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Abstract

In most machine learning algorithms, it is assumed that the training and target
environment are the same and that the supervisor (teacher) assigns labels to all
training samples. In many real-world datasets, these assumptions are however
violated due to a changing environment or imperfect supervision.

Many of these situations in the classification scenario can be characterized as
a change in class balance. In this thesis, three such problems are considered: clas-
sification under class-balance change, labeling of unsupervised datasets differing
by class balance, and classification of partially labeled data.

Training a classifier on labeled training data and then applying it on target data
with a different class prior may cause an excess misclassification rate. This can,
however, be corrected for by reweighting training samples with the class prior of
the target environment. In practice, however, the target class priors are unknown.
We show that these class priors can be estimated in a semi-supervised setup by
matching distributions. Moreover, this distribution matching can be performed
efficiently and directly without resorting to density estimation. Empirically we
show that the proposed method obtains an accurate estimate of the class priors,
leading to a lower misclassification rate.

Secondly, the problem of labeling of a dataset without any supervisory infor-
mation is considered. We show that, if two unlabeled datasets differing by class
prior are available, labeling can be performed. This labeling is performed by di-
rectly estimating the sign of the density difference between the two datasets.

Finally, the problem of classification using positive only labeled data is con-
sidered. In this problem only some samples from a single class is labeled. It has
previously been shown that a classifier can be trained from positive and unlabeled
data if the class prior is known. We show that this class prior can be estimated via

v



partially matching distributions.
We conclude that many different learning problems characterized by a change

in class balance can be formulated as distribution matching problems. Further-
more, by selecting an appropriate divergence and directly estimating it, practical
algorithms can be obtained that yield excellent experimental results.
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Chapter 1

Introduction

In the standard machine learning setup, it is assumed that there is perfect supervi-
sion and that the environment is unchanging. In practice however, these assump-
tions are often violated. This thesis is devoted to developing machine learning
methods that can be applied to such non-standard settings when the deviation is
characterized by a change in class prior.

1.1 Standard machine learning model

The goal of machine learning is to construct algorithms that can automatically
learn from data. Data exists in the form of labeled samples originating from the
environment. The labels are assigned by a supervisor (teacher) in order to facili-
tate learning. The goal of the learner is then to infer a rule from the labeled dataset
provided by the teacher in order to emulate the teacher on unseen data.

We illustrate the supervised learning problem in Figure 1.1. Consider the
problem of learning to classify whether a document is unsolicited marketing (i.e.
spam) or not. According to the illustration, the supervisor assigns a class label
“spam”/“not spam” to a training set of documents from the environment. This
labeled dataset is in turn used by the machine learning algorithm to infer a rule.
The learned rule can then be applied to unseen observations in order to determine
the class label.

The training dataset can be modeled as samples drawn independently and iden-
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Environment Supervisor
(teacher)

Learner

x

x

y

Figure 1.1: Illustration of supervised learning (i.e. learning with a teacher).

tically distributed from an unknown density ptr(x, y),

Xtrain := {(xi, yi)}ni=1

i.i.d.∼ ptr(x, y).

In the above x is a feature vector (or covariate) and y is the associated class label
(in the case of classification) or real value (in case of regression).

The overall goal of the learning algorithm is to construct a rule that can gener-
alize on the basis of the training dataset to unseen test data. Assume that we have
an unlabeled test dataset drawn as

Xtest := {x′i}
n′

i=1

i.i.d.∼ pte(x).

The standard assumption in machine learning is that the environment remains
unchanged between the training and test phase. In other words, the training and
test distributions are the same:

p(x, y) = ptr(x, y) = pte(x, y),

where p(x, y) is shorthand for an unchanged training distribution. In many real-
world machine learning scenarios, however, this implicit assumption is violated.
Firstly, the environment may change between when the training data is collected
and when the learning rule is applied to unseen data. This change is often referred
to as non-stationarity between the test and training datasets (Quiñonero-Candela
et al., 2009).

Furthermore, we may have imperfect supervision: the supervisor may selec-
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tively label samples leading to a partially labeled training dataset (Niu, 2012).

In the subsequent sections we discuss several situations where the standard
model breaks down, either due to inadequate supervision, or due to non-stationarity
between training and test datasets. We will show that a wide variety of these prob-
lems can be modeled as a change in class balance between the test and training
datasets.

1.2 Machine learning and supervision

We may distinguish between three learning settings, based on the presence or
absence of labeled training data: unsupervised learning, supervised learning and
semi-supervised learning. In unsupervised learning, we only have an unlabeled
dataset:

Xunlabeled := {xi}
i.i.d.∼ p(x).

The goal of an unsupervised is to find an interesting or useful structure in the data
(Chapelle et al., 2006). The unsupervised task of clustering attempts to assign
each sample to a cluster (see Fig 1.2(a)). A tacit assumption in many cluster-
ing methods is that the underlying labels coincide with the cluster structure of the
data. Novelty detection is another unsupervised learning method that makes the as-
sumption that novel samples lie in low-density areas of the data (see Fig. 1.2(b)).
Methods such as one-class support vector machines estimate the support for the
high-density regions (Schölkopf et al., 1999) enabling the identification of such
novel samples.

In supervised learning, the learning algorithm has access to a set of samples
that are labeled:

Xlabeled := {xi, yi}ni=1

i.i.d.∼ p(x, y).

The goal is to learn an input-output relation between the features and the outputs
(Chapelle et al., 2006). Examples of such supervised learning tasks are regres-
sion and classification. The performance of such supervised learning methods is
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measured in terms of the risk (or expected loss),

Ep [L(f(x), y)] , (1.1)

where f is the learned mapping from X to Y , and L(y′, y) is a loss function be-
tween the estimated value y′ and the true value y. Ep denotes the expectation
with respect to p(x, y), the distribution from which the test samples were drawn.
The preferred learner is therefore the one that minimizes the above expected risk.
Since in practice the generating distribution p(x, y) is unknown, the above is em-
pirically approximated as

f̂ = arg min
f∈F

n∑
i=1

L(f(xi), yi),

where f is searched from a set of functions F . This learning framework is known
as empirical risk minimization (Vapnik, 1998).

In semi-supervised learning, unlabeled samples are available in addition to
labeled samples:

Xlabeled := {xi, yi}ni=1

i.i.d.∼ p(x, y), and Xunlabeled := {xi}ni=1

i.i.d.∼ p(x).

The goal here is to learn an input-output relation. However, it is hoped that by
using the additional unlabeled samples, the learning task can be better accom-
plished.

In many practical problems, we may have a partially labeled dataset. Partially
labeled means that the supervisor may selectively assign labels to samples. An
instance of such a problem, called learning from positive and unlabeled data, is
illustrated in Fig. 1.2(e) (Elkan and Noto, 2008). In this problem, the supervisor
only gives labels to some positive samples. Such a partial labeling often occurs in
land-cover identification problems: the user may label some samples of a specific
land-cover type that he wants to identify in a larger dataset. The dataset therefore
consists of labeled samples of a single class of interest and unlabeled samples,
which is either of the class of interest or not of the class of interest (Li et al.,
2011). Just as in the supervised learning setting, the goal is to learn an input-
output relation from the partially labeled dataset.
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Figure 1.2: Illustration of different problem settings according to the level of su-
pervision.
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1.3 Non-stationarity in machine learning problems

Labeled training data is drawn from the source domain ptr(x, y). We wish to apply
the learned algorithm on unlabeled samples from a target domain distributed as
pte(x, y). Traditional machine learning settings discussed above assume that the
source and target domain are similarly distributed, i.e.,

p(x, y) = ptr(x, y) = pte(x, y).

In real-world problems however, the data often exhibit non-stationarity, caus-
ing the training and test dataset to differ. This non-stationarity may be caused by
factors such as biased sampling or distribution shift over time (Zadrozny, 2004;
Heckman, 1979; Sugiyama and Kawanabe, 2012).

If the test and training distributions are arbitrarily different, learning may not
be possible. However, it is possible to make reasonable assumptions on the nature
of the difference between the training and test distributions. These assumptions
are often empirically validated in practical datasets and may be justified by rea-
sonable sample-selection bias models.

One common assumption is covariate shift. In covariate shift, the assump-
tion is that the training and test points follow different distributions, but the class
posteriors are unchanged (Sugiyama and Kawanabe, 2012)

ptr(y|x) = pte(y|x).

In other words, only the input densities (or covariates) differ between the training
and test distributions

ptr(x) 6= pte(x).

Learning on the labeled training data with a misspecified model may cause a large
bias (Shimodaira, 2000). Due to the assumption of an unchanging class posterior,
the expected test error may be rewritten as

Epte [L(f(x), y)] = Eptr

[
L(f(x), y)

pte(x)

ptr(x)

]
.
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The risk can therefore be corrected by weighting each point with the density ratio

r(x) =
pte(x)

ptr(x)
.

In the semi-supervised setup, unlabeled samples drawn according to pte(x) are
available, enabling the estimation of this density ratio. This estimation can be per-
formed by selecting r(x) so that the induced distribution r(x)ptr(x) is as similar
to pte(x) as possible (Huang et al., 2007; Sugiyama et al., 2008a). This may also
be estimated via direct density-ratio estimation (Kanamori et al., 2009).

In the class-prior change setting, it is assumed that the class priors differ be-
tween the test and training distribution (Saerens et al., 2001),

ptr(y) 6= pte(y),

but the class-conditional densities remain unchanged:

ptr(x|y) = pte(x|y).

Due to this assumption, the expected test error can be written as

Epte [L(f(x), y)] = Eptr

[
L(f(x), y)

pte(y)

ptr(y)

]
.

In a semi-supervised setup, unlabeled samples from pte(x) are available. We show
in Chapter 4 that, in this setup, class priors can be estimated via divergence esti-
mation.

1.4 Divergences

As we see in the next section, divergences are central to solving many problems
that arise in non-stationary datasets. Broadly speaking, a divergence defines the
difference between two distributions. In other words, let a divergence between
two probability densities p(x) and q(x) be denoted as D (p‖q). Then divergence
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−5 0 5
0

0.5

 

 
p(x)
q(x)
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Figure 1.3: Figure 1.3(a) shows the densities p(x) and q(x). Figure 1.3(b) shows
samples drawn from these densities.

is always positive and

D (p‖q) = 0 if and only if p(x) = q(x).

The well-known Kullback-Leibler divergence is defined as (Kullback and Leibler,
1951),

KL (p‖q) =

∫
p(x) log

(
p(x)

q(x)

)
dx. (1.2)

Divergences, such as the Kullback-Leibler divergence given above can be defined
in terms of probability densities (e.g. Figure 1.3(a)). In practice, however, we only
have samples drawn from these densities (Figure 1.3(b)). A possible approach is
to first estimate the densities p(x) and q(x) from the samples and then plug the
estimated densities into the definition of the divergence. However, we are not nec-
essarily interested in the densities, but in the value of the divergence. Therefore,
estimating the divergence in this way violates Vapnik’s principle (Vapnik, 2000):

If you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible that the avail-
able information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem.
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p(x), q(x)
Knowing
p(x)

q(x)

Knowing

Figure 1.4: Illustration of density estimation and density-ratio estimation. The
densities can not be calculated from the density ratio. Therefore, fol-
lowing Vapnik’s principle, density estimation is a more general and
more difficult problem than directly estimating the density ratio.

An alternative approach is to first estimate the density ratio p(x)/q(x). The den-
sity ratio may be more accurately estimated than the densities, since density es-
timation is a more general problem (see Figure 1.4 for an illustration). Several
efficient methods for estimating the density ratio has been introduced (Sugiyama
et al., 2008a; Kanamori et al., 2009; Que and Belkin, 2013; Vapnik et al., 2013).
It is also possible to directly estimate several types of divergences in terms of the
density ratio (Keziou, 2003; Nguyen et al., 2010b; Sugiyama et al., 2013b). In-
terpreting existing problems in terms of divergences and using these divergence
estimators, can lead to new and efficient algorithms.

