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Abstract

Game theory is a study of strategic decision making–“the study of

mathematical models of conflict and cooperation between intelligent

rational decision makers” (Myerson [1991]). Since von Neumann in-

troduced game theory as a specific field firstly in 1928, it has been

widely applied in economics, political science, psychology, as well as

logic and biology.

In an economic system that composed of multiple intelligent agents, it

is often the case that several of them cooperate to maximize the profit

or minimize the cost by negotiation. Since the agent is autonomous

and intelligent, it is reasonable to assume that each of them chooses

the behavior to bring itself the maximal benefit. Thus, the coopera-

tion can be achieved successfully if the coordination mechanism–the

allocation of profit or cost–is wisely designed.

In this dissertation, we pay a particular attention to the application

of game theory in three multi-agent negotiation problems: minimum

cost spanning tree, data envelopment analysis (DEA), and partner

selection in airline alliances, where the first two problems assume for

an abstract agent. In Chapter 2, we characterize the decentralized rule

in the minimum cost spanning tree problem, which was introduced by

Feltkamp et al. [1994b]. In Chapter 3, we first improve the DEA

game in Nakabayashi and Tone [2006] by proposing an alternative

scheme and then focus on analyzing the solutions by our new game

theoretic approaches to weight assignments in DEA problems. Lastly,

the main concern in Chapter 4 is how the service quality might affect

an airline’s decision making in the selection of its partner during the

formation of airline alliances.
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Chapter 1

Introduction

This dissertation advances game theory by analyzing its application in three dif-

ferent multi-agent negotiation problems: minimum cost spanning tree (MCST),

data envelopment analysis (DEA), and partner selection in airline alliances. The

approaches followed here differ in the three fields due to the maturity and com-

pleteness of the respective literature research, consisting of formal characteriza-

tion of the cost allocation rule, improvement on the model in literature for a more

natural approach, and proposal of a new three-stage analysis scheme. The main

method employed to conduct this research has been the mathematical analysis.

Game theory has been a major method used in mathematical economics and

business for modeling competing behaviors of interacting agents. The MCST

problem is aimed to find a spanning tree with weight less than or equal to the

weight of every other spanning tree. DEA is often used for benchmarking in

operations management, where a set of criteria is selected to benchmark and

evaluate the performance of multiple agents in voting, manufacturing, service

operations, and etc. At least in certain contexts, it has received empirical support

that an airline is evaluating the service quality of its optional partners before the

formation of an alliance; that is, the service quality is affecting an airline’s decision

making in the partner selection. All three negotiation problems assume for an

egoistic agent, and involve the interaction, i.e., the cooperation among intelligent

agents, or players.

The contribution of this dissertation is three-fold. First, we have characterized

the decentralized rule in the MCST problem by six properties, which was an
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open question in Feltkamp et al. [1994b]. Next, we have improved the DEA

game proposed by Nakabayashi and Tone [2006] by re-assigning the total weight

or power for the coalition members and studied the solutions and equilibria of

the game following our new approach. Finally, we have showed the strategic

effects of the service quality on our proposed complementary airline alliances by

a three-stage analysis framework.

This chapter first introduces the field-oriented literature and motivation, then

gives some background knowledge and concepts of game theory to be used in our

analysis, and finally provides an overview of the dissertation.

1.1 Literature and motivation

1.1.1 MCST problem

1.1.1.1 Literature

Consider a group of agents demanding a particular service that is provided by a

common supplier, called the source. Agents can be served through connections

to the source either directly or via other agents. Connections are costly, and the

cost might be reduced by cooperation. This situation gives rise to two targets:

minimize the cost of connecting all agents to the source, and allocate the associ-

ated connection cost to the agents in a reasonable way. This kind of problem is

called the MCST problem. It has direct applications in the design of networks,

including computer networks, telecommunication networks, transportation net-

works, water supply networks, and etc. Bergantinos and Lorenzo [2004] studied

a real case where villagers had to pay the cost of constructing pipes from their

respective houses to a water supplier. Dutta and Kar [2004] gave an example of

power plant. Many situations in other fields can also be modeled in this way.

Xu et al. [2002] represented a set of multi-dimensional gene expression data as a

MCST.

The first algorithm for obtaining a MCST was designed by Boruvka [1926b],

where it was introduced as a method of constructing an efficient electricity net-

work for Moravia. Later, Kruskal [1956], Prim [1957], and Dijkstra [1959] found

similar algorithms. A historic overview for the MCST problem can be found in
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Graham and Hell [1985].

Once a MCST is constructed, its associated cost has to be allocated among the

agents if it is not sponsored by the government or any organization. This problem

was first introduced by Claus and Kleitman [1973]. Bird [1976] suggested a game

theoretic approach to the problem and proposed a cost allocation scheme that

consists of assigning to each agent (vertex in the graph) the cost of the edge

incident upon the vertex on the unique path from the source to the vertex in a

MCST. Feltkamp et al. [1994a] introduced a rule for the MCST problem called

the equal remaining obligations rule. Initially, each agent has an obligation of

1 and the network is empty. Applying Kruskal’s algorithm, the obligation of

each agent decreases when for each edge added to the network. At each step,

each agent pays some proportion of the cost of the additional edge induced from

the difference between its obligation before and after the edge was added. The

concept of remaining obligation is also associated with both the proportional

rule and the decentralized rule in Feltkamp et al. [1994b]. Other interesting cost

sharing methods include the Kar solution (Kar [2002]), Bergantinos and Vidal-

Puga [2007].

1.1.1.2 Motivation

In Feltkamp et al. [1994b], two refinements of the irreducible core (Feltkamp et al.

[1994a]) for the minimum cost spanning extension (MCSE) problem were intro-

duced, respectively, the proportional rule and the decentralized rule. The MCSE

problem differs from MCST problem in the assumption of an initially existing

network with free edges that can be used by the agents, which does not affect

the characterization. Thus we restrict our context on the MCST problem and

do not notify specifically about this difference. The proportional rule is based

on Kruskal’s algorithm, whereas the decentralized rule arises from Boruvka’s al-

gorithm. Feltkamp et al. [1994b] provided an axiomatic characterization on the

proportional rule. Chapter 2 is to give a formal characterization on the decen-

tralized rule.
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1.1.2 DEA problem

1.1.2.1 Literature

DEA is a linear programming methodology to measure the efficiency of multiple

decision-making units (DMUs) when the production process presents a structure

of multiple inputs and outputs. Generally DEA is to minimize the “inputs” and

maximize the “outputs”; in other words, lower inputs producing higher outputs

indicates better performance or efficiency. Based upon Cook et al. [2014], al-

though DEA has a strong link to production theory in economics, the tool is

also used for benchmarking in operations management, where a set of criteria is

selected to benchmark the performance of the DMUs, or players (the term we

are to use in Chapter 3). In order to apply a proper DEA, we need to clarify the

inputs and outputs. For example, when evaluating the performance of a set of

students, if we consider the score of an subject as an outcome from their effort,

it can rightly be viewed as an output. At the same time, the ideas and feedbacks

from the students also help in improving the subject, and can therefore be viewed

as a resource, or input to the process.

Recently game theoretic approaches to DEA problems have been often ob-

served. These include, in part, Nakabayashi and Tone [2006], Wu et al. [2008],

Wu et al. [2009], Liang et al. [2008], Zhu [2004], etc. Among them, Nakabayashi

and Tone [2006] studied the problem of allocating a fixed amount of reward to

players who are evaluated by multiple criteria. They proposed a new scheme

for allocating the reward to the players based on cooperative game theory and

DEA. Later, Wu et al. [2008] and Wu et al. [2009] applied the game model by

Nakabayashi and Tone [2006] to evaluate the cross efficiency of players by using

solutions in cooperative games, the nucleolus and the Shapley value. Liang et

al. [2008] viewed the efficiency assessments in two-stage processes in terms of a

game approach. In the problem of selection and negotiation of purchasing bids,

Zhu [2004] proposed a buyer-seller game model with a more effective evaluation

on the alternative bids compared to the existing methods, which is grounded in

a revised DEA concept.
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1.1.2.2 Motivation

The game proposed by Nakabayashi and Tone [2006] was, however, sub-additive.

Namely, players lose their power when they cooperate. The reason is clear. Be-

fore forming a coalition, each player has a weight of one and puts it on his/her

most preferable criterion. To increase their bargaining power, some of the play-

ers choose to form a coalition; but in Nakabayashi and Tone’s assumption, the

coalition is only given a weight of one in total though each of the members’ pre-

coalition weight was one, which causes the sub-additivity. To make the game

super-additive, they took the dual of the game, called the DEA min game, and

study solutions such as the core, the Shapley value and the nucleolus. In the

DEA min game, each player and each coalition pick up the weight that mini-

mizes their evaluation. No reasonable justification was given in their paper for

picking up the minimizing weight under the assumption that players are egoistic

and want to maximize their own evaluation. The purpose of Chapter 3 is to pro-

pose an alternative, and more natural, cooperative game scheme that fits for the

problem. We will start with a strategic form game describing the problem posed

by Nakabayashi and Tone [2006]; then construct a cooperative game from the

strategic form game based on the procedures by von Neumann and Morgenstern

[1944].

1.1.3 Partner selection problem in airline alliances

1.1.3.1 Literature

An airline alliance is an agreement between two or more airlines to cooperate on a

substantial level (e.g., codeshare flights, ticketing systems, maintenance facilities,

ground handling personnel, check-in and boarding staff, and etc.) to provide

a network of convenient and seamless connectivity for passengers. At present,

most major airlines belong to one of the three largest airline alliances: Star

Alliance, Oneworld, and SkyTeam. One of the fundamental building blocks of

an airline alliance is the codeshare flights. Codeshare is an aviation business

agreement where two or more airlines share the same flight. A seat purchased

from one airline’s ticketing system is actually operated by its partner airline under
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a different flight number or code. Take three big Asian airlines of Star Alliance

as an example, passengers’ demand from Beijing (PEK) to Tokyo (NRT) can be

satisfied either by a direct flight under ANA (NH), or an optional transit flight

with the first leg Beijing (PEK) to Seoul (ICN) operated by Air China (CA), and

the second leg Seoul (ICN) to Tokyo (NRT) operated by Asiana Airlines (OZ).

Under codeshare agreement, this interline product is marketed by both Air China

and Asiana Airlines, and generates profit for both carriers.

Airline alliances can be categorized from different aspects, i.e., commercial

or strategic, passenger or cargo, and etc. From the competitiveness of the pre-

alliance market, it can be classified as parallel or complementary (Park [1997]).

A parallel alliance refers to collaboration between two or more airlines competing

on the same route. The pre-alliance market is duopoly or oligopoly. Usually the

domestic alliances follow this pattern and are dominated by codeshared routes

operated by a single airline. The complementary alliance refers to the case where

two airlines link up their existent networks providing an interline service to the

passengers, where the pre-alliance market might be monopoly. The international

alliances generally involve two or more vertically connecting operating airlines.

In reality, two airlines might form both a parallel and a complementary alliance.

The example of Air China (CA) and Asiana Airlines (OZ) mentioned above is

complementary, while in fact the first leg is sometimes under a codeshare flight

operated by Asiana Airlines (OZ), in this case, the two airlines can be viewed

as parallel from Beijing (PEK) to Seoul (ICN). In Chapter 4, we focus on the

complementary alliance, and leave parallel alliance as a future extension.

Figure 1.1: An example of complementary alliance

Other related management literature in the alliance formation area include

Gulati [1995], Dyer and Singh [1998] and Chung et al. [2000], where they also

6



focused on studying the dyadic alliance relations from the parallel vs. complemen-

tary perspective. Evidence from multiple industries imply that complementary

alliances are more successful, by allowing partners to extend their network cover-

age. In the context of airline alliance, Gimeno [2004] examined the content and

intensity of dyadic relations, and showed that partner selection is dependent on

the extent of alliance co-specialization.

Many strategic factors encourage airlines to join an airline alliance, such as

increasing profit opportunities, reducing the cost of airline operations, chance

of gaining entry in international markets without obtaining the right through

country wise negotiated bilateral agreements (Gudmundsson and Dawna [2001]),

and etc. Hence, the main stream of work in the economics literature on airline

alliances is grounded in revenue management. Vinod [2005] suggested a bid price

scheme for partners in alliance revenue management, which was later analyzed

by Wright et al. [2010]. Wright et al. [2010] attempted to analyze airline alliance

agreements in conjunction with revenue management. They formulated a model

for a two-partner alliance, and derived an equilibrium decision rule for the static

proration scheme prevalent in practice, as well as for several dynamic schemes

based on suggestions from practitioners. Vulcano et al. [2010] proposed an algo-

rithm to resolve the unobserved no-purchases in estimating discrete choice models

using transaction data, and demonstrated that this choice-based model improves

revenues by 1 − 5% on the city-pairs in their paper. Other related literature

includes Hu et al. [2010], Talluri and Ryzin [2004].

1.1.3.2 Motivation

From the literature, we can see that little attention has been paid to the initial

intent to form an airline alliance: providing a network of connectivity and con-

venience with better service quality for passengers. The delivery of high service

quality is essential for an airline’s survival and competitiveness. One of the dis-

tinguishing features of our dissertation is to discuss about the service quality’s

effects on the formation of airline alliances.

Service quality is a consumer’s overall impression of the relative inferiority

and superiority of the organization and its services (Bitner and Hubbert [1994]).
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It can be regarded as a comparison of expectations with the actual performance.

Airline service quality is different from services in other industries, comprising

tangible and intangible attributes, i.e., reservations, ticketing, baggage handling,

seat pitch and size, in-flight service, flight frequency, on time performance, and

etc. Doubtlessly, safety cannot miss the first place within all these factors.

The airline service quality can be evaluated by the five-star quality rating

system, i.e., the Skytrax Airline Rating System. The idea that the service quality

has an important effect on the partner selection came from the member airlines’

service quality rating data of the three largest passenger alliances.

Table 1.1: Service quality rating data of the three largest airline alliances

Rating Star Alliance Oneworld SkyTeam Rest of Industry
(28 members) (12 members) (19 members)

5-Star 40% 20% 0% 40%
4-Star 29.03% 12.9% 12.9% 45.17%
3-Star 13.93% 4.91% 9.01% 72.15%
2-Star 0% 0% 0% 100%
1-Star 0% 0% 0% 100%

*Data source: IATA, as of June 2012

The rest of the industry belongs to none of the airline alliances above. From

the data in Table 1.1, we can see that the three main airline alliances do not accept

airlines rating lower than 3-star as its partner, and the average service quality rate

of Star Alliance is obviously higher than that of the other two alliances, which

indicates that the service quality of an airline affects, at least to some extent,

on the alliance formation. Airlines with high service quality tend to cooperate

with each other. So far as the literature we know, our dissertation is the first to

formally analyze its effect on the selection of alliance partners by our proposed

three-stage analysis framework, namely pre-alliance equilibria analysis, alliance

equilibria analysis and criteria verification.

Colonques and Fillol [2005] analyzed the profitability of two alliances from the

pricing aspect. Their model was less general because of the specific assumption

of monopoly pre-alliance market. Another feature of our paper is a general net-

8



work topology allowing for both monopoly and duopoly pre-alliance market. The

analysis for the oligopoly case is similar but a little bit complicated compared to

that of the duopoly one, which is an important extension to pursue in the future.

1.2 Basic concepts of game theory

Game theory deals with interactive decision making where two or more players

make decisions that affect each other. A game is cooperative if the players are

able to form binding commitments, and non-cooperative if they make decisions

independently. Often it is assumed that communication among players is allowed

in cooperative games, but not in non-cooperative ones.

1.2.1 Cooperative game theory

In cooperative game, groups of players, or coalitions may enforce cooperative

behavior. The game is a competition between coalitions of players, rather than

individual players. Most cooperative games are presented in the characteristic

function form, which is often assumed to be superadditive (Owen [1995]).

Cooperative games are most generally defined as non-transferable utility (NTU)

games. The term transferable utility refers to the fact that only the total payoff

for the coalition is specified, and the players within the coalition can transfer

the gained utility amongst themselves. It is often assumed in cooperative games,

which we call the transferable utility (TU) games.

The main assumption in cooperative game theory is the formation of the grand

coalition. The challenge is then to allocate the payoff among players. The core

is the set of feasible allocations that cannot be improved upon by any coalition.

