Thus, the q-GMM can be regarded as an extension of BoW to a probabilistic framework.

We found that the assignment using the q-GMM comes close to the hard-assignment (i.e., only one of cik is equal to

1.0 and others are 0.0) as q decreases, and comes close to the uniform-assignment (i.e., all cik have equivalent values)

as q increases. To measure how much the assignment is close to the hard-assignment, we introduce the assignment

8



9

Table 1. The targeted semantic concepts for PASCAL VOC 2010 and TRECVID 2010.
PASCAL VOC 2010
Aeroplane Bicycle Bird Boat Bottle
Bus Car Cat Chair Cow
Diningtable Dog Horse Motorbike Person
Pottedplant Sheep Sofa Train Tvmonitor
TRECVID 2010
Airplane Flying Animal Asian People Bicycling Boat Ship
Bus Car Racing Cheering Cityscape Classroom
Dancing Dark-skinned People Demonstration Or Protest Doorway Explosion Fire
Female Human Face Closeup Flowers Ground Vehicles Hand Mountain
Nighttime Old People Running Singing Sitting down
Swimming Telephones Throwing Vehicle Walking

hardness h defined by

h =
1
N′

N′∑

i=1

maxk cik − K−1

1 − K−1 . (25)

The assignment hardness h is designed to reach 1.0 for the hard-assignment and 0.0 for the uniform-assignment.

Fig. 4 shows the assignment hardness with different q-values. To improve the final performance of image and

video indexing, the assignment should not be too hard nor too uniform. Here, we employ a q-value of 1.05 that has

the middle value (0.5) of assignment hardness.

3.4. q-GMM Kernel

Here, we introduce q-GMMs instead of the BoW histograms to represent images and videos. Generally, the num-

ber of low-level features extracted from an image is limited and may not be enough to estimate q-GMM parameters

robustly. Thus, we use the maximum a posteriori criteria which provides robust parameter estimation. For each image

that has low-level features X′ = {xi}N′i=1, we only update q-GMM mean vectors from the background model as follows:

µ̃′k =
τµ̂k +

∑N′
i=1 cik xi

τ +
∑N′

i=1 cik
, (26)

where N′ is the number of the low-level features, µ̂k is a q-GMM parameter for the background model, τ is a prefixed

hyper-parameter, and cik is the posterior probability given by Eq. (4).

For a kernel to train support vector machines (SVMs), we introduce the following RBF-based kernel, namely

q-GMM kernel,

k(X′, X′′) = exp

−γ

K∑

k=1

ŵk(µ̃′k − µ̃′′k )T Σ̂−1
k (µ̃′k − µ̃′′k )


 , (27)

where X′ is a set of low-level features extracted from an image, µ̃′k is an updated q-GMM mean vector, Σ̂k,wk are q-
9
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GMM parameters for the background model, and γ is a scaling parameter. The weighted sum of Mahalanobis distance

between the k-th q-Gaussian components is utilized in the q-GMM kernel.

To efficiently compute the q-GMM kernel, we define the following super-vector φ(X′) and store it in storage.

φ(X′) =




√
ŵ1Σ̂

− 1
2

1 µ̃
′
1√

ŵ2Σ̂
− 1

2
2 µ̃

′
2

...
√

ŵK Σ̂
− 1

2
K µ̃

′
K




, (28)

The dimension of the super-vector is Kd where K is the number of mixture components and d is the dimension of

low-level descriptors. The super-vector immediately implies the following simplification of the q-GMM kernel.

k(X′, X′′) = exp
(
−γ‖φ(X′) − φ(X′′)‖22

)
. (29)

4. Experiments

4.1. Experimental Conditions

In this section, the proposed method is evaluated on two data sets: PASCAL VOC 2010 and TRECVID 2010. The

PASCAL Visual Object Classes Challenge (VOC) [8] provides a benchmark for comparison of object classification

methods. The PASCAL VOC 2010 classification (validation) challenge data set consists of 4,998 training images

and 5,105 testing images of 20 object classes in Table 1. The evaluation measure is Mean average precision (Mean

AP), which is the arithmetic mean of APs over all targeted object classes. The TREC Video Retrieval Evaluation

(TRECVID) [7] provides a benchmark for comparison of video indexing methods. The TRECVID 2010 Semantic

Indexing data set consists of 119,685 training video shots and 146,788 testing video shots. 30 semantic concepts

of objects, actions, and scenes in Table 1 and their ground truth labels are provided. Officially provided key-frame

images for each video shot is used in our experiments. The evaluation measure is Mean AP among the 30 semantic

concepts.

