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Abstract. In this paper, we propose velocity pyramid for multimedia
event detection. Recently, spatial pyramid matching is proposed to in-
troduce coarse geometric information into Bag of Features framework,
and is effective for static image recognition and detection. In video, not
only spatial information but also temporal information, which repre-
sents its dynamic nature, is important. In order to fully utilize it, we
propose velocity pyramid where video frames are divided into motional
sub-regions. Our method is effective for detecting events characterized
by their temporal patterns. Experiment on the dataset of MED (Mul-
timedia Event Detection) has shown 10% improvement of performance
by velocity pyramid than without this method. Further, when combined
with spatial pyramid, velocity pyramid provides an extra 3% gains to
the detection result.

Keywords: Event detection, spatial pyramid, velocity pyramid, GMM
supervectors

1 Introduction

With the development of various web services, the amount of videos available
on the Internet is growing exponentially. These open source videos usually have
a large variety of contents composed by scenes, objects, motions and audio cues.
How to search videos effectively becomes a heated issue. Event detection in large
scale unconstrained videos is a research topic towards promoting understanding
of video contents. Here, an event is defined as a complex activity occurring at
a specific place and time which involves people interacting with other people
and/or object(s) [1]. For example, the event of “Birthday party” may be indi-
cated by the observation of the following aspects: a scene as indoor, an object
like a birthday cake, activity of opening a gift, and even audio cues such as peo-
ple cheering. Event detection is thus more challenging than object detection in
a still image or activity detection in a video.

A typical flow to detect an event from a video is described as follows: 1)
feature extraction, 2) feature encoding, 3) recognition. In order to capture dif-
ferent characteristics of an event, researchers tend to integrate multiple kinds
of features into an event detection framework [4]. For example, GIST [5] fea-
tures can be used for capturing global scene characteristics of an image; HOG,
SIFT, HOG3D can capture object appearance information; STIP [15], Dense
Trajectory [16], MoSIFT [18] are able to encode temporal evolution. After fea-
ture extraction, features are often encoded into fixed-length histogram. Usually
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a standard Bag-of-Words approach is used for this encoding process. Soft en-
coding methods such as Fisher vector encoding [9], GMM supervector encoding
[12] have also been applied. After obtaining the encoded vectors, classifies such
as SVMs are used for detection with early or late fusion of features.

Spatial pyramid [8], which is originally proposed for scene recognition of
static images, is often used as features in event detection. Inspired by this spatial
pyramid, we propose velocity pyramid in this paper. Instead of utilizing pyramid
structure which represents spatial information, we construct a pyramid structure
which represents dynamic nature of video. We first divide video into several
components using motion information. Then, for each motion component, we
model the distribution of features, which is expected to follow a fixed pattern.
For example, in the event parade, people are likely to move in the horizontal
direction than the vertical direction. In the event repairing_an_appliance, people’s
hands tend to move in every direction.

We construct a framework for event detection with GMM supervectors. The
GMM supervector is used for feature encoding, which has been applied to event
detection and outperforms Bag-of-Words models [12]. We verify the system’s
effectiveness on the challenging dataset of Multimedia Event Detection (MED)
task of TRECVID [1]. In this dataset, multiple conditions of scenes, objects,
motion patterns exist. We will show that the velocity pyramid can capture the
rough dynamic information of the video. Furthermore, when combined with spa-
tial pyramid, the performance of the system is further improved.

The rest of this paper is organized as follows: Section 2 describes related
works for event detection; Section 3 focuses on the proposed method of velocity
pyramid; Section 4 introduces the steps for constructing the detection system:;
Section 5 describes the evaluation dataset, evaluation measures, and experiment
results; Finally Section 6 gives a conclusion.

2 Related Work

As video has its own nature as a spatial and temporal sequence, various spatial-
temporal features have been applied to event detection in video. STIP [15] se-
lects spatial-temporal interest points by detecting 2D corners with rapid velocity
change. MoSIFT [18] finds interest points that have both discriminative appear-
ance and sufficient amount of motion. Dense Trajectory [16] represents videos as
a set of trajectories obtained from tracked points. Motion Histogram [17] inte-
grates appearance and motion by calculating a motion histogram for each visual
word. Relative motion histogram is also computed for each visual word pair
between every two frames. However, all these features explore deeply into the
internal structure of an video volume by detecting local maximum or by tracking
objects, thus have the problem of a heavy computation cost and face the stor-
age problem especially when applied to large-scale unconstrained videos. Our
purpose is to construct a structure that can encode both spatial and dynamic
information effectively and efficiently.
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Spatial pyramid matching [8] is proposed to introduce coarse geometrical
information into Bag-of-Words approach. Several methods to construct the spa-
tial pyramid have been explored. In [13], both feature specific and event specific
tiling has been examined. They show that for all kinds of features, including
both appearance and motion, spatial pyramid improves the detection perfor-
mance. Also in [14], 12 different Regions of Interest (ROI) are defined and their
contributions to the detection cost are evaluated separately, In [10] soft tiling is
proposed where a sample point is assigned to several tiles and gives significant
improvement.