A coalition is said to improve upon or block a feasible allocation if the members

of that coalition are better off under another feasible allocation. The definition

of the core in our dissertation follows Gillies [1959]. The Shapley value, named

in honor of Lloyd Shapley (Shapley [1953]), assigns a unique distribution (among

the players) of the total surplus generated by the coalition of all players. It em-

phasizes the importance of each player to the overall cooperation. Nucleolus, first

introduced in Schmeidler [1969], is the lexicographically minimal imputation; in

9



other words, it is trying to minimize the maximum dissatisfaction of the coalitions

regarding an proposed imputation.

1.2.2 Non-cooperative game theory

Non-cooperative game theory deals with the situation where binding agreements

are not possible, whether it is because communication is impossible, or agreements

are illegal, or there is no authority that can enforce compliance. It is usually

represented in the strategic form.

Nash equilibrium, named after John Forbes Nash (Nash [1951]), is a solution

concept of the non-cooperative game in which each player is assumed to know the

equilibrium strategies of the other players, and no player has anything to gain by

changing only their own strategy. Strong Nash equilibrium is a Nash equilibrium

in which no coalition, given the current strategies, can cooperatively deviates in a

way that benefits all of its members (Aumann [1959]). It is criticized too “strong”

in that the environment allows for unlimited private communication. A relatively

weaker Nash stability concept is called coalitional-proof Nash equilibrium, in

which the equilibria are immune to multilateral deviations that are self-enforcing

(Bernheim et al. [1987]).

1.2.3 Relationship of cooperative and non-cooperative game

theory

Let G be a strategic form (non-cooperative) game. Assuming that coalitions have

the ability to enforce coordinated behavior, then it comes the cooperative game

associated with G. The α-coalitional game associates with each coalition the

sum of benefit its members can ‘assure’ the coalition to get. The β-coalitional

game associates with each coalition the sum of benefit that the outsiders cannot

‘prevent’ the coalition to get.
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1.3 Outline of the dissertation

The structure of this dissertation is as follows: Chapter 2 characterizes the de-

centralized rule in the MCST problem. In Sections 2.1 and 2.2 we start with

the description for the MCST problem, and then revisit the proportional rule by

Feltkamp et al. [1994b]. Section 2.3 formally introduces the decentralized rule,

and then gives a definition of the decentralized solution. Section 2.4 illustrates

the properties to be used in characterizing the decentralized solution. Section

2.5 presents the main characterization result. In Section 2.6 we discuss about the

independence of the properties. Chapter 3 first improves the DEA game proposed

by Nakabayashi and Tone [2006] by re-assigning the total weight for the coali-

tion members, and then studies the solutions and equilibria of the DEA game

under our new scheme. In Sections 3.1 and 3.2, we review the DEA problem

and the DEA game proposed by Nakabayashi and Tone [2006]. After giving a

definition of the strategic form game in Section 3.3, we present a cooperative TU

game representation in Section 3.4, and then analyze its properties and solutions

in depth in Sections 3.5 and 3.6. Next we define the NTU coalitional game in

both α and β fashion in Section 3.7, and prove the existence of the α-core and

give a sufficient condition under which the β-core is non-empty in Section 3.8.

The Nash equilibrium, strong Nash equilibrium, and coalition-proof Nash equi-

librium for the strategic form game are studied in Section 3.9. Chapter 4 explores

service quality’s effects on the selection of a partner airline in the formation of

airline alliances. In Section 4.1, we describe our general network model, and

then outline the main assumptions and decision criteria. Section 4.2 exposes the

three-stage analysis framework for three types of pre-alliance market respectively:

Monopoly–Monopoly, Monopoly–Duopoly, and Duopoly–Duopoly. The optimal

strategy for each airline is discussed in Section 4.3. Chapter 5 summarizes our

dissertation and identifies areas for future extension work.
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Chapter 2

A characterization of the

decentralized rule in the

minimum cost spanning tree

problem

This chapter characterizes the decentralized rule in the MCST problem by Feltkamp

et al. [1994b]. We begin with the definition for the MCST problem and the MCST

game. Then we summarize the proportional rule in Feltkamp et al. [1994b] for the

comparison study in our axiomatization for the decentralized solution. Next we

present the decentralized rule and define the decentralized solution, coming with

an in-depth illustration on the six properties to be used in the axiomatization of

the decentralized solution and our main characterization result. The last section

of this chapter discusses about the axiom independence.

2.1 MCST problem

2.1.1 Notations and preliminaries

We denote by V the set of vertices, and E the set of edges. Some of the notations

and preliminaries that we will use in our model are shown as below:

12



– G =< V,E >: a graph consisting of a set V of vertices and a set E of edges.

A graph G′ =< V ′, E ′ > is said to a subgraph of G if V ′ ⊆ V and E ′ ⊆ E are

satisfied, and each edge of G′ has the same ends in G′ as in G.

– eij = {i, j}: an edge e incident to two vertices i and j.

– E(V ′) = {e ∈ E|e ⊆ V ′}: for a graph G =< V,E > and a set V ′ ⊆ V , E(V ′)

is the set of edges linking two vertices in V ′.

– V (E ′) = {v ∈ V | there exists an edge e ∈ E ′ with v ∈ e}: the set of vertices

incident with E ′ ⊆ E.

– GV =< V,EV >: the complete graph on a vertex set V , where EV = {eij =

{i, j}|i, j ∈ V and i 6= j}.

– Path and cycle: a path from i to j in a graph G =< V,E > is a sequence

(i = i0, i1, . . . , ik = j) of vertices such that for all 1 ≤ l ≤ k, the edge eil−1il lies

in E. A cycle is a path where i = j.

– Spanning tree: a spanning tree of a graph G =< V,E > is a spanning subgraph

of G that is a tree, in other words, it is a cycle-free subgraph of G that spans

all the vertices.

– V/E: the set of connected components of the graph < V,E >. Two vertices

i, j ∈ V are connected in a graph < V,E > if there is a path from i to j in

< V,E >. A subset V ′ of V is connected in < V,E > if every two vertices

i, j ∈ V ′ are connected in the subgraph < V ′, E(V ′) >. A connected set V ′ is a

connected component of the graph < V,E > if no super set of V ′ is connected.

A connected graph is a graph < V,E > with V connected in < V,E >.

2.1.2 The MCST problem

A MCST problem M =< N, ∗, w, E > consists of a finite set N of agents, each of

whom wants to be connected to a common source, denoted by ∗. The non-negative

cost of constructing a link eij between the vertices i and j in N∗ = N ∪ {∗} is

denoted by w(eij). There is a set E of initially existing edges, which can be used

for free in connecting agents to the source.
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If we shrink each component not containing the source into a single player,

and shrink the source component into a new source, as is mentioned in the intro-

duction, it does not affect the characterization in our dissertation, and thus we

do not specify the difference between MCST and MCSE problems.

Let TM be the set of spanning trees associated with a given MCST problem

M =< N, ∗, w, E >. The cost associated with t ∈ TM can be represented as

c(N∗, w, t) =
∑
eij∈t

w(eij)

Without any ambiguity, we write c(t) instead of c(N∗, w, t) here. Then the

MCST mt ∈ TM associated with M is the spanning tree with the cost c(mt) =

mint∈TMc(t).

The problem we address here is how to construct a network connecting all

agents to the source, in the cheapest possible way, and allocate the costs of such

a network among the agents. Hence a general solution of a MCST problem can

be defined as

Definition 2.1 (general solution)

A general solution of a MCST problem M =< N, ∗, w, E > by some algorithm is

a function φ assigning to M a sequence of edges (edge sets) ε and a vector x of

cost allocation

φ(M) ⊆

(ε, x)

∣∣∣∣∣∣∣
< N∗, E ∪ ε1 ∪ · · · ∪ ετ >
is a connected graph and x ∈ RNsatisfies∑

i∈N xi ≥
∑τ

t=1

∑
Ct−1∈N∗/Et−1,∗/∈Ct−1 w(etCt−1)


where ε = (ε1, . . . , ετ ) = ({e1

C0 | C0 ∈ N∗/E0, ∗ /∈ C0}, ..., {eτCτ−1 | Cτ−1 ∈
N∗/Eτ−1, ∗ /∈ Cτ−1}), τ is the number of the total steps in finding the MCST for

M by the algorithm. Here Ct−1 denotes a connected component not containing

the source at the beginning of stage t; and etCt−1 denotes an edge constructed at

stage t, which connects Ct−1 to another component, where 1 ≤ t ≤ τ .

In our dissertation, the cost allocations are analyzed with game theoretic methods.

Next we will introduce the MCST game.
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2.1.3 The MCST game

The concept of MCST game was first introduced by Bird [1976], and it is defined

as below:

Definition 2.2 (MCST game)

Let < N, cM > be a cooperative cost game associated with the MCST problem

M =< N, ∗, w, E >, where cM(S), the value of the coalition S, is the minimum

cost of building edges between components containing members of S∗ = S ∪ {∗},
so as to make S connected to the source. The formal definition of cM(S) is

cM(S) = min

{∑
e∈E′

w(e)|S∗ ∈ CE′

∗

}

where E ′ contains only edges between components containing members of S∗, and

CE′
∗ is the component of the source ∗ in the graph < N∗, E ∪ E ′ >.

Next we define the core of the cooperative cost game (N, cM).

Definition 2.3 (core of (N, cM))

Core(N, cM) =

{
x ∈ RN |

∑
i∈N

xi = cM(N) and
∑
i∈S

xi ≤ cM(S) ∀S ⊆ N

}

Bird [1976] indicated a method to find the core element of the MCST game when

a MCST is given. Further he also introduced the irreducible core of a MCST

game, which is a subset of the core.

Definition 2.4 (irreducible core)

Given a MCST problem M =< N, ∗, w, E > and a MCST mt, the irreducible core

IC(M,mt) of M with respect to mt is defined as: let V ar(M,mt) be the set of

all MCST problems obtained from M by varying the weight w(e) of edges e /∈ mt,
that still have mt as MCST. Then IC(M,mt) is the intersection of the cores of

all MCST games associated with a MCST problem in V ar(M,mt), that is

IC(M,mt) = ∩{Core(N, cM′) | M′ ∈ V ar(M,mt)}
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If the set of E is empty, the definition above coincides with the one in Bird

[1976]. Before introducing the decentralized rule, let us first make a review on

the proportional rule.

2.2 Proportional rule revisited

If an agent is initially in the source component, it has no obligation to contribute

for the network construction; whereas if it is not in the source component, then

the component of that agent has to pay for building one edge, and this obligation

is shared equally among the component agents. Based on this consideration,

Feltkamp et al. [1994a] introduced the initial obligation, a concept to be used in

both the proportional rule and the decentralized rule.

Definition 2.5 (initial obligation)

The initial obligation oi for an agent i ∈ N in a MCST problem M =< N, ∗, w, E >

is defined as

o0
i =

 1
|C0
i |

if ∗ /∈ C0
i

0 if ∗ ∈ C0
i

where C0
i denotes the component containing i in the initial graph < N∗, E >, and

|C0
i | denotes the number of agents in that component.

The proportional solution is constructed by the following algorithm: construct

the edges of a MCST as in Kruskal’s algorithm. Each time an edge is constructed,

its cost is divided proportionally to the remaining obligations, among the agents

in the components being linked.

Algorithm 2.1 (proportional rule)

Input: a MCST problem M =< N, ∗, w, E >.

Output: a MCST formed by adding a sequence of edges and a cost allocation for

all the related agents.

(1) Given M =< N, ∗, w, E >, define

t = 0: the initial stage;
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τ = |N∗/E| − 1: the number of stages;

E0 = E: the initial edge set;

o0
i : the initial obligation for all i ∈ N (Definition 2.5).

(2) t := t+ 1.

(3) At stage t, given Et−1, choose a cheapest edge et such that the graph <

N∗, Et−1 ∪ {et} > does not contain more cycles than < N∗, Et−1 >.

(4) If Ct is the connected component just formed by adding the edge et to the

graph < N∗, Et−1 >, define the vector f t = (f ti )i∈N of fractions the agents

contribute by

f ti =


ot−1
i∑

l∈Ct o
t−1
l

if i ∈ Ct

0 if i /∈ Ct

(5) Define the remaining obligation after stage t by oti = ot−1
i − f ti for all i ∈ N .

(6) Define Et := Et−1 ∪ {et}.

(7) If t < τ , go back to stage 2.

(8) Define ε = (e1, . . . , eτ ).

(9) Define PROε(M) =
∑τ

t=1 f
tw(et).

Definition 2.6 (proportional solution)

The proportional solution is defined by

PRO(M) = ∪{(ε, PROε(M) | ε is obtained by Algorithm 2.1)}

Feltkamp et al. [1994b] showed that the set of allocations generated by the pro-

portional solution is a refinement of the irreducible core, and in particular, they

are all core elements of the MCST game. The following theorem is their main

result on the axiomatization of the proportional solution.
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Theorem 2.1 (axiomatic characterization of the proportional rule)

The unique solution of MCST problems that satisfies Eff (efficiency), MC (min-

imal contribution), FSC (free for source component), ET (equal treatment), ES

(equal share), Loc (locality) and CoCons (converse consistency) is the propor-

tional solution.

where the definitions of Eff, MC, FSC, ET, Loc are the same as in Section 2.4.

In order to define ES and CoCons, let us first introduce the edge-reduced MCST

problem.

Definition 2.7 (edge-reduced MCST problem)

Given a MCST problem M =< N, ∗, w, E >, assume that an edge eij = {i, j}
connects two components Ci 3 i and Cj 3 j of < N∗, E >, the edge-reduced

MCST problem is

Meij =< N, ∗, w, E ∪ {eij} >

The edge-reduced MCST problem is a smaller problem than the original problem

such that less edges have to be constructed, while the number of agents remains

the same. Then ES and CoCons can be defined as below.

Definition 2.8 (equal share)

φ satisfies equal share (ES) if for any M =< N, ∗, w, E >, for all (ε, x) ∈ φ(M)

with e1
ij connecting two components C0

i 3 i and C0
j 3 j, there exists (ε̃, x̃) ∈

φ(Me1ij) such that ∑
i∈C0

i

(xi − x̃i) =
∑
j∈C0

j

(xj − x̃j)

In effect, ES requires that the two components connected in the first step of a

solution participate in equal amounts in the cost of the edge which connects them.

Definition 2.9 (converse consistency)

φ satisfies converse consistency (CoCons) if for all M =< N, ∗, w, E >, for all

(ε, x) ∈ Eτ
N∗ × RN such that the solution φ′ defined by

φ′(M′) =

φ(M) ∪ {(ε, x)} if M′ = M

φ(M′) if M′ 6= M
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satisfies Eff, MC, FSC, ET, ES and Loc, it holds that

(ε, x) ∈ φ(M)

The upshot of CoCons is that one should not be able to enlarge a solution without

losing at least one of Eff, MC, FSC, ET, ES, and Loc. For more details regarding

Theorem 2.1, please refer to Feltkamp et al. [1994b].

2.3 The decentralized rule and solution

2.3.1 The decentralized rule

The proportional rule is a centralized algorithm, in the sense that one edge is

constructed per stage. However, one might imagine the situation that each com-

ponent greedily builds the cheapest edge that links itself to another component

and finally to the source during the construction of the MCST. If two components

want to build the same edge, they meet in the middle, and each pays half of the

construction cost. If one component wants to link itself to another component,

which has other better options or is the source component, it has to pay for

the cost of the whole edge. This is the basic idea behind the decentralized rule,

which dates back to Boruvka [1926b]. The decentralized algorithm will build a

network in fewer stages than the centralized algorithms. However, it has a short-

coming such that when applied to an arbitrary MCST problem, it might generate

a network with cycles. In this paper, we assume for a generic MCST problem,

where all weights are different, and then the algorithm works pretty well. The

decentralized solution is derived from the following decentralized rule.

Algorithm 2.2 (decentralized rule)

Input: a MCST problem M =< N, ∗, w, E >.

Output: a MCST formed by adding a sequence of edge sets at each stage and a

cost allocation for all the related agents.

(1) Given M =< N, ∗, w, E >, define
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t = 0: the initial stage;

E0 = E: the initial edge set;

o0
i : the initial obligation for all i ∈ N (Definition 2.5).

(2) t := t+ 1.

(3) At stage t, each component Ct−1 of < N∗, Et−1 > that does not contain the

source chooses a cheapest edge etCt−1 linking Ct−1 to another component of

< N∗, Et−1 >.

(4) Define the vector f t = (f ti )i∈N of fractions by

f ti =


ot−1
i if no other component chooses et

Ct−1
i

ot−1
i /2 if another component also chooses et

Ct−1
i

0 if i ∈ Ct−1
∗

for all i ∈ N . Ct−1
i denotes the component containing i in the graph <

N∗, Et−1 > constructed at stage t− 1.