1.5 Contributions

The overview of the three major contributions of the thesis is presented in this
section.

1.5.1 Estimation of class priors in the semi-supervised setup

Assume that we have a training dataset

{xi, yi}ni=1

i.i.d.∼ ptr(x, y),

but there is a change in class priors between the test and training distributions,

ptr(x|y) = pte(x|y), but ptr(y) 6= pte(y).
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In addition, we assume a semi-supervised setup with unlabeled samples

Xunlabeled := {x′i}
n
i=1

i.i.d.∼ pte(x).

Note that the labeled and unlabeled data are not similarly distributed: the labeled
data follows the training distribution, but the unlabeled data follows the test dis-
tribution. Due to the prior-change assumption, the test input distribution can be
expressed as

qte(x) =
c∑

y=1

θyptr(x|y),

where θy models the unknown test class prior pte(y). Matching the model qte(x)

to pte(x) under some divergence leads to a framework for class-prior estimation.

This allows for the existing method of Saerens et al. (2001) to be interpreted
as distribution matching under the Kullback-Leibler divergence. Analysis using
this framework shows that the method estimates the Kullback-Leibler divergence
in an indirect manner, which may lead to inferior performance.

Furthermore, careful analysis of the optimization problem introduced in that
paper shows that the problem was convex and the optimization can be interpreted
as fixed point iteration. This fixed point iteration may however terminate at spuri-
ous fixed points and therefore not reach the (unique) optimal value.

To overcome these weaknesses, we proposed a method to directly estimate
the class prior via a lower bound of any f -divergence. The f -divergence family
of divergences includes the Kullback-Leibler divergence (Kullback and Leibler,
1951) and the Pearson divergence (Pearson, 1900). Using the Pearson divergence,
we showed that a simple estimator with an analytic result may be obtained. Fur-
thermore, the superior performance of this method was illustrated on numerous
benchmark datasets. The proposed method was further extended to estimate the
class-prior by matching the L2-distance between probability densities.

This work is discussed in Chapter 4.
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1.5.2 Labeling of data differing by class balance

As discussed previously, clustering is a hard problem due to the absence of class
labels. The tacit assumption is that the underlying class labels coincide with the
cluster structure of the data. When this assumption is violated, cluster separation
may not coincide with class separation and the resulting clustering may be of
dubious practical utility.

We assume that we have two unlabeled datasets,

Xa := {xai }
i.i.d.∼ pa(x), and Xb :=

{
xbi
} i.i.d.∼ pb(x),

where the two datasets differ by class prior:

pa(x|y) = pb(x|y), but pa(y) 6= pb(y).

Using these datasets, we show that we can obtain a labeling for unlabeled sam-
ples. If the class priors of the two datasets are unknown, the exact class labels
can not be determined, but the data is partitioned into two disjoint sets. More-
over, this labeling does not depend on the cluster structure of the data. Therefore,
this method would work even in multimodal datasets, where traditional clustering
methods may fail.

This work is discussed in Chapter 5.

1.5.3 Class-prior estimation in learning from positive and un-
labeled data

In many situations, we may have a dataset that is partially labeled, with only some
positive samples having a label. This occurs, for example, in land-cover classi-
fication problems (Li et al., 2011): we may label only a subset of the landcover
type that we wish to identify as y = 1. The remainder of the dataset remains
unlabeled and consists of landcover types of interest (y = 1) and landcover types
not of interest (y = −1).

It was shown in Elkan and Noto (2008) that if the class prior p(y = 1) is
known, classification can be performed. We interpret the problem of estimating
the class prior as distribution matching under a divergence. This leads to the
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development of an efficient method that gives an analytical solution to the estimate
of the class prior.

Furthermore, we show that the existing method can also be interpreted as dis-
tribution matching under a divergence. However, the existing method does not
directly estimate the divergence, resulting in inferior empirical results.

This work is discussed in Chapter 6.

1.6 Organization

The dissertation is organized into seven chapters. The organization of the disser-
tation is given in Figure 1.5.

Chapter 2 discusses divergences and other measures of similarity between dis-
tributions in detail. The family of f -divergences is discussed. A new class of
divergences, defined based on the density difference is also introduced. The direct
estimation of these divergences is reviewed in Chapter 3.

These two chapters provide us with the tools necessary to view machine learn-
ing problems from the divergence estimation vantage point. In Chapter 4 we show
that the class-prior change problem can be interpreted as distribution matching.

In Chapter 5, a method is introduced to perform clustering on when we have
datasets differing by a class prior.

We show in Chapter 6 that learning from positive and unlabeled data is a spe-
cial case of learning from data differing by a class prior. In order to achieve
accurate classification in this setting, the class prior of the unlabeled dataset must
be known. We introduce a method in this chapter to estimate the class prior in this
setting.

Finally, we present a conclusion and discuss future work in Chapter 7.
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Chapter 2
Divergences

Chapter 3
Divergence Estimation

Chapter 4
Class-prior estimation

Chapter 5
Labeling of datasets dif-

fering by class prior

Chapter 6
Class-prior estimation in
positive-only labeled data

Chapter 7
Conclusions and future work

Figure 1.5: Organization of thesis.
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Chapter 2

Divergences

This chapter discusses several divergences between probability distributions. Dis-
cussion on the estimation of these divergences is postponed until the next chapter.

2.1 Introduction and motivation

As discussed in the preceding chapter, a divergence measures the difference be-
tween two probability distributions.

Divergences and their estimation from samples have several applications such
as determining whether two sets of samples originated from the same distribu-
tion or not (referred to as homogeneity testing) (Sugiyama et al., 2011a; Gretton
et al., 2012a). Divergence estimation is also used to detect change-points in non-
stationary data (Kawahara and Sugiyama, 2012; Liu et al., 2013). Comparing
distributions using samples is also the basis for transfer learning (Huang et al.,
2007; Sugiyama and Kawanabe, 2012).

Furthermore, several information-theoretic quantities, such as mutual infor-
mation, can be recast as divergences. This can, in turn, be used to test whether two
covariates are independent or not. Mutual information can also be used for clus-
tering (Sugiyama et al., 2011b), dimensionality reduction (Suzuki and Sugiyama,
2013), canonical dependency analysis (Karasuyama and Sugiyama, 2012), and
independent component analysis (Suzuki and Sugiyama, 2011).

From this perspective of machine learning, we see that divergence measures
and their estimation is of cardinal importance and central to the task of machine
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learning. In the next three sections we discuss three measures of similarity be-
tween distributions: f -divergences, density-difference divergences and the maxi-
mum mean discrepancy.

2.2 f -divergences

An f -divergence between two probability distributions P and Q, with densities
p(x) and q(x), is defined as (Ali and Silvey, 1966; Csiszár, 1967)

Df (p‖q) :=

∫
q(x)f

(
p(x)

q(x)

)
dx, (2.1)

where f is a convex function such that f(1) = 0. The above defines a class of
divergences with different properties for different choices of f . It is obvious from
the above definition that Df (p‖q) = 0 when p(x) = q(x). An f -divergence is
also not necessarily symmetric. It is symmetric, however, when f(t) = tf(1

t
).

Since the function f(t) is convex, all divergences are convex in their first argu-
ment. Arguably the most well-known f -divergence is the Kullback-Leibler (KL)
divergence(Kullback and Leibler, 1951), with f(t) = t log(t),

KL(p‖q) =

∫
log

(
p(x)

q(x)

)
p(x)dx.

Mutual information can be defined as the Kullback-Leibler divergence from p(x,y)

to p(x)p(y),

MI := KL (p(x,y)‖p(x)p(y))

=

∫∫
log

(
p(x,y)

p(x)p(y)

)
p(x,y)dxdy.

The Pearson or χ2 divergence (Pearson, 1900) is defined with f(t) = 1
2
(t− 1)2 or

equivalently f(t) = 1
2
t2 − 1

2
,

PE(p‖q) =
1

2

∫ (
p(x)

q(x)
− 1

)2

q(x)dx, (2.2)
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=
1

2

∫ (
p(x)

q(x)

)2

q(x)dx− 1

2
. (2.3)

An advantage of the above divergence over the KL divergence is that often the
quadratic term leads to simpler expressions that simplifies analysis and enables
efficient estimation.

Similarly to ordinary mutual information, the squared-loss mutual information
(SMI) can be defined as (Sugiyama, 2013)

SMI := PE (p(x,y)‖p(x)p(y)) ,

=
1

2

∫∫ (
p(x,y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy.

An application for SMI is information-maximization clustering, where using this
leads to an efficient solution to clustering problems (Sugiyama et al., 2011b).

The f -divergence reduces to the total variation distance when f(t) = |t− 1|,

TV(p‖q) =

∫ ∣∣∣∣p(x)

q(x)
− 1

∣∣∣∣ q(x)dx,

=

∫
|p(x)− q(x)| dx.

This is also known as the L1 distance between probability densities. Note that
the total variational distance has the additional property of being symmetric. The
above and some additional f -divergences are summarized in Table 2.1.

2.3 Density-difference divergences

The basic idea for f -divergence approximation is to derive a lower bound via
convex duality (Boyd and Vandenberghe, 2004). Optimizing with respect to this
lower bound results in a divergence estimator that estimates the divergence with
respect to the density ratio p(x)/q(x).

However, a potential weakness of f -divergences is that the density ratio can
diverge to infinity even for simple setups such as the ratio of two Gaussian densi-
ties (Cortes et al., 2010). This may make f -divergence approximation unreliable
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Table 2.1: Summary of commonly encountered f -divergences. Simple algebra
confirms that KL(p‖q) = rKL(q‖p) and PE(p‖q) = rPE(q‖p).

Name f(t) Definition

Kullback-Leibler (KL) t log(t) KL(p‖q) =
∫

log
(
p(x)
q(x)

)
p(x)dx

Pearson (PE)
1

2
(t− 1)2,

1

2
t2 − 1

2
PE(p‖q) = 1

2

∫ (p(x)
q(x)
− 1
)2
q(x)dx

Total variation |t− 1| TV(p|q) =
∫ ∣∣∣p(x)q(x)

− 1
∣∣∣ q(x)dx

reverse KL − log(t) rKL(p‖q) =
∫

log( q(x)
p(x)

)q(x)dx

reverse PE
1

2

1

t
− 1

2
rPE(p‖q) = 1

2

∫ ( q(x)
p(x)

)
q(x)dx− 1

2

in practice. To overcome this problem, we define a class of divergences based on
the density difference. Since the density difference is always bounded when the
densities are bounded, these divergences do not suffer from the problem described
above.

The class of density-difference divergences is defined as

DDψ(p, q) =

∫
ψ(p(x)− q(x))dx, (2.4)

where the function ψ(t) is convex with a minimum at ψ(0) = 0. A useful property
of these divergences is that they are always symmetric.

An obvious choice for is the squared function ψ(t) = 1
2
t2, resulting in the L2

distance between distributions,

L2(p, q) =
1

2

∫
(p(x)− q(x))2 dx.

Another possible choice is the ψ(t) = |t|, which results in the L1 distance between
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Figure 2.1: Illustration of different ψ(t) functions for the density-difference di-
vergence.

distributions,

L1(p, q) =

∫
|p(x)− q(x)| dx.

The L1 distance is an example of a function that is both a density-difference di-
vergence and an f -divergence. To generalize the above, we can consider a power
divergence

ψ(t) = b−1
b
|t|

b
b−1 ,

where b is an even number. This gives a divergence as

LP (p, q) =
b− 1

b

∫
|p(x)− q(x)|

b
b−1 dx.