Feature encoding methods used in event detection include Bag-of-Words [2],
GMM supervectors [12], Fisher Vectors [9] etc. GMM models a set of features as
mixture of Gaussians with different means and covariances. Fisher vector consists
of the first and second order differences to the cluster center. The latter two are
based on generative probability models and use soft assignment to mitigate the
influence of code word miss assignment.

Here we focus on how to integrate appearance and motion features effectively.
Since a global motion histogram and appearance features from a certain frame
may be independent with each other, it’s better to calculate motion histogram for
each object, e.g. tree, people, etc. From another view, appearance features with
similar motion should belong to the same feature set characterized by the motion.
This idea is similar to spatial pyramid representation in images, which models
feature distribution in each spatial subregion. Instead of spatial information,
we utilize the dynamic features of video. We build a velocity pyramid which
captures coarse dynamic information of appearances. This method is also efficient
compared to spatial-temporal interest point approaches because it does not need
tracking or local maximum exploration.

3 Velocity Pyramid

An illustration of the procedure to construct the velocity pyramid subregions is
given in Fig. 1. First, extract appearance features and motion vectors. Second,
quantize motion vectors into motion bins. Third, calculate an encoded appear-
ance histogram for each motion bin. Lastly, concatenate the encoded histograms
to form an input vector for a classifier.

Appearance features. The pyramid representation can be applied to any kind
of low level visual features, including densely of sparsely sampled features, e.g.
SIFT, HOG, STIP, etc. Here we use a single type of features for simplicity of
explanation. For one frame which consists of n feature samples, the set of low
level features can be represented as

X = {Xi}?:lﬂ (1)

where x; is the ith sample.
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Fig. 1. Subregion generation in velocity pyramid. (a) Original image which shows peo-
ple who are parading right meet a car passing left. (b) Optical flows calculated from
two adjacent frames. The flow vectors are quantized into 4 directions, and each color
represents one direction. Gray dots have 0 motions. (c¢) Appearance features. In this
figure, we use dense oriented gradient based features. (d) Partition result of (c) accord-
ing to the quantization result in (b). (e) Feature representation, e.g. histograms from
the Bag-of-Words model.

Motion vectors. Motion information is captured by optical flow computed by
Farnebick algorithm [20]. We calculate velocity vectors for the same coordinates
as in X. So the set of optical flows can be expressed as

V= {vi}isy, (2)

where v; is a velocity vector of the ith sample.

Motion Quantization. In order to relate appearance information with motion
information, we assign each feature vector x to a certain motion orientation bin.
For each non-zero velocity vector v, let us introduce a P-dimensional orientation
vector o, in which each element is a binary variable. The appearance features
that have motion are classified into P categories and in each category one of
the dimensions o(p) is equal to 1 and other dimensions are equal to 0. In other
words, o(p) € {0,1} and >_  o(p) = 1. The value of o is determined by quatizing
a motion vector

2 2
o(p) =1 if %pé 0 < %(p—i— 1), pe{0,.,P -1}, (3)

where 6 is the orientation of optical flow vector v ranging from 0 to 2zw. This
motion bin vector is calculated for each sample. Consequently, for each frame
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Fig. 2. Velocity Pyramid. In L = 1 and L = 2, the horizontal part is mainly comprised
of a passing parade and a car; the vertical part mainly comes from people’s legs; and
no motion part mainly corresponds to backgrounds.

we have a set of orientation vectors which can be explained as

O ={oi}iy, (4)

Feature classification. Features are classified according to their orientation
quantization result

X, = {x;|vi # (0,0) and 0;(p) =1} (p € {0, ..., P —1}), (5)
Xp = {xi|vi = (0,0)}. (6)

where P is the number of quantized orientation bins, and X,,, p € {0,1,..., P} is
a feature set. Xp represents features from an extra zero bin which is more likely
to come from background features. The total number of pyramid components is
P + 1, and the relationship among sets satisfies X = XgU X; U ... U Xp.