(5) Define the remaining obligation after stage t by oti = ot−1
i − f ti for all i ∈ N .

(6) Define Et := Et−1 ∪ {etCt−1|Ct−1 ∈ N∗/Et−1 and ∗ /∈ Ct−1}.

(7) If the graph < N∗, Et > is not yet connected, go back to stage 2.

(8) Define τ to be the number of stages.

(9) Define the decentralized value DEC(M) by

DECi(M) =
τ∑
s=1

f si w(es
Cs−1
i

)

for all i ∈ N .
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2.3.2 The decentralized solution
Definition 2.10 (decentralized solution)

A decentralized solution DEC(M) is a general solution φ(M) satisfying the con-

ditions below

(1) For all t such that 1 ≤ t ≤ τ , for all Ct−1 ∈ N∗/Et−1 that does not contain

the source, w(etCt−1) = min w(eab), where a ∈ Ct−1 and b /∈ Ct−1.

(2) ∀i ∈ N, xi = DECi(M).

The first condition describes each component’s greedy nature of selecting the

cheapest edge connecting itself to another component. The second condition is

the cost allocation generated by Algorithm 2.2. Before introducing the properties

to be used in the characterization of the decentralized solution, let us first see an

example.

2.3.3 An example

Figure 2.1: An example of the decentralized solution

(1) Given the MCST problem M shown in Figure 2.1, initialize the parameters

as

t = 0: the initial stage;

E0 = ∅: the initial edge set;
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o0
i =

1 if i 6= 0

0 if i = 0
: the initial obligation.

(2) t := t+ 1 = 1.

(3) At stage 1, w(e1
C0

1
) = w(e1

C0
2
) = 4, w(e1

C0
3
) = w(e1

C0
4
) = 10, w(e1

C0
5
) = 11.

(4) The vector of fractions is

f 1 = (f 1
i )i∈{1,2,3,4,5} = (

1

2
,
1

2
,
1

2
,
1

2
, 1)

(5) The remaining obligation after stage 1 is

o1
i =

1
2

if i 6= 0 or 5

0 if i = 0 or 5

(6) E1 = E0 ∪ {e12, e34, e45} = {e12, e34, e45}.

(7) The graph is not yet connected, t := t+ 1 = 2.

(8) At stage 2, w(e2
C1

1
) = w(e2

C1
2
) = 5, w(e2

C1
3
) = w(e2

C1
4
) = w(e2

C1
5
) = 13.

(9) The vector of fractions is

f 2 = (f 2
i )i∈{1,2,3,4,5} = (

1

2
,
1

2
,
1

2
,
1

2
, 0)

(10) The remaining obligation after stage 2 is o2
i = 0, ∀i ∈ {1, 2, 3, 4, 5}.

(11) E2 = E1 ∪ {e01, e13} = {e12, e34, e45, e01, e13}.

(12) The graph is connected and τ = 2.

(13) The implemented MCST is shown in Figure 2.2 and the decentralized value

DEC(M) is

DEC1(M) = DEC2(M) =
9

2
, DEC3(M) = DEC4(M) =

23

2
, DEC5(M) = 11
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The decentralized solution is:

DEC(M) = (({e12, e34, e45}, {e01, e13}), (
9

2
,
9

2
,
23

2
,
23

2
, 11))

It is easy to show that in a generic MCST problem, the proportional rule and the

decentralized rule are inducing exactly the same MCST, while the cost allocation

might be different. In this example, the MCST by the proportional rule is the

same as shown in Figure 2.2, and the proportional solution is

PRO(M) = ((e12, e01, e34, e45, e13), (
9

2
,
9

2
, 11, 11, 12))

Figure 2.2: The MCST by the decentralized rule

2.4 Properties characterizing the decentralized

solution

Feltkamp et al. [1994b] proved that on the class of generic MCST problems, the

cost allocations in the decentralized solution are elements of the irreducible core.
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In Theorem 2.1, they used seven properties characterizing the proportional solu-

tion, namely, Eff, MC, FSC, ET, ES, Loc and CoCons. However, two components

connected in the first step by the decentralized rule do not necessarily share the

same amount of the cost of the edge that connects them, i.e., e45 constructed at

stage 1 is totally paid by agent 5 in the example above; thus the decentralized

solution does not satisfy ES, and hence CoCons is not satisfied as well. We cannot

expect to reproduce the characterization for the proportional rule.

2.4.1 Efficiency

φ is efficient (Eff) if for all M =< N, ∗, w, E >, for all (ε, x) ∈ φ(M), E ∪ ε1 ∪
· · · ∪ ετ is a MCST and

∑
i∈N

xi =
τ∑
t=1

∑
Ct−1∈N∗/Et−1,∗/∈Ct−1

w(etCt−1)

2.4.2 Minimal contribution

φ has the minimal contribution (MC) property if for all M =< N, ∗, w, E >,

for all (ε, x) ∈ φ(M), for each component C ∈ N∗/E that does not contain the

source ∑
i∈C

xi ≥ min{w(e)|e connects two components of < N∗, E >}

For a general solution of a MCST problem, if every component that does not

initially contain the source contributes at least the cost of a minimum cost edge

that connects two components, this solution has the MC property.

2.4.3 Free for source component

φ has the free for source component (FSC) property if for all M =< N, ∗, w, E >,

for all (ε, x) ∈ φ(M), we have

xi = 0
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for all i ∈ C∗.
This property states that any agent in the component of the source does not

contribute in any cost of edge construction. The subset of agents in the source

component is indifferent to any new connection. However, agents that want to

be connected to the source can potentially make use of the existing free links in

the source component to reduce their cost. The bargaining game between the

agents in the source component and the rest of agents is an interesting extension

to pursue in our future research.

2.4.4 Equal treatment

φ has the equal treatment (ET) property if for all M =< N, ∗, w, E >, for all

(ε, x) ∈ φ(M), for all components C ∈ N∗/E, and for all agents i and j ∈ C

xi = xj

This property specifies that any pair of agents initially in the same component

will participate in the same amount of the cost for the network construction.

2.4.5 Locality

φ is local (Loc) if for all M =< N, ∗, w, E >, for all (ε, x) ∈ φ(M), assume that at

stage 1, a set of edges ε1 3 e1
ij is constructed, where e1

ij connects two components

C0
i 3 i and C0

j 3 j of < N∗, E > into a new component C1
ij, then there exists an

x̃ ∈ RC1
ij such that

((ε̃1, . . . , ε̃τ ′), (x̃, x
N\C1

ij)) ∈ φ(Me1ij)

where ε̃1 ∪ . . . ∪ ε̃τ ′ = ε1 ∪ . . . ∪ ετ \ {e1
ij}, and τ ′ = τ − 1 or τ .

This property requires that adding an extra edge into the current network

should not affect agents outside the component formed by adding this edge.
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2.4.6 Unilateral self-interest

φ has the unilateral self-interest (USI) property if for all M =< N, ∗, w, E >,

for all (ε, x) ∈ φ(M), for all t such that 1 ≤ t ≤ τ and for all components

Ct−1 ∈ N∗/Et−1 that does not contain the source, the following condition is

satisfied

|εt| ∈ [d|Ct−1|/2e, |Ct−1|]

and at stage 1, a set of edges ε1 3 e1
ij is constructed, where e1

ij connects two

components C0
i 3 i and C0

j 3 j of < N∗, E > into a new component C1
ij, then

the cost allocation satisfies∃(ε̃, x̃) ∈ φ(Me1ij) s.t.
∑

i∈C0
i
(xi − x̃i) =

∑
j∈C0

j
(xj − x̃j) if |ε1| = |C0|/2

∃C0∗
i s.t. xk =

w(e1ij)

|C0∗
i |
∀k ∈ C0∗

i if |ε1| > |C0|/2

where |εt| ∈ Z+ denotes the number of edges constructed at stage t, and |Ct−1| ∈
Z+ denotes the number of components not containing the source at the beginning

of stage t.

This property depicts the self-interest nature of each component not con-

nected to the source from two aspects: first, at any stage t, the number of edges

constructed should be at least half of, and at most equal to the number of the

components not connected to the source at the beginning of stage t. In Example

2.3.3 for the decentralized rule, at the beginning of the first stage, there are 5

components not yet connected to the source, then the number of edges to be

constructed is 3, or 4, or 5. Second, from the cost sharing perspective, if the

number of edges constructed in the first stage is exactly half of the number of the

components not connected to the source in the initial network, then any pair of

components connected at this stage participate in equal amounts in the cost of

the edge which connects them. However, if the number is more than half, there

exists at least one component in the original network paying for the whole edge

which connects itself to another.

Unlike other centralized cost allocation rules, this property emphasizes the

subject “component” choosing the “edge” at each stage based on its own interest,
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instead of a “central operator” adding one edge per stage for the network’s overall

interest. In other words, the decentralized process is one such that the decisions by

the components are made without centralized control or processing. “Unilateral”

is to describe the decision made by the component itself, without the agreement

of others. Although it might result in bilateral cooperation, we still name this

property as unilateral self-interest as the bilateral cooperation is grounded in each

component’s individual interest to share less in the construction cost.

2.5 Axiomatic characterization of the decentral-

ized solution

2.5.1 Main result

In Section 2.4, we illustrated the properties to be used in the axiomatization. We

formally characterize the decentralized solution in this section.

Proposition 2.1

The decentralized solution satisfies Eff, MC, FSC, ET, Loc, USI.

Proof. Feltkamp et al. [1994a] showed that the irreducible core satisfies Eff, MC

and FSC. In Feltkamp et al. [1994b], they proved that the allocations generated by

the decentralized rule are elements of the irreducible core. Hence the decentralized

solution has the properties of Eff, MC and FSC.

ET: in the decentralized solution, for all M =< N, ∗, w, E >, for all (ε, x) ∈
DEC(M), for all components C0 ∈ N∗/E, and for all agents i and j ∈ C0

o0
i = o0

j =

 1
|C0| if ∗ 6= C0

0 if ∗ ∈ C0

and for all t such that 1 ≤ t ≤ τ

f ti = f tj
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is satisfied as i and j remain in the same component and always make the same

decision on the edge selection. Following the definition of the decentralized solu-

tion, we have

DECi(M) = DECj(M)

Hence the decentralized solution has the property of ET.

Loc: take ((ε1, . . . , ετ ), x) ∈ DEC(M). Assume that e1
ij ∈ ε1 connects two

components C0
i 3 i and C0

j 3 j of < N∗, E > into a new component C1
ij. Based

on our generic assumption on the MCST problem, ε̃ = (ε̃1, . . . , ε̃τ ′) will lead to a

MCST of Me1ij , where ε̃1 ∪ . . . ∪ ε̃τ ′ = ε1 ∪ . . . ∪ ετ \ {e1
ij}, and τ ′ = τ or τ − 1.

Let F̃ be the unique sequence of fraction vectors corresponding to ε̃ following

Algorithm 2.2, and define x̃ = xε̃,F̃. For any agent k /∈ C1
ij, its initial obligation

and vector of contribution fractions are identical to that of ε, and thus x̃k = xk.

The decentralized solution has the property of Loc.

USI: in Algorithm 2.2, at any stage t such that 1 ≤ t ≤ τ , each of the components

Ct−1 ∈ N∗/Et−1 not connected to the source is greedily choosing a cheapest

edge connecting itself to another component. If |Ct−1| = 2n, the number of

components not containing the source is even, the minimum number of edges n is

formed when all of them are in a pairwise cooperation, the maximum number of

edges 2n is formed if no pairs of the components cooperate bilaterally. Similarly,

if |Ct−1| = 2n− 1, the minimum number of edges formed at stage t should be n,

and the maximum number should be 2n− 1, where n ∈ Z+.

In the first stage, if the number of edges constructed |ε1| is exactly |C0|/2,

which means that there are even numbers of agents not connected to the source

in the initial network, then the components are cooperating in a pairwise mode

and none of them will be connected to the source at this stage. Suppose e1
ij ∈ ε1

connects two components C0
i 3 i and C0

j 3 j of < N∗, E > into a new component

C1
ij, then C0

i and C0
j share w(e1

ij) equally. Consider the edge-reduced MCST prob-

lem Me1ij =< N, ∗, w, E∪{e1
ij} >. ∀i, j ∈ C1

ij, its initial obligation is 1
|C0
i |+|C0

j |
. On

the generic assumption, for any sequence of edge sets ε̃ constructed by Algorithm
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2.2, where ε̃1 ∪ . . . ∪ ε̃τ ′ = ε1 ∪ . . . ∪ ετ \ {e1
ij}, the remaining obligations at stage

t are only dependent on the remaining obligations in the previous stage, by the

inductive method, i and j have the same remaining obligations throughout all

stages in Me1ij . Since in the unique sequence of fraction vectors F̃ corresponding

to ε̃ following Algorithm 2.2, the fractions of edges that i and j pay are propor-

tional to the remaining obligations at each stage. It follows that f̃ ti = f̃ tj for all t

such that 1 ≤ t ≤ τ , and xε̃,F̃i = xε̃,F̃j . Thus

∑
i∈C0

i

(xi − xε̃,F̃i ) =
∑
j∈C0

j

(xj − xε̃,F̃j ) =
w(e1

ij)

2

However, if the number of edges constructed in the first stage |ε1| is more than

|C0|/2, there is at least one component not connected to the source in the initial

network which has a unilateral connection, and is responsible for the cost of that

connection totally by itself.

�

Theorem 2.2

A solution φ satisfies Eff, MC, FSC, ET, Loc, USI if and only if it is a decen-

tralized solution.

Proof. Existence. Proposition 2.1 proves that a decentralized solution satisfies

Eff, MC, FSC, ET, Loc, USI.

Uniqueness. Consider a solution φ satisfying these properties. We first take

(ε, x) ∈ φ(M), and show that (ε, x) is a decentralized solution.

Suppose e1
ij ∈ ε1 connects two components C0

i 3 i and C0
j 3 j of < N∗, E >

into C1
ij. By the property of Loc, there exists an x̃ ∈ RC1

ij such that

((ε̃1, . . . , ε̃τ ′), (x̃, x
N\C1

ij)) ∈ φ(Me1ij)

where ε̃1 ∪ . . . ∪ ε̃τ ′ = ε1 ∪ . . . ∪ ετ \ {e1
ij}, and τ ′ = τ − 1 or τ .

Hence there exists a sequence of fraction vectors (f̃ 1, . . . , f̃ τ
′
) corresponding

to (ε̃1, . . . , ε̃τ ′), such that
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(x̃, xN\C
1
ij) = x(ε̃1,...,ε̃τ ′ ),(f̃

1,...,f̃τ
′
)

As φ satisfies Eff, the sum of the cost allocated to each agent is equal to the sum

of the edge weights of ε in M, and ε̃ in Me1ij , that is

∑
i∈N

xi =
τ∑
t=1

∑
e∈εt

w(e)

∑
i∈N

x̃i =
τ ′∑
t=1

∑
e∈ε̃t

w(e)

Both φ(M) and φ(Me1ij) satisfy Eff and Loc, we have

∑
k∈C1

ij

(xk − x̃k) = w(e1
ij)

We distinguish three cases:

Case 1: If |ε1| = |C0|/2, the number of edges constructed at the first stage

is exactly half of the number of the components not containing the source in

the initial network, then any of the connections e1
ij ∈ ε1 indicates a bilateral

cooperation. By the properties of ET and USI

xk(e
1
ij)− x̃k(e1

ij) =


w(e1ij)

2|C0
i |

if k ∈ C0
i

w(e1ij)

2|C0
j |

if k ∈ C0
j

In this case, define f 1 by

f 1
k (e1

ij) =


1

2|C0
i |

if k ∈ C0
i

1
2|C0

j |
if k ∈ C0

j

0 if k /∈ C1
ij

Case 2: If |ε1| ∈ (|C0|/2, |C0|), by the property of USI, define C0∗ = {C0∗
i } as the

set of components such that xk =
w(e1ij)

|C0∗
i |
∀k ∈ C0∗

i . On the generic assumption,
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with the property of ET, for all C0∗
i ∈ C0∗, for all k ∈ C0∗

i , the only condition

such that xk =
w(e1ij)

|C0∗
i |

is when C0∗
i pays for the whole edge which connects itself

to another component in the first stage. Thus for all k ∈ C0
i

xk(e
1
ij)− x̃k(e1

ij) =


w(e1ij)

|C0
i |

if C0
i ∈ C0∗

w(e1ij)

2|C0
i |

if C0
i /∈ C0∗ and C0

j /∈ C0∗

0 if C0
j ∈ C0∗

In this case, define f 1 by

f 1
k (e1

ij) =


1
|C0
i |

if C0
i ∈ C0∗

1
2|C0

i |
if C0

i /∈ C0∗ and C0
j /∈ C0∗

0 if C0
j ∈ C0∗

For k ∈ C0
j , the definition follows the same pattern above; and for k /∈ C1

ij,

f 1
k (e1

ij) = 0.

