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Molecular dynamics simulations were performed to study the thermal properties of a supercooled liq-
uid near the glass transition regime and of glasses in a one-component soft-core system with the pair
potential ϕn(r) = ε(σ /r)n, in which n = 12. The results are examined along a phase diagram, in which
the compressibility factor defined by P̃ (ρ∗) ≡ PV/NkBT is plotted against the reduced density ρ∗

= ρ(ε/kBT)3/n (or the reduced temperature T∗ = ρ∗−n/3). Similarly, a time-dependent dynamical com-
pressibility factor can be plotted against the time-dependent reduced density ρ∗

t = ρ(ε/kBT ∗
t )3/n (or

the reduced time-dependent temperature). Analytical expressions of the specific heats CV and CP

and of the entropy, S, were obtained as a function of P̃ (ρ∗) or of the scaled potential U ∗. Even for a
rapid cooling process, the CV values are found to be affected by non-equilibrium relaxations in the
ρ∗

0 > 1.3 region, where ρ∗
0 is the given initial value of ρ∗

t . The problem of the Kauzmann paradox
is discussed using these expressions. The fluctuation of the time-dependent temperature, Tt

∗, which
determines CV , is characterized by the spectra that are obtained by multitaper methods. The thermal
fluctuation along the non-equilibrium relaxation under NVE conditions was also examined. © 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4799880]

I. INTRODUCTION

The thermodynamics of super-cooled liquids and of their
glass transition, such as rapid changes in the specific heat, has
been an area of debate for a long time. One-component sys-
tems with the soft-core (SC) potential ϕn(r) = ε(σ /r)n 1–6 have
been examined along a phase diagram using a compressibility
factor, P̃ (ρ∗) ≡ PV/NkBT , plotted against a reduced den-
sity, ρ∗, or a reduced temperature, T∗, using NVE-MD. (See
Sec. II for the explanation of these terms.) In the present work,
the specific heats of a one-component SC system were ex-
amined during both rapid cooling and non-equilibrium NVE
relaxation processes to better understand the glass transition.
The advantages of using a one-component system include not
only the elimination of the mixing effects of different species
but also the ability to rigorously treat the system using the
phase diagram.

In the region, ρ∗
0 > 1.3, where ρ∗

0 is the given initial value
of ρ∗

t , non-equilibrium relaxation (represented by Eqs. (6a)
and (6b) in Sec. II) was observed.

Interestingly, using the time-dependent dynamic
compressibility factor (PV/NkBT )t plotted against ρ∗

t

= ρ(ε/kBT ∗
t ), non-equilibrium relaxation process toward the

glass branch1, 5 can be also mapped on the same diagram.
Even during the rapid quenching of the system (the cool-

ing rate is on the order of 1 × 1012 K/s for argon), a non-
equilibrium relaxation starts in the region ρ∗

0 > 1.3 and the
system tends to be trapped midway along the relaxation path
toward the glass branch on the diagram in the large ρ∗

0 region.5

Thus, in both the cases of rapid quenching and of a long
run under an NVE condition, glassy states are obtained when

the dynamics are slow enough. The existence of these glassy
states was determined using the dynamics and structures.5 It
is interesting to examine how the thermodynamic properties
change along the different paths to the glassy state because the
glass transition can be defined by the existence of a thermo-
dynamic change in the system.

In the SC system, the specific heat CV values of the liquid
and of the super-cooled liquid were obtained as a function of
P̃ (ρ∗) using a polynomial expansion of the 1/T∗ terms, while
the value of the quenched liquid state was treated as a func-
tion of the scaled potential energy, U ∗, using an expansion
of the T∗ terms (see Sec. II). We also derived an expression for
the entropy, S, using the coefficients of the polynomials men-
tioned above; the excess entropy of the system (the difference
between that of the quenched liquid (glass) and of the crystal)
was obtained in an analytical form. “Kauzmann’s paradox,”7

which is a long-standing problem in the field of glass transi-
tion, will also be discussed on this basis of the excess entropy.
This topic may be considered misleading and confusing8 for
students in the field. Although we partially agree with this
opinion, the concept still appears to be instructive and attrac-
tive for clarifying some of the problems of glass transition.

Furthermore, the fluctuation of the time-dependent re-
duced temperature, T ∗

t , which controls the specific heat of
the system, was examined using the spectra obtained by the
multitaper method (MTM).9–11

II. THEORY

The behavior of the SC model is examined along the
phase diagram, in which a compressibility factor defined by

0021-9606/2013/138(14)/144503/13/$30.00 © 2013 American Institute of Physics138, 144503-1
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P̃ (T ∗) ≡ PV/NkBT (see Eq. (3)) is plotted against the re-
duced density ρ∗ (or the reduced temperature, T ∗). The fun-
damental relations among the thermodynamic quantities are
summarized in Eqs. (1)–(7).1, 2, 5

The Hamiltonian of the SC system,

H (p, r) =
∑

i

p2
i

2m
+

∑
i<j

ε

(
σ

rij

)n

≡ K + U, (1)

can be rewritten as

H (p, r) = ε
(σ

l

)n

H ∗(p∗, r∗), (2a)

H ∗(p∗, r∗) =
∑

i

p∗2
i

2
+

∑
i<j

(
1

r∗
ij

)n

. (2b)

Here, a unit system with length l = (V/N )1/3, time
τ = l(m/ε)1/2(l/σ )n/2, and mass m was introduced. The val-
ues K∗ and U ∗ are the scaled kinetic and potential energies,
respectively.

According to the classical virial theorem combined with
the NVE method, the compressibility factor, PV/NkBT , can
be written as

PV

NkBT
= 1 + n

2

〈Ut 〉
〈Kt 〉 = 1 + n

3

〈
U ∗

t

〉
NT ∗ ≡ P̃ (ρ∗), (3)

where the notation 〈· · ·〉 indicates the time average of the
value in the brackets. P̃ (ρ∗) is given by a function of the re-
duced density (or the reduced temperature), which is defined
by

ρ∗ = ρ

(
ε

kBT

)3/n

= T ∗−3/n, (4)

where ρ = Nσ 3/V is the non-dimensional number density.5

The dynamical compressibility factor (PV/NkBT )t ,
which is defined by(

PV

NkBT

)
t

= 1 + n

2

Ut

Kt

≡ g(ρ∗
t ), (5)

is an important quantity, particularly when we consider the
fluctuation of g(ρ∗

t ) that is caused by the energy transfer be-
tween the potential and kinetic energies.

g(ρ∗
t ) can be represented on the phase diagram as

follows:2, 6

g(ρ∗
t ) =

[
g(ρ∗

0 ) +
(n

2
− 1

)] (
ρ∗

t

ρ∗
0

)n/3

−
(n

2
− 1

)
, (6a)

g(ρ∗
0 ) = n

3

E

εN

(
ρ∗

0

ρ

)n/3

−
(n

2
− 1

)
. (6b)

Here, E = Kt + Ut, g(ρ∗
0 ) is the given initial value of g(ρ∗

t )
with a time-dependent reduced density that is defined by
ρ∗

t = ρ(ε/kBTt )3/n and Tt is defined by kBTt = 2Kt/3N. The
dynamical compressibility factor changes with time along the
g(ρ∗

t ) curve, as represented by Eqs. (6a) and (6b); this change
accompanies the fluctuation that is caused by the fluctuation
of ρ∗

t . When ρ∗
t fluctuates within the region of a thermally

equilibrated liquid state (or crystalline state), the long-time

averages 〈ρ∗
t 〉(≡ρ∗) and 〈g(ρ∗

t 〉(≡P̃ (ρ∗)) provide the point
of state on the diagram of P̃ (ρ∗) vs. ρ∗. If the initial point
(g(ρ∗

0 ), ρ∗
0 ) is located in the region of an unstable state, the

system relaxes, fluctuating with ρ∗
t .