To test our q-GMM on these benchmarks, the low-level image descriptors are densely sampled from 100x100

grid with 3 different scales on an image. The descriptor is a concatenation of 128-dimension SIFT descriptor [9] and

36-dimension hue-histogram descriptor [20]. The dimension of each descriptor is reduced to 32 by applying Principal

Component Analysis (PCA) after the concatenation.

The q-GMM for a background model is constructed by applying the proposed EM algorithm to one million ran-

domly sampled descriptors. The number of mixture components K and the hyper-parameter τ in Eq. (26) are set to 512

and 20.0, respectively, in all experiments except the experiment evaluating their influence. Note that the dimension of

the q-GMM histogram representation and q-GMM super-vector is 512 and 16,384 (=512×32), respectively.
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Figure 5. The performance comparison of q-GMM kernels with different q-values on the PASCAL VOC 2010 dataset. The q-GMM kernel
outperforms the GMM baseline (q = 1.00) and the improved Fisher kernel [22] of GMM means.

4.2. Experimental Results

4.2.1. PASCAL VOC 2010

We first compared our q-GMM histogram representation in Sec.3.3 with the hard-assignment BoW [2]. Mean AP

of the BoW was 30.93% and the q-GMM histogram improved it to 32.03%. The q value is set to 1.05 which has the

hardness of 0.5 as presented in Sec. 3.3. This shows that the q-GMM is more suitable than the hard-assignment BoW

for representing an image by a histogram of low-level descriptors.

Next, we compared our q-GMM kernel in Sec.3.4 with three kernel methods: χ2-kernel, Fisher kernel (FK) [23],

and Improved Fisher kernel (IFK) [22]. For the χ2-kernel, we computed χ2-distance between the q-GMM histogram

representations. For FK and IFK, we extracted Fisher vectors for GMM means, whose dimension is the same as our

super-vector. We applied L2 and power normalization as in [22] for IFK. The parameter of the power normalization

was set to 0.4 which performed the best in our experiments. As shown in Table 2, the q-GMM kernel performed the

best among these methods and achieved 49.42% in Mean AP. Figure 5 shows the performance of the q-GMM kernel

for different q values. As can be seen, the q-GMM outperformed the normal GMM baseline (q = 1.00). The best

q value and its Mean AP were 1.06 and 49.47%, respectively. This shows the effectiveness of the q-GMM kernel in

image classification.

As described in [11], another idea to obtain a discriminative image representation is to train a class-specific model

instead of the background model for a visual codebook. However, APs for aeroplane and bicycle were decreased by

1.30% and 2.09%, respectively, when a q-GMM is trained on one million descriptors sampled only from images of

the targeted object. There was no significant performance improvement by concatenating both representations: AP

for aeroplane was improved by 0.46% but that for bicycle was decreased by 0.31%. In conclusion, it is better to train

a visual codebook on images of various object categories. A class-specific model could be useful for other problems

such as dog breed classification that focus on a specific category.
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Table 2. Performance comparison on PASCAL VOC 2010 dataset. BoW: bag-of-visual-words histogram representation [2] obtained by using
vector quantization. Our histogram: q-GMM based histogram representation in Sec. 3.3 for q = 1.00 (GMM) and q = 1.05. χ2 kernel: χ2 kernel
on q-GMM histogram representation. FK: Fisher kernel [23] of a GMM. IFK: improved Fisher kernel [22]. Our kernel: q-GMM kernel in Sec.3.4
for q = 1.00 (GMM) and q = 1.05.