Case 3: If |ε1| = |C0|, the number of edges constructed at the first stage is equal

to the number of components not connected to the source in the initial network,

then any of the connections e1
ij ∈ ε1 indicates a unilateral selection. Either C0

i or

C0
j , say C0

j , unilaterally selects e1
ij, by the properties of ET and USI, we obtain

xk(e
1
ij)− x̃k(e1

ij) =

0 if k ∈ C0
i

w(e1ij)

|C0
j |

if k ∈ C0
j

In this case, define f 1 by

f 1
k (e1

ij) =

0 if k /∈ C0
j

1
|C0
j |

if k ∈ C0
j

Then x = x(ε1),(f1), and ((ε1), x) ∈ DEC(M).

For Cases 1 and 2, f 2 can be defined by evaluating the first stage of φ(Me1ij) ∀e1
ij ∈

ε1. f 3 . . . can be defined inductively via the corresponding edge-reduced MCST

problem. Until for some stage, the edge-reduced MCST problem falls in Case 3,
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and we find f τ .

Let F = (f 1, . . . , f τ ) be the sequence of share vectors corresponding to (ε1, . . . , ετ )

in φ(M), we have

((ε1, . . . , ετ ), x
(ε1,...,ετ ),F) ∈ DEC(M)

Next we assume that (ε, x), (ε′, x′) ∈ φ(M) satisfying Eff, MC, FSC, ET, Loc

and USI, then both of them are decentralized solutions. Let us show that (ε, x)

and (ε′, x′) coincide with each other. We only need to prove that ε = ε′, then

x = x′ is obviously satisfied based on the generic assumption. Assume that ε 6= ε′,

if step t is the first step such that there exists etCt−1 ∈ εt and /∈ ε′t, that means,

εr = ε′r for all r ≤ t− 1. We distinguish two cases:

Case 1: If etCt−1 /∈ ε′s ∀s ∈ [1, τ ′], then there exists no component Cs−1 selecting

edge etCt−1 in ε′, which violates the generic assumption in our research. Either

E ∪ ε1 ∪ . . . ∪ ετ or E ∪ ε′1 ∪ . . . ∪ ε′τ ′ cannot form a MCST.

Case 2: If etCt−1 ∈ ε′s, where s > t, then ε′ must violate the first condition in

Definition 2.10 such that it does not select the cheapest edge at stage t.

Hence we have (ε, x) = (ε′, x′).

�

2.5.2 Remarks
Remark 2.1

Besides the five properties we mentioned above, the decentralized solution also

satisfies the continuity (Con) property. For all i ∈ N, xi(N, ∗, w, E) is continuous

on w.

Proof. For any M = (N, ∗, w, E), we define M+∆ = (N, ∗, w+∆, E), and M−∆ =

(N, ∗, w−∆, E), where for each i, j ∈ N∗, w+∆
ij = wij+∆, and w−∆

ij = max{0, wij−
∆}. Here we assume ∆ > 0. It is easy to show that a MCST for M is also a

MCST for both M+∆ and M−∆. The allocation generated by the decentralized

solution for M+∆ is
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xi(N, ∗, w+∆, E) =
τ∑
s=1

f si (w(es
Cs−1
i

) + ∆)

=
τ∑
s=1

f si w(es
Cs−1
i

) + oi∆

= xi(N, ∗, w, E) + oi∆

The allocation generated by the decentralized solution for M−∆ is

xi(N, ∗, w−∆, E) =
τ∑
s=1

f simax{0, (w(es
Cs−1
i

)−∆)}

≥
τ∑
s=1

f si w(es
Cs−1
i

)− oi∆

= xi(N, ∗, w, E)− oi∆

Consider a sequence of cost matrices {w∆} where |w∆
ij−wij| < ∆ for each i, j ∈ N∗

xi(N, ∗, w, E)− oi∆ ≤ xi(N, ∗, w−∆, E)

≤ xi(N, ∗, w∆, E)

≤ xi(N, ∗, w+∆, E)

= xi(N, ∗, w, E) + oi∆

We proved that |xi(N, ∗, w∆, E) − xi(N, ∗, w, E)| ≤ oi∆ ≤ ∆. Hence the decen-

tralized solution is continuous. �

We know that Theorem 2.2 holds for generic cost matrices GN , where the

cost for constructing the edges differs from each other. Notice that GN is a dense

subset of arbitrary cost matrices AN . For any w ∈ AN \GN and the corresponding

MCST mt obtained by the decentralized rule, we can find a sequence of matrices

{wm}+∞
m=1 ⊂ GN such that

(1) wm → w;
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(2) mt is also the MCST in wm for all m.

Under these two conditions, limm→+∞DEC(wm) = DEC(w). If the properties

above are true in GN, the Con implies that the result might also be true for all

AN on refinement. It suggests a future extension for the characterization of the

decentralized rule without the constraint of generic cost matrix. For example,

a possible refinement on Algorithm 2.2 is that we may define the ranking rule

for any i, j ∈ N as ri < rj if w0i ≤ w0j. At each step, each component not

connected to the source greedily chooses a cheapest edge connecting itself to

another component. If two edges have the same cost, link from or to the agent

with the lower rank.

Remark 2.2 (the proportional solution and the decentralized solution)

Compared with the characterization of the proportional solution, we can see that

both solutions satisfy the properties of Eff, MC, FSC, ET, and Loc. However, two

components connected in the first step by the decentralized rule do not necessarily

share the same amount of the cost of the edge that connects them (Example 2.3.3);

thus the decentralized solution does not satisfy ES, and hence CoCons is not

satisfied as well. The property of USI is instead defining the cost sharing aspect

of a decentralized solution. Both ES and USI only constrain the cost sharing at

the first stage of an algorithm; but USI requests a judgement on the number of

edges constructed at the first stage due to the decentralization.

2.6 Independence of the axioms

Theorem 2.3

Eff, MC, FSC, ET, Loc, USI satisfy axiom independence.

Proof.

(1) Eff is independent from MC, FSC, ET, Loc, USI. If we add a fixed

charge ∆w to each agent newly connected to the source component, then this

revised decentralized rule satisfies MC, FSC, ET, Loc, USI, but violating Eff.

(2) MC is independent from Eff, FSC, ET, Loc, USI. If we re-define the

total initial obligation of 0 for the component C0 ∈ N∗/E with the cheapest
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direct connection to the source component, and 2 for the component C
0 ∈

N∗/E with the most expensive direct connection to the source component,

then this revised decentralized rule satisfies Eff, FSC, ET, Loc, and USI, but

violating MC.

(3) FSC is independent from Eff, MC, ET, Loc, USI. If the source compo-

nent, i.e., the government, volunteers to fund (1− α)
∑

i∈C0 xi, α ∈ (0, 1) for

certain components C0 ∈ N∗/E not able to afford the allocated cost, i.e., poor

states, assuming α
∑

i∈C0 xi ≥ min{w(e) | e connects two components of <
N∗, E >}, and (1−α)

∑
i∈C0 xi is shared equally among all the related agents,

then this revised decentralized rule satisfies Eff, MC, ET, Loc, USI, but vio-

lating FSC.

(4) ET is independent from Eff, MC, FSC, Loc, USI. If we define the

initial obligation for agent i ∈ C0 which has the cheapest adjacent potential

edge compared to all other agents in C0 ∈ N∗/E to be 0; and assume that

the total initial obligation 1 for C0 is shared equally among all other agents

j ∈ C0 and j 6= i, then this revised decentralized rule satisfies Eff, MC, FSC,

Loc, USI, but violating ET.

(5) Loc is independent from Eff, MC, FSC, ET, USI. Assume that the

initial network is large enough and at stage 1, e1
ij ∈ ε1 connects two com-

ponents C0
i 3 i and C0

j 3 j into a new component C1
ij. If C1

ij enforces

(1 − β)w(e1
ij), β ∈ (0, 1) to components which have to make use of the net-

work of C1
ij in order to be connected to the source, assuming βw(e1

ij) ≥
min{w(e) | e connects two components of < N∗, E >}, and (1− β)w(e1

ij) is

shared equally among all the related agents, then this revised decentralized

rule satisfies Eff, MC, FSC, ET, USI, but violating Loc.

(6) USI is independent from Eff, MC, FSC, ET, Loc. The proportional

rule is a typical example satisfying Eff, MC, FSC, ET, Loc, but violating

USI.

Hence Eff, MC, FSC, ET, Loc, USI satisfy axiom independence. �

The example showing the independence of MC is not a representative one, and
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we will leave it as an open question and make further revision in the future work.
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Chapter 3

Game Theoretic Approaches to

Weight Assignments in DEA

Problems

This chapter deals with the problem of fairly allocating a certain amount of

divisible goods or burdens among individuals or organizations in the multi-criteria

environment. It is analyzed within the framework of DEA. We improve the game

proposed by Nakabayashi and Tone [2006] and develop an alternative scheme by

re-assigning the total weight or power for the coalition members. Under our new

proposition, we analyze the solutions for both TU and NTU game, as well as the

equilibria of the strategic form game in the DEA problems.

3.1 The model

Let E(> 0) denote the fixed amount of benefit to be allocated to players 1, . . . , n.

Players’ contributions are evaluated by multiple criteria and summarized as the

score matrix C = (cij)i=1,...,m, j=1,...,n, where cij is player j’s contribution mea-

sured by criterion i, called the evaluation index. The problem is to find a weight

vector on the criteria determined endogenously by players themselves, and rea-

sonable allocations of E based on the weight vector. Following the DEA analysis,

each player k chooses a nonnegative weight vector wk = (wk1 , . . . , w
k
m) such that
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∑m
i=1w

k
i = 1, wki ≥ 0 ∀i = 1, . . . ,m, where wki is the weight given to criterion i

by player k. Then the contribution of player k relative to the total contribution

of all players measured by the weight vector wk is given by∑m
i=1w

k
i cik∑m

i=1w
k
i (
∑n

j=1 cij)

Player k chooses the weight vector that maximizes this ratio. The weight vector

is found by solving the following fractional program

maxwk

∑m
i=1 w

k
i cik∑m

i=1w
k
i (
∑n

j=1 cij)
s.t.

m∑
i=1

wki = 1, wki ≥ 0 ∀i = 1, . . . ,m

Each of the other players similarly maximizes the ratio produced by his/her own

weight vector.

This maximization problem can be reformulated as the following much simpler

form. First for each row (ci1, . . . , cin), i = 1, . . . ,m, divide each element by the

row-sum
∑n

j=1 cij. By Charnes-Cooper transformation(Charnes et al. [1978]), the

maximization problem above is not affected by this operation. Let

c′ij = cij/
n∑
j=1

cij i = 1, . . . ,m.

The matrix C ′ = (c′ij)i=1,...,m, j=1,...,n is called the normalized score matrix and∑n
j=1 c

′
ij = 1 is satisfied. Then

∑m
i=1w

k
i cik∑m

i=1w
k
i (
∑n

j=1 cij)
=

∑m
i=1w

k
i cik/

∑n
j=1 cij∑m

i=1w
k
i (
∑n

j=1 cij)/
∑n

j=1 cij
=

∑m
i=1 w

k
i c
′
ik∑m

i=1w
k
i

Due to
∑m

i w
k
i = 1, the fractional maximization program above can be expressed

as the following linear maximization program.

maxwk

m∑
i=1

wki c
′
ik s.t.

m∑
i

wki = 1, wki ≥ 0 ∀i = 1, . . . ,m

Let c(k) be the maximal value of the program. Apparently the maximal value is
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attained by letting wki(k) = 1 for the criterion i(k) such that c′i(k)k = maxi=1,...,m c′ik
and letting wki = 0 for all other criteria i 6= i(k). Thus c(k) is the highest relative

contribution of player k. Namely

c(k) = maxi=1,...,m c′ik

Nakabayashi and Tone [2006] showed that if each player k claims the portion

c(k) of E, the sum of the claims generally exceeds the total benefit E. Then

the problem arises: how to allocate E reasonably to players? To find a fair

allocation of E, they proposed to apply cooperative game theory. Let us review

their cooperative game model that they call a DEA game.

In the following sections, we assume that the score matrix is given in the

normalized form. That is, C = (cij)i=1,...,m, j=1,...,n, where
∑n

j=1 cij = 1 ∀i =

1, . . . ,m; cij ≥ 0 ∀i = 1, . . . ,m, ∀j = 1, . . . , n. Then the fractional maximization

program can be re-represented by

maxwk

m∑
i=1

wki cik s.t.
m∑
i

wki = 1, wki ≥ 0 ∀i = 1, . . . ,m

3.2 The DEA game by Nakabayashi and Tone

Nakabayashi and Tone [2006] constructed a characteristic function form game

(N, c) in the following manner. N = {1, . . . , n} is the set of players and c is the

characteristic function that gives each coalition a value it obtains. For each single

player coalition {k}, c({k}) is given by the c(k)E. Similarly for each coalition

S ⊆ N , c(S) is given by the maximum value of the linear maximization program

max
m∑
i=1

(wSi
∑
j∈S

cij)E s.t.
m∑
i=1

wSi = 1, wSi ≥ 0 ∀i = 1, . . . ,m

where wS = (wS1 , . . . , w
S
m) is the weight vector chosen by S. Here they assume

players’ evaluation is transferable and take a total of players’ evaluation in coali-

tion S. Hereafter we call this characteristic function form game NT (Nakabayashi

and Tone) DEA game.

39



Nakabayashi and Tone [2006] showed a counter-intuitive fact that the NT DEA

game is sub-additive. Namely players lose their value by forming a coalition. The

reason is quite simple. Consider the following score matrix.

Table 3.1: Score matrix for single player coalition case
Player 1 Player 2 Player 3 row-sum

Criterion 1 6/10 2/10 2/10 1
Criterion 2 2/10 7/10 1/10 1
Criterion 3 1/10 1/10 8/10 1

It is easily seen that the optimal weight vector for each player is (1, 0, 0) for

1, (0, 1, 0) for 2 and (0, 0, 1) for 3, and thus c({1}) = 0.6, c({2}) = 0.7 and

c({3}) = 0.8. Suppose players 1 and 2 form a coalition and aim at maximizing

their joint evaluation for higher bargaining power. Then we have the following

score matrix.

Table 3.2: Score matrix for the coalition {1, 2} case
Coalition {1, 2} Player 3 row-sum

Criterion 1 8/10 2/10 1
Criterion 2 9/10 1/10 1
Criterion 3 2/10 8/10 1

Coalition {1, 2}’s optimal weight vector is (0, 1, 0) and c({1, 2}) = 0.9, which

is less than c({1}) + c({2}) = 1.3; thus c is sub-additive.

The reason is intuitively clear. Either of players 1 and 2 has a weight of one

and puts it on his/her most preferable criterion respectively before forming a

coalition. To increase their bargaining power, they choose to form a coalition;

but after forming a coalition, they are only given a total weight of one and put

it on their most preferable criterion that maximizes their total evaluation. This

is the primary reason for the sub-additivity. The coalition of players 1 and 2

should be given weight of two since their total weights are two before forming a

coalition. For example, in voting decisions, it is considered to be fair if two voters

each having one vote form a coalition, the coalition should be given two votes.
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On the basis of this consideration, we introduce a new approach to endoge-

nously determine the weight vector. Each player is equally given a weight of

one and he/she chooses a weight vector, the component of which is a portion of

the weight given to each criterion. The sum of the weights given to all criteria

must be one. Then by taking a simple average of all players’ weight vectors,

we obtain the weight vector that will be used to calculate each player’s av-

erage contribution. Here “simple average” implies that each player has equal

influence, in other words, players are treated equally. To illustrate the pro-

cedure, suppose, for example, in Table 3.1, players 1, 2 and 3 choose weight

vectors (1/3, 1/3, 1/3), (1/2, 1/2, 0) and (1/6, 1/2, 1/3), respectively. Then the

weight vector for average contribution calculation is their simple average, i.e.,

((1/3+1/2+1/6)/3, (1/3+1/2+1/2)/3, (1/3+0+1/3)/3) = (1/3, 4/9, 2/9); and

player 1’s weighted average contribution is 6/10×1/3+2/10×4/9+1/10×2/9 =

28/90. Similarly the average contributions of player 2 and 3 are 36/90 and 26/90,

respectively.