It is interesting to note that non-equilibrium relaxation
under the constant pressure condition can be obtained in a
similar manner, as will be shown in a separate paper; here,
our attention is focused on NVE relaxation.

The pressure P is given by the following expression:1, 5

P = ε

σ 3

(
kBT

ε

)3/n+1

ρ∗P̃ (ρ∗). (7)

Using the compressibility factor, the specific heat of constant
volume CV is expressed as follows.

Introducing the non-dimensional quantity, (E/NkBT)
≡ h(ρ∗), the internal energy is

E

NkBT
= th(ρ∗), (8)

where t = kBT/ε. CV can then be obtained using

CV = ∂

∂t

(
E

Nε

)
V

= h(ρ∗) + t
dh(ρ∗)

dρ∗

(
∂ρ∗

∂t

)
V

= h(ρ∗) −
(

3

n

)2

ρ∗ dh(ρ∗)

dρ∗

= 3

2
+ 3

n
[P̃ (ρ∗) − 1] −

(
3

n

)2

ρ∗ dP̃ (ρ∗)

dρ∗

= 3

2
− 3

n
+ 3

n
P̃ (ρ∗) + 3

n
T ∗ dP̃ (ρ∗)

dT ∗ , (9)

where we used the relation

h(ρ∗) = 3

2
+ 3

n
[P̃ (ρ∗) − 1]. (10)

In a similar manner, the specific heat of constant pressure CP

can be obtained by differentiating the enthalpy:

CP = ∂

∂t

(
E + PV

Nε

)
P

= j (ρ∗) + t
dj (ρ∗)

dρ∗

(
∂ρ∗

∂t

)
P

,

(11)
where ((E + PV )/NkBT ) ≡ j (ρ∗). Applying the condition
of constant pressure, d(Pσ 3)/dt = 0, to Eq. (7), we obtain

(1 + 3/n)ρ∗P̃ (ρ∗) + t
∂

∂ρ∗ {ρ∗P̃ (ρ∗)}
(

∂ρ∗

∂t

)
P

= 0. (12)

If we insert the (∂ρ∗/∂t)P that was obtained from Eq. (12) into
Eq. (11), we obtain

CP = j (ρ∗) − (1 + 3/n)
dj (ρ∗)

dρ∗

[
d

dρ∗ ln{ρ∗P̃ (ρ∗)}
]−1

= 3

2
− 3

n
+

(
3

n
+ 1

)
P̃ (ρ∗) −

(
3

n
+ 1

)2
dP̃ (ρ∗)

dρ∗

×
[

d

dρ∗ ln{ρ∗P̃ (ρ)}
]−1

, (13)

where

j (ρ∗) = 3

2
− 3

n
+

(
3

n
+ 1

)
P̃ (ρ∗). (14)
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From Eqs. (9) and (13), it can be determined that CP is related
to CV by

CP = CV +

[(n

2
− 1

)
− n

3
CV

]2

(
1 + n

3

)
P̃ + n

3

(n

2
− 1

)
−

(n

3

)2
CV

. (15)

To evaluate CV numerically, the T∗ dependence of P̃ (ρ∗)
for the fluid state was determined using a high temperature
expansion of P̃ (ρ∗), i.e., a polynomial of 1/T∗:

P̃ (ρ∗) = 1 + n

3

〈U ∗
t 〉

NT ∗

= 1 + n

3

{
B1

T ∗ + B2

T ∗2
+ · · · + Bk

T ∗k

}
. (16)

The unknown coefficients B1, . . . , Bk were determined in a
manner similar to that in Ref. 6. Inserting Eq. (16) into
Eq. (9), we obtain

CV = 3

2
−

k∑
l=2

(l − 1)
Bl

T ∗l
. (17)

The entropy is evaluated by integrating the thermodynamic
formula, CV = T (∂S/∂T )V ,

S(T ∗)

NkB

− S(T ∗
ref )

NkB

=
∫ T ∗

T ∗
ref

CV

T ∗ dT ∗. (18)

Here, T ∗
ref is the temperature of a reference state.

For a numerical calculation of the entropy, we used the
difference S(T2

∗) − S(T1
∗) for a fixed T1

∗:

S(T ∗
2 )

NkB

− S(T ∗
1 )

NkB

= 3

2
ln

(
T ∗

2

T ∗
1

)
+

k∑
l=2

(l − 1) /l

(
Bl

T ∗l
2

− Bl

T ∗l
1

)
.

(19)
In the present work, a reference value T1

∗ in the high T∗ region
is commonly used for a liquid, supercooled liquid, quenched
glass, or fcc crystal. Thus, the entropy is given by values rel-
ative to S(T1

∗)/NkB for a fixed temperature T1
∗.

The value at the freezing point is S(Tf
∗)/NkB

− S(T1
∗)/NkB.

The entropy S(Tm
∗
) at the melting point T ∗

m is determined
by the fluid-crystal coexistence condition, i.e., the condition
that the Gibbs energy G(t,ρ) and the pressure P(t, ρ) at the
melting point are equal to those at the freezing point:

S(Tm
∗)

NkB

= 1

NkBT
[E + PV − G]m

= h(Tm
∗) + P̃ (Tm

∗) − 1

NkBT
G(t, ρf ), (20)

where the Gibbs energy G(t, ρm) is replaced by G(t, ρ f). The
freezing entropy �S(Tf-m

∗) is given by

�Sf −m

NkB

≡ S(Tm
∗)

NkB

− S(Tf
∗)

NkB

. (21)

For a numerical evaluation, we used the following values for
the melting and freezing conditions, which were obtained by
Ogura et al.:12

ρ∗
f = 1.173 and ρ∗

m = 1.217.

The entropy of the crystalline state at T ∗ is

S(T ∗)

NkB

= �Sm−f

NkB

+ S(T ∗
f )

NkB

+
∫ T ∗

T ∗
m

CV

T ∗ dT ∗. (22)

The numerical evaluation of the third term was performed in
a manner similar to that in Ref. 6.