Concept BoW[2] Our histogram
χ2 kernel FK [23] IFK[22] Our kernel

GMM q-GMM GMM q-GMM
aeroplane 54.38 55.21 55.99 75.10 68.41 81.21 81.72 82.34
bicycle 36.53 37.88 38.20 42.52 46.79 52.07 52.62 53.50
bird 24.76 25.79 25.77 36.57 34.26 43.82 44.39 45.07
boat 37.41 38.29 39.65 50.51 50.37 58.36 56.51 57.32
bottle 9.71 10.03 10.28 16.36 18.06 20.51 21.91 22.62
bus 56.62 58.56 59.99 66.90 71.80 77.17 76.29 77.50
car 35.63 36.51 36.34 45.76 51.08 55.82 56.87 57.24
cat 41.75 42.33 42.05 49.62 52.09 56.96 57.18 57.16
chair 33.96 34.79 35.04 41.99 43.39 47.10 46.70 47.76
cow 7.12 7.69 7.66 12.24 13.48 20.35 21.77 22.76
diningtable 14.89 15.36 15.22 24.11 30.76 34.11 34.30 34.65
dog 24.36 24.84 24.63 35.30 39.41 44.30 44.61 44.67
horse 21.53 22.98 24.06 31.77 35.90 43.71 43.45 43.81
motorbike 27.30 28.55 28.19 43.41 49.64 56.27 57.17 58.83
person 68.63 69.23 69.29 73.42 73.16 76.69 76.84 77.50
pottedplant 8.54 8.38 8.04 10.85 14.31 15.78 16.82 16.91
sheep 19.68 20.42 19.37 30.07 32.64 42.17 41.63 42.09
sofa 16.17 16.66 17.10 24.09 26.97 33.38 33.47 33.83
train 44.59 45.71 46.17 51.33 57.97 62.93 63.17 64.27
tvmonitor 35.04 36.20 37.48 45.88 41.96 48.79 47.69 48.51
Mean AP 30.93 31.77 32.03 40.39 42.62 48.58 48.76 49.42

Table 3. Testing cost and Mean AP for each method. K is the number of mixture components, D is the dimension of low-level descriptor, and N is
the averaged number of support vectors of an SVM.

Representation Dimension Kernel type # support vectors N Testing cost Mean AP
q-GMM histogram K = 512 linear 1540 O(K) 32.03

χ2 1700 O(NK) 40.39
q-GMM supervector DK = 16384 linear 1251 O(DK) 47.09

q-GMM kernel (RBF) 2261 O(NDK) 49.42
Fisher vector (mean) DK = 16384 linear 1494 O(DK) 46.21

RBF 2556 O(NDK) 48.58

4.2.2. Analysis

Here, we analyze the influence of the number of mixture components and the hyper-parameter τ in Eq.(26) on

the performance. Figure 6 compares the q-GMM kernel with the GMM baseline for different numbers of mixture

components. It is shown that the q-GMM constantly performed better than the GMM baseline. We observed that

the difference between the GMM and the q-GMM is large when the number of mixture components is large. This

observation can be explained as follows. For a GMM, as the number of mixture components increases, fewer low-

level descriptors are assigned with a significant posterior probability cik to each Gaussian, i.e., a matrix of cik becomes

sparser and it decreases the performance. On the other hand, for a q-GMM, long-tailed q-Gaussian distributions

12
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Figure 6. Mean AP on PASCAL VOC 2010 for different numbers of mixture components for q-GMM kernel.

Figure 7. Mean AP on PASCAL VOC 2010 for different hyper-parameter τ in maximum a posteriori adaptation for q-GMM kernel.

Figure 8. The performance comparison of q-GMM kernels with different q-values on the TRECVID 2010 dataset.

prevent it from becoming sparse. This is the reason why we observed the large difference for a large number of

mixture components.

Figure 7 illustrates the influence of the hyper-parameter τ in Eq.(26) on the performance. We observed no signif-

icant change in performance when τ was between 10.0 to 25.0. Thus, we conclude that values between 10.0 to 25.0

13
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Table 4. Average precision (AP) by semantic concepts on TRECVID 2010. Results for GMM, q-GMM (q = 1.05), score fusion of GMM and
q-GMM (q = 1.05), and feature fusion of 5 types of visual and audio features for q-GMM are reported.