By using this framework, we propose an alternative characteristic function

form game. First we construct a strategic form game. Each player’s strategy is a

weight vector; and the payoff is his/her weighted average contribution calculated

by using the simple average of all players’ weight vectors. From this strategic form

game, we derive a characteristic function form game following the procedure by

von Neumann and Morgenstern [1944], which will be explained in detail in the

following sections.

3.3 A strategic form DEA game

Let N = {1, . . . , n} be the set of players and M = {1, . . . ,m} be the set of criteria.

The basic DEA model stated in Section 3.1 is as follows. Each player j ∈ N

chooses a weight vector wj = (wj1, . . . , w
j
m) with wj1 + . . .+wjm = 1, wji ≥ 0 ∀i ∈M

on the criteria so as to maximize the weighted sum of his/her relative evaluation

indices,
∑m

i=1 w
j
i cij. The fixed amount of reward E is shared by the players

according to their weighted sums of the evaluation indices.

Therefore the strategic form game naturally reflecting the DEA model will be
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GDEA = (N, {W j}j∈N , {f j}j∈N)

where N = {1, . . . , n} is the set of players, W j = {wj = (wj1, . . . , w
j
m)|wj1 + . . .+

wjm = 1, wji ≥ 0 ∀i ∈ M} is the strategy set of player j ∈ N , and f j : W =

W 1 × . . .×W n → < is the payoff function of player j ∈ N , which is given by

f j(w1, . . . , wn) = (
m∑
i=1

(
1

n

n∑
j=1

wji )cij)E

The reward E is shared by players in proportion to the weighted sum of their

evaluation indices where the weights are the average weights over all players. 1

Hereafter we call this game the strategic form DEA game. The equilibria in

the strategic form game will be studied in Section 3.9.

3.4 TU DEA game

In the characteristic function form game theory, it is commonly considered that

the characteristic function gives each coalition the value that the coalition can

surely win by itself. Here the term “by themselves” means that they can win

the value even if outsiders’ behavior is least favorable to them. In our game,

every player wishes to maximize his/her evaluation so as to maximize the share

of E. Hence the least favorable behavior of outsiders is to minimize the coalition’s

evaluation, i.e., the weighted sum of the players’ evaluation indices inside the

coalition. This behavior is also most favorable to the players outside the coalition

since in our game players share a fixed amount of reward E. Namely, minimizing

the coalition’s evaluation leads to the maximization of the outsiders’ evaluation.

1Another possible definition of f j is

f j(w1, . . . , wn) =

∑m
i=1 w

j
i cij∑n

j′=1(
∑m

i=1 w
j′

i cij′)
E

That is, the reward E is shared by players in proportion to their weighted evaluation indices
with their own weights. Both payoff functions lead to the same conclusions with respect to the
solution concepts.
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Therefore following von Neumann and Morgenstern [1944], the characteristic

function v gives the following value v(S) to each coalition S ⊆ N .

v(S) = max(wj)j∈Smin(wj)j∈N\S

∑
j∈S

f j(w1, . . . , wn)

= max(wj)j∈Smin(wj)j∈N\S(
m∑
i=1

(
1

n

n∑
j=1

wji )cij)E

= max(wj)j∈S(
m∑
i=1

(
1

n

∑
j∈S

wji )cij)E +min(wj)j∈N\S(
m∑
i=1

(
1

n

∑
j∈N\S

wji )cij)E

= ((
s

n
)×maxi=1,...,m

∑
j∈S

cij + (
n− s
n

)×mini=1,...,m

∑
j∈S

cij)E

where s is the number of players in S. From the perspective of the bargaining

story we mentioned in the previous section, the worst situation for S is when

outsiders put their whole weights on the criterion with the lowest evaluation

for the coalition. For example, in Table 3.2, coalition {1, 2}’s maximum and

minimum evaluation indices are 0.9 and 0.2. Therefore the value for coalition

{1, 2} is properly measured by the weighted average of 0.9 and 0.2 with weights

of 2/3 and 1/3, respectively. Thus we would propose (2/3)×0.9+(1/3)×0.2 = 2/3

as the value of the characteristic function for coalition {1, 2}. Similarly for the

single player coalition {3}, the value would be (2/3) × 0.1 + (1/3) × 0.8 = 1/3

since player 3’s maximum and minimum evaluation indices are 0.8 and 0.2.

Note that v(N) = E since
∑

j∈N cij = 1 ∀i = 1, . . . ,m. We call the char-

acteristic function form game (N, v) the TU DEA game since we allow for side

payments among players assuming transferable utility. Non-transferable utility

case will be studied in the future extension work.

3.5 Properties of the TU DEA Game

TU DEA games satisfy interesting properties. First TU DEA games are super-

additive.

Definition 3.1 (superadditivity)

A characteristic function form game (N, v) is superadditive if
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v(S ∪ T ) ≥ v(S) + v(T )

holds for all S, T ⊆ N with S ∩ T = ∅.

Theorem 3.1

Let (N, v) be a TU DEA game; then (N, v) is superadditive.

Proof. It is obvious that

maxi=1,...,m

∑
j∈S∪T

cij ≥ maxi=1,...,m

∑
j∈S

cij +mini=1,...,m

∑
j∈T

cij

maxi=1,...,m

∑
j∈S∪T

cij ≥ maxi=1,...,m

∑
j∈T

cij +mini=1,...,m

∑
j∈S

cij

Then by simple calculation, we can get

v(S ∪ T )− v(S)− v(T ) = ((
s+ t

n
)×maxi=1,...,m

∑
j∈S∪T

cij

+(
n− s− t

n
)×mini=1,...,m

∑
j∈S∪T

cij

−(
s

n
)×maxi=1,...,m

∑
j∈S

cij

−(
n− s
n

)×mini=1,...,m

∑
j∈S

cij

−(
t

n
)×maxi=1,...,m

∑
j∈T

cij

−(
n− t
n

)×mini=1,...,m

∑
j∈T

cij)E

≥ (
n− s− t

n
)× (mini=1,...,m

∑
j∈S∪T

cij

−mini=1,...,m

∑
j∈S

cij −mini=1,...,m

∑
j∈T

cij)E

≥ 0
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Furthermore TU DEA games are constant-sum.

Definition 3.2 (constant-sum)

A characteristic function form game (N, v) is constant-sum if

v(S) + v(N \ S) = v(N)

holds for all S ⊆ N .

Theorem 3.2

Let (N, v) be a TU DEA game; then (N, v) is constant-sum.

Proof. Since in our game
∑

j∈N cij = 1 ∀i = 1, . . . ,m, thus we have

maxi=1,...,m

∑
j∈S cij +mini=1,...,m

∑
j∈N\S cij = 1

mini=1,...,m

∑
j∈S cij +maxi=1,...,m

∑
j∈N\S cij = 1

Then it is quite simple to show that

v(S) + v(N \ S) = (
s

n
+
n− s
n

)E = E = v(N)

�

3.6 Solutions to the TU DEA Game

3.6.1 Core

In characteristic function form games, solutions are considered within the concept

of imputations.

Definition 3.3 (imputation)

In a characteristic function form TU game (N, v), a payoff vector x = (xj)j∈N is

called an imputation if it satisfies
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(1) (group rationality)
∑

j∈N xj = v(N);

(2) (individual rationality) xj ≥ v({j}) ∀j ∈ N .

The set of imputations of (N, v) is denoted by A(v).

Definition 3.4 (core)

The set

C(v) = {x ∈ A(v)|
∑
j∈S

xj ≥ v(S) ∀S ⊆ N}

is called the core of (N, v).

Definition 3.5 (inessentiality)

A characteristic function form game (N, v) is inessential if

v(S) =
∑
j∈S

v({j})

holds for all S ⊆ N . It is essential if v(N) >
∑

j∈N v({j}).

If a characteristic function form game (N, v) is inessential, then its imputation set

is a singleton (v({j})j∈N . Each player can receive the “safety” amount, guaran-

teeing the individual value not worse off compared with the pre-coalition amount.

Hence it is essential games that are interest to us. The following theorem is well

known; for the proof see Owen [1995].

Theorem 3.3

Suppose a characteristic function form game (N, v) is constant-sum. Then if it

is essential, its core C(v) = ∅.

As proved in the previous section, the TU DEA game (N, v) is superadditive and

constant-sum; and thus the core is nonempty only when the game is inessential,

which is equal to the unique imputation set. The following theorem characterizes

the inessential TU DEA game.

Theorem 3.4

A TU DEA game is inessential if and only if for all j ∈ N , cij = ci′j holds for

all i, i′ = 1, . . . ,m.
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Proof. First let us see the sufficient condition. If cij = ci′j ∀j ∈ N ∀i, i′ =

1, . . . ,m holds, by simple calculation

v(S) = ((
s

n
)×maxi=1,...,m

∑
j∈S

cij + (
n− s
n

)×mini=1,...,m

∑
j∈S

cij)E

= (
∑
j∈S

cij)E =
∑
j∈S

v({j})

For the necessary condition, assume ∃k ∈ N and ∃î ∈M such that cîk > cik ( or

cîk < cik, the proof is the same), and cik = ci′k ∀i, i′ ∈M\{̂i}. For any other player

j ∈ N \ {k}, the condition in the theorem is satisfied; and thus for the coalition

S ′ ∈ {S ⊆ N |{k} ( S}, we have maxi=1,...,m

∑
j∈S′ cij > mini=1,...,m

∑
j∈S′ cij.

Then

v(S ′) = ((
s′

n
)×maxi=1,...,m

∑
j∈S′

cij + (
n− s′

n
)×mini=1,...,m

∑
j∈S′

cij)E

= (
∑

j∈S′\{k}

cij + (
s′

n
)cîk + (

n− s′

n
)cik)E

> (
∑

j∈S′\{k}

cij + (
1

n
)cîk + (

n− 1

n
)cik)E =

∑
j∈S′

v({j})

which contradicts with the definition of inessentiality. �

Therefore in the TU DEA game, the core is non-empty if and only if the

evaluation indices for all the criteria are identical for each player. It is usually

not the case in reality and thus the core is generally empty. We can see that

the allocation by the core concept is not of significant meaning for the TU DEA

game.

3.6.2 Shapley value

If the concept of the core is to give a set of stable imputations without distin-

guishing the most preferable payoff vector, although it might be empty, then the

Shapley value is trying to assign the game a specific payoff vector. It is defined

below.
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Definition 3.6 (Shapley value)

In a characteristic function form game (N, v), for each j ∈ N

φj(v) =
∑

S⊆N,j∈S

(s− 1)!(n− s)!
n!

(v(S)− v(S \ {j}))

is called the Shapley value for player j. The vector φ(v) = (φj(v))j∈N is called

the Shapley value.

By applying the constant-sum property of the TU DEA game, the Shapley value

can be represented in a much simpler form, which is also an exercise problem in

Owen [1995].

Theorem 3.5

In the TU DEA game (N, v), the Shapley value is given by φ(v) = (φj(v))j∈N ,

where

φj(v) = 2
∑

S⊆N,j∈S

(
(s− 1)!(n− s)!

n!
v(S))− v(N)

Proof. From the constant-sum property, we get v(S \ {j}) = v(N)− v(N \ {S \
{j}}), and we also know the combination equation can be represented as(

n− 1

s− 1

)
=

(n− 1)!

(s− 1)!(n− s)!

Then the calculation is shown as below

φj(v) =
∑

S⊆N,j∈S

(s− 1)!(n− s)!
n!

(v(S)− v(N) + v(N \ {S \ {j}}))

=
∑

S⊆N,j∈S

(s− 1)!(n− s)!
n!

(v(S) + v(N \ {S \ {j}}))

−
n∑
s=1

(
n− 1

s− 1

)
(s− 1)!(n− s)!

n!
v(N)

= 2
∑

S⊆N,j∈S

(
(s− 1)!(n− s)!

n!
v(S))− v(N)
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for any s = 1, ..., n, S ∩ {N \ {S \ {j}}} = {j} is always satisfied. �

Example 3.1

Applying the simplified formula above, and using the data set in Table 3.1, the

imputation by Shapley value is (9/30, 10/30, 11/30), assuming E = 1.

3.6.3 Nucleolus

Instead of applying a general axiomatization of fairness to a value function defined

by the set of characteristic functions, the nucleolus looks at a fixed characteristic

function, v, and try to find an imputation x = (xj)j∈N that minimizes the worst

inequity. That is, we ask each coalition S ⊆ N how dissatisfied it is with the

proposed imputation x and we try to minimize the maximum dissatisfaction.

Definition 3.7 (excess)

As a measure of the inequity of an imputation x = (xj)j∈N for a coalition S ⊆ N ,

the excess is defined as

e(x, S) = v(S)−
∑
j∈S

xj

which measures the amount by which coalition S falls short of v(S) by the proposed

allocation x.

From the definition of the core, we immediately know that an imputation x is in

the core if and only if all its excesses are negative or zero.

Define O(x) as the vector of excesses arranged in non-increasing order. On

the vectors O(x) we use the lexographic order, i.e., z >L y if ∃k ∈ {1, . . . , 2n−2},
such that zi = yi ∀i ∈ {1, . . . , k − 1}; and zk > yk. We may omit the empty set

and the grand coalition from consideration since their excesses are always zero.

The nucleolus is an efficient allocation that minimizes O(x) in the lexicographic

ordering.

Definition 3.8 (nucleolus)

Let X = {x = (xj)j∈N |
∑n

j=1 xj = v(N)} be the set of efficient allocations. We

say that a vector ν ∈ X is a nucleolus if for each x ∈ X, we have O(ν) ≤L O(x).
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Table 3.3: The nucleolus calculation

S v(S) e(x, S) (10
30
, 10

30
, 10

30
) ( 9

30
, 10

30
, 11

30
)

{1, 2} 20
30

20
30
− x1 − x2 0 1

30

{1, 3} 21
30

21
30
− x1 − x3

1
30

1
30

{2, 3} 22
30

22
30
− x2 − x3

2
30

1
30

The property such that e(x, S)+e(x,N \S) = 0 can reduce the computational

complexity of the nucleolus, which can be proved by the constant-sum property

of the TU DEA game. Thus we just have to check the excesses for half of the

coalitions.

Example 3.2

Based on the data set in Table 3.1, consider an arbitrary point, say (10
30
, 10

30
, 10

30
)E.

Assuming E = 1, the nucleolus ( 9
30
, 10

30
, 11

30
), which coincides with the imputation

by Shapley value, can be calculated as in Table 3.3.

Theorem 3.6

In the 3-player TU DEA game (N, v), the allocations by the Shapley value and

the nucleolus coincide.

Proof. Assuming E = 1, the characteristic function for each coalition S ∈
{1, 2, 3} is

v(∅) = 0

v({1}) = 1
3
maxi∈M ci1 + 2

3
mini∈M ci1

v({2}) = 1
3
maxi∈M ci2 + 2

3
mini∈M ci2

v({3}) = 1
3
maxi∈M ci3 + 2

3
mini∈M ci3

v({1, 2}) = 2
3
maxi∈M (ci1 + ci2) + 1

3
mini∈M (ci1 + ci2) = 1− v({3})

v({1, 3}) = 2
3
maxi∈M (ci1 + ci3) + 1

3
mini∈M (ci1 + ci3) = 1− v({2})

v({2, 3}) = 2
3
maxi∈M (ci2 + ci3) + 1

3
mini∈M (ci2 + ci3) = 1− v({1})

v({1, 2, 3}) = 1
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The Shapley value allocation φ(v) is decided by

φ1(v) = 2
3
v({1}) + 1

3
(v({1, 2}) + v({1, 3}))− 1

3

φ2(v) = 2
3
v({2}) + 1

3
(v({1, 2}) + v({2, 3}))− 1

3

φ3(v) = 2
3
v({3}) + 1

3
(v({1, 3}) + v({2, 3}))− 1

3

With the allocation above, the excess for each single-player coalition is

e(φ(v), {1}) = 1
3
v({1})− 1

3
(v({1, 2}) + v({1, 3})) + 1

3

e(φ(v), {2}) = 1
3
v({2})− 1

3
(v({1, 2}) + v({2, 3})) + 1

3

e(φ(v), {3}) = 1
3
v({3})− 1

3
(v({1, 3}) + v({2, 3})) + 1

3

It can be easily verified that e(φ(v), {1}) = e(φ(v), {2}) = e(φ(v), {3}) is satisfied

e(φ(v), {1})− e(φ(v), {2}) = 1
3
(v({1})− v({2}))− 1

3
(v({1, 3})− v({2, 3})) = 0

e(φ(v), {1})− e(φ(v), {3}) = 1
3
(v({1})− v({3}))− 1

3
(v({1, 2})− v({2, 3})) = 0

By the constant-sum property, any different allocation from the allocation φ(v)

will increase at least one of the excesses. Hence in the 3-player TU DEA game,

the allocations by the Shapley value and the nucleolus always coincide. �

For the cases that players are more than 3, here is a counter example showing

that the theorem above does not necessarily hold.