By varying b, we can obtain divergences “between” the L1 and L2 distances.
These are illustrated in Figure 2.1
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2.4 Maximum mean discrepancy

The maximum mean discrepancy (MMD) is a computationally efficient method to
compare distributions. The MMD between two distributions p and q is defined as
(Gretton et al., 2007, 2012a)

MMD [F , p, q] = sup
f∈F

Ep [f(x)]− Eq [f(x)] , (2.5)

where f ∈ F is a function f : X → R from the feature space to the real line. The
above definition is also known as the integral probability metric (Müller, 1997).

To obtain a practical estimator, the set of possible functions, F should be
chosen and the optimization performed. The discussion on this aspect is deferred
until Section 3.4.

MMD as a measure of similarity between distributions has been used to test if
two samples are homogeneous (Gretton et al., 2007; Borgwardt et al., 2006) and
to test whether covariates are independent (Gretton et al., 2008). By comparing
distributions, it has also been used to adapt for covariate shift (Huang et al., 2007).



Chapter 3

Estimation of divergences

This chapter discusses the estimation of divergences from samples.

3.1 Introduction

The divergences discussed in the preceding chapter are defined in terms of prob-
ability distributions. In practical problems however, these divergences must be
estimated from samples in order to measure the similarity of the (unknown) under-
lying distributions. We assume that the following two sets of samples are available
for estimating the divergence:

Xp := {xi}ni=1

i.i.d.∼ p(x) and Xq := {x′i}
n′

i=1

i.i.d.∼ q(x).

A naı̈ve approach to estimate the divergences is to first estimate the densities p(x)

and q(x) separately from Xp and Xq. These estimates can then be plugged into the
definitions to obtain estimates for the divergences. However, as discussed in Sec-
tion 1.4, this violates Vapnik’s principle: density estimation is a more general and
difficult problem than divergence estimation. Therefore, following this principle,
we wish to estimate the divergence directly in a single shot approach.

We review how, using the squared function, it is possible to directly estimate
the Pearson divergence in terms of the density ratio. This is done by obtaining
an inequality that is a lower bound for the squared function. By applying this in-
equality to the Pearson divergence a lower bound, which is linear in the unknown
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densities, is obtained. This in turn enables estimation via sample averages and
the subsequent estimation of the Pearson divergence. Using the same inequality,
the L2 distance between probability densities may be lower bounded allowing for
direct estimation in terms of the density difference.

A similar inequality can be obtained for general convex functions via Fenchel
duality. Applying this inequality to general f -divergences leads to practical esti-
mators (Keziou, 2003; Nguyen et al., 2010b). We adapt this approach to estimate
density-difference divergences introduced in Chapter 2.

3.2 Squared-error bound

The least-squares method is used to bound the Pearson divergence and the L2-
distance (Kanamori et al., 2009; Sugiyama et al., 2013c). Consider the following
simple lower bound, which follows directly from expanding the square term,

1

2
(t− r)2 ≥ 0,

1

2
t2 − tr +

1

2
r2 ≥ 0,

1

2
t2 ≥ tr − 1

2
r2. (3.1)

We show below that this simple inequality can be used to create a single-shot
estimator for the Pearson divergence and L2 distance between densities.

3.2.1 Squared-error bound of the Pearson divergence

By using the above inequality, we can obtain a pointwise bound for the expression
in Eq. (2.3), where r(x) fulfils the role of r as

1

2

(
p(x)

q(x)

)2

≥
(
p(x)

q(x)

)
r(x)− 1

2
r(x)2,

1

2

(
p(x)

q(x)

)2

q(x) ≥ p(x)r(x)− 1

2
r(x)2q(x)
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Integrating the above and selecting the tightest bound gives,

1

2

∫ (
p(x)

q(x)

)2

q(x)dx− 1

2
≥ sup

r

∫
r(x)p(x)dx− 1

2

∫
r(x)2q(x)dx− 1

2
.

The function r(x) in the above inequality can be approximated as linear-in-parameter
model,

r̂(x) = α>ϕ(x),

whereα = (α1, α2, . . . , αb)
> are the parameters andϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕb(x))>

are the basis functions. In practice, we use Gaussian basis functions,

ϕi(x) = exp

(
− 1

2σ2
‖x− xi‖2

)
,

centered around the training points. This model allows us to write the lower bound
as

max
α

α>h− 1

2
α>Hα− 1

2
,

where

H :=

∫
ϕ(x)ϕ(x)>q(x)dx and h :=

∫
ϕ(x)p(x)dx.

Estimating the integrals with sample averages gives

Ĥ =
1

n′

n′∑
i=1

ϕ(x′i)ϕ(x′i)
>,

ĥ =
1

n

n∑
i=1

ϕ(xi).

An `2 regularizer can be added, which results in

α̂ = arg max
α

α>ĥ− 1

2
α>Ĥα− 1

2
λα>α.
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This leads to the following analytic estimate of the function r(x)

α̂ =
(
Ĥ + λI

)−1
ĥ.

By using this estimate for the function r(x), the following estimate for the Pearson
divergence can be obtained:

P̂E = ĥ
> (
Ĥ + λI

)−1
ĥ− 1

2
ĥ
> (
Ĥ + λI

)−1
Ĥ
(
Ĥ + λI

)−1
ĥ− 1

2
.

3.2.2 Squared-error bound of the L2 distance

The same inequality in Eq. (3.1), can be applied to bound the L2 distance between
probability densities (Sugiyama et al., 2012c, 2013c). The pointwise bound is

(p(x)− q(x))2 ≥ [p(x)− q(x)] g(x)− 1

2
g(x)2

By integrating both sides and selecting the tightest bound via maximization, we
get∫

(p(x)− q(x))2 dx ≥ sup
g

∫
g(x) [p(x)− q(x)] dx− 1

2

∫
g(x)2dx. (3.2)

As in the Pearson divergence case, the function g(x) can again be modeled using
a linear-in-parameter model,

ĝ(x) = α>ϕ(x),

whereα = (α1, α2, . . . , αb)
> are the parameters andϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕb(x))>

are the basis functions. In practice, we can use Gaussian basis functions centered
at the training points,

ϕi(x) = exp

(
− 1

2σ2
‖x− ci‖2

)
, (3.3)
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where (c1, . . . , cn, cn+1, . . . , cn+n′) := (x1, . . . ,xn,x
′
1, . . . ,x

′
n′). The optimal

parameter choice can then be written as

α = arg max
α

α>h− 1

2
α>Hα,

where

H`,`′ :=

∫
exp

(
−‖x− c`‖

2

2σ2

)
exp

(
−‖x− c`

′‖2

2σ2

)
=
(
πσ2
)d/2

exp

(
−‖c` − c`

′‖2

4σ2

)
,

h` :=

∫
exp

(
−‖x− c`‖

2

2σ2

)
p(x)dx−

∫
exp

(
−‖x− c`‖

2

2σ2

)
q(x)dx,

where d is the dimensionality of x. The expectation in h can be replaced by its
empirical estimate. Adding an `2 regularizer, results in the following objective
function:

α̂ = arg max
α

ĥ
>
α− 1

2
α>Hα− 1

2
λα>α.

The analytical solution of the above is then

α̂ = (H + λI)−1 ĥ.

Substituting the above analytical solution into the unregularized objective function
results in the following estimate of the L2 distance

L̂2 = ĥ
>

(H + λI)−1 ĥ− 1

2
ĥ
>

(H + λI)−1H (H + λI)−1 ĥ.

3.3 Fenchel duality bound

The Fenchel duality bounding technique was first introduced in Keziou (2003)
and later popularized in Nguyen et al. (2010b). This bound uses the fact that
f(t) is convex to obtain a lower bound for any f -divergence. The bound can be
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intuitively understood by considering the following self-evident inequality

tz − f(t) ≤ sup
t′
t′z − f(t′)

f(t) ≥ tz − f ∗(z), (3.4)

where

f ∗(z) = sup
t′
t′z − f(t′).

The function f ∗(z) is known as the Fenchel dual or convex conjugate (Boyd and
Vandenberghe, 2004). This inequality provides a lower bound that is linear w.r.t.
t for any function f(t). Furthermore, if the function f(t) is convex, this inequailty
is tight (Boyd and Vandenberghe, 2004, p. 94). The above inequality is known as
Fenchel’s inequality (for an arbitrary f ) or Young’s inequality (when f is differ-
entiable) (Boyd and Vandenberghe, 2004).

3.3.1 Fenchel lower-bound for f -divergences

We can obtain a lower-bound for the f -divergence in Eq. (2.1) by applying the
bound in Eq. (3.4) in a pointwise manner. The first step is bounding the convex
function f(t),

f

(
p(x)

q(x)

)
≥ r(x)

(
p(x)

q(x)

)
− f ∗(r(x)),

where r(x) fulfils the role of z in Eq. (3.4). Multiplying both sides with q(x)

gives,

f

(
p(x)

q(x)

)
q(x) ≥ r(x)p(x)− f ∗(r(x))q(x). (3.5)

Integrating and then selecting the tightest bound gives the following estimator,

Df (p‖q) ≥ sup
r

∫
r(x)p(x)dx−

∫
f ∗(r(x))q(x)dx.
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The above bound is already useful, since the expectations can be estimated via
sample averages as

D̂f (p‖q) ≥ sup
r

1

n

n∑
i=1

r(xi)−
1

n′

n′∑
j=1

f ∗(r(x′i)).

Furthermore, the conjugate f ∗(z) of any function f(t) is convex, so, if r(x) is a
linear model, the above is guaranteed to be a convex problem. Convex conjugates
for functions defining several f -divergences are given in Table 3.1.

Table 3.1: Summary of estimators for commonly encountered divergences. Com-
pare with Table 2.1

Name f(t) f ∗(v) f ∗′(v) Estimates

Kullback-Leibler t log(t) ev−1 ev−1 log p(x)
q(x)

+ 1

Pearson (PE) 1
2
t2 − 1

2
1
2
v2 + 1

2
v p(x)

q(x)

Total variation |t− 1|

{
0 0 ≤ v ≤ 1

∞ otherwise
− sign

[
p(x)
q(x)
− 1
]

Reverse KL − log(t) −1− log(−v) − 1
v

- q(x)
p(x)

From the table it is clear that the squared-error bound for the Pearson diver-
gence is exactly the same as the Fenchel duality bound. For continuous f(t), the
following quantity is estimated

r(x) =
[
f ∗′
]−1(p(x)

q(x)

)
,

where f ∗′ denotes the derivative of the conjugate f ∗. This relation is obtained by
solving the right-hand side of Eq. (3.5).
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3.3.2 Fenchel lower bound for density-difference divergences

An estimator for the density-difference divergence can also be obtained by apply-
ing the Fenchel inequality. Applying this inequality pointwise gives,

ψ(p(x)− q(x)) ≥ g(x) [p(x)− q(x)]− ψ∗(g(x)),∫
ψ(p(x)− q(x))dx ≥

∫
g(x) [p(x)− q(x)] dx−

∫
ψ∗(g(x))dx.

Therefore, the tightest bound can be obtained as

DDψ(p, q) ≥ sup
g

∫
g(x) [p(x)− q(x)] dx−

∫
ψ∗(g(x))dx.

The expectations can be estimated by sample averages,

D̂Dψ(p, q) ≥ sup
g

1

n

n∑
i=1

g(xi)−
1

n′

n′∑
j=1

g(x′i)−
∫
ψ∗(g(x))dx. (3.6)

The fact that the conjugate ψ∗(v) of the function ψ(t) is always convex ensures
that the above optimization problem is always convex. A small difficulty with the
above expression is the integration of the third term. For some problems, such
as the L2 distance with Gaussian basis functions, the last term can be calculated
analytically.

A list of some possible functions are given in Table 3.2. From the table we
confirm that the least-squares bound and the Fenchel duality bound are exactly
the same.

By interpreting the conjugate as a constraint, we can rewrite the L1 distance
as,

L1 (p, q) = sup
g

∫
g(x) [p(x)− q(x)] dx (3.7)

subject to |g(x)| ≤ 1 ∀ x.