We approximate 〈Ut
∗〉 by the kth polynomial of T∗, first

applying the Chebyshev polynomials {Tn(T∗)}, n = 1,2,. . . ,k
and then rearranging them to obtain

〈
U ∗

t

〉 = U ∗
0 + N (C1T

∗ + C2T
∗2 + · · · + CkT

∗k). (23)

The (k + 1) unknown constants U ∗
0 ,C1, C2, . . . , Ck are deter-

mined from the least square fitting of 〈U ∗
t 〉. When Eq. (23) is

inserted into Eq. (3), the compressibility factor becomes

P̃ (ρ∗) = 1 + n

3

U ∗
0

NT ∗ + n

3
{C1 + C2T

∗ + C3T
∗2

+ · · · + CkT
∗k−1}. (24)

By inserting Eq. (24) into Eq. (9), we obtain

CV = 3

2
+ C1 + 2C2T

∗ + 3C3T
∗2 + · · · + kCkT

∗k−1.

(25)
The entropy is again evaluated using Eq. (18) and we obtain

S(T ∗)

NkB

= �Sf −m

NkB

+ S(T ∗
f )

NkB

+
(

3

2
+ C1

)
ln

(
T ∗

T ∗
m

)

+
k∑

l=2

(
l

l − 1

)
Cl[T

∗l−1 − T ∗l−1
m ]. (26)

The entropy is represented by Eq. (19) for Tf
∗ < T∗ < T1

∗ and
by Eq. (26) for 0 < T∗ < Tm

∗.
In the present work, Eq. (19) was used for the extended

region Tp
∗ < T∗ < T1

∗ which includes the supercooled liq-
uid state, while the entropy values for the rapidly quenched
system 0 < T∗ < Tp

∗ were obtained using a manner similar
to that for the crystal. Here, Tp

∗ (∼0.31) is the temperature at
which the specific heat CV has a peak (see Fig. 3). The nu-
merical value of Tp

∗ was obtained from the intersection of the
CV curves, which is expressed by Eq. (17) for the larger T∗

region and by Eq. (25) for the smaller T∗ region.
The ideal gas state may be used as a reference state for

a high-temperature expansion. The absolute value of the en-
tropy of an ideal gas is given by13

Sid

NkB

= ln

[(
2πmkBT

h2

)3/2
V e5/2

N

]
, (27)

which can be rewritten as

Sid (T ∗)

NkB

= 3

2
ln

(
2πT ∗

h∗2

)
+ 5

2
, (28)

where h∗ is the scaled Planck constant defined by
h = h∗ml2/τ . Inserting Eq. (28) into Eq. (19), we obtain the
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entropy at temperature T∗:

S(T ∗)

NkB

= 3

2
ln

(
2πT ∗

ref

h∗2

)
+ 5

2
+ 3

2
ln

(
T ∗

T ∗
ref

)

+
k∑

l=2

(l − 1) /l

(
Bl

T ∗l
− Bl

T ∗l
ref

)
. (29)

With increasing temperature toward T ∗
ref , the entropy con-

verges to that of an ideal gas.
Interestingly, the numerical value of the ideal gas de-

pends on the scaled Planck constant (therefore, it is not con-
stant) and depends on the ml2/τ of the system. The difference
in the entropies at temperatures T ∗

1 and T ∗
2 derived by Eq. (29)

agrees with that given by Eq. (19).
The methods that were based on the equilibrium ther-

modynamics may not be suitable for examining the ther-
modynamics near the glass transition because of the non-
equilibrium and/or non-ergodic nature of this transition.8 The
values CV and S of this region are the time-averaged ones
and not the ensemble-averaged ones. The time-dependent CV

values, which are based on the fluctuation of T∗, are also ex-
amined, as will be shown in Subsection IV F.

III. MOLECULAR DYNAMICS SIMULATIONS

Here, we study the behavior of a soft-core system with
a pair potential, φn(r) = ε(σ /r)n (n = 12), using molecular
dynamics (MD) simulations with our MD program. Systems
with 2048 particles and periodic boundary conditions were
used for the simulations of liquids and glasses. The MD simu-
lations were performed using argon-like parameters, although
reduced units are used unless otherwise stated.

In the present work, the thermodynamics during a rapid
cooling process by the scaling of the velocity (run 1, cooling
rate of ∼1 × 1012 K/s for argon) was examined.

Some runs along NVE relaxations (see Sec. IV A for the
outline and Ref. 5 for details) were also examined. The re-
sults are compared with the thermodynamics along the crystal
branch that was examined in a previous work.6 The time step
was either 1 or 4 fs (for argon).

Additionally, the heating process by the scaling of the
velocity (run 2, heating rate of ∼1 × 1011 K/s) starting from
the quenched state at ∼0 K was examined.

IV. RESULTS AND DISCUSSION

A. Phase diagram and classification of the glasses

Before mentioning the thermodynamics results of the SC
system along the phase diagram, the characteristics of the di-
agram, which was previously examined,1, 5 are summarized
here. Hereafter, the compressibility factor P̃ (ρ∗) is repre-
sented by g

∗
and the time-dependent dynamical compressibil-

ity factor is denoted by g∗
t . Both compressibility factors are

represented by g
∗

in the diagram.
In Fig. 1(a), the diagram that includes the metastable

glass branch is shown for the system with 2048 particles. The
system along the liquid (and supercooled liquid) branch is un-

FIG. 1. (a) Phase diagram of the soft-core system. Data for the liquid (and
quenched glass) branch (red open squares) and for the crystal (fcc) branch
(black filled circles) are shown. The blue circles are the points for the
metastable states that were obtained in our previous work5 after NVE re-
laxations. The dotted blue curve shows the glass branch that represents these
points. The position of ρp

∗ (= Tp
∗−0.25) is also shown in the diagram. The

data points obtained from rapid cooling (run 1) are connected by the dashed
red curve. An example of the trajectory of g∗

t for NVE relaxation is shown by
the solid purple curve on the diagram. (b) Pair correlation functions, g(r), for
several points ((a), (b), and (c), shown in (a)) on the phase diagram.

stable for ρ∗
0 > 1.3 and initiates a non-equilibrium relaxation

process toward the glass or crystal branch with/without some
leading times. The position ρp

∗ ( = Tp
∗−0.25) is also shown in

the diagram.
Many systems were found to reach metastable states be-

fore the crystal branch was attained. (For example, the system
at the glass branch was confirmed to be nearly stable even af-
ter 37 ns (for argon) for the case starting from ρ∗

0 = 1.357).
By connecting the metastable states in the phase diagram, we
obtain the glass branch where the dynamics of the particles
are almost frozen. Therefore, we call the systems in these
metastable states “metastable glasses.”

Non-equilibrium relaxation from the liquids-supercooled
liquids branch to the glass branch can be regarded as the glass
transition.
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FIG. 2. (a) U∗/N values for rapid cooling along the liquid branch (red open
squares) that is shown in the phase diagram in Fig. 1. The values for the glass
branch (blue circles) and for the crystal (fcc) branch (black filled circles) are
also shown. The values for the rapid heating process (pink filled triangles)
are also plotted. (b) The plot on an enlarged scale for the rapid cooling case
shown in (a).