Example 3.3

The Shapley value allocation is (16
60
, 16

60
, 15

60
, 13

60
) with the data set in Table 3.4. It

can be easily verified that the maximum excess is not minimized with the allocation

above; and hence the nucleolus allocation does not coincide with the Shapley value

allocation in this example.
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Table 3.4: Incoincidence of the Shapley value and nucleolus
Player 1 Player 2 Player 3 Player 4 row-sum

Criterion 1 6/10 2/10 1/10 1/10 1
Criterion 2 2/10 6/10 1/10 1/10 1
Criterion 3 1/10 1/10 5/10 3/10 1

3.7 NTU DEA game

By Theorem 3.3 and 3.4 in the previous section, we know that the core of the TU

DEA game is empty in most games. This section turns the focus on the NTU

DEA game, and mainly contributes to the analysis of the existence of α-core and

β-core. First let us present the definition of the NTU coalitional game.

Definition 3.9 (NTU coalitional game)

The pair (N, V ) is called NTU coalitional game if and only if V is a correspon-

dence from any coalition S ⊆ N into a set of real vectors V (S) ⊆ <N such

that

(1) If S 6= ∅, V (S) is a non-empty closed subset of <N ; and V (∅) = ∅.

(2) ∀x, y ∈ <N , if x ∈ V (S), and xj ≥ yj ∀j ∈ S, then y ∈ V (S).

(3) ∀j ∈ N,∃V j ∈ < such that ∀x ∈ <N : x ∈ V ({j}) if and only if xj ≤ V j.

(4) {x ∈ V (N) : xj ≥ V j} is a compact set.

The interpretation of the NTU coalitional game (N, V ) is that V (S) is the set

of feasible payoff vectors for the coalition S if that coalition forms. Only the

coordinates for players j ∈ S in elements of V (S) matter. A consequence of

property (2) is that, if x is feasible for S, then any y ≤ x is feasible as well for S;

this property is often called comprehensiveness, and it can be interpreted as free

disposability of utility. Property (4) ensures that the individually rational part

of V (N) is bounded.

Next, from the strategic form DEA game, the NTU DEA game can be defined

in both α and β fashion depending on a coalition’s reactions against the deviations

by its counter-coalition.
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Definition 3.10 (α-coalitional NTU DEA game)

Suppose a strategic form DEA game GDEA = (N, {W j}j∈N , {f j}j∈N) is given.

The α-coalitional NTU game (N, Vα) associated with GDEA is a correspondence

from any coalition S ⊆ N into a set of real vectors Vα(S) ⊆ <N , which satisfies

(1) For any non-empty S ( N, x ∈ Vα(S) if and only if there exists wS ∈ W S

such that, for all j ∈ S and all uN\S ∈ WN\S, xj ≤ f j(wS, uN\S).

(2) x ∈ Vα(N) if and only if there exists wN ∈ WN such that, for all j ∈ N, xj ≤
f j(wN).

where W S =
∏

j∈SW
j. Coalition S ⊆ N is said to α-improve upon x ∈ Vα(S) if

there exists wS ∈ W S such that for any uN\S ∈ WN\S

xj < f j(wS, uN\S) ∀j ∈ S

The α-core is the set of payoff vectors x ∈ Vα(N) upon which no coalition α-

improves.

Definition 3.11 (β-coalitional NTU DEA game)

Suppose a strategic form DEA game GDEA = (N, {W j}j∈N , {f j}j∈N) is given.

The β-coalitional NTU game (N, Vβ) associated with GDEA is a correspondence

from any coalition S ⊆ N into a set of real vectors Vβ(S) ⊆ <N , which satisfies

(1) For any non-empty S ( N, x ∈ Vβ(S) if and only if for all uN\S ∈ WN\S,

there exists wS ∈ W S such that for all j ∈ S, xj ≤ f j(wS, uN\S).

(2) x ∈ Vβ(N) if and only if there exists wN ∈ WN such that, for all j ∈ N, xj ≤
f j(wN).

where W S =
∏

j∈SW
j. Coalition S ⊆ N is said to β-improve upon x ∈ Vβ(S) if

for any uN\S ∈ WN\S there exists wS ∈ W S such that

xj < f j(wS, uN\S) ∀j ∈ S

The β-core is the set of payoff vectors x ∈ Vβ(N) upon which no coalition β-

improves.
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Remark 3.1

From the definition of the α- and β-coalitional DEA game, we get

β − core ⊆ α− core

3.8 Solutions to the NTU DEA game

Scarf [1971] introduced a beautiful theorem on the existence of an α-core.

Theorem 3.7 (Scarf)

Assume that for each j ∈ N , W j is a compact convex set, and f j is quasi-concave

in w ∈ W . Then the α-core is non-empty.

Applying the theorem above, we can easily show the non-emptiness of the α-core

in the NTU DEA game.

Theorem 3.8

The α-core of the NTU DEA game is non-empty.

Proof. For all j ∈ N , for all wj ∈ W j, we have wji ∈ [0, 1] ∀i ∈ M and∑m
i=1w

j
i = 1, thus W j is a compact convex set.

From the definition of the strategic form DEA game, we know that

f j(w1, . . . , wn) = (
m∑
i=1

(
1

n

n∑
j=1

wji )cij)E

Let w, v ∈ W , and λ ∈ (0, 1), then

f j(λw1 + (1− λ)v1, . . . , λwn + (1− λ)vn)

= (
m∑
i=1

(
1

n

n∑
j=1

(λwji + (1− λ)vji ))cij)E

≥ min{f j(w1, . . . , wn), f j(v1, . . . , vn)}
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Thus f j is quasi-concave in w ∈ W . The α-core of the NTU DEA game is

non-empty. �

Next, we will present a condition under which the β-core of the NTU DEA

game is non-empty.

Theorem 3.9

For all j ∈ N , let C̄j = {i∗(j) ∈ M | ci∗(j)j ≥ cij ∀i ∈ M}. Then β-core of the

NTU DEA game is non-empty if C̄N = C̄1 ∩ C̄2 ∩ . . . ∩ C̄n 6= ∅.

Proof. From the definition, we know that C̄j is the set of criteria giving player j

the highest evaluation. ∀S ⊆ N , the payoff function for each player k ∈ S under

the strategy profile (wS, uN\S) can be re-written as

fk(wS, uN\S) = (
m∑
i=1

(
1

n
(
∑
j∈S

wji +
∑
j∈N\S

uji ))cik)E

Assume C̄N = C̄1∩C̄2∩. . .∩C̄n is non-empty and take a strategy profile w∗N such

that each player k ∈ N puts all of his/her weight on the criterion i∗(k) ∈ C̄N .

Then its corresponding payoff vector x∗ = (x∗k)k∈N satisfies

x∗k = fk(w∗N) = (
m∑
i=1

(
1

n

n∑
j=1

w∗ji )cik)E = ci∗(k)kE

We can see that x∗ ∈ Vβ(N). Take any S ⊆ N , for all uN\S ∈ WN\S, for all

wS ∈ W S and for all k ∈ S

x∗k − fk(wS, uN\S) ≥ fk(w∗S, uN\S)− fk(wS, uN\S)

= (
m∑
i=1

(
1

n
(
∑
j∈S

w∗ji −
∑
j∈S

wji ))cik)E

≥ 0

None of the coalitions can β-improve upon x∗, thus x∗ is in the β-core. Hence a

sufficient condition for a non-empty β-core is that C̄N = ∩{C̄j}j∈N 6= ∅. �
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3.9 Equilibria in the Strategic Form Game

In some situations, the players might be prohibited to form any form of coalition

or binding agreement in the DEA process, then we need to look into the equilibria

in the strategic form game, which is defined in Section 3.3. First let us start with

the definition of Nash equilibrium in our strategic form DEA game.

3.9.1 Nash Equilibrium

Definition 3.12 (Nash equilibrium)

In a strategic form game (N, {W j}j∈N ,
{f j}j∈N), a strategy combination (w∗1, . . . , w∗n) is called a Nash equilibrium if

for all j ∈ N

f j(w∗j, w∗−j) ≥ f j(wj, w∗−j) ∀wj ∈ W j

holds. Here w∗−j = (w∗1, . . . , w∗j−1, w∗j+1, . . . , w∗n).

The Nash equilibrium is a strategy combination in which no player gains more

by his/her unilateral deviation. Then we have the following theorem. That is,

in Nash equilibrium, every player puts positive weights only on the criteria that

give him/her the highest evaluation. Let C̄j be the set of criteria that give player

j the maximum evaluation index, that is, C̄j = {i ∈M |cij ≥ ci′j ∀i′ ∈M}.

Theorem 3.10

In a strategic form DEA game (N, {W j}j∈N , {f j}j∈N), the Nash equilibrium is of

the form

w∗ = (w∗1, . . . , w∗n), w∗ji = 0 ∀i /∈ C̄j ∀j ∈ N

Proof. First let us prove the sufficient condition. By definition, we know that for

a strategy combination (w∗1, . . . , w∗n) to be a Nash equilibrium, f j(w∗j, w∗−j) ≥
f j(wj, w∗−j) ∀wj ∈ W j should be satisfied. Assume w−j

′
= (w1, . . . , wj

′−1, wj
′+1, . . . , wn)

is determined, then for player j′ ∈ N
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f j
′
(w1, . . . , wn) = (

m∑
i=1

(
1

n
(
∑

j∈N, j 6=j′
wji + wj

′

i ))cij′)E

cij′(∀i ∈ M) is given, in order to maximize f j
′
(w1, . . . , wn), player j′ should

choose a weight vector maximizing
∑m

i=1(wj
′

i cij′). It is obvious that only criteria

with the highest evaluation indices should be assigned with positive weights.

Applying this procedure for all other players, the Nash equilibrium should be

w∗ = (w∗1, . . . , w∗n), w∗ji = 0 ∀j ∈ N ∀i /∈ C̄j.

For the necessary condition, assume that player j′ ∈ N deviates from w∗j
′

to wj
′

such that ∃i′ /∈ C̄j′ with wj
′

i′ > 0. Because wj
′

1 + . . . + wj
′
m = 1, there

must exist at least one criterion i′′ ∈ C̄j′ to which the weight assigned becomes

less than w∗j
′

i′′ ; let us first assume such criteria set is a singleton, which means

wj
′

i′′ = w∗j
′

i′′ − w
j′

i′ . Then

f j
′
(w∗1, . . . , w∗n)− f j′(w∗1, . . . , wj′ , . . . , w∗n) =

1

n
wj
′

i′ (ci′′j′ − ci′j′)E

By the definition of C̄j′ , we know that ci′′j′ > ci′j′ . Hence player j′ gains less

if he/she made this deviation. The proof for the condition when the weight

assignments for multiple criteria become less than that before the deviation is

similar. �

Thus the Nash equilibrium exists, and the players choose putting positive

weights only on the criteria with the highest evaluation indices.

3.9.2 Cooperative Behavior in the Strategic Form DEA

Game

Next we examine players’ cooperative behavior in the strategic form DEA game

by using the concept of strong Nash equilibrium. First let us define the deviation.

Definition 3.13 (deviation)

Take a strategy combination w = (w1, . . . , wn). Coalition T ⊆ N has a deviation
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Table 3.5: A counter example for the existence of SNE
Player 1 Player 2 Player 3 row-sum

Criterion 1 1/10 2.5/10 6.5/10 1
Criterion 2 3/10 1/10 6/10 1
Criterion 3 2.5/10 2/10 5.5/10 1

uT = (uj)j∈T from w if

f j(uT , w−T ) > f j(w) ∀j ∈ T

where w−T = (wj)j∈N\T .

Definition 3.14 (strong Nash equilibrium)

In a strategic form game (N, {W j}j∈N , {f j}j∈N), a strategy combination w∗ =

(w∗1, . . . , w∗n) is called a strong Nash equilibrium if no coalition T ⊆ N has a

deviation from w∗.

Thus in the strong Nash equilibrium, no group of players has an incentive to

unilaterally deviate from the strategy combination. The strong Nash equilibrium

must be a Nash equilibrium.

The strong Nash equilibrium does not always exist as showed in the following

example.

Example 3.4

Suppose a strong Nash equilibrium exists with the data set in Table 3.5, and E = 1.

Then it must be a Nash equilibrium; thus by the theorem above, it must be of

the form w∗ = ((0, 1, 0), (1, 0, 0), (1, 0, 0)). Criterion 1 is chosen with probability

2/3 and criterion 2 is chosen with probability 1/3. By simple calculation, we

get that players 1, 2, and 3 gain 5/30, 6/30, and 19/30, respectively. Suppose

players 1 and 2 jointly deviate and choose w{1,2} = (0, 0, 2). Then since w∗3 =

(1, 0, 0), criteria 1 and 3 are chosen with probability 1/3 and 2/3, respectively.

Hence player 1 gains 6/30 and player 2 gains 6.5/30; both players are better off.

Therefore there is no strong Nash equilibrium in this example.

We next analyze the coalition-proof Nash equilibrium. The strong Nash equi-

librium assumes that the deviation is binding, i.e., deviated coalition never breaks
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up. The coalition-proof Nash equilibrium supposes the possibility of further de-

viation inside deviated coalitions; and considers only credible deviations, i.e.,

deviations from which no further deviation takes place.

Definition 3.15 (credible deviation)

We say T ⊆ N has a credible deviation from a strategy profile w = (w1, . . . , wn)

if (1) T has a deviation uT = (uj)j∈T ∈ W T from w, and (2) there is no R ( T

which has a credible deviation from (uT , w−T ). When T = {j}, j has a credible

deviation uj from w if and only if f j(uj, w−j) > f j(w). For T with |T | > 1, the

definition of a credible deviation follows inductively.

Definition 3.16 (coalition-proof Nash equilibrium)

In a strategic form game (N, {W j}j∈N , {f j}j∈N), a strategy combination w∗ =

(w∗1, . . . , w∗n) is called a coalition-proof Nash equilibrium if no coalition T ⊆ N

has a credible deviation from w∗.

Same as the strong Nash equilibrium, the coalition-proof Nash equilibrium in

the strategic form DEA game does not always exist as well. Here is a counter

example.

Example 3.5

Suppose a coalition-proof Nash equilibrium exists with the data set in Table 3.6,

and E = 1. Then it must be a Nash equilibrium; thus by the theorem above, it must

be of the form w∗ = ((w11, 1−w11, 0), (w12, 0, 1−w12), (0, w23, 1−w23)). Criterion

1 is chosen with probability (w11 + w12)/3, criterion 2 is chosen with probability

(1 − w11 + w23)/3, and criterion 3 is chosen with probability (2 − w12 − w23)/3.

By simple calculation following our basic proposal, we get that players 1, 2, and

3 gain (2w12 + 2w23 + 8)/30, (2w11− 2w23 + 10)/30, and (−2w11− 2w12 + 12)/30,

respectively.

Assume initially w11 ∈ (0, 1), and w12 ∈ (0, 1) as well. If players 1 and 2 form

a coalition, they can jointly maximize their total as well as individual payoff by

putting their whole weight on the first criterion, namely, letting w11 = w12 = 1.

Then players 1 and 2 can respectively gain (2w23 + 10)/30 and (−2w23 + 12)/30.

Both players are better off. However, player 3 can only receive 8/30.

We can also see that each player’s payoff is irrelevant to its own choice on

the weight vector, thus neither {1} nor {2} has a credible deviation from w11 =

w12 = 1. Hence the deviation above is credible.
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Table 3.6: A counter example for the existence of CPNE
Player 1 Player 2 Player 3 row-sum

Criterion 1 4/10 4/10 2/10 1
Criterion 2 4/10 2/10 4/10 1
Criterion 3 2/10 4/10 4/10 1

Starting from this deviated strategy profile ((1, 0, 0), (1, 0, 0), (0, w23, 1−w23)).

If players 1 and 3 form a coalition and choose to put their whole weight on the

second criterion, then they can gain 12/30 and 10/30, respectively. Both players

1 and 3 are better off, and this deviation is credible as well.