Feature encoding. For each set of features X,, p € {0,1,..., P}, the corre-
sponding histogram of encoded features is calculated by the encoding method in
Subsection 4.2. Each histogram is a component of the velocity pyramid. And a
final representation of the video is the concatenation of all the histograms.

Pyramid level. Let us define L as the level of velocity pyramid, so the number
of non-zero motion components is given by P = 2¥. L = 0 represents the original
appearance feature; L = 1 divides these features into horizontal and vertical
components; L = 2 includes 4 equally quantized orientations including left, right,
up, down; etc. We illustrate velocity pyramid in Fig. 2.



6 Z. Liang, N. Inoue and K. Shinoda

4 System construction

4.1 Spatial and velocity pyramid

We integrate spatial pyramid with velocity pyramid in order to capture a coarse
geometrical and dynamic information simultaneously. In spatial pyramid, pyra-
mid components are from tiles made by dividing images into finer subregions,
and histograms of local features are calculated and matched for the resulted
subregions.

‘We make the spatial pyramid by dividing video clips into several sub-volumes.
Tiling is an important factor in spatial techniques. In [7], 2 x 2 grids shows good
result. They also evaluate several other spatio-temporal grids for action recogni-
tion, and find that a partition of horizontal 3 x 1 grids is the optimal for capturing
layout of natural scenes. We also use these partitions when implementing spatial
pyramid in the system. The same set of features as used in velocity pyramid are
encoded into a histogram for each volume separately. The resulted histograms
for all volumes are then concatenated into a single vector as the representation
of the video.

4.2 GMDM supervectors

Gaussian mixture model (GMM) and SVMs was proposed in the context of
speaker verification, and applied successfully to multimedia event detection [12].
It outperforms Bag-of-Words, because it realizes soft assignment by considering
covariance information.

Given a set of features X = {z;}, the probability distribution function of
X conditioned on a Gaussian Mixture Model is given by

K
p(al) = 3wl (e, ), (7)
k=1
where x represents a d dimensional feature vector, K is number of Gaussian
mixtures, 6 = {wy, p, Tx HS | are parameters for Gaussian functions, wy, g, X
are the weight, mean, and covariance of the kth Gaussian probability distribution
function N (-|pr, X ).

It is difficult to precisely estimate the parameter 6 for one video since its
number of feature samples is quite small. In this case, Maximum a Posteriori
(MAP) adaptation technique is utilized, because it performs well with a small
amount of data [11]. In MAP adaptation the priori knowledge comes form an
universal background model (UBM), a GMM whose parameters are estimated
by EM algorithm from all training data. After obtaining the UBM, GMM pa-
rameters for each video are estimated by MAP adaptation in the following way

L = T'ul(cU) + Z?:l CikTi
T+ > i Cik
U U U
O wON @D, =)
- K U U U)\’
S N (), 2

(8)

9)

Cik
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where (V) = {w,(cU), ,u,(CU), E,(CU)}szl is a set of parameters for Gaussian compo-
nents in UBM. ¢;;, is the confidence of Gaussian mixture k for observing feature
point z;. 7 is a pre-defined hyper parameter. Note that here only mean vectors
for each video are adapted. Next, the signature of a video clip is represented as
a concatenation of the K adapted mean vectors

1

o) i (10)

~T ~ ~ ~ U
(X)) = (AT @5 id)T s i =\ w ()

In the formula above, each mean vector is normalized by the corresponding

weight wlgU) and covariance E,(CU).

4.3 SVM detection

GMM supervectors are the inputs to Support Vector Machines (SVMs) with
RBF kernel k(X, X ) for detection:

P
KX, X) = exp(—y ) [9(X,) — B(X,)II3), (11)

p=0

where 7 is set to be the inverted averaged distance between GMM supervectors.
The detection confidence of SVM is given by

L
FX) = ak(X, XD) +b. (12)
1=1
where X is a set of features from a training video, L is the number of support
vectors, a) and b are parameters obtained during SVM training.
4.4 Fusion of spatial and velocity pyramid

Spatial and temporal information are integrated in a late fusion manner. Suppose
f f;p ) and f ](;p ) are detection scores of spatial and velocity pyramid, respectively.
The final confidence of one video for event FE is:

Sp =ax fEP(X)+ (1—a)« f"(X). (13)
where a (0 < a < 1), is the fusion weight, which is determined by cross validation

for each F during training.