Concept
Single feature Feature fusion

GMM q-GMM GMM+q-GMM q-GMM
Airplane Flying 2.75 2.67 3.01 15.64
Animal 2.18 2.53 2.39 6.44
Asian People 0.45 0.18 0.40 3.08
Bicycling 3.10 2.90 3.31 5.90
Boat Ship 5.28 5.51 5.24 11.01
Bus 0.80 0.43 0.57 1.42
Car Racing 4.30 3.92 4.03 4.37
Cheering 3.22 3.56 3.38 3.81
Cityscape 9.91 10.75 10.85 17.43
Classroom 1.24 1.27 1.21 0.81
Dancing 3.12 5.10 4.53 8.89
Dark-skinned People 12.85 13.21 13.77 20.40
Demonstration Or Protest 13.63 13.54 14.14 17.86
Doorway 7.84 7.14 7.95 12.44
Explosion Fire 4.61 4.03 4.28 3.93
Female-Human-Face-Closeup 10.94 10.55 11.09 17.79
Flowers 3.57 3.95 3.59 3.86
Ground Vehicles 14.59 14.15 15.46 20.20
Hand 4.06 4.05 3.92 9.30
Mountain 20.14 20.83 20.15 20.87
Nighttime 12.89 9.99 12.24 15.88
Old People 2.58 1.98 2.37 8.20
Running 1.42 1.87 1.90 6.88
Singing 6.80 8.11 8.40 17.47
Sitting Down 0.12 0.08 0.09 0.56
Swimming 32.98 33.07 33.35 30.82
Telephones 1.03 1.39 1.39 1.88
Throwing 3.49 5.61 5.45 7.02
Vehicle 14.61 14.04 14.28 18.91
Walking 5.66 6.98 6.41 13.03
Mean 7.01 7.11 7.30 10.87

are reasonable. We also confirmed that the improvement by the q-GMM is robust against the hyper-parameter τ.

4.2.3. TRECVID 2010

Table 4 shows the performance comparison of the q-GMM kernel and the GMM baseline on TRECVID 2010.

The q-GMM kernel of q = 1.05 outperformed the GMM and achieved 7.11% in Mean AP. As shown in Figure 8, the

q-value of 1.02 performed the best with 7.12% Mean AP on this dataset.

On the other hand, we observed that the performance is improved to 7.49% if we choose the best q-value for each

of targeted semantic concept. This shows that supervised q-value optimization has potential for improving the overall

performance in future work while our q-value optimization in Sec 3.3, which is based on the assignment hardness,

was in an unsupervised way.

14
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Figure 9. Examples of detected video shots in TRECVID 2010 dataset. Top 5 video shots are shown for ten semantic concepts.

Another idea to improve the overall performance is to use the both of the GMM and the q-GMM. The simplest im-

plementation of this idea is averaging two detection scores obtained from the GMM and the q-GMM. We additionally

evaluated it and observed 7.30% Mean AP as shown in Table 4. On the other hand, a disadvantage of averaging scores

is that it’s time-consuming to compute independent scores for the GMM and the q-GMM. To reduce the computational

costs, an efficient method for calculating q-Gaussian probabilities for multiple q-values is needed in future work.

4.2.4. Comparison with other methods

Fig. 10 shows the performance comparison with the other methods in the TRECVID 2010 Semantic Indexing

Task [7]. Mean AP of 7.11%, which was obtained by using our q-GMM kernel (q = 1.05), ranked 10-th among

87 official runs. Fig. 9 shows some examples of detected video shots. We conclude the q-GMM kernel performed

well since the other methods typically used more than 5 types of low-level features while we used only one type of

low-level features (SIFT with hue histogram).

Furthermore, we achieved Mean AP of 10.90%, which is better than the best performance on the TRECVID 2010,

by combining q-GMM kernels for 4 additional types of low-level features: SIFT with Harris-affine detector, SIFT

with Hessian-affine detector, dense HOG, and MFCC audio features.

5. Conclusion

We proposed q-Gaussian mixture models (q-GMMs) and their application to image and video semantic indexing

systems. It has been shown in our experiments that the q-GMM kernels outperform both of the BoW method and the

normal GMM. The q-GMM kernel achieved 0.494 and 0.109 in Mean Average Precision on the PASCAL VOC 2010

dataset and the TRECVID 2010 Semantic Indexing dataset, respectively. The linear kernel on q-GMM supervectors

was shown to be effective in terms of the scalability. Our future work will focus on optimization of q-values for
15
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Figure 10. The performance comparison with other methods in TRECVID 2010. We achieved 0.071 in Mean AP by using a q-GMM kernel with
SIFT-HueHistogram features and achieved 0.109 with additional 4 types of low-level features.

each semantic concepts. An extension of the Fisher information analysis to Tsallis statistics would be interesting as a

promising next step.
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