In this manner, we can show that there is always a credible deviation from

any Nash equilibrium. Hence the coalition-proof Nash equilibrium does not exist

in this example.

Next we give a condition under which the coalition-proof Nash equilibrium

exists and is uniquely determined.

Theorem 3.11

In a strategic form DEA game (N, {W j}j∈N , {f j}j∈N), if C̄j is a singleton set

for each j ∈ N , and w∗ = (w∗1, . . . , w∗n) is the Nash equilibrium. Then w∗ is the

unique coalition-proof Nash equilibrium, where C̄j = {i ∈M |cij ≥ ci′j ∀i′ ∈M}.

Proof. Let ci(j)j denote the maximum evaluation index for player j ∈ N . If C̄j

is a singleton set, then ci(j)j > ci′j ∀i′ 6= i(j) ∈ M ∀j ∈ N must be satisfied. By

Theorem 3.10, the unique Nash equilibrium is

w∗ = (w∗1, . . . , w∗n), w∗j
i(j)

= 1, w∗ji′ = 0 ∀i′ 6= i(j) ∈M ∀j ∈ N

Assume ∃T ⊆ N such that T has a credible deviation from w∗, and let uT =

(uj)j∈T ∈ W T denote the deviation. Then some {j} ( T must has a deviation

at (uT , w∗−T ) by Theorem 3.10. This deviation is a credible one by Definition

3.15. Therefore uT is not a credible deviation at w∗. Hence w∗ is the unique

coalition-proof Nash equilibrium. �

Theorem 3.11 shows that if for each player the criteria set giving him/her the

maximum evaluation index is a singleton, then the coalition-proof Nash equilib-
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rium exists and is uniquely determined.
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Chapter 4

Service Quality’s Effects on the

Selection of a Partner Airline in

the Formation of Airline

Alliances

This chapter mainly concerns how an airline’s service quality might affect the

selection of its partner during the formation of airline alliances. Within our

proposed three-stage analysis framework, we have shown the strategic effects of

the service quality on the complementary airline alliances, where the pre-alliance

market of the potential alliance members is either monopoly or duopoly. The

main finding in this chapter is that an airline will cooperate with the one which

has the same service quality level if the pre-alliance service quality distribution

of the airlines in the whole market differs greatly, while it tends to choose the

one with similar (either higher or lower) service quality level as its partner if the

distribution is approximately uniform.
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4.1 General network model

4.1.1 Network

We consider a simple network with 3 airports A, B, and C. There is direct flight(s)

between airport A and B, also B and C, but no direct flight between A and C.

Passengers wishing to fly from A to C (or C to A) have to transit once in airport

B. The airline industry of A–B, and B–C can either be monopoly or duopoly,

then three types of basic pre-alliance markets are formed as below:

Figure 4.1: Monopoly–Monopoly airline market

There are two airlines in the Monopoly–Monopoly case, where each airline

owns monopoly power in their respective market.

Figure 4.2: Monopoly–Duopoly airline market

For the Monopoly–Duopoly case, the market of airline 1 is monopoly, while

airlines 2 and 3 are competing on the same leg B–C.

Finally for the Duopoly–Duopoly case, airlines 1 and 4, and airlines 2 and 3

are competing on the same leg, respectively.
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Figure 4.3: Duopoly–Duopoly airline market

4.1.2 Notations and preliminaries

We denote by A the set of airlines, indexed by i = 1, 2, 3, 4 in the analysis. Some

notations that we will use to model the structure of the alliance are shown as

below:

- di: passengers’ demand for airline i.

- dij: the pre-alliance passengers’ demand for market A–C, where i denotes the

airline of market A–B, and j of market B–C.

- daij : passengers’ demand for alliance i− j if airlines i and j form an alliance. It

does not include the demand for each airline’s self-operated market. We assume

that each airline’s strategy and demand in their respective individual market

are not affected by the decision of the alliance. The superscript a is used to

denote quantities associated with Alliance.

- Ci: the overall operational cost for airline i.

- Πi: the pre-alliance profit of airline i. Π∗i denotes the equilibrium profit.

- Πaij : the joint profit of alliance i−j if airlines i and j form an alliance, including

the profit generated in each airline’s self-operated market. Πaij ∗ denotes the

equilibrium joint profit.

- Π
aij
i
∗
,Π

aij
j
∗
: the profit allocated to airline i, j respectively, if airlines i and j

form an alliance.
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- pi: the fare charged for passengers by airline i.

- paij : the fare decided and charged jointly by alliance i − j if airlines i and j

form an alliance.

- qi = qg or qb: the service quality of airline i, which is assumed to be either qg or

qb in this chapter. The subscript g and b are used to denote “good” and “bad”

service quality, respectively. Here we consider a discrete service quality factor

to simplify the mathematical calculation.

- m: a positive parameter that measures the market size.

- γd: a positive parameter in the demand function which measures the effect of

service quality on the demand. The superscript d is used to denote the quantity

associated to Demand. Assuming identical passengers, this effect does not differ

among airlines.

- γci (qi): a positive parameter in the cost function which measures the effect of

service quality on the cost of airline i. The superscript c is used to denote

quantities associated to Cost.

- θ: a positive parameter measuring the improvement of the alliance service qual-

ity over two individually operated airlines, assuming θ ∈ (1/2, 1).

- β
aij
i , β

aij
j : the fraction of the joint profit Πaij ∗ collected by airline i, j respec-

tively, if airlines i and j form an alliance, where β
aij
i + β

aij
j = 1. We denote by

R the profit allocation rule, and Rp the proportional rule.

The rest of the notations will be introduced in the corresponding sections.

4.1.3 The partner selection game

A partner selection problem P =< A, Q > consists of a finite set A = AAB ∪
ABC of airlines, where AAB denotes the set of airlines in market A–B, and ABC

denotes the set of airlines in market B–C. As we only focus on the complementary

alliances, AAB ∩ ABC = ∅. Each of the airlines i ∈ A wants to find a partner
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from its complementary market to extend its current network coverage. Q ∈ R|A|

is the present service quality vector for all of the airlines.

Then the alliance profit associated with the partner selection problem P =<

A, Q > can be represented as

ΠP = {Πaij}∀i∈AAB ,∀j∈ABC

Definition 4.1 (partner selection game)

Let (A,ΠP∗) be a matching game associated with the partner selection problem

P =< A, Q >, where ΠP∗
ij is the value of alliance i–j if airlines i ∈ AAB and

j ∈ ABC cooperate. ΠP∗
ij can be formally defined as

ΠP∗

ij = {Πaij ∈ ΠP | Πaij ≥ Π∗i + Π∗j ∀i ∈ AAB ∀j ∈ ABC}

Definition 4.2 (stability)

An alliance i–j ∀i ∈ AAB ∀j ∈ ABC is stable if for all k ∈ ABC \ {j} and for

all l ∈ AAB \ {i}, the following condition is satisfied

Π
aij∗
i > Πaik∗

i and Π
aij∗
j > Π

alj∗
j

Next we define the core of the partner selection game (A,ΠP∗).

Definition 4.3 (core of (A,ΠP∗
))

Core(A,ΠP∗) =


x ∈ R|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi = Π
aij∗
i ∀i ∈ AAB if ∃j ∈ ABC s.t. xi + xj ∈ ΠP∗

ij

xi ≥ Π∗i , xj ≥ Π∗j , and (xi, xj) is stable.

xi = Π∗i ∀i ∈ AAB otherwise.

xj ∀j ∈ ABC follows the same pattern as xi.


This definition is a bit different from a typical matching game as the number of

airlines in the two markets does not have to be equal and a matching is not a

result for must. An airline can choose to operate by itself if no matching can
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bring more profit. This is the general definition for the partner selection game,

in this chapter, we have not yet included the analysis for oligopoly pre-alliance

market.

4.1.4 Demand and cost function

In this section, we first define the demand functions in the individual market

without and with competition, the pre-alliance complementary market, as well

as the alliance market. Then we introduce a simple cost function to be applied

in our model.

Definition 4.4 (individual demand function)

The demand function for airline i is linear as follows:

(1) Monopoly market:

di = m− pi + γdqi

(2) Duopoly market of airlines i and k:

di = m− pi + pk + γdqi − γdqk

In the monopoly market, the demand of airline i is decreasing with the fare it

charges for passengers, and increasing with its service quality. In the duopoly

market, the demand of airline i is increasing with the fare its rival k charged, and

decreasing with the rival’s service quality. For simplicity, we assume for linear

demand functions and the parameter measuring the effect of price is 1. The

demand function for the the duopoly market reflects that composite products

are substitutes for one another. Economides and Salop [1992] illustrated similar

results on complementary goods with the linear demand system above, where the

parameter for service quality was not included.

Definition 4.5 (pre-alliance demand function)

The pre-alliance demand function of passengers between airport A and C is:

dij = m− (pi + pj) + γd(
qi + qj

2
)

where airline i operates leg A–B, and airline j operates leg B–C.
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Before forming any alliance, airlines choose simultaneously and non-cooperatively

their respective profit-maximizing fares and service quality. The perceived service

quality for passengers between A and C is assumed to be the average service

quality of the two airlines.

Definition 4.6 (alliance demand function)

The demand function for alliance i− j is:

daij = m− paij + γdθ(qi + qj)

where γd is a parameter measuring the effect of service quality on the demand,

and θ ∈ (1/2, 1).

If airlines i and j form an alliance, airlines i and j set the fare for flight from A to

C cooperatively, while the competition remains if another option, either individ-

ually operated or codeshare flight, still exists. The perceived service quality for

passengers of market A–C is higher than that before forming an alliance, for rea-

sons like no necessity of luggage claim during transit, faster mileage accumulation,

and etc. Thus we assume θ ∈ (1/2, 1).

Definition 4.7 (cost function)

The cost function for airline i is:

Ci = γci (qi)qi

where γci (qi) is a parameter measuring the effect of service quality on the cost of

airline i.

γci (qi) is increasing with the level of the service quality (Jamasb et al. [2012]). In

our discrete setting for service quality, it is assumed that γci (qi) = γcg if qi = qg,

and γci (qi) = γcb if qi = qb, where γcg > γcb . For simplicity, we write γci instead

of γci (qi) hereafter. The alliance formation cost is neglectable compared to the

operational cost, i.e., the integration of the ticketing system, share of check-in

and boarding staff, and etc. It is assumed to be 0 in this chapter.
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4.1.5 Assumptions about profit allocation

In general, the proration scheme R used by the alliance will influence both the

overall profit of the alliance and the allocated profit to each airline. It is rea-

sonable to assume that airlines are seeking a strategy that increases the joint

profit by forming an alliance and the ultimate aim of each egoistic airline is to

maximize its own profit. The decision making on the profit allocation mechanism

is actually a bargaining process. On deciding whether to form an alliance or not,

each of the potential partner airlines needs to know the portion of the profit it

can receive. Assume that each of them can claim a proration scheme, it can be

modeled as a sequential move bargaining game between two airlines i and j:

(1) Airline i begins in the first round by proposing a proration scheme R1
i .

(2) If Airline j accepts, the deal is struck. If Airline j rejects, another bargaining

round may be played. In round 2, Airline j proposes R2
j .

(3) If Airline i accepts, the deal is struck. Otherwise, it is round 3 and Airline i

gets to make another proposal.

(4) Bargaining continues in this manner until a deal is struck, or no agreement

is reached and each receives their disagreement value–the pre-alliance profit.

However, this bargaining process is inducing great complexity in our model if we

consider the value diminishing factor and is thus left as an extension work. In this

chapter, we assume that the proportional rule Rp is the default proration scheme,

and primarily focus on examining how the service quality affects the selection of

a partner airline.

Definition 4.8 (proportional rule)

Given two airlines i and j as potential partners of an alliance, the proportional

rule Rp is defined as:

β
aij
i =

Πi
∗

Πi
∗ + Πj

∗

β
aij
j =

Πj
∗

Πi
∗ + Πj

∗

where Πi
∗ and Πj

∗ are the pre-alliance optimal profit for airlines i and j, respec-

tively.
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It is reasonable to assume that the amount each airline may receive on alliance

formation is proportional to its respective pre-alliance profit as the airline with

higher pre-alliance profit usually has higher bargaining power.

4.1.6 Decision criteria

The fundamental questions faced by airline i with service quality qi are:

(1) Whether to form an alliance with another airline.

(2) If yes, which airline should be chosen as the partner.

For the first question, airline i will form an alliance with airline j only if the

cooperation is to bring more profit for i than that of the pre-alliance equilibria.

Both collective and individual rationality should be satisfied.

Definition 4.9 (collective rationality)

For two airlines i and j, they are to form an alliance only if the joint profit of

the alliance is more than the sum of their pre-alliance profit.

Πaij ∗ > Π∗i + Π∗j

Definition 4.10 (individual rationality)

For two airlines i and j, they are to form an alliance only if the alliance profit

allocated to each of them is more than that of their respective pre-alliance profit.

Π
aij
i
∗
> Π∗i

Π
aij
j
∗
> Π∗j

However, as the proportional rule Rp is assumed to be adopted as the proration

scheme in this chapter, these two criteria coincide with each other. We are only

to verify the collective rationality in the following analysis.

For the second question, if airline i has two options, namely airlines j and k, it

will select the one which brings more profit to itself as the partner. The stability

of each proposed formation should be checked, and the more stable alliance will

be formed.
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Definition 4.11 (stability)

For airline i with two potential partner airlines j and k, the stability of alliance

i− j is higher than that of alliance i− k if and only if

Π
aij
i
∗
> Πaik

i
∗

4.2 Analysis: a three-stage framework

As mentioned above, we proceed to the analysis for the equilibria of three types

of pre-alliance markets: Monopoly–Monopoly, Monopoly–Duopoly, and Duopoly–

Duopoly by our proposed three-stage framework, namely, pre-alliance equilibria,

alliance equilibria, and criteria verification.

4.2.1 Monopoly–Monopoly

For the pre-alliance Monopoly–Monopoly situation, airlines 1 and 2 both own

monopoly power for the leg A–B and B–C, respectively. From the service quality’s

perspective, each airline’s rate could either be qg or qb, thus three cases need to

be analyzed:

- Case 1: q1 = qg, q2 = qg

- Case 2: q1 = qb, q2 = qb

- Case 3: q1 = qg, q2 = qb

It is easy to estimate that the equilibria of the first two cases are the same. Let

us first give the analysis for the alliance of two airlines with high service quality.

Case 1: q1 = qg, q2 = qg

Stage 1: pre-alliance equilibria. We start by finding the pre-alliance total

profit for airline i:

Πi = pi(di + d12)− Ci

where di and d12 are defined in Definition 4.4 and 4.5, respectively.
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By differentiation, we get:

Π∗1 = Π∗2 =
8

25
(m+ γdqg)

2 − γcgqg

Alliance equilibria. If airlines 1 and 2 form an alliance, the total profit that

the alliance might receive is:

Πa12 = p1d1 + p2d2 + pa12da12 − C1 − C2

where da12 is defined in Definition 4.6.

We get the following result:

Πa12∗ =
12

25
(m+ γdqg)

2 + (
m

2
+ θγdqg)

2 − 2γcgqg

The proportional rule Rp is applied to make the profit allocation, where βa121 =

βa122 = 1/2. It yields,

Πa12
1
∗ = Πa12

2
∗ =

Πa12∗

2

Criteria verification. The Monopoly–Monopoly case is the simplest one in

which neither of the airlines has an optional potential partner. Hence only the

collective rationality needs to be verified. Straightforward calclulation shows that

Πa12∗ − Π∗1 − Π∗2 > 0

is satisfied. This cooperation is to bring more profit for both airlines.

For case 2 and case 3, following the same three-stage analysis framework,

the collective rationality can be verified and we get the same conclusion.

4.2.2 Monopoly–Duopoly

Next, we consider the pre-alliance Monopoly–Duopoly network, in which airlines

2 and 3 are competing in the B–C market, while airline 1 still enjoys the monopoly

power as in the previous section. For a passenger of market A–C, there are two

options:
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(1) A–B by airline 1, B–C by airline 2.

(2) A–B by airline 1, B–C by airline 3.

These two options are assumed to be competitive with each other no matter

for the pre-alliance market, or the re-formed market if airline 1 cooperates with

another airline. In the Monopoly–Duopoly setting, where airlines 2 and 3 differ

in service quality, which one is to be selected as airline 1’s partner becomes

our main concern. Note that there are 8 possible combinations here, only two

representative cases will be analyzed:

- Case 1: q1 = qg, q2 = qg, q3 = qb

- Case 2: q1 = qb, q2 = qg, q3 = qb

Let us first discuss the case when 1 and 2 are airlines with high service quality,

while 3 with low service quality.