For continuous functions, g(x) estimates

g(x) =
[
ψ∗′
]−1

(p(x)− q(x)) .
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Consulting the table, we see that when estimating the L2 distance, the density
difference

g(x) = p(x)− q(x),

is estimated. For the power density-difference divergence, the following quantity
is estimated

g(x) = b−1
√
p(x)− q(x),

where b is an even number. This is plotted for separate values of b in Figure 3.1.

3.4 Maximum mean discrepancy estimation

In this section, we review the estimation of the maximum mean discrepancy (Gret-
ton et al., 2012a). The relationship between the maximum mean discrepancy and
the L1 distance is also shown.

3.4.1 Estimation of MMD

In the maximum mean discrepancy, the set of functions F in

MMD [F , p, q] = sup
f∈F

Ep [f(x)]− Eq [f(x)] ,

is selected as the unit ball inH, a reproducing kernel Hilbert space (RKHS) (Gret-
ton et al., 2012a). Let k(x, x′) be a reproducing kernel. The following property,
known as the reproducing property, holds for any f ∈ F , (Aronszajn, 1950;
Schölkopf and Smola, 2001)

〈f, k(x, ·)〉 = f(x).
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Figure 3.1: Values estimated using the L1, L2, and power density-difference di-
vergences. As b increases, the estimated value becomes closer to the
sign of the density difference.

Table 3.2: Summary of density-difference divergences

Name ψ(t) ψ∗(v) f ∗′

L1 distance |t|

{
0 −1 ≤ v ≤ 1,

∞ otherwise.

L2 distance 1
2
t2 1

2
v2 v

Power divergence b−1
b
|t|

b
b−1 , b even 1

b
|v|b vb−1
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MMD on the unit ball can then be expressed as

MMD [F , p, q] = sup
‖f‖H≤1

Ep [f(x)]− Eq [f(x)] ,

= sup
‖f‖H≤1

Ep [〈f, k(x, ·)〉H]− Eq [〈f, k(x, ·)〉H] ,

= sup
‖f‖H≤1

〈f,Ep [k(x, ·)]− Eq [k(x, ·)]〉H.

Let µp, µq ∈ H be defined as

µp = Ep [k(x, ·)] and µq = Eq [k(x, ·)] .

The squared MMD can then be expressed as (Gretton et al., 2012a)

MMD [F , p, q]2 =

[
sup
‖f‖H≤1

〈f, µp − µq〉H

]2

=

[
〈 µp − µq
‖µp − µq‖H

, µp − µq〉H
]2

=

[
1

‖µp − µq‖H
〈µp − µq, µp − µq〉H

]2
= ‖µp − µq‖2H .

Expanding the above gives (Gretton et al., 2012a)

MMD2 [F , p, q] = ‖µp − µq‖2H
= ‖Ep [k(x, ·)]− Eq [k(x, ·)]‖2H
= Ex,x′∼p [k(x, x′)]− 2Ex∼p,x′∼q [k(x, x′)] + Ex,x′∼q [k(x, x′)] .

(3.8)

The above leads to the following unbiased estimator of MMD2 (Borgwardt et al.,
2006)

M̂MD2 =
1

n(n− 1)

n∑
i 6=j

k(xi, xj)−
2

nn′

n,n′∑
i,j=1

k(xi, x
′
j) +

1

n′(n′ − 1)

n′∑
i 6=j

k(xi, xj).
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The requirement to ensure that the MMD is a metric (i.e., a proper distance func-
tion) between distributions is that the RKHS is a universal RKHS (Gretton et al.,
2012a). It was proven in Steinwart (2002) that the Gaussian RKHS is universal.

Using the Gaussian kernel however, still leaves the question of selecting the
kernel width. A useful heuristic, that was used in Gretton et al. (2007), is setting
the kernel width equal to the median distance between the samples. Recently, a
method was introduced to automatically select the kernel width in the two-sample
problem (Gretton et al., 2012b). It is still not clear how to perform kernel selection
on other problems.

3.4.2 Relation to L1 distance estimation

The function f(x) in Eq. (2.5) is referred to as the “witness” function. If the
witness function is chosen as the population version of the difference between
kernel density estimators for p(x) and q(x),

f(x) =

∫
K(x,y)p(y)dy −

∫
K(x,y′)q(y′)dy′,

then normal MMD defined in Eq. (2.5) is equivalent to the squared MMD in
Eq. (3.8). Furthermore, from the Cauchy-Schwartz inequality |〈f, g〉H| ≤ ‖f‖H ‖g‖H,
we have

f(x)2 = (〈f(·), k(·,x)〉H)2 ≤ ‖f‖2H k(x,x),

for all x. When a Gaussian or Laplace kernel is used, k(x,x) = 1. Then, for any
f such that ‖f‖H ≤ 1, we have |f(x)| ≤ 1 for all x. This implies that the squared
MMD is equivalent to the L1 distance in Eq. (3.7).



Chapter 4

Semi-supervised class-prior
estimation

In this chapter, we discuss the problem of class-prior estimation in a semi-supervised
setup.

4.1 Introduction

Most supervised learning algorithms assume that training and test data follow the
same probability distribution (Vapnik, 1998; Hastie et al., 2001; Bishop, 2006).
However, this de facto standard assumption is often violated in real-world prob-
lems, caused by intrinsic sample selection bias or inevitable non-stationarity (Heck-
man, 1979; Quiñonero-Candela et al., 2009; Sugiyama and Kawanabe, 2012).

In classification scenarios, changes in class balance are often observed – for
example, the male-female ratio is almost fifty-fifty in the real-world (test set),
whereas training samples collected in a research laboratory tends to be domi-
nated by male data. Applying traditional classification methods in this class-prior
change setting may lead to an excess misclassification rate.

We can gain an intuitive understanding of the adverse effect of class-prior
change by considering the Bayes optimal risk. The risk for a binary experiment
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Figure 4.1: Risk curves when classes are highly overlapping and when the classes
are non-overlapping, but the model is misspecified. The x-axis shows
the class prior and the y-axis the risk. The dashed line is the risk for
the function f selected according to the training class prior.

with a class prior p(y = 1) = θ can be expressed as

Ep [L(f(x), y)] = min
f

θ

∫
L(f(x), 1)p(x|y = 1)dx

+ (1− θ)
∫
L(f(x),−1)p(x|y = −1)dx, (4.1)

where f is an arbitrary function. From the above, it is obvious that the function
is concave with respect to θ and passes through zero when t = 0 and t = 1. An
example of such a situation is given in Figure 4.1(a).

In the training phase, a function f is selected so as to minimize the risk accord-
ing to the training class prior θtr. During the test phase, this function is applied to
samples from a distribution with a prior θte. The difference between the optimal
risk for the test distribution and the risk using the function f is denoted as E. We
refer to this as the excess risk, since this is unnecessarily introduced due to the
change in class prior.

It may appear that class-prior change is only a problem when the class-conditional
densities significantly overlap. However, class-prior change is also a problem
when the class-conditional densities do not overlap but a misspecified model is
used. To model this, assume that f in Eq. (4.1) is selected from a set of functions
F . The result of varying the class prior is illustrated in Figure 4.1(b).
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The bias caused by differing class balances can be systematically adjusted by
instance reweighting or resampling if the class balance in the test dataset is known
(Elkan, 2001; Lin et al., 2002).

However, the class ratio in the test dataset is often unknown in practice. A
possible approach to mitigating this problem is to learn a classifier so that the
performance for all possible class balances are improved, e.g., through maximiza-
tion of the area under the ROC curve (Cortes and Mohri, 2004; Clémençon et al.,
2009). Alternatively, in the minimax approach, a classifier is learned so as to min-
imize the worst-case performance for any change in the class prior (Duda et al.,
2001; Van Trees, 1968). The disadvantage of the minimax approach is that it is
often overly pessimistic. A more direct approach is to estimate the class ratio
in the test dataset and use this estimate for instance reweighting or resampling.
We focus on this scenario under a semi-supervised learning setup (Chapelle et al.,
2006), where no labeled data is available from the test domain.

Saerens et al. (2001) is a seminal paper on this topic, which proposed to esti-
mate the class ratio by the expectation-maximization (EM) algorithm (Dempster
et al., 1977) – alternately updating the test class-prior and class-posterior prob-
abilities from some initial estimates until convergence. This method has been
successfully applied to various real-world problems such as word sense disam-
biguation (Chan and Ng, 2006) and remote sensing (Latinne et al., 2001).

In this chapter, we first reformulate the algorithm in Saerens et al. (2001), and
show that this actually corresponds to approximating the test input distribution by
a linear combination of class-wise training input distributions under the Kullback-
Leibler (KL) divergence (Kullback and Leibler, 1951). In this procedure, the
class-wise input distributions are approximated via class-posterior estimation, for
example, by kernel logistic regression (Hastie et al., 2001) or its squared-loss
variant (Sugiyama, 2010b).

Since indirectly estimating the divergence by estimating the individual class-
posterior distributions may not be the best scheme, the above reformulation mo-
tivates us to develop a more direct approach: matching the mixture of class-wise
training input densities to the test input distribution. Historically, non-parametric
estimation of the mixing proportions by matching the empirical distribution func-
tions was investigated in Hall (1981), and its variant based on kernel density
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estimation has been developed in Titterington (1983). However, these classical
approaches do not perform well in high-dimensional problems (Sugiyama et al.,
2013a). Recently, KL-divergence estimation based on direct density-ratio estima-
tion has been shown to be promising (Nguyen et al., 2010b; Sugiyama et al.,
2008b). Furthermore, a squared-loss variant of the KL divergence called the
Pearson (PE) divergence (Pearson, 1900) can also be approximated in the same
way, with an analytic solution that can be computed efficiently (Kanamori et al.,
2009). Note that the PE divergence and the KL divergence both belong to the f -
divergence class (Ali and Silvey, 1966; Csiszár, 1967), which share similar prop-
erties. In this chapter, with the aid of this density-ratio based PE-divergence es-
timator, we propose a new semi-supervised method for estimating the class ratio
in the test dataset. Through experiments, we demonstrate the usefulness of the
proposed method.

4.2 Problem formulation and existing method

In this section, we formulate the problem of semi-supervised class-prior estima-
tion and review the existing method of Saerens et al. (2001).

4.2.1 Problem formulation

Let x ∈ Rd be the d-dimensional input data, y ∈ {1, . . . , c} be the class label,
and c be the number of classes. We consider class-prior change, i.e., the class-
prior probability for training data ptr(y) and that for test data pte(y) are different.
However, we assume that the class-conditional density for training data ptr(x|y)

and that for test data pte(x|y) are the same:

ptr(x|y) = pte(x|y). (4.2)

Note that training and test joint densities ptr(x, y) and pte(x, y) as well as training
and test input densities ptr(x) and pte(x) are generally different under this setup.

For the purposes of classification, we are generally interested in selecting a
classifier that minimizes the expected loss (or the risk) with respect to the test
distribution. We can rewrite the test risk in terms of the training class conditional
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density, ptr(x|y), as

R = Epte [L(f(x), y)] (4.3)

=
∑
y

∫
L(f(x), y)pte(x, y)dx

=
∑
y

∫
L(f(x), y)ptr(x|y)pte(y)dx, (4.4)

where L : R × R → R is the loss function. Thus, if an estimate of the test
class-priors is known, the expected loss can be calculated from the training class-
conditional densities. The goal in this chapter is to estimate pte(y) from labeled
training samples {(xi, yi)}ni=1 drawn independently from ptr(x, y) and unlabeled
test samples {x′i}

n′

i=1 drawn independently from pte(x)1. Given test labels {y′i}
n′

i=1,
pte(y) can be naively estimated by n′y/n

′, where n′y is the number of test samples
in class y. Here, however, we would like to estimate pte(y) without {y′i}

n′

i=1.