In the case of rapid cooling, a transition to the non-
equilibrated state occurs in the larger ρ∗

0 region (ρ∗
0 > 1.36)

and tends to be trapped midway along the path to the glass
branch at larger ρ∗.5 When the dynamics in the trapped states
are slow enough, these states can also be regarded as glassy
states. We term these states “quenched glasses.” In such cases,
slow relaxations toward the glass branch, i.e., an “aging pro-
cesses,” will follow over a longer time scale.

The pair correlation functions, g(r), are shown in
Fig. 1(b) for the systems located at positions a, b, and c on
the diagram in Fig. 1(a). Point a is for the liquid state, point b
is for the quenched liquid and point c is located on the glass
branch. The structures in the rapidly quenched systems are
liquid-like, and a splitting in the second peak of g(r) is ob-
served. This structure is almost unchanged with an increase in
ρ∗, except for the heights of the peaks in g(r). The g(r) of point
c on the glass branch includes the peaks that correspond to
both the bcc and fcc structures, which form the inverse lattice
of each other, and has no crystalline peaks on a longer length
scale. The data indicate that the system on the glass branch
is a complicated mixture of substructures of both forms on

TABLE I. The values g∗ that are used for the calculation of CV along the
rapid cooling of the system (run 1). U∗/N values are also shown for the low
T∗ region. The values for ρ∗ < 1.3 are for the equilibrated states. The val-
ues for ρ∗ ∼ 1.36 are for the quasi-equilibrated state before non-equilibrium
relaxation. The values forρ∗ > ∼1.4 are for the trapped states.

ρ∗ T ∗ 1/T∗ g∗ U∗/N

2.447 0.0279 35.88 254.63 1.76355
2.042 0.0575 17.39 128.27 1.80410
1.726 0.1128 8.867 67.994 1.88532
1.635 0.1400 7.1408 56.026 1.92252
1.595 0.1544 6.4767 51.426 1.94245
1.563 0.1677 5.9625 48.063 1.96940
1.529 0.1828 5.4713 44.685 1.99203
1.478 0.2097 4.7677 39.781 2.02931
1.431 0.2388 4.1875 35.937 2.08158
1.387 0.2700 3.70 32.596 2.12861
1.371 0.2828 3.536 31.305 2.13799
1.357 0.2952 3.387 30.748 2.19115
1.333 0.3167 3.157 29.322 2.23885
1.296 0.3545 2.821 27.118 2.30971
1.275 0.3778 2.647 25.844 2.34195
1.230 0.4370 2.289 23.432 2.44634
1.203 0.4772 2.096 22.056 2.50789
1.179 0.5181 1.930 20.800 2.57462
1.1527 0.5664 1.766 19.638 2.63361
1.132 0.6098 1.640 18.788 2.70620
1.107 0.6653 1.503 17.724 2.83549
1.083 0.7267 1.376 16.756 . . .
1.063 0.7827 1.278 15.998 . . .
1.045 0.8376 1.194 15.327 . . .
1.031 0.8846 1.130 14.825 . . .
1.015 0.9406 1.063 14.295 . . .
0.948 1.2375 0.8081 12.150 . . .
0.891 1.5847 0.6311 10.577 . . .

the atomistic level and is not mixed nano-crystals, although
some overlap of the crystallization process was found in sev-
eral cases. (See Ref. 5 for details.)

In Fig. 2(a), the T∗ dependence of the U ∗ values for the
same rapid cooling run (see Table I) and for a rapid heating
run is shown. Figure 2(b) shows the dependence on an en-
larged scale. The corresponding changes in the CV and Cp

values are shown in Fig. 3. A change in the slopes of g∗ or
U ∗ was found at T∗ ∼ 0.31. This temperature corresponds to
the Tp

∗
(the peak position of the specific heats) that was men-

tioned in Sec. II.
The determination of the coefficients of the polynomials,

Cl for Tp
∗

> 0.31 and Bl for Tp
∗

< 0.31, will be shown in
Secs. IV B and IV C, respectively.

In the rapid cooling case, T∗ characterizes the beginning
of the solid-like states and CV , which is ∼3 (T∗ ∼ 0.10), is
defined as T ∗

g , below which the CV curves of the super-cooled
liquid and crystalline states almost coincide with each other,
as shown in Fig. 3(a).

Several definitions of Tg have been used in literatures.
The usual thermodynamic Tg appears to be located between
the two temperatures Tg

∗ and TP
∗, that are defined in the

present work.
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FIG. 3. (a) The CV curves along the rapid quenching (run 1), obtained from
polynomial fitting using Eqs. (16) and (17) for T ∗

P < T∗(red solid curve) (T ∗
P∼ 0.31) and using Eqs. (23) and (25) for T∗ < T ∗

P (red dashed curve). The CP

values for T ∗
P < T∗ (pink solid curve) and for T∗ < T ∗

P (pink dashed curve)
calculated from Eq. (15) are also shown. The CV values (blue dotted curve)
and CP values (purple dotted curve) for the crystalline states (fcc) (Ref. 6)
are shown for comparison. (b) Similar plots as in (a) versus lnT ∗. (c) CV

obtained from the fluctuation of the kinetic energy using Eq. (30) along the
rapid quenching of a liquid. Red circles: the CV values obtained using an
averaging time of 100 ps (for argon) in the liquid state. Blue filled squares:
the CV values obtained using an averaging time of 20 ps (for argon) before
NVE relaxation. The values for the short time scale change more rapidly.
Black squares: The values along the glass branch, in which an averaging time
longer than 1 ns was used.

TABLE II. Coefficients, Bn, obtained for the liquid and rapidly quenched
liquid states using Eq. (16). The CV values were calculated for T∗ > 0.33
using these coefficients. The relation between the observed g

∗
values and

the ones calculated using the coefficients is shown in the last row with the
goodness of fit for the region 0.33 < T ∗ < 1.58.

(by Chebyshev polynomials
using T0-T6 terms)

Coefficients of the power (Data in the region 0.26 < T∗ < 1.58
law expansion were used)

B1 5.6200
B2 − 4.1928
B3 2.42566
B4 − 0.75967
B5 0.120673
B6 − 0.0076763

y = 0.999x + 0.015, R2 = 1.000

B. Polynomial fitting of g∗ for the liquid branch

In Table I, the g
∗

values that were examined for the liquid
branch and along the rapid quench of this branch (run 1) are
shown. In the equilibrium states, these values are taken from
the average of more than 100 000 steps (1 step = 1 fs for ar-
gon) (in the region T ∗

P < T∗). The U ∗ values in the low T∗

region are also shown and are used to obtain the coefficients
of the polynomials in Eq. (23).

In Table II, the coefficients Bn of the expansion that was
obtained along the liquid branch are listed. Non-equilibrium
relaxation occurs after some leading times for T ∗ ≈ T ∗

P . For
these T∗, g∗ values were taken from the 20 000-step run that
was performed before relaxation.

C. Polynomial fitting of U∗ for the rapidly
quenched liquid

For the rapidly cooled liquid (run 1), the coefficients Cn

of the low temperature form expansion (Eq. (23)) were ob-
tained using a 4th order Chebyshev polynomial.