5 Experiment

In this part, we will first introduce the dataset and metric for evaluation, then
show experiment result with respect to: effectiveness of spatial-velocity pyramid
and the influence of pyramid levels.
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5.1 Dataset

The dataset we used is a part of HAVIC data collected by Linguistic Data
Consortium, including MED10 data set, MED11 development and test data
set [1]. The videos are user-generated videos posted to various Internet video
hosting sites. These datasets are for system development and evaluation in the
Multimedia Event Detection (MED) task of TRECVID workshop, aiming at
permitting users to define their own complex events and quickly and accurately
searching large collection of multimedia clips. In MED, an event is defined in an
event kit including event name, definition, explication, description, and example
video clips.

The MEDI10 dataset is a collection of 3,468 videos (~115h), of which 1,744
videos are for training and 1,724 for testing. There are three events: Assem-
bling_shelter, Batting_in_run, and Making_cake. Approximately 50 positive clips
are provided for each event to train its event model. The MED11 dataset is a
collection of 44,904 videos (~1406h) including 10 events, in which 13,083 videos
are for training, and 31,821 for testing. Each event has 80-230 positive samples
in its event kit. These datasets are challenging due to the following reasons: user-
generated videos diverse in resolution, length, and quality; unconstrained videos
usually have unavoidable camera motions (e.g. Getting_a_vehicle_unstuck), clus-
tered background (e.g. Parade), various viewing angles, etc.

5.2 Evaluation criterion

The evaluation criterion is Normalized Detection Cost (NDC) which is used in
the TRECVID MED task. This criterion is the linear combination of two kinds
of error rates: missed detection rate (Pyp) and false alarming rate (Pp4). When
applying a certain threshold T to the detection scores, the calculation of NDC,
Purip, and Ppy are defined by the formulas below

NDC(T) = wMDPMD(T) +wpaPra, (14)
Pyp(T) = Nyp(T)/Npos, (15)
PFA(T) = NFA(T)/Nneg7 (16)

where wy;p and wgra are the weighting factors for the two error rates respec-
tively. In MED task, wy;p = 1.0 and wpa = 12.4875. Npsp is the number of
videos that are real positives but have a confidence score lower than the detec-
tion threshold. Oppositely, Nr 4 is the number of videos that are real negatives,
but assigned a higher confidence score than the detection threshold. IVp,s and
Npeg are total numbers of positive and negative videos in test set, respectively.

We use a posterior way to tune the detection threshold T to find the minimum
NDC (MNDC). We will report MNDC for each event separately as well as the
mean MNDC across all events,

MNDC = min NDC(T). (17)
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Fig. 3. Clip examples with significant improvements by velocity pyramid than without
it. This figure lists 5 events in columns. For each column, the first row is original
frame, the second row shows optical flow frame, and the third row is the result of
flow quantization. In the third row, color indicates flow orientations, and saturation
indicates flow magnitudes.

5.3 Performance of Velocity Pyramid

In this section, we compared the performance of the original representation with-
out pyramid, spatial pyramid, and velocity pyramid. We use dense HOG feature
[6] since dense features have shown better results than features from sparse in-
terest points in several applications.They are sampled from 4 x 4 pixels grid,
counted in a patch of 20 x 20 image pixels divided by a 2 x 2 window. For each
window we generate an 8-bin histogram, summing up to a 32-dimensional HOG
feature. PCA is applied to it without reducing its dimension. The spatial pyra-
mid follows a pattern of original, 2 X 2, and 3 x 1, totally 8 spatial components.
All pyramid techniques utilize the same set of HOG features.

Evaluation on MED10 dataset For MED10 data, we use a single level of
velocity pyramid L = 2, totally 6 velocity components including the original one.
The result is shown in Table 1. MNDC for spatial pyramid, 0.635, is better than
the original HOG features, 0.661. Velocity pyramid outperforms spatial pyramid
for 2 out of 3 events. Furthermore, the combination of spatial and velocity pyra-
mid achieves the best MNDC, 0.607. For a motion intensive event Batting_in_run,
velocity pyramid is especially effective. For a complex event Making_cake, which
is comprised by multiple objects and activities, spatial pyramid and velocity
pyramid collaborate well to obtain large gain from original HOG features.

Evaluation on MED11 dataset MED11 dataset containing 10 events is a
more challenging dataset. Since we get a better result when combining L = 1
and L = 2 (see the next subsection), we apply this setting to the MED11 data.



10 Z. Liang, N. Inoue and K. Shinoda

Event HOG original| HOG SP|HOG VP|HOG SP&VP
Assembling_shelter 0.768 0.772 0.776 0.751
Batting_in_run 0.453 0.446 0.434 0.442
Making_cake 0.761 0.688 0.642 0.628
Mean 0.661 0.635 0.617 0.607

Table 1. MNDC of HOG original, spatial pyramid, velocity pyramid for 3 events in
MEDI10. SP = spatial pyramid, VP = velocity pyramid.