4.2.2 Existing method

We give a brief overview of an existing method for semi-supervised class-prior
estimation (Saerens et al., 2001), which is based on the expectation-maximization
(EM) algorithm (Dempster et al., 1977).

In the algorithm, test class-prior and class-posterior estimates p̂te(y) and p̂te(y|x)

are iteratively updated as follows:

1. Obtain an estimate of the training class-posterior probability, p̂tr(y|x), from
training data {(xi, yi)}ni=1, for example, by kernel logistic regression (Hastie
et al., 2001) or its squared-loss variant (Sugiyama, 2010b).

2. Obtain an estimate of the training class-prior probability, p̂tr(y), from the
labeled training data {(xi, yi)}ni=1 as p̂tr(y) = ny/n, where ny is the number
of training samples in class y. Set the initial estimate of the test class-prior
probability equal to it: p̂0te(y) = p̂tr(y).

1As we can confirm later, our proposed method does not actually require the independence
assumption on {yi}ni=1, but is valid for deterministic {yi}ni=1 as long as xi (i = 1, . . . , n) is drawn
independently from ptr(x|y = yi). However, to remain consistent with other methods, we assume
the independence condition here.
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3. Repeat until convergence: t = 1, 2, . . .

(a) Compute a new test class-posterior estimate p̂tte(y|x) based on the cur-
rent test class-prior estimate p̂t−1te (y) as

p̂tte(y|x) =
p̂t−1te (y)p̂tr(y|x)/p̂tr(y)∑c

y′=1 p̂
t−1
te (y′)p̂tr(y′|x)/p̂tr(y′)

. (4.5)

(b) Compute a new test class-prior estimate p̂tte(y) based on the current
test class-posterior estimate p̂tte(y|x) as

p̂tte(y) =
1

n′

n′∑
i=1

p̂tte(y|x′i). (4.6)

Note that Eq.(4.5) comes from the Bayes formulae,

ptr(x|y) =
ptr(y|x)ptr(x)

ptr(y)
and pte(x|y) =

pte(y|x)pte(x)

pte(y)
,

combined with Eq.(4.2):

pte(y|x) ∝ pte(y)

ptr(y)
ptr(y|x).

Eq.(4.6) comes from empirical marginalization of

pte(y) =

∫
pte(y|x)pte(x)dx.

It was suggested that this procedure may converge to a local optimal solution
(Saerens et al., 2001). In the following section, we will show that the objective
function is actually convex, but that the method suggested in Saerens et al. (2001)
may fail to converge to the unique optimal value.
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4.3 Reformulation of the EM algorithm as distribu-
tion matching

In this section, we show that the class priors can be estimated by matching the
test input density to a linear combination of class-wise training input distributions
under the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951). We
show that the existing EM method performs this matching via an estimation of the
class posterior. Furthermore, we show that this results in a convex problem, but
that the existing EM method may not obtain the optimal result.

4.3.1 Class-Prior Estimation as Distribution Matching

Based on the assumption that the class-conditional densities for training and test
data are unchanged (see Eq.(4.2)), let us model the test input density pte(x) by

qte(x) =
c∑

y=1

θyptr(x|y), (4.7)

where θy is a coefficient corresponding to pte(y):

c∑
y=1

θy = 1. (4.8)

We match the model qte(x) with the test input density pte(x) under the KL diver-
gence:

KL(pte‖qte) :=

∫
pte(x) log

pte(x)

qte(x)
dx,

=

∫
pte(x) log pte(x)dx−

∫
pte(x) log

(
c∑

y=1

θyptr(x|y)

)
dx.

(4.9)

We wish to select the class prior, under the constraint Eq.(4.8), that minimizes this
KL divergence.



40 Chapter 4. Semi-supervised class-prior estimation

4.3.2 Equivalence of the EM method to divergence matching

When the KL divergence is minimized in Eq.(4.9), we can omit the term that is
constant with respect to the class prior. This results in an optimization problem of

arg min
{θy}cy=1

KL(pte‖qte) = arg max
{θy}cy=1

∫
pte(x) log

(
c∑

y=1

θyptr(x|y)

)
dx,

= arg max
{θy}cy=1

∫
pte(x) log

(
ptr(x)

c∑
y=1

θy
ptr(x, y)

ptr(x)ptr(y)

)
dx,

= arg max
{θy}cy=1

∫
pte(x) log ptr(x)dx

+

∫
pte(x) log

(
c∑

y=1

θy
ptr(x, y)

ptr(x)p(y)

)
dx,

= arg max
{θy}cy=1

∫
pte(x) log

(
c∑

y=1

θy
ptr(x, y)

ptr(x)ptr(y)

)
dx.

Approximating the expectation with its empirical average gives the following op-
timization problem:

max
{θy}

1

n′

n′∑
i=1

log

(
c∑

y=1

θyptr(y|x′i)/ptr(y)

)
, (4.10)

subject to Eq.(4.8).

The above can be viewed as a convex problem since the concave log func-
tion is maximized and the constraints in Eq.(4.8) is linear. Therefore, the optimal
points must satisfy the Karush-Kuhn-Tucker (KKT) conditions (Boyd and Van-
denberghe, 2004). The KKT conditions for the above problem is given by Eq.(4.8)
and

1

n′

n′∑
i=1

ptr(y|x′i)/ptr(y)∑c
y′=1 θy′ptr(y′|x′i)/ptr(y′)

= ν, ∀y = 1, . . . , c, (4.11)
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where ν is a Lagrange multiplier. From these equations, we can determine ν as

ν = 1 · ν =

(
c∑

y=1

θy

)
·

(
1

n′

n′∑
i=1

ptr(y|x′i)/ptr(y)∑c
y′=1 θy′ptr(y′|x′i)/ptr(y′)

)

=
1

n′

n′∑
i=1

∑c
y=1 θyptr(y|x′i)/ptr(y)∑c
y′=1 θy′ptr(y′|x′i)/ptr(y′)

= 1.

Then the solution {θy}cy=1 can be calculated by fixed-point iteration as follows
(McLachlan and Krishnan, 1997):

θy ←− θy

(
1

n′

n′∑
i=1

ptr(y|x′i)/ptr(y)∑c
y′=1 θy′ptr(y′|x′i)/ptr(y′)

)
. (4.12)

By using an estimator of the class-posterior, p̂tr(y|x), in the above expression, we
obtain an estimator for the test class-prior p̂te(y). The above is actually the same
as Eq.(4.6) with Eq.(4.5) substituted.

4.3.3 Fixed-point iteration

The unknown class-priors can therefore be obtained as the solution to the non-
linear equation given by Eq.(4.11). A simple way to construct a solution to a non-
linear equation is via a fixed-point iteration (as in Eq.(4.12)). For conciseness, we
rewrite the fixed-point iteration as a mapping T : Rc → Rc:

[T (θ)]y =
1

n′

n′∑
i=1

θyptr(y|x′i)/ptr(y)∑c
y′=1 θy′ptr(y′|x′i)/ptr(y′)

, (4.13)

where θ = [θ1 θ2 · · · θc]> and [ ]y denotes the yth component of a vector. The
solution is then iteratively calculated as

θ ← T (θ),

until a fixed point θ = T (θ) is reached. Since the problem is convex, we would
expect that there is a single unique fixed point. The Banach fixed-point theo-
rem (also known as the contraction mapping theorem) (Hunter and Nachtergaele,
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2001, p.62) guarantees a unique solution if T is a contraction mapping. T is a
contraction mapping if

d
(
T (θj), T (θk)

)
< d

(
θj,θk

)
, ∀ θj,θk ∈ Rc, (4.14)

where d : Rc × Rc → R is a metric.

However, we can actually show that Eq.(4.13) is not a contraction mapping.
To explain this, we consider the counter example with vectors defined as

[
θj
]
i

=

1 if i = j,

0 otherwise,

where 1 ≤ j ≤ c. By substituting this into Eq.(4.13), we obtain

T (θj) = θj, ∀j = 1, . . . , c.

Therefore, for any two vectors θj and θk, j, k ∈ 1 . . . c, selected as above,
d
(
T (θj), T (θk)

)
= d

(
θj,θk

)
. The condition in Eq.(4.14) is therefore violated,

which means that T is not a contraction mapping. From this example, it is also
immediately obvious that any θj is a fixed point, but not necessarily the optimal
value.

As shown above, the method of Saerens et al. (2001) can be regarded as solv-
ing a convex problem via fixed point iteration, but it may not result in the unique
optimal value. These spurious optimal values is not a characteristic of the problem
itself (which is convex), but due to solving the KKT conditions with a fixed-point
iteration.

Spurious fixed points may be avoided by using several different initial values
and then selecting the optimal value according to Eq.(4.10). Alternatively, the
objective function Eq.(4.10) can be directly solved, e.g. through gradient descent
and projection (Boyd and Vandenberghe, 2004). However, indirectly estimating
the KL divergence via class-posterior estimation may not be the best scheme in
practice.
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4.4 Class-prior estimation by f -divergence match-
ing

The analysis in the previous section motivates us to explore a more direct way to
learn coefficients {θy}cy=1. That is, given an estimator of a divergence from pte(x)

to qte(x), coefficients {θy}cy=1 are learned so that the divergence is minimized.

In this section, we first review a general framework for estimating the class
prior via f -divergence matching (Ali and Silvey, 1966; Csiszár, 1967). We then
review two specific methods of divergence estimation for the KL divergence and
the Pearson (PE) divergence (Pearson, 1900). Finally, we propose to use the PE-
divergence estimator for determining the coefficients {θy}cy=1.

4.4.1 Framework for class-prior estimation

As discussed in the previous section, we wish to choose coefficients {θy}cy=1, so
that the model of the test input density,

qte(x) =
c∑

y=1

θyptr(x|y),

is the same as the input density pte(x). We wish to select {θy}cy=1 so that the two
distributions are the same under an f -divergence (Ali and Silvey, 1966; Csiszár,
1967)

Df (pte‖qte) :=

∫
qte(x)f

(
pte(x)

qte(x)

)
dx,

where the specific divergence is determined by the function f(t). As discussed in
Section 3.3.1, this f -divergence can be estimated as

Df (pte‖qte) ≥ max
r

∫
pte(x)r(x)dx−

∫
qte(x)f ∗(r(x))dx. (4.15)

The above is a useful expression because the right-hand side only contains expec-
tations of r and f ∗(r(x)), which can be approximated by sample averages. For a
continuous f , the maximum is attained for a function r such that p′(x)/q′(x) =
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∂f ∗(r(x)) (where ∂f ∗ is the derivative of f ∗) (Nguyen et al., 2010a). Therefore,
in contrast to the plug-in approach, the f -divergence is directly estimated in terms
of the density ratio. This is intuitively advantageous since the estimation of den-
sities is a more general problem than the estimation of a density ratio (Sugiyama
et al., 2012b). Below, we show specific methods of divergence approximation for
the KL and PE divergences under the model (4.7) and the following parametric
expression of the density ratio r(x):

r(x) =
b∑
`=0

α`ϕ`(x), (4.16)

where {α`}b`=0 are parameters and {ϕ`(x)}b`=0 are basis functions. In practice, we
use a constant basis and Gaussian kernels centered at the training data points, i.e.,
for b = n and ` = 1, 2, . . . , n,

ϕ0(x) = 1 and ϕ`(x) = exp

(
−‖x− x`‖

2

2σ2

)
.

The constant basis function is included since, if two distributions are equal, the
density ratio would be r(x) = 1. To prevent overfitting, we add a regularizer
of the form λα>Rα to the objective function, where λ is a small constant, R is
defined as

R =

[
0 01×b

0b×1 Ib×b

]
, (4.17)

0a×b denotes the zero matrix of size a × b, and Ib×b denotes a b × b identity
matrix. Since the regularizer should penalize non-smoothness, the constant basis
function was not regularized. The model for the density ratio is then learned by
the following regularized empirical maximization problem:

max
{α`}b`=0

b∑
`=0

α`
n′

n′∑
i=1

ϕ`(xi)−
c∑

y=1

θy
ny

∑
i:yi=y

f ∗

(
b∑
`=0

α`ϕ`(xi)

)

−λ
b∑
`=0

b∑
`′=0

α`α`′R`,`′ . (4.18)
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The only remaining task in order to obtain an estimator of the class prior is to
choose the function f(t). The choice of f(t) can be made by considering the
sensitivity and robustness trade-off of f -divergences. Furthermore, the choice of
f(t) also affects the computational complexity of the resulting method.