In Table III, the results are listed with those of the fcc
crystal obtained in a previous work.6 At temperatures less
than T ∗

P , the onset of non-equilibrium relaxation was in-
evitable; therefore, a 20 000-step run during the initial stages
of relaxation was used for the polynomial fitting. In this case,
C0 is the value for the small T∗ (large ρ∗) limit. The coeffi-
cient C1 (= 1.49) in Table III is similar to that of the crystal
(1.5), as expected for solid-like states. The value C1 ∼ 3/2 in
the rapidly quenched glass in the present work suggests that
the system behaves like harmonic oscillators in cages near 0
K. The 2nd and higher terms correspond to the anharmonic
motions of the particles. At T = 0 K, the thermal energy be-
comes 0, and the term 3/2kBT will disappear.

In the rapidly cooling run shown in Fig. 1, a change in
the slope of g∗ was observed at T∗ ∼ T ∗

P .
This deviation from the ideal curve of the liquid

branch is caused by non-equilibrium relaxation. As shown in
Figs. 2(a) and 2(b), a clearer change in the slope at approx-
imately T∗∼T ∗

P can be found in the plot of U ∗/N versus
T∗. A nearly constant slope is observed in the region
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TABLE III. Results of the Cn coefficients for rapidly quenched liquids, including the non-equilibrium and
trapped states (run 1). The CV values were obtained from these coefficients using Eq. (25). The relation be-
tween the observed U∗/N values and the ones calculated using the coefficients is shown in the last row with the
goodness of fit for the region 0.0017 < T∗ < 0.38.

(by Chebyshev polynomials using (by Chebyshev polynomials using
Coefficients of power law T0-T4 terms) T0-T6 terms)
expansion 0.0017 < T∗ < 0.3778 for fcc crystal

C0+U0
∗/N 1.7212 1.5128

C1 1.4911 1.5212
C2 − 0.50015 − 0.91027
C3 0.65508 4.4804
C4 6.1907 − 14.848
C5 . . . 24.802
C6 . . . − 15.450

y = 0.9986x + 0.0029, R2 = 0.999 y = 0.9935x − 0.0003, R2 = 1.000

T∗ < 0.1(≈ T ∗
g ) ∼ 0.2, and the system is considered to be

in a trapped state. The U ∗/N data along the glass branch (pale
blue circles) and the fcc crystal branch (black circles) are also
shown in Fig. 2(a).

D. Non-equilibrium character of the rapidly
quenched system

In the case of NVE conditions, the non-equilibrium char-
acter can be easily detected by changes in the T∗ during the
runs1, 5 as well as by changes in U ∗ and g∗.

The non-equilibrium character can also be detected by
the irreversibility of the process, even for the case of rapid
quenching.

As shown in Fig. 2(a), the U ∗ values of the heating pro-
cess of the system (after quenching at 0 K) were examined
using the heating rate ∼1 × 1011 K/s. The heating curve has
a flat region at approximately T∗ ∼ 0.3. The difference be-
tween the cooling and heating curves becomes clear at ap-
proximately T∗ = 0.25, and this difference becomes larger at
T∗ = 0.3-0.4. In this case, the U ∗ values did not reach those
of the liquid branch, even at T∗ = 0.56 (>T ∗

m), at least for the
50 000-step run. This trend is explained as follows. In the
region 0.25 < T∗ < 0.4, relaxation toward the glass/crystal
branch occurred during the heating process in a manner simi-
lar to that during the cooling process because of the exother-
mic character of the process, and this relaxation competed
with the changes toward the liquid branch.

The details of the behavior of the systems during the
cooling process and the irreversible part of the thermodynam-
ics in the T∗ < T ∗

P region change on a case by case basis
because they are sensitive to the cooling or heating schedule
and because the relaxation has several stages (see Fig. 6 and
Ref. 5) that appear intermittently. Irreversibility is evidence of
non-equilibrated relaxation in this T∗ region.

The existence of a hysteresis in the glass transition during
the cooling and heating cycles indicates that a memory of the
thermal treatment procedure remains in the system. As shown
in our previous work,5 the structural changes in the NVE re-
laxation develop from a short length scale to the longer length
scales of the structures. It is possible that the length scale of

the region that is affected by changing T∗ during the cool-
ing process is not the same as that affected during the heating
processes, although further details of this phenomenon are be-
yond the scope of this work. In the medium ρ∗

0 region, the time
scale of non-equilibrium relaxation is comparable to that of
the diffusion process. Therefore, g∗ and U ∗ are significantly
affected by the non-equilibrium character of the process.

Accompanied by changes in the slopes of g
∗

and U
∗
, the

derivative of g∗ in Eq. (9) changes twice: when the system is
drawn to non-equilibrium relaxation and when the system is
trapped in a localized state. The former change corresponds
to T ∗

P , while the latter corresponds to T ∗
g , i.e., the Cv values

obtained from Eq. (9) are not continuous at both T ∗
P and T ∗

g .
If the values for each T∗ are observed using narrow time

and T∗ windows, the behavior looks discontinuous. On the
other hand, the behavior that is usually observed in experi-
ments looks continuous.

E. CV and CP values obtained from the coefficients
of the rapidly quenched system

In Fig. 3(a), the CV values that were obtained for the
liquid and rapidly quenched liquid (run 1) states are shown
by the red solid curve and by the red dashed curve, respec-
tively. For comparison, the CV values that were obtained for
the crystal (fcc) branch are shown by the blue dotted curve.

The CV values of the rapidly cooled system exhibit a
maximum at T ∗

P and decrease with decreasing T∗.
The CP values for the liquid and rapidly cooled liquid

(pink solid curve and dashed curve) that were calculated using
Eq. (15) are also shown, as are those for the fcc crystal (purple
dotted curve).

The changes in the slope of CV or CP are accompanied
by the derivative of g∗ or U ∗. Thus, a rapid change in CV

or CP is accompanied by the beginning of non-equilibrium
relaxation and the trapping that follows it. Both CV and CP

decrease with decreasing T∗ below T ∗
P , and they become com-

parable to those for crystals at Tg, i.e., T∗ = 0.14 (ρ∗ = 1.63,
ln(T∗) = −2.0). Similar coincidences between the CP val-
ues were previously found for the zero pressure isobar of a
quenched Lennard-Jones system and for the crystal of this
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system at ln(T/K) ∼ 3.5 (T/Tf ∼ 0.42).14 Both the CV and
CP values appear to converge to the limiting value of CV

∼ 3.0 at 0 K, which is the typical value for the classical solid
state.

Our results for CP qualitatively coincide with those of
Cape and Woodcock14 (see Fig. 2 (the CP vs. ln(T) plot) in
Ref. 15), in which the CP values were obtained from an ex-
pansion as a function of ρ∗. Similar results for the changes in
CP near the glass transition region have been obtained using
experiments16 and simulations17 for ionic liquids.

F. CV values obtained from the fluctuation
of the temperature

Mauro et al.18 pointed out that, for a non-equilibrium or
non-ergodic material, the equations from equilibrium thermo-
dynamics are not directly applicable to the glassy state with-
out additional information on the details of the microscopic
fluctuations. Thus, the question arises whether a method sim-
ilar to that for the equilibrated system is applicable to the
present system or not. In this section, we examine the ther-
modynamics based on the fluctuation.