Case 1: q1 = qg, q2 = qg, q3 = qb

Pre-alliance equilibria. Passengers’ demand for market A–C is:

d12 = m− (p1 + p2) + (p1 + p3) + γd(
q1 + q2

2
)− γd(q1 + q3

2
)

d13 = m− (p1 + p3) + (p1 + p2) + γd(
q1 + q3

2
)− γd(q1 + q2

2
)

The definition above suggests that before any alliance is formed, the fare and

service quality of airlines 2 and 3 interactively affect A–C passengers’ choice.

The pre-alliance total profit for each airline is defined as:

Π1 = p1(d1 + d12 + d13)− C1

Π2 = p2(d2 + d12)− C2

Π3 = p3(d3 + d13)− C3
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The equilibria solutions by differentiation are:

Π∗1 =
1

4
(3m+ γdqg)

2 − γcgqg

Π∗2 = 2(m+
1

4
γd(qg − qb))2 − γcgqg

Π∗3 = 2(m− 1

4
γd(qg − qb))2 − γcbqb

Alliance equilibria. If airlines 1 and 2 form an alliance, passengers’ demand

for market A–C will be:

da12 = m− pa12 + (p1 + p3) + γdθ(q1 + q2)− γd(q1 + q3

2
)

The journey of two tickets issued by airlines 1 and 3 separately is still a competi-

tive option for alliance 1-2. The total profit of alliance 1-2 is defined the same as

in Section 4.2.1 and we can get Πa12∗, the maximum alliance profit. Applying the

proportional rule Rp, the profit allocated to each airline under the cooperation

scheme of 1-2 is:

Πa12
1
∗ = βa121 Πa12∗

Πa12
2
∗ = Πa12∗ − Πa12

1
∗

The calculation under the cooperation scheme of 1-3 can be done similarly.

Criteria verification. Let us verify the collective rationality first, assume qb =

αqg, where α ∈ (0, 1) :

Πa12∗ − Π∗1 − Π∗2 > 0

is satisfied if and only if

qg ∈ (ωa12m−d(m, γ
d, θ, α),+∞)

where ωa12m−d(m, γ
d, θ, α) ∈ R+. It indicates that an airline will consider forming

an alliance with another if and only if its service quality reaches a certain level,

i.e., low accident rate. Otherwise, it is difficult for any other airline to accept it

as a partner. Also the airline itself is focusing on improving its service quality
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and rarely has spare capital to invest in alliance formation. For the stability of

formation,

Πa12
1
∗ − Πa13

1
∗ > 0

is satisfied if and only if

α ∈ (0, υm−d(m, γ
d, qg))

where υm−d(m, γ
d, qg) ∈ (0, 1) and is close to 1. The alliance structure of 1-2 is

more stable than that of 1-3, and vice versa if qg ∈ (ωa13m−d(m, γ
d, θ, α),+∞), and

α ∈ (υm−d(m, γ
d, qg), 1), 1-3 is more stable. The conclusion of case 2 is opposite

to that of case 1.

4.2.3 Duopoly–Duopoly

In this section, we consider the network with four airlines shown in Figure 4.3,

where the service quality of the two airlines competing on the same leg differs as in

the previous section. This topology represents a typical situation of the airlines in

or to-be-in the three big airline alliances. Before examining the specific strategy to

be adopted by the three-stage analysis framework, we describe a simple example

of two main airlines in Taiwan: EVA Air (BR) and China Airlines (CI). The

network coverage of the two airlines is nearly the same. In other words, they

are competing nearly on each route. China Airlines joined SkyTeam in 2011, and

EVA Air joined Star Alliance later in 2013. As is known that China Airlines has

records of many incidents and accidents since its formation, and was announced as

the one with worst safety record among 60 international airlines by Jet Airliner

Crash Data Evaluation Centre (JACDEC) in January, 2013. On the contrary,

Eva Air has not had any aircraft losses or passenger fatalities in its operational

history. From the perspective of the most important factor of service quality,

safety, China Airlines’ rate definitely cannot exceed that of EVA Air. Referring

the three big airline alliances’ service quality rating data, Star Alliance is doing

better than SkyTeam as well. The analysis in this section can also be viewed as

providing a theoretical support for the partner selection criteria by the three big
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airline alliances, if we take Star Alliance as an airline with high service quality,

SkyTeam as one with low service quality.

In this section, we will study one representative case: q1 = qg, q2 = qg, q3 =

qb, q4 = qb. For a passenger of market A–C, there are four pre-alliance options:

(1) A–B by airline 1, B–C by airline 2.

(2) A–B by airline 1, B–C by airline 3.

(3) A–B by airline 4, B–C by airline 2.

(4) A–B by airline 4, B–C by airline 3.

Pre-alliance equilibria. A–C Passengers’ demand for the option is defined as:

d12 = m− (p1 + p2) + (p1 + p3) + (p4 + p2) + (p4 + p3)

+ γd(
q1 + q2

2
)− γd(q1 + q3

2
)− γd(q4 + q2

2
)− γd(q4 + q3

2
)

d13, d42, and d43 can be defined similarly as d12.

The pre-alliance profit for airline 1 is:

Π1 = p1(d1 + d12 + d13)− C1

Π2,Π3, and Π4 can be defined respectively as well. We use Π∗1,Π
∗
2,Π

∗
3 and Π∗4

to denote the equilibria solutions. The calculation is simple, and we are not to

present the long equations here.

Alliance equilibria. If the alliance structure is 1-2 (high-high) and 4-3 (low-

low), passengers’ demand for market A–C will become:

da12 = m− pa12 + pa43 + γdθ(q1 + q2)− γdθ(q4 + q3)

da43 = m− pa43 + pa12 + γdθ(q4 + q3)− γdθ(q1 + q2)

It is reasonable assuming passengers will not choose the option constituted by

two airlines from different alliances. The alliance profit is defined the same as

in Section 4.2.1. For alliance structure of 1-3 and 4-2, follow the same pattern
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above to make the definitions. By assuming qb = αqg, γ
c
b = αγcg, where α ∈ (0, 1),

we can get the equilibria solutions of Πa12∗,Πa43∗,Πa13∗ and Πa42∗. Applying the

proportional rule Rp, the profit allocated to each airline under different cooper-

ation schemes can be denoted as Πa12
1
∗,Πa12

2
∗,Πa43

4
∗,Πa43

3
∗,Πa13

1
∗,Πa13

3
∗,Πa42

4
∗ and

Πa42
2
∗.

Criteria verification. Let us verify the collective rationality first:

Πa12∗ − Π∗1 − Π∗2 > 0

Πa43∗ − Π∗4 − Π∗3 > 0

are satisfied if and only if

qg ∈ (ωa12−a43d−d (m, γd, θ, α),+∞)

where ωa12−a43d−d (m, γd, θ, α) ∈ R+. For the stability of formation,

Πa12
1
∗ − Πa13

1
∗ > 0

Πa12
2
∗ − Πa42

2
∗ > 0

Πa43
3
∗ − Πa13

3
∗ > 0

Πa43
4
∗ − Πa42

4
∗ > 0

are satisfied if and only if

α ∈ (0, υd−d(m, γ
d, qg))

where υd−d(m, γ
d, qg) ∈ (0, 1) and is close to 1. The alliance structure of 1-2 and

4-3 is more stable than that of 1-3 and 4-2. Vice versa, the structure of 1-3 and

4-2 is more stable if

qg ∈ (ωa13−a42d−d (m, γd, θ, α),+∞)

α ∈ (υd−d(m, γ
d, qg), 1)

where ωa13−a42d−d (m, γd, θ, α) ∈ R+.

77



4.3 The optimal strategy

Proposition 4.1

For a pre-alliance Monopoly–Monopoly network consisted of airlines i and j, for

any qi, qj ∈ R+, assuming the proration scheme R is proportional, then

Π
aij
i
∗
> Π∗i

Π
aij
j
∗
> Π∗j

The optimal strategy of the two airlines is cooperation with each other.

This proposition indicates that for a Monopoly–Monopoly market, the cooper-

ation will always bring more profit for each of its member, mainly due to the

extension of network coverage for each airline, and demand increment because of

the more convenient service during transit.

Proposition 4.2

For a pre-alliance Monopoly–Duopoly network consisted of airlines i, j and k,

in which airline i’s market is monopoly, for any qk = αqi = αqj, where α ∈
(0, 1), assuming the profit allocation rule R is proportional, then if qi = qj ∈
(ω

aij
m−d(m, γ

d, θ, α),+∞), and α ∈ (0, υm−d(m, γ
d, qg))

Π
aij
i
∗
> Π∗i

Π
aij
i
∗
> Πaik

i
∗

Airline i’s optimal strategy is to select airline j as its partner in the alliance for-

mation. Vice versa, if qi = qj ∈ (ωaikm−d(m, γ
d, θ, α),+∞), and α ∈ (υm−d(m, γ

d, qg), 1),

the equilibrium alliance structure should be i− k.

If the pre-alliance service quality distribution differs greatly, the airline in the

monopoly market will choose the one with the same service quality level as its

partner, while if the distribution is approximately uniform, a combination of

service quality and price competitiveness tends to be formed.

Proposition 4.3

For a pre-alliance Duopoly–Duopoly network consisted of airlines i, j, k and l, in

which airlines i and l, airlines j and k each form a duopoly market, for any
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qk = ql = αqi = αqj, where α ∈ (0, 1), assuming the proration scheme R is pro-

portional, then if qi = qj ∈ (ω
aij−alk
d−d (m, γd, θ, α),+∞), and α ∈ (0, υ(m, γd, qg))

Π
aij
i
∗
> Πaik

i
∗

Π
aij
j
∗
> Π

alj
j

∗

Πalk
k
∗ > Πaik

k
∗

Πalk
l
∗ > Π

alj
l

∗

The equilibrium alliance structure should be i − j, and k − l. Vice versa, if

qi = qj ∈ (ω
aik−alj
d−d (m, γd, θ, α),+∞), and α ∈ (υ(m, γd, qg), 1), the equilibrium

alliance structure should be i− k, and l − j .

This conclusion is intuitive. If the difference between airlines with high service

quality and low service quality is large, airlines tend to form an alliance with

another with the same service quality level. An airline with high service quality

will not accept one with poor service quality to degrade itself too much. Whereas

if the difference is relatively small, an airline with high service quality tends

to select the one with price competitiveness as its partner, even if this kind of

cooperation might reduce the overall rate of service quality a little bit.
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Chapter 5

Concluding remarks

5.1 Summary

Traditionally, game theory has developed almost entirely from introspection and

theoretical concerns, whilst this dissertation was initiated with the overall aim

of advancing game theory by formally studying its applications in three different

multi-agent negotiation problems, namely, the MCST problem, the DEA prob-

lem, and partner selection problem in airline alliances. There is clearly a lot to

gain from the interaction of game theory and its applications in economical prob-

lems. With highly differentiated areas, these applications are allocated to three

chapters, respectively.

In Chapter 2, we have presented the decentralized solution of the MCST

problem and finalized its characterization. We treat the MCSE problem as a

particular extension for the MCST problem and do not make a distinction specif-

ically between them. The decentralized solution is a generalization of the Boru-

vka’s rule and particularly appealing when considering the MCST problem under

the game-theoretic framework: each connected component constructs links in a

greedy pattern yielding the MCST.

The characterization constitutes of six main properties: Eff, MC, FSC, ET,

Loc and USI, respectively. USI describes the primary difference between the

decentralized solution and any centralized solution, which allows us to distinguish

a decentralized cost allocation rule from a centralized one. It is also the property

defining the cost sharing aspect in the decentralized solution based on the degree
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of decentralization at each stage.

In Chapter 3, we have improved the DEA min game proposed by Nakabayashi

and Tone [2006] by re-assigning the total weight for the coalition members and

developed a more natural, super-additive cooperative game scheme for this kind

of problem. We first introduce a strategic form DEA game with the average

weights over all players regarding each criterion; then define the TU DEA game

based on the definition of the strategic form game, and study its properties and

solutions. By applying the constant-sum property, we give the sufficient and

necessary condition for the inessentiality of the TU DEA game, which is also the

condition for a non-empty core. We next define the Shapley value and nucleolus

in our new scheme, and also prove that the allocations by these two concepts

coincide with each other in the 3-player setting.

On showing that the core is empty in most TU DEA games, we proceed to

NTU DEA game, and mainly focus on proving the existence of α-core following

Scarf’s theorem and giving a condition under which the β-core is non-empty.

The final section analyzes the equilibria for the strategic form DEA game, in

case players are not allowed to form any coalition during the DEA process. One

main result in this section is the condition under which the coalition-proof Nash

equilibrium exists and is uniquely determined.

The service quality rating data for the three big airline alliances suggests the

need to understand the impact of service quality during the alliance formation.

Chapter 4 proposes a framework studying service quality’s effects on the selection

of a partner airline. In particular, we model the optimal strategy decision process

by a three-stage analysis framework. In the first stage, analyze the pre-alliance

equilibria that each airline manages its own market in a non-cooperative fashion

so as to maximize its expected profit. In the second stage, analyze the alliance

equilibria under different cooperation schemes assuming a particular profit allo-

cation rule. In the third stage, verify the collective rationality and stability to

finalize the decision process.

We have discussed about airlines’ optimal strategy in three types of pre-

alliance markets. In a Monopoly–Monopoly market, the cooperation is always

bringing more profit for both airlines, and thus forming an alliance is the optimal

strategy for both airlines. In a Monopoly–Duopoly market, with the premise such
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that each airline’s service quality has reached a certain level, if the pre-alliance

service quality differentiation is high, the airline in the monopoly market will

cooperate with the one with the same service quality; otherwise, it will choose

a cooperation pattern of service quality and price competitiveness combination.

The optimal strategy for airlines in a Duopoly–Duopoly market is similar to that

of the Monopoly–Duopoly case.

These three main insights can be corroborated by airlines of the three big

alliances, i.e., China Airlines and Eva Air. Basically airlines prefer to play with

the one with the same service quality level. When the service quality of the

airlines in the whole market does not differ too much with each other, the trend

becomes a combination of service quality and price competitiveness.

5.2 Future extensions

In Chapter 2, we have assumed for a generic cost matrix, however, the property

of Con and the limit condition indicate the room for future research without this

constraint. An interesting avenue of research should aim to define the decentral-

ized solution under an arbitrary cost matrix, and implement its axiomatization

under the concept of irreducible core.

FSC consolidates the definite advantageous position of agents in the source

component. In the real world, these components not only contribute nothing

for the network construction, on the contrary, they may request extra payments

from other agents who want to make use of their existing network in order to be

connected to the source. The bargaining game between the agents in the source

component and the outsiders is also an interesting extension to pursue in this

context.

One more issue that deserves some attention is the application of this model

to real economical problems, i.e., the effectiveness and efficiency study between

the decentralized solution of MCST and mesh network for the smart community

project.

In Chapter 3, we have gone into details for the solution concepts of core,

Shapley value and nucleolus in the TU DEA game, and α-core and β-core in
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NTU DEA game. One of our future research subjects is the role of other imputa-

tions, i.e., the proportional nucleolus (Young et al. [1981]), the kernel (Davis and

Mascheler [1965]), the γ-core (Chander and Tulkens [1997]), the δ-core (Currarini

and Marini [2004]) and etc.

The results in this chapter are theoretically validated based on its applications

in the benefit allocation problem. We plan to explore its potential application in

the voting game as well as its stability.

An important feature of the study in Chapter 4 is the more general network

topology. It suggests an extension to the oligopoly pre-alliance market, which

reflects the real situation better. This is more complicated compared to the

analysis of the duopoly market, in this respect, our results can be viewed as

the first step to understand how airlines with different service quality will act

assuming a particular allocation scheme.

Another aspect of the model deserves some attention is the profit allocation

rule. In the first stage, the proportional rule is assumed to be applied in our

analysis. For the future research, with a refined model, the application of the

equilibrium of bargaining game is an important extension to pursue.

Finally, in our model only complementary alliance is considered, the real net-

work is the coexistence of complementary and parallel alliances among partner

airlines. Such a scheme, however, requires more factors, i.e., the fleet size, the

capacity, service frequency and etc., to be included in the model for analysis.

Describing service quality’s strategic effects under the coexistence scheme will be

an interesting area of further study as well.
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