4.4.2 KL-divergence approximation

For the reversed KL divergence, the function f(t) and its conjugate f ∗(v) is

f(t) = − log(t) and f ∗(v) = −1− log(−v).

For the sake of convenience, we regard −r(x) as r(x) (Nguyen et al., 2010a).
We can then write the empirical approximation of Eq.(4.15) under Eqs.(4.7) and
(4.16) as follows (Nguyen et al., 2010a):

KL (qte‖pte) ≈ max
{α`}b`=0

− 1

n′

n′∑
i=1

b∑
`=0

α`ϕ`(x
′
i) +

c∑
y=1

θy
ny

∑
i:yi=y

log

(
b∑
`=0

α`ϕ`(xi)

)
+1.

We note that when the above is used to estimate KL(p′‖q′), the function r(x) will
be an estimate of the density ratio q′(x)/p′(x). An alternative choice would be to
estimate KL(q′‖p′), which would lead to an estimate of r(x) = p′(x)/q′(x). The
density q′(x) may, however, have a small support for certain values of {θy}cy=1,
causing the density ratio p′(x)/q′(x) to diverge. For this reason, the estimator
KL(p′‖q′), which estimates the density ratio q′(x)/p′(x), is preferred.

The resulting regularized optimization problem,

max
{α`}b`=0

− 1

n′

n′∑
i=1

b∑
`=0

α`ϕ`(x
′
i) +

c∑
y=1

θy
ny

∑
i:yi=y

log

(
b∑
`=0

α`ϕ`(xi)

)

−λ
b∑
`=0

b∑
`′=0

α`α`′R`,`′ ,

is convex and the solution can be obtained by naive optimization. The Gaus-
sian width and regularization constant can be systematically optimized by cross-
validation. The KL-divergence estimator obtained above was proved to possess
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superior convergence properties both in parametric and non-parametric setups
(Nguyen et al., 2010a; Sugiyama et al., 2008b).

However, in the current context of estimating the test class-priors, computing
the KL-divergence estimator is rather time-consuming because optimization of
{α`}b`=0 needs to be carried out for each {θy}cy=1.

4.4.3 PE-divergence approximation

As an alternative to the KL divergence, let us consider the PE divergence defined
by

PE(qte‖pte) :=
1

2

∫ (
q′(x)

p′(x)
− 1

)2

p′(x)dx

=
1

2

∫ (
q′(x)

p′(x)

)2

p′(x)dx− 1

2
,

which is an f -divergence with

f(u) =
u2

2
− 1

2
.

For this f , the convex conjugate is given by

f ∗(v) =
v2

2
+

1

2
.

The function r(x) will again be an estimate of the ratio q′(x)/p′(x). The em-
pirical approximation of Eq.(4.15) under Eqs.(4.7) and (4.16) is given as follows
(Kanamori et al., 2009):

PE(qte‖pte) ≈ max
α

[
− 1

2
α>Ĝα+α>Ĥθ − 1

2

]
,
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where

α = [α0 α1 · · · αb]> , Ĝ =
1

n′

n′∑
i=1

ϕ(x′i)ϕ(x′i)
>,

ϕ(x) = [ϕ0(x) ϕ1(x) · · · ϕb(x)] , Ĥ =
[
ĥ1 · · · ĥc

]
,

ĥy =
1

ny

∑
i:yi=y

ϕ(xi), θ = [θ1 θ2 · · · θc]> .

A regularized solution to the above maximization problem can be obtained
analytically as

α̂ =
(
Ĝ+ λR

)−1
Ĥθ, (4.19)

where the regularization matrix is defined in Eq.(4.17). The PE-divergence esti-
mator obtained above was proved to have superior convergence properties both in
parametric and non-parametric setups (Kanamori et al., 2009, 2012a). The ker-
nel width and regularization parameter can be systematically optimized by cross-
validation (Kanamori et al., 2009, 2012a).

4.4.4 Learning class ratios by PE divergence matching

As shown above, the KL and PE divergences can be systematically estimated
without density estimation via Legendre-Fenchel convex duality. Among them,
the PE-divergence estimator is more useful for our purpose of learning class ratios,
because of the following reasons: The PE divergence was shown to be more robust
against outliers than the KL divergence, based on power divergence analysis (Basu
et al., 1998; Sugiyama et al., 2012a). This is a useful property in practical data
analysis suffering high noise and outliers. Furthermore, the above PE-divergence
estimator was shown to possess the minimum condition number among a general
class of estimators, meaning that it is the most stable estimator (Kanamori et al.,
2012b).

Another practically more important advantage of the PE-divergence estimator
is that it can be computed efficiently and analytically. This analytical solution
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allows us to express the PE divergence directly in terms of the class priors:

P̂E(θ) := −1

2
θ>Ĥ

>(
Ĝ+ λR

)−1
Ĝ
(
Ĝ+ λR

)−1
Ĥθ

+ θ>Ĥ
> (
Ĝ+ λR

)−1
Ĥθ − 1

2
.

The solution can then be obtained by minimizing the above expression with re-
spect to θ.

4.4.5 Experiments

In this section, we report experimental results.

Benchmark datasets

The following five methods are compared:

• EM-KLR: The method of Saerens et al. (2001) (see Section 4.2.2). The
class-posterior probability of the training dataset is estimated using `2-penalized
kernel logistic regression with Gaussian kernels. The L-BFGS quasi-Newton
implementation included in the ‘minFunc’ package is used for logistic re-
gression training (Schmidt, 2005).

• KL-KDE: The estimator of the KL divergence KL(p′‖q′) using kernel den-
sity estimation (KDE). The class-wise input densities are estimated by KDE
with Gaussian kernels. The kernel widths are estimated using likelihood
cross-validation (Silverman, 1986).

• PE-KDE: The estimate of the Pearson divergence PE(q′‖p′) using KDE.
The class-wise input densities are estimated by KDE with Gaussian ker-
nels. The kernel widths are estimated using least-squares cross-validation
(Silverman, 1986).

• KL-DR: The proposed method (see Section 4.4.2) using a KL-divergence
estimator based on the density ratio (DR). For the optimization, the L-BFGS
implementation ‘minFunc’ is used (Schmidt, 2005).
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Table 4.1: Datasets used in the experiments. The SAHeart dataset was taken from
Hastie et al. (2001). All other datasets were taken from the LIBSVM
webpage (Chang and Lin, 2011).

Dataset d # samples # positives # negatives
Adult 123 32561 7841 24720
Australian 14 690 307 383
Diabetes 8 768 500 268
German 24 1000 300 700
Ionosphere 34 351 225 126
Ringnorm 20 7400 3664 3736
SAHeart 9 462 302 160
Statlog heart 13 270 120 150

• PE-DR: The proposed method (see Section 4.4.4) using the PE-divergence
estimator based on DR.

Here, we use binary-classification benchmark datasets listed in Table 4.1. We se-
lect 10 samples from each of the two classes for the training dataset and 50 sam-
ples for the test dataset. The samples in the test set are selected with probability θ∗

from the first class and with probability (1− θ∗) from the second class. The exper-
iments are performed for several class-priors, selected as θ∗ ∈ [0.1 0.2 . . . 0.8 0.9].

The squared error of the estimated class-priors averaged over 1000 runs are
given in Figure 4.2. This shows that methods based on the KL and PE diver-
gences overall outperform EM-KLR, implying that our reformulation of the EM
algorithm as distribution matching (see Section 4.3) contributes to obtaining ac-
curate class-ratio estimates. Among the divergence-based methods, PE-DR and
KL-DR outperforms PE-KDE and KL-KDE, showing that directly estimating den-
sity ratios without density estimation is more promising as divergence estimators.
Overall, PE-DR and KL-DR are shown to be the most accurate.

The average calculation time for the estimation of the class priors is given
in Figure 4.3. From this, it can be seen that the speed of the PE-DR method is
similar to the EM-KLR method and two orders of magnitude faster than the KL-
DR method.

To illustrate how more accurate estimates of the class prior translate into
higher classification accuracies, we train a classifier with the estimated prior. For
the binary benchmark experiments, a weighted variant of the `2-regularized kernel
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logistic regression classifier (Hastie et al., 2001) was used.
We minimize the prior-corrected expected loss of Eq.(4.4), where the expecta-

tion is approximated by its empirical average and the class priors are replaced by
the estimated class-priors. Using the logistic loss, a classifier can be learned as,

(
β̂1, . . . , β̂n

)
:= arg min β1, . . . , βn

[
2∑
y=1

θ̂y
ny

∑
i:yi=y

L

(
zi,

n∑
`=1

β`K(xi,x`)

)
+ δ

n∑
`=1

β2
`

]
,

where L(z, f(x)) is the logistic loss defined as

L(z, f(x)) = log (1 + exp (−zf(x))) ,

and the class labels y ∈ {1, 2} are encoded as z ∈ {−1, 1}. The width of the
Gaussian kernel K(x,x′) and the regularization parameter δ(≥ 0) are chosen
by five-fold weighted cross-validation (Sugiyama et al., 2007) in terms of the
misclassification error. The class label ŷ for the test input x is then estimated
by

ŷ =

1
∑n

i=1 β̂iK(x,x`) < 0,

2 otherwise.

The results in Figure 4.4 show that, as expected, a more accurate estimate of
the class prior tends to give a lower misclassification rate. Taking into account
both the computation time and accuracy, the PE-DR method is overall the most
promising method.

4.4.6 Real-world application

Finally, we demonstrate the usefulness of the proposed approach in a real-world
problem of military vehicle classification from geophone recordings (Duarte and
Hu, 2004). This is a three-class problem: two vehicle classes and a class of
recorded noise. The features are 50-dimensional. In this vehicle classification
task, class-prior change is inevitable because the types of vehicles passing through
differ depending on time (e.g., day and night).

n samples are drawn from each of the classes for the training set, whereas 100
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samples are drawn with probabilities p = [0.6 0.1 0.3] from each of the classes for
the test set. Due to the prohibitive computational cost, KL-DR was not included
in this experiment.

In Figure 4.5, we plot the `2-distance between the true and estimated class-
priors and the misclassification rate based on instance-weighted kernel logistic
regression (Hastie et al., 2001) averaged over 1000 runs as functions of the num-
ber of training samples. As can be seen from the graphs, the performance of all
methods improves as the number of training samples increases. Among the com-
pared methods, PE-DR provides the most accurate estimates of the class prior and
thus yields the lowest classification error.