We used the following expression for the specific heat,
CV , which is based on the fluctuation in the micro-canonical
ensemble that was derived by Lebowitz et al.,19

CV = d/2

1 − (Nd/2)(〈K2〉 − 〈K〉2)/〈K〉2
, (30)

where d is the dimensionality of the system. The ensemble
average 〈K〉 is replaced by the time average of the Kt values,
in which the fluctuation occurs along the g(ρ∗

t ) curve. In the
case of the micro-canonical ensemble, the variance of K is
equal to that of U.

The CV values that were obtained from the fluctuation
of the system on the liquid branch (red circles) are shown
in Fig. 3(c). The CV values are also the time-averaged and
not the ensemble-averaged ones. Near Tp

∗
, a short time scale

(20 ps for argon) was used to obtain U ∗ or g
∗

to avoid the
large contribution of non-equilibrium relaxation. Therefore,
the CV values that were obtained within this time scale (blue
filled squares) were also plotted. The short time values appear
to change more rapidly than those from the longer time scale,
although the numerical errors are larger for the former.

In the region T∗ < T ∗
P , the CV values obtained from the

fluctuation are unstable because of the contribution of non-
equilibrium relaxation. The values during relaxation are sen-
sitive to the time scale of the observation, as shown later.

The calculation of CV using the fluctuation is also appli-
cable to the systems on the glass branch. The black squares
in Fig. 3(c) are the values on the glass branch (the metastable
state after NVE relaxations) and were obtained using Eq. (30).
For this branch, we used a run that was longer than 1 ns (for
argon) for each point to obtain a nearly stable point. The val-
ues tend to spread around 2.8–3.0. When we increased the
temperature, starting from the smallest T∗ on the glass branch,
slightly larger values (3.0–3.3 at T∗ = 0.1–0.35 for 6 points)
were obtained (not shown).

As shown in Fig. 3(c), the CV values that were obtained
from the derivatives of the energy and those from the fluctu-

ations of the kinetic energy are comparable if the averaging
time is comparable. This result is natural because the U

∗
and

g
∗

values are obtained from the quasi-equilibrated states dur-
ing the same runs. Thus, the equation for CV that was derived
for the time-averaged energy is applicable as long as g

∗
or U

∗

can be represented by polynomials.

G. Non-equilibrium and non-ergodic character
of the system

The origin of the time dependent behavior of CV near the
glass transition is controversial. Carruzzo and Yu,20 who ex-
amined a three-dimensional binary mixture of soft-core sys-
tems in NVT ensembles, argued that the system falls out of
equilibrium and becomes trapped in a basin in the energy
landscape below T < TP. However, Yu and Carruzzo21 later
suggested that the specific heat peak is the result of not sam-
pling enough of the phase space at T < TP. The author ob-
served that, just below TP, the system is equilibrated in the
sense of showing no signs of aging. They observed that the
CV values that were calculated from the energy fluctuation
and from the derivative of the energy coincided when paral-
lel tempering, in which the distribution is forced to be Boltz-
mann type, was used. In Ref. 20, a time-dependent behavior
was observed for tW < 106 MD steps. This behavior may be
explained based on our observation of non-equilibrium relax-
ation, i.e., the relaxation process contributes before this time
and the system reaches the glass branch after tW > 106.

Horrowell’s group22, 23 argued that the specific heat peak
in two-dimensional binary SC mixtures is an equilibrium fea-
ture that arises due to fluctuations between different local
minima.

Tao et al.24 calculated the specific heat based on the
free-energy landscape. The authors explained that the abrupt
changes in CV are due to changes between the annealed and
quenched states. In their work, the glassy state is regarded
as a state that cannot relax to an equilibrium state within the
observation time. The time scale of the observation and the
probability of residence in the basins play important roles in
this situation.

Some of the inconsistencies of these works that are re-
lated to the equilibrium and non-equilibrium character of the
behaviors will be eradicated when the positions of the system
on the phase diagram are taken into account. Due to the slow
dynamics near the glass transition, the non-equilibrium states
and non-ergodicity might be difficult to distinguish from each
other. Some of the other inconsistencies may arise from the
fact that both insufficient sampling times for the slow dy-
namics and non-equilibrium relaxation may result in a similar
time-dependent behavior of CV .

In our observations, the system is regarded as non-
ergodic for T∗ < T ∗

P because the observation time is shorter
than the relaxation time of the system, and this feature is com-
bined with non-equilibrium relaxation toward the different
states. The latter is related to the pathway in the phase space of
the glass transition. We also found that the non-ergodic char-
acter is related to the trapping of the trajectory in the phase-
space, and a similar situation was reported for the crystalline
state in the low T∗ region.6
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H. Excess entropy and Kauzmann’s paradox

Kauzmann7 suggested that the entropy of a liquid
decreases rapidly upon cooling toward the glass transi-
tion temperature and can be extrapolated to unreasonable
values at lower temperature contradicting the third law of
thermodynamics, which posits that the entropy of a liquid
cannot be less than the entropy of a crystal. This paradox
has been discussed many times in regard to glass transition
problems, and many answers for this problem have been
proposed.7, 25–29 In the original paper by Kauzmann, the
energy barrier to crystallization was assumed to be on the
same order as the thermal energy, and crystallization was
therefore considered unavoidable.

One of the probable answers is that the extrapolation is
not allowed because the status of the liquid changes to the
glassy state before TK is attained. The temperature TK is re-
garded as the ideal glass transition point26 or as a lower limit
to the glass transition temperature of the system, at which the
“ground state” of disordered packing is attained.27

Stillinger28 argued that further relaxation among the dif-
ferent microstates results in a change in the configurational
entropy toward zero at 0 K and that there is, therefore, no con-
flict with the third laws. Speedy29 showed, using simulations
of hard core models, that, regardless of how the liquid entropy
is extrapolated, the Kauzmann temperature cannot be reached
because the entropy of the glasses with the same enthalpy as
the liquid is greater than that of the crystal. A similar situation
has been observed in experiments.15

Additional effects that are related to the time scale of
the observation overlap this phenomenon. Near Tg, the α-
relaxation of the system becomes so slow that the liquid can
no longer equilibrate within the observation time. Therefore,
the slowing down of the dynamics near the glass transition
will affect the observed changes in the entropy, especially
within the limited time scale of MD simulations. Thus, many
problems that are concerned with the paradox appear to be ex-
plained by considering the situation near the ideal glass or at
a slower relaxation time than the observation time. However,
some of the problems are not adequately solved. For example,
Kivelson and Tarjus25 argued that the rather rapid changes in
Sliq near the glass transition appear to be difficult to explain
using the observation time scale.

In the present work, we will distinguish two cases, toward
the quenched glass and toward the metastable glass, for the
arguments of the Kauzmann paradox.