Event HOG original HOG SPHOG VP|HOG SP&VP
Birthday_party 0.860 0.749 0.762 0.739
Changing_a_vehicle_tire 0.698 0.600 0.598 0.573
Flash_mob_gathering 0.412 0.364 0.366 0.362
Getting_a_vehicle_unstuck 0.556 0.523 0.597 0.512
Grooming_an_animal 0.774 0.712 0.746 0.705
Making_a_sandwich 0.856 0.753 0.768 0.761
Parade 0.698 0.607 0.599 0.594
Parkour 0.574 0.484 0.498 0.486
Repairing_an_appliance 0.645 0.598 0.518 0.519
Working_on_a_sewing_project 0.810 0.783 0.752 0.746
Mean 0.688 0.617 0.620 0.600

Table 2. MNDC of HOG original, spatial pyramid, velocity pyramid for 10 events in
MED11. SP = spatial pyramid, VP = velocity pyramid.

The evaluation result is shown in Table 2. The spatial-velocity pyramid outper-
forms spatial pyramid in 8 out of 10 events, which further verifies the effective-
ness of the method. The velocity pyramid method obtained a competitive result
with spatial pyramid; for 4 out of 10 events it outperforms spatial pyramid.
Specifically, we observed a significant improvement on Repairing_an_appliance
and Working_on_a_sewing_project. In these two events, motions are clearer than
the others. This may provide a large gain in the detection result. These two
events also have targets whose motions are widely spread across one frame. In
this case, velocity pyramid performs better than spatial pyramid. Meanwhile, ve-
locity pyramid is not effective for some events. These include Parkour where the
motion area is small, and Getting_a_vehicle_unstuck which has hand-held cam-
era motions that hides real object motion. However, the overall performance is
improved by utilizing spatial-temporal information. Fig. 3 shows some examples
in which velocity pyramid has significant improvements than without motion
information.

The best performance for MED task in TRECVID 2012 was achieved by
AXES team. They reported a MNDC of 0.411 on MEDI11 dataset [3], while
our best performance on the same dataset is a MNDC of 0.495. The higher
performance of AXES team may owe to the robustness of Motion Boundary
Histogram (MBH) against camera motion.

To reduce both computation and storage costs, we extract features every 60
frames (2 seconds). In our experiment, velocity pyramid’s computation cost is
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Event L=0L=1L=2L=1.2

Assembling_shelter| 0.768|0.695| 0.776| 0.744

Batting_in_run 0.453| 0.448| 0.434| 0.410

Making_cake 0.761] 0.684| 0.642| 0.628

Mean 0.661| 0.609| 0.617| 0.594
Table 3. Influence of pyramid levels on MNDC. L = 0 is the detection result by the
original appearance features; L = 1 means horizontal, vertical and 0-bin; L. = 2 means 4
equally quantized orientation plus 0-bin; L = 1,2 means an early fusion of supervectors
from different levels. Note that in L = 1 and 2, supervector from L = 0 is also used.
The values in bold are the best MNDC score for each event.

20% of STIP, whose cost is reported to be much less than Motion SIFT [19]. In
addition, the metadata size of velocity pyramid is 15% of dense trajectory.

5.4 Influence of pyramid levels

The effects of different pyramid levels L are evaluated in this subsection. The
result is shown in table 3. When L = 1, which means the components only include
0-bin, horizontal and vertical, the result is surprisingly good. By this division,
we can have a rough separation of foreground and background. The combination
of different pyramid levels of L = 1,2 is better than a single pyramid level L =
lor L =2.

6 Conclusion

In this paper, we propose velocity pyramid as an image representation for mul-
timedia event detection. While spatial pyramid divides appearance in a 2D spa-
tial domain, velocity pyramid models appearance in the motion. The resulted
velocity pyramid together with a representation by Gaussian Mixture Models is
applied to the challenging MED dataset and shows effectiveness for detecting
events. In the case of MED11 dataset, MNDC of 0.620 is obtained by velocity
pyramid. Further, the MNDC score is reduced to 0.600 when velocity pyramid is
combined with spatial pyramid. Future work includes the cancelling of camera
motions in unconstrained videos, such as using the camera motion canceled fea-
ture MBH instead of HOG. In addition, since currently only orientation informa-
tion is taken into consideration, we plan to use not only orientation information,
but also flow magnitude information in velocity pyramid.

Acknowledgments. Thanks for Canon Incorporation for providing with com-
putation resources and technical supports.
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