52 Chapter 4. Semi-supervised class-prior estimation

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

0.3

True class prior θ
*

S
q

u
a

re
d

 e
rr

o
r

Adult

 

 EM−KLR

KL−KDE PE−KDE

KL−DR PE−DR

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

True class prior θ*

S
qu

ar
ed

 e
rr

or

Australian

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

True class prior θ*

S
qu

ar
ed

 e
rr

or

Diabetes

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

True class prior θ*

S
qu

ar
ed

 e
rr

or

German

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

True class prior θ*

S
qu

ar
ed

 e
rr

or

Ionosphere

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

True class prior θ*

S
qu

ar
ed

 e
rr

or

Ringnorm

0.2 0.4 0.6 0.8

0.1

0.15

0.2

0.25

0.3

True class prior θ*

S
qu

ar
ed

 e
rr

or

SAHeart

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

True class prior θ*

S
qu

ar
ed

 e
rr

or

Statlog heart

Figure 4.2: Average squared error between the true class-prior θ∗ and estimated
class-prior θ̂ for the benchmark datasets listed in Table 4.1. The true
class prior is indicated on the x-axis and the accuracy is indicated on
the y-axis. The best method and comparable methods according to
the t-test at significance level of 5% are indicated with ‘�’
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Figure 4.3: Average calculation time for the estimation of the class priors for the
datasets listed in Table 4.1.
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Figure 4.4: Average misclassification rates for the datasets listed in Table 4.1.
Classification is performed using a regularized kernel logistic regres-
sion classifier with instance weighting. The true class prior is indi-
cated on the x-axis and the resulting misclassification rate is indicated
on the y-axis. The best method and comparable methods according to
the t-test at significance level of 5% are indicated with ‘�’.
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Figure 4.5: Experimental results for the vehicle classification problem. The best
method and comparable methods according to the t-test at signifi-
cance level of 5% are indicated with ‘�’.
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4.5 Class-prior estimation via L2 distance matching

The main idea in class-prior estimation is to match the two densities qte(x) and
pte(x) under some divergence. In the previous section, we used f -divergences to
perform the matching and showed that it may be directly estimated in terms of the
density ratio. A potential weakness of f -divergence estimation is that the density
ratio may diverge.

In this section, we show that the class prior may be estimated by matching
the distributions under the L2 distance between probabilty densities. Further-
more, this is directly estimated in terms of the density difference, which is always
bounded if the densities are bounded.

The L2 distance between the two probability densities is then

L2(pte, qte) =
1

2

∫
(pte(x)− qte(x))2 dx,

=
1

2

∫ (
pte(x)−

c∑
y=1

θyptr(x|y)

)
dx.

Then, using the squared-loss lower-bound discussed in Section 3.2 we obtain the
following expression

L2(pte(x), ptr(x)) ≥ sup
g

∫
g(x)

[
pte(x)−

c∑
y=1

θyptr(x|y)

]
dx− 1

2

∫
g(x)2dx.

The density difference is modeled with the following linear-in-parameter model,

g(x) := α>ϕ(x),

where the basis functions are the same as in Eq. (3.3). Using this model, the above
expression can be written as

L2(pte(x), ptr(x)) ≥ sup
α

α>
∫
ϕ(x)pte(x)dx−

c∑
y=1

θyα
>
∫
ϕ(x)ptr(x|y)dx

− 1

2
α>
(∫

ϕ(x)ϕ(x)>dx

)
α
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The following definitions can be used to simplify the above expression:

hte =

∫
ϕ(x)pte(x)dx, hy =

∫
ϕ(x)ptr(x|y)dx,

G = [h1 h2 . . . hc] , H =

∫
ϕ(x)ϕ(x)>dx.

This leads to

L2(pte(x), ptr(x)) ≥ sup
α
α>hte −α>Gθ −

1

2
α>Hα.

Empirical estimates can be used to approximate hte and hy :

ĥte =
1

nte

nte∑
i=1

ϕ(x′i), and ĥy =
1

ny

ntr∑
i,yi=y

ϕ(xi).

This results in a solution of:

α̂ = (H + λI)−1
[
ĥte − Ĝθ

]
,

where the λI term is due to the addition of an `2 regularization term. At this
point, the above estimator is already useful. The estimate of the L2 distance can
be explicitly expressed as

L̂2 (pte, qte) = ĥ
>
te (H + λI)−1 ĥte − 2ĥ

>
te (H + λI)−1 Ĝθ

+ θ>G> (H + λI)−1 Ĝθ − θ>G> (H + λI)−1H (H + λI)−1Gθ.

Minimizing this above expression with respect to θ under the constraints θ � 0

and θ>1 = 1 results in an estimate of the class prior.

4.5.1 Experiments

Four UCI benchmark datasets were used, where we randomly chose 10 labeled
training samples from each class and 50 unlabeled test samples following true
class prior θ∗ = 0.1, 0.2, . . . , 0.9. The L2 method was compared with the follow-
ing methods:
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• KDEi: Kernel density estimation (KDE) is used to approximate pte(x)

and qte(x) from the data and then the L2-distance is computed (Silverman,
1986). The Gaussian widths are independently chosen based on fivefold
least-squares cross-validation (Titterington, 1983).

• KDEj: In the KDE-based method, two Gaussian widths are jointly chosen
based on fivefold cross-validation int terms of the least-squares criterion
(Hall and Wand, 1988). That is, the cross-validated least-squares criterion
is computed as a function of two Gaussian widths and the best pair that
minimizes the criterion is selected.

• EM: The class-prior estimation method based on the expectation maximiza-
tion algorithm (Saerens et al., 2001).

The mean and standard error of the squared-error between the true and estimated
class-balances over 1000 runs is plotted in Figure 4.6. From these graphs, it is
clear that the L2 method tends to provide better estimates of the class-balance
than other approaches.

The classification accuracy was tested using a weighted `2 regularized least-
squares classifier (Rifkin et al., 2003). The label ŷ for a test input x is estimated
by

ŷ = sign

(
n∑
`=1

β̂`K(x,x`)

)
,

where K(x,x′) is the Gaussian kernel function with a kernel width κ.
{
β̂`

}n
`=1

are the learnt parameters given by

(
β̂1, . . . , β̂n

)
:= arg min

β1,...,βn

 n∑
i=1

θyi
nyi/n

(
n∑
`=1

β`K(xi,x`)− yi

)2

+ δ
n∑
`=1

β2
`

 .
The Gaussian width κ and regularization parameter δ are chosen by weighted
cross-validation.

The misclassification rate over 1000 runs are plotted on the right-hand side of
Figure 4.6. The results show the LSDD-based method provides a lower misclas-
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sification rate, which would be brought by good estimates of the test class prior.

4.6 Conclusion

Class-prior change is a problem that is conceivable in many real-world datasets,
and it can be systematically corrected for if the class prior of the test dataset is
known. In this chapter, we discussed the problem of estimating the test class-
priors under a semi-supervised learning setup.

We first showed that the EM-based estimator introduced in Saerens et al.
(2001) can be regarded as indirectly approximating the test input distribution by
a linear combination of class-wise input distributions. From this viewpoint, there
are two criticisms of the EM method: the fixed-point iteration does not necessarily
lead to the unique global optimal value of a convex problem. More importantly,
the problem estimates the divergence in an indirect two-step approach: the KL
divergence is estimated based on the posterior. However, this posterior is not esti-
mated with respect to the divergence.

Based on this view, we proposed to use explicit f -divergence estimators for
learning test class-priors. Through experiments, we showed that the class ratios
estimated by the proposed method are more accurate than competing methods,
which can be translated into better classification accuracy.

Alternatively to matching under f -divergences, theL2-distance was used. This
resulted in a simple estimator which gave better results than the EM methods and
plug-in based approaches.
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Figure 4.6: Results of class-prior estimation via L2 distance minimization. Left:
Squared error of class-balance estimation. Right: Misclassifica-
tion error by a weighted `2-regularized least-squares classifier with
weighted cross-validation.



Chapter 5

Labeling data differing by class
balance

This chapter discusses the problem of labeling unlabeled samples from datasets
with a differing class prior.

5.1 Introduction

Gathering labeled data is expensive and time-consuming in many practical ma-
chine learning problems, and therefore class labels are often absent. In this chap-
ter, we consider the problem of labeling, which is aimed at giving a label to each
unlabeled sample. Labeling is similar to, but slightly simpler than classification,
because classes do not have to be specified. That is, labeling just attempts to split
unlabeled samples into disjoint subsets, and class labels such as male/female or
positive/negative are not assigned to samples.

A naive approach to the labeling problem is to use a clustering technique,
which is aimed at assigning a label to each sample of the dataset to divide the
dataset into disjoint clusters. The tacit assumption in clustering is that the clusters
correspond to the underlying classes. However, this assumption is often violated
in practical datasets, for example, when clusters are not well separated or a dataset
exhibits within-class multimodality.

An example of the labeling problem is illustrated in Figure 5.1. Figure 5.1(a)
denotes the densities of the two classes. Figure 5.1(b) shows samples drawn from
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(solid blue) separation lines for the equal
class-prior

Figure 5.1: Illustrative example of labeling. (a) Original class-conditional den-
sities p(x|y). The bottom-left and top-right Gaussians correspond to
class y = 1 and y = −1, respectively. (b) Samples of the first dataset
Xp with p(y = 1) = 0.3. (c) Samples of the second dataset Xp′ with
p′(y = 1) = 0.7. (d) Optimal discriminant under the equal class-
prior (dashed black) and the discriminant estimated by our proposed
method (solid blue).
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a mixture of the two original densities. Because the two clusters are highly over-
lapping, it may not be possible to properly label them via a clustering method.

In this chapter we show that if one more dataset with a different class balance
is available (Figure 5.1(c)), we can obtain a discriminant for the equal class priors
(Figure 5.1(d)). More specifically, we show that this labeling of the samples can
be obtained by estimating the sign of the difference between probability densities
of two unlabeled datasets. Thus, the challenge is to estimate the sign of the density
difference as accurately as possible.

A naive way to estimate the sign of the density difference is to first separately
estimate two densities from two sets of samples and then take the sign of their
difference to obtain a labeling. However, this naive procedure violates Vapnik’s
principle (Vapnik, 2000):

If you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible that the avail-
able information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem.

This principle was successfully used in the development of support vector ma-
chines (SVMs): Rather than modeling two classes of samples, SVM directly
learns a decision boundary that is sufficient for performing pattern recognition.

In the current context, estimating two densities is more general than label-
ing samples. Thus, the above naive scheme may be improved by estimating the
density difference directly and then taking its sign to obtain the class labels. Re-
cently, a method was introduced to directly estimate the density difference, called
the least-squares density difference (LSDD) estimator (Sugiyama et al., 2013c).
Thus, the use of LSDD for labeling is expected to improve performance.

However, the LSDD-based procedure is still indirect; directly estimating the
sign of the density difference would be the most suitable approach to labeling.
In this chapter, we show that the sign of the density difference can be directly
estimated by lower-bounding the L1-distance between probability densities.

Based on this, we give a practical algorithm for labeling and illustrate its use-
fulness through experiments on various real-world datasets.
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The remainder of this chapter is structured as follows. In Section 5.2, we
formulate the problem of labeling, give our fundamental strategy, and consider
two naive approaches. In Section 5.3, we describe the detail of our proposed
method. In Section 5.4, we experimentally investigate the behavior of the pro-
posed method. Finally, in Section 5.5, we offer concluding remarks.

5.2 Problem formulation and fundamental approaches

In this section, we formulate the problem of labeling, give our fundamental strat-
egy, and consider two naive approaches.

5.2.1 Problem formulation

Suppose that there are two joint probability distributions on x ∈ Rd and y ∈
{1,−1} with densities p(x, y) and p′(x, y), which are different only in class bal-
ances:

p(y) 6= p′(y) but p(x|y) = p′(x|y). (5.1)

Here p(y) and p′(y) denote the marginal probabilities of y and p(x|y) and p′(x|y)

denote the conditional densities of x given y, respectively. Figure 5.1(a) shows
an example of class-conditional densities p(x|y) as two Gaussians with different
means.

From these distributions, we are given two sets of unlabeled samples:

Xp = {xi}ni=1
i.i.d.∼ p(x) and Xp′ = {x′j}n

′

j=1
i.i.d.∼ p′(x),

where p(x) and p′(x) denote the marginal densities ofx. Figures 5.1(b) and 5.1(c)
show examples of Xp and Xp′ with class priors p(y = 1) = 0.3 and p′(y = 1) =

0.7, respectively.
The goal of labeling is to find the optimal discriminant for the equal class-prior

(see Figure 5.1(d)). That is, for

q(y = 1) = q(y = −1) =
1

2
,
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our goal is to obtain the decision boundary such that

q(y = 1|x) = q(y = −1|x),

where

q(y|x) =
p(x|y)q(y)

q(x)
,

q(x) = p(x|y = 1)q(y = 1) + p(x|y = −1)q(y = −1).