I. Changes in the entropy during the rapid cooling

In Fig. 4(a), the entropies, S, of the liquid (and super-
cooled liquid) (T∗ > T ∗

P , red solid curve) and of the crystalline
states (blue curve) are shown. The former and latter curves
are obtained using Eqs. (19) and (26), respectively. A curve
for the rapidly cooled system (T∗ < T ∗

P , red dashed curve) is
connected to the red solid curve at T ∗

P , at which the behavior
changes significantly. The |�Sf-m|/NkB value for melting was
determined to be 0.975.

The slope of the S versus T∗ (or lnT∗) plot for the rapidly
cooled system is larger than that for the crystal near T ∗

P . This

FIG. 4. (a) Entropy curves obtained along the rapid quenching liquid (glass)
plotted against T∗. The same color as in Fig. 3(a) is used. (b) Entropy curves
obtained along the rapid quenching liquid (glass) plotted against lnT ∗. (c)
The anharmonic contribution of the excess entropy, �Sah, obtained using Eq.
(31) (green solid curve). The logarithmic term was omitted because C1ql (the
C1 value for the quenched liquid (glass)) is comparable to C1cryst (the C1
value for the fcc crystal). The contribution of the residual entropy was also
omitted. The �Sah value appears to converge to 0 in the T∗∼ 0 limit.

slope decreases toward 0 K with some residual entropy; there-
fore, the paradox does not occur, although the extrapolated
curve of this region and the crystalline curve may meet at the
Kauzmann temperature.
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In the low T ∗ region, the contribution of the logarithmic
term is comparable to that for the crystal because of the sim-
ilar C1 values, shown in Table III. This result is consistent
with the fact that the slope of the U ∗/N versus T∗ plot of the
rapidly quenched system is similar to that of the crystalline
state in the low T∗ region.

As shown in Figs. 4(a) and 4(b), the difference in the
entropy of liquid and crystal including the fusion entropy
slightly decreases in the region where the non-equilibrium re-
laxation contributed but did not smear out at T ∗ = 0. This
situation is similar to that observed for hard sphere glass.30

The difference in the entropy (the excess entropy), �S, of
the quenched liquid (glass) and the crystal can be directly ob-
tained from the following expression if the common reference
T∗ in a sufficiently low temperature region is used.

The residual entropy at T ∗ = 0 that can be observed in
Figs. 4(a) and 4(b) is neglected here:

Sql(T ∗)

NkB

− Scryst (T ∗)

NkB

= (C1ql − C1cryst ) ln(T ∗) +
( k∑

l=2

(
l

l − 1

)
Clql

−
k∑

l=2

(
l

l − 1

)
Clcryst

)
T ∗l−1, (31)

where the subscript ql indicates the rapidly cooled liquid (and
quenched glass). The second term on the right-hand-side cor-
responds to the anharmonicity (�Sah/NkB).

In Fig. 4(c), �Sah was plotted as a function of T∗. �Sah

rapidly decreases with decreasing T∗ and tends to converge to
0 at T ∗ = 0. A negative contribution to the anharmonic part
of the entropy in a fcc crystal was previously found, while the
contribution is smaller in a quenched glass.

A larger �Sah is observed in the medium T ∗ region,
where the non-equilibrium relaxation contributes. A steeper
change in S for the quenched liquid corresponds to the change
in U ∗ shown in Figs. 2(a) and 2(b).

The behavior of S at T
∗

< Tg
∗

for the quenched glass is
similar to that of the crystal because of the comparable slopes
of the U ∗/N versus T∗ plots. This similarity is associated with
the large contribution of the harmonic term for both cases,
i.e., they have comparable C1 values. This result explains the
absence of the Kauzmann paradox.

Even if the entropy is comparable (note that we neglect
the residual entropy for the glass at T ∗ = 0 in Eq. (31)), a
difference between the glassy state and the crystal is clearly
observed in the distributions of T ∗

t or in their spectra.

J. Changes in the CV obtained from the fluctuation
along the NVE relaxation

Along with the slow NVE relaxation toward the glass
branch, the CV values that were obtained from the fluctuation
of T ∗

t and the distribution of T ∗
t were examined, as shown in

Figs. 5 and 6.

FIG. 5. Specific heat CV obtained from the fluctuation of the kinetic energy
by Eq. (30) along the NVE relaxation (ρ0

∗ = 1.48) as a function of time. The
values are calculated using three fixed averaging times. The data intervals
used are 100 time steps (1 step = 1 fs for argon). Blue: the averaging of
every 10 000 points. Purple: the averaging of every 20 000 points. Red: the
averaging of every 30 000 points. The relaxation curve (light green) for gt

∗ is
shown in comparison. The curve of the time-dependent CV shows a peak in
the middle region, and its height depends on the averaging time.

In Fig. 5, the CV values obtained from the fluctuation
along the NVE relaxation using Eq. (30) are shown for ρ0

∗

= 1.48 (T ∗
0 = 0.21) as a function of time.

The results for three fixed time windows, δW = 10 000,
20 000, and 30 000 steps (1 step = 1 fs for argon), are shown
by the blue, purple, and red curves, respectively. Here, data
with an interval of 100 steps are used. At this T0

∗, non-
equilibrium relaxation starts immediately after t0 (see the re-
laxation curve of g∗ (light green)); at this time, we start the
observation under the NVE condition. The larger peak of CV

is found when a larger time window is used. A similar depen-
dency on the time window was reported in Ref. 19. This result
can be explained as follows. If the perturbation of the fluctu-
ation that is caused by non-equilibrium relaxation is negligi-
ble, the peak is not clear, i.e., the peak height is enhanced if
the longer time trend of the slope (d < T ∗

t > /dt, where the
averaging time is δW) overlaps the fluctuation of T ∗

t during
relaxation. If the beginning of the relaxation is included in the
time span for the accumulation of the fluctuation, the value
increases and then decreases. Thus, the observed CV during
NVE relaxation is affected by the slope of g∗ (or U ∗), and the
low frequency mode (which corresponds to larger time win-
dows) is more affected by the relaxation. In this case, the CV

has similar values before NVE relaxation and after it, but the
latter value corresponds to metastable glass.

Both the large fluctuation before the relaxations and at the
beginning of the relaxations can contribute to the maximum
value of CV , even in the rapidly quenched system.

The discrete character during NVE relaxation (the trap-
ping in phase space) becomes clear when we examine the
changes in the distribution of T ∗

t . In Fig. 6(a), the changes in
g∗

t and T ∗
t during the run that starts at T ∗

0 = 0.29 (ρ∗
0 = 1.36)

are shown by the red and blue curves, respectively The
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FIG. 6. (a) Changes in g∗ and in T∗ along an NVE non-equilibrium relax-
ation during a 600 000-step run that starts from ρ∗

0 = 1.36 and g∗ = 30.75.
(b) Changes in the probability distribution of T ∗

t , p(T∗), during the run. The
distribution in each 100 000-step time region (dt = 4.7 × 104) are shown from
left to right. The distribution was normalized to 1 in each region. A change
in the distribution occurs gradually but with discrete levels of states.

observed time region was divided into six regions. In
Fig. 6(b), the distributions of Tt

∗ at each 100 000-step
(4.7 × 104) time region are shown from left to right for the
same run. The distribution was normalized to 1 in each region.
Several peaks or shoulders are found in each time region, and
they gradually change with time.

When the system reaches the glass branch, the system
does not show any further aging, at least during this spe-
cific time scale. Crystallization may occur toward the crys-
tal branch over a longer time scale. Therefore, the Kauzmann
paradox does not occur even in this case.

K. MTM spectra for liquid and supercooled-liquids

In Fig. 7, typical MTM spectra for a liquid at T∗ = 0.52
and for a crystal (fcc) at T∗ = 0.35 are shown. Both of
these spectra were obtained from the time series of T ∗

t for a
100 000-step run (100 ps for argon). A common time duration
was used for the other MTM spectra. The Nyquist frequency,

FIG. 7. Typical MTM spectra for (a) the liquid at T∗ = 0.52 and (b) the
crystal (fcc) at T∗ = 0.35. Both spectra were obtained from the time series
of Tt

∗ that is related to CV for the run with 100 000 steps. In the reshaped
spectrum (red), the contribution of harmonic signals (black) was removed.

fN = 0.5/dt, is the highest frequency addressed, in which
dt = 0.1 ps was used throughout this work.

At T∗ = 0.52, in the liquid state, some harmonic compo-
nents are found in the high frequency region, while a diffusive
component appears at the lowest frequency.

Here, we examine the MTM spectra along NVE relax-
ation to determine what changes occur in the fluctuation of
T∗ in these regions. The MTM spectra of the time series of
T ∗

t with T ∗
0 = 0.355(≥T ∗

P ) exhibit a small power law region
(a 1/fν type dependence). Even in this region, harmonic oscil-
lations contributed to the spectra (not shown). Before relax-
ation starts, the corresponding distribution of T∗ is Gaussian-
like, as confirmed by the Shapiro-Wilk (S-W) test.31 We tested
the data over the 100 000 steps using an interval of 100 steps
against the null hypothesis that the data would be distributed
normally. Based on the W (= 0.999) value in the S-W test,
the null hypothesis was not rejected with a significance level
of 1% (P = 0.9105), where N = 1000 (N is the number of
samples) was used. Therefore, deviation from the Gaussian is
not significant in this region.

The fluctuation of T∗ increases with decreasing T∗. The
MTM spectra were examined along the NVE relaxation. The
spectra in the two time regions along the NVE relaxation are
shown in Figs. 8(a) and 8(b) for T∗ = 0.29 (<T ∗

P ). During

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.112.146.231 On: Mon, 09 Dec 2013 08:05:43



144503-12 J. Habasaki and A. Ueda J. Chem. Phys. 138, 144503 (2013)

FIG. 8. MTM spectra for the time series of T ∗
t during and after NVE re-

laxation. (a)T ∗
0 = 0.355 for the 100 000-step run after beginning relaxation.

(b) After relaxation (500 000-600 000 steps) of the run in (a).

non-equilibrium relaxation, a power law behavior (1/fν type)
is pronounced, and this behavior disappears when the system
approaches the glass branch. For non-equilibrium relaxation,
a long sampling time is required to obtain the mean behav-
ior of the system due to the large contribution of the low-
frequency mode. In the metastable state, the contribution of
the low frequency part is small, similar to that in the crystal,
while the broad distribution of the high-frequency region is
similar to that in the liquid.

We previously examined the MTM spectra for the time
series of the displacement of the heterogeneous one parti-
cle motion of lithium ions in a lithium metasilicate (Li2SiO3)

glass.32 The power law region that was observed in the spectra
for T ∗

t is similar to that in the MTM for the one particle mo-
tion of ions in an ionically conducting glass except for the col-
lective character of the former. In the former, fluctuations or
the intermittent changes in the distribution of T ∗

t (or U ∗
t ) con-

tribute, while, in the latter, the intermittent jump motions of
the ions with heterogeneity (including back-correlated jumps
and forward-correlated jumps) contribute.33 For fast (diffu-
sive) ions, the power law and high frequency (0.35–0.45) har-
monic motions were found to be dominant, while, for slow

ions, broad peaks with harmonic motions were found mainly
in the low frequency (0.03–0.14) region. In this case, the high-
est frequency, 0.5, corresponds to 1/2 × 0.8 (ps) in the real
unit, i.e., the power law (1/fν type) spectrum of the time se-
ries of T∗ corresponds to the power law region of the MSD
and α-relaxation. The time scale that is required for the cal-
culation of the thermodynamics will be significantly affected
by the existence of the power law region.

V. CONCLUSION

We have examined the thermodynamic properties and the
fluctuation of these properties in a single-component soft-core
system along the phase diagram using the compressibility fac-
tor P̃ (T ∗) plotted against the reduced density ρ∗ or the re-
duced temperature T∗. The specific heats CV and CP of the
system can be represented by a function of P̃ (T ∗) and by a
function of the potential energy, U ∗. Systems with a rapid
quench that showed non-equilibrium NVE relaxation were ex-
amined. When the system was cooled to less than T ∗

P ∼ 0.31,
the system fell out of equilibrium and was quickly trapped
in a basin in the energy landscape. Even in the case of a
rapid quench under other conditions, such as NPT, this type
of relaxation should contribute to the changes in CV to some
extent.

For a longer time scale simulation (if the system was
not quenched to the trapped states), the system reaches the
glass branch, where the system is metastable. Once the system
reaches the glass branch, further aging is not obvious within
the observation time.

Several tendencies for the specific heat and entropy are
found along with these processes as follows.

1. The specific heats, CV , that are based on the fluctuation
of T∗ and on the derivative of the time-averaged energy
coincide well with each other for both the equilibrated
and quasi-equilibrated cases.

2. We applied an analytical expression of the entropy using
polynomials to the quenched liquid (glass) in the soft-
core model. The excess entropy (except for the resid-
ual entropy) can also be represented by the coefficients
of polynomials. This result is useful in understanding
the nature of the entropy term and its change in the
phase diagram, including the problem of the Kauzmann
paradox.

3. The origin of the maximum in CV is the changes in the
slope of g∗ (or U ∗) due to the contribution of the non-
equilibrium behavior of the system. The low frequency
mode of T∗ (and the related dynamics) is modified by
non-equilibrium relaxation. An insufficient sampling of
the phase space at T∗ < T ∗

P also affects the thermody-
namics.

4. A large peak in CV was observed in both glass transi-
tion cases: one along the rapid quenching of the liquid
and the other along the NVE relaxation. Therefore, ther-
modynamically, both processes along these paths are re-
garded as the glass transition.

5. The CV values that are based on the fluctuations are
sensitive to the time windows that are used for the
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calculation. The value of CV along the rapid quench is
also affected by the non-equilibrium relaxation process
that is related to the changes in the baseline of T∗, U ∗,
or g∗. The values of CV will change in a discontinuous
manner with a change in the derivative of g∗ (or U ∗) (see
Eq. (9)) when narrow time and T∗ windows are used for
the observation, i.e., the changes in CV (or CP) at T ∗

P and
T ∗

g are not necessarily continuous.
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