We note that, different from classification, labeling does not require correct
class labels, but only correct class separation up to label commutation.

5.2.2 Fundamental strategy

To find the optimal decision boundary for the equal class-prior, let us consider a
classifier

d(x) = sign [q(y = 1|x)− q(y = −1|x)] . (5.2)

First, we show the following lemma:

Lemma 5.1. The classifier (5.2) can be rewritten as

d(x) = A · sign [p(x)− p′(x)], (5.3)

where

A = sign [p(y = 1)− p′(y = 1)] .

Proof: We can write the difference between class-posteriors as

q(y = 1|x)− q(y = −1|x) =
p(x|y = 1)1

2

q(x)
−
p(x|y = −1)1

2

q(x)

=
1

2q(x)
(p(x|y = 1)− p(x|y = −1)) .
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Since 1/(2q(x)) is always positive, the criterion becomes

d(x) = sign [p(x|y = 1)− p(x|y = −1)] .

We do not have any labeled samples to calculate p(x|y = 1)− p(x|y = −1), but
we can rewrite it in terms of marginal distributions. Indeed, we have

A [p(x|y = 1)− p(x|y = −1)] ∝ [p(y = 1)− p′(y = 1)] [p(x|y = 1)− p(x|y = −1)]

= p(x, y = 1)− p′(x, y = 1)

− p(y = 1)p(x|y = −1) + p′(y = 1)p(x|y = −1).

To write the third and fourth term as a joint distribution, we add and subtract
p(x|y = −1), giving

A [p(x|y = 1)− p(x|y = −1)] ∝ p(x, y = 1)− p′(x, y = 1) + [1− p(y = 1)] p(x|y =−1)

− [1− p′(y = 1)] p(x|y = −1).

Since p(y = −1) = 1 − p(y = 1) and p′(y = −1) = 1 − p′(y = 1), we can
express the above as

q(y = 1|x)− q(y = −1|x) ∝ A [p(x)− p′(x)] .

Substituting this into Eq.(5.2), we obtain Eq.(5.3). (Q. E. D.)

The expression (5.3) means that, if we know the class proportions in Xp and
Xp′ , we can compute A and thus class labels can be obtained only from unlabeled
samples. In practice, however, we may not know the class proportions and thus
we can only split unlabeled samples into disjoint subsets that correspond to the
original class labels.

Thus, now our challenge is to obtain a good estimator of the sign of density
difference,

sign [p(x)− p′(x)].
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5.2.3 Kernel density estimation

A naive approach to estimating the sign of density-difference is to use kernel den-
sity estimation (KDE) (Silverman, 1986). For Gaussian kernels, the KDE solu-
tions are given by

p̂(x) ∝
n∑
i=1

exp

(
−‖x− xi‖

2

2σ2

)
,

p̂′(x) ∝
n′∑
j=1

exp

(
−
‖x− x′j‖2

2σ′2

)
.

The Gaussian widths σ and σ′ may be determined based on least-squares cross-
validation (Härdle et al., 2004). Finally, a labeling is obtained as

y = sign [p̂(x)− p̂′(x)].

5.2.4 Direct estimation of the density difference

KDE is a good estimator for the density, but it is not necessarily suitable for
density-difference estimation, because small estimation errors incurred in each
density estimate can cause a big error in the final density-difference estimate.
More intuitively, good density estimators tend to be smooth and thus a density-
difference estimator obtained from such smooth density estimators tends to be
over-smoothed (Hall and Wand, 1988; Anderson et al., 1994).

The density difference can be estimated in a single shot using the least-squares
density difference (LSDD) approach (Sugiyama et al., 2013c). In this approach, a
model g(x) is directly fitted to the density difference under the square loss:

ĝ = arg min
g

1

2

∫ (
g(x)− [p(x)− p′(x)]

)2
dx.

The above square-loss for estimating the density difference is equivalent to the
lower-bound that is used to estimate the L2 distance. Therefore, the details and
analytical form for estimating the density-difference is discussed in Section 3.2.2.
When an estimate of the density difference ĝ(x) is obtained, a label can be as-
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signed as

ŷ = ĝ(x).

5.3 Direct estimation of the sign of the density dif-
ference

We expect that an improved solution can be obtained by LSDD over KDEs due to
the more direct nature of LSDD. However, LSDD is still indirect because the sign
of density difference is inspected after the density difference is estimated. In this
section, we show how to directly estimate the sign of the density difference.

5.3.1 Derivation of the objective function

By lower-bounding the L1-distance between probability densities, defined as∫
|p(x)− p′(x)| dx, (5.4)

we can obtain the sign of the density difference.

We begin by considering the following self-evident relation:

|t| ≥ tz, if |z| ≤ 1.

We can apply this relation at each point x, to obtain

|p(x)− p′(x)| ≥ g(x) [p(x)− p′(x)] if |g(x)| ≤ 1, ∀x.

By applying the above inequality to Eq.(5.4) and maximizing with respect to g(x),
we can obtain the tightest lower bound as∫

|p(x)− p′(x)| dx ≥ sup
g

∫
g(x) [p(x)− p′(x)] dx (5.5)

s.t. |g(x)| ≤ 1, ∀x.
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It is straightforward to verify that the above relation will be met with equality
when

g(x) = sign (p(x)− p′(x)) .

What makes the right-hand side of the expression in Eq.(5.5) especially useful
is that the probability densities occur linearly in the integral. By replacing the
integrals (i.e., the expectations) with sample averages and searching g(x) from a
parametric family (denoted as gα(x)), we can write the above as

α̂ = arg min
α

1

n′

n′∑
i=1

gα(x′i)−
1

n

n∑
j=1

gα(xj)

s.t. |gα(x)| ≤ 1, ∀x.
(5.6)

5.3.2 Optimization

Here we briefly discuss how to solve the optimization problem in Eq.(5.6). The
function in Eq.(5.6) should satisfy the constraint |g(x)| ≤ 1, ∀x. We can consider
a clipped version of the function that always satisfies the constraint:

g̃(x) = R(g(x)), where R(z) =


1 z > 1,

−1 z < −1,

z otherwise.

We use a linear-in-parameter model,

g(x) =
b∑
`=1

α`ϕ`(x), (5.7)

where ϕ`(x) are the basis functions. Using the above definitions and including a
regularizer, we arrive at the following objective function to be minimized:

J(α) =
1

n′

n′∑
i=1

R

(
b∑
`=1

α`ϕ`(x
′
i)

)
− 1

n

n∑
j=1

R

(
b∑
`=1

α`ϕ`(xj)

)
+
λ

2

b∑
`=1

α2
` . (5.8)
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Although the above objective function is non-convex, a local minimizer can
be efficiently found using the convex-concave procedure (CCCP) (Yuille and Ran-
garajan, 2002). We note that the above objective can be reformulated as the ramp
loss. A ramp-loss version of the support vector machine (SVM) has been previ-
ously solved using the CCCP algorithm (Collobert et al., 2006). We use a set of
linear basis functions (Eq.(5.7)) as our model instead of the kernel embedding of
the ramp-loss SVM. This leads to a slightly different optimization problem that
can be directly solved in the primal (instead of the ramp-loss SVM formulation,
which is solved in the dual due to the kernel embedding).

CCCP requires the objective function to be split into convex and concave parts:

J(α) = Jvex(α) + Jcave(α).

This is done by expressing R(z) as

R(z) = C−1(z)− C1(z)− 1,

where Cε(z) = max(0, z − ε). This results in the following convex and concave
functions:

Jvex(α) =
1

n′

n′∑
i=1

C−1

(
b∑
`=1

α`ϕ`(x
′
i)

)
+

1

n

n∑
j=1

C1

(
b∑
`=1

α`ϕ`(xj)

)
+
λ

2

b∑
`=1

α2
` ,

Jcave(α) = − 1

n′

n′∑
i=1

C1

(
b∑
`=1

α`ϕ`(x
′
i)

)
− 1

n

n∑
j=1

C−1

(
b∑
`=1

α`ϕ`(xj)

)
.

We use the following Fenchel inequality (discussed in Section 3.3)

f(z) ≥ tz − f ∗(t),

where the Fenchel dual of the function f(z) is defined as

f ∗(t) = sup
y∈R

yt− f(y).
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Applying the above inequality to Cε(z), we can obtain a bound as

Cε(z) ≥ zt− C∗ε (t),

where C∗ε (t) is the Fenchel dual of Cε(z),

C∗ε (t) =

εt 0 ≤ t ≤ 1,

∞ otherwise.

Applying this to the concave part gives

Jcave(α) ≤ J̄cave(α, b, c),

where the bound is specified by b and c:

J̄cave(α, b, c) =
1

n′

n′∑
i=1

(
C∗1(bi)− bi

b∑
`=1

α`ϕ`(x
′
i)

)

+
1

n

n∑
j=1

(
C∗−1(cj)− cj

b∑
`=1

α`ϕ`(xj)

)
.

This bound is convex w.r.t. b and c if α is fixed. Using this bound, we have

J(α) ≤ Jvex(α) + J̄cave(α, b, c).

The strategy to minimize J(α) is then to alternately minimize the right-hand
side by minimizing w.r.t. α (keeping b and c fixed) and minimize w.r.t. b and
c (keeping α fixed). Minimization w.r.t. α minimizes the current upper bound
and minimization w.r.t. b and c corresponds to tightening the bound at the current
point.

Our final optimization algorithm is summarized below:

1. Initialize the starting value:

α1 ← arg min
α

Jvex(α).
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2. For t = 1, . . ., until convergence:

(a) Tighten the upper-bound: Obtain b and c as

bt, ct ← arg min
b,c

J̄cave(α
t, b, c),

which can be analytically performed as

bti ←

0 if
∑b

`=1 α
t
`ϕ`(x

′
i) < 1,

1 otherwise,

ctj ←

0 if
∑b

`=1 α
t
`ϕ(xj) < −1,

1 otherwise.

(b) Minimize the upper bound: Set

αt+1 ← arg min
α

Jvex(α) + J̄cave(α, b
t, ct),

which can be performed by solving the following convex quadratic
problem:

min
α
−

b∑
`=1

α`

(
1

n′

n′∑
i=1

btiϕ`(x
′
i)+

1

n

n∑
j=1

ctjϕ`(xj)

)

+
1

n′

n′∑
i=1

ξ′i+
1

n

n∑
j=1

ξj+
λ

2

b∑
`=1

α2
`

s.t. ξ′i ≥ 0, ξ′i ≥
b∑
`=1

α`ϕ`(x
′
i) + 1, ∀i = 1, . . . , n′

ξj ≥ 0, ξj ≥
b∑
`=1

α`ϕ`(xj)− 1 ∀j = 1, . . . , n.

In practice, Gaussian kernels centered at the sample points in Xp and Xp′ are
chosen as the basis functions. All hyper-parameters are set by cross-validation.
We call this proposed method direct sign density difference (DSDD) estimation.
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5.3.3 Finite-sample error bounds

The conditional density p(x|y) is shared by the two training distributions p(x, y)

and p′(x, y). Assume that p(x|y) is also shared by the test distribution pte(x, y)

and
pte(x, y) = θp(x, y) + (1− θ)p′(x, y), (5.9)

where 0 ≤ θ ≤ 1, that is, pte(x, y) is the convex combination of p(x, y) and
p′(x, y). Integrating Eq.(5.9) w.r.t. x gives

pte(y) = θp(y) + (1− θ)p′(y).

For the sake of conciseness, we use the following shorthand:

πte := pte(y = 1),

π := p(y = 1),

π′ := p′(y = 1).

If πte, π, and π′ are available for evaluation of the algorithm (not training), where
πte must be between π and π′, θ can be computed as

θ =
πte − π′

π − π′
.

We consider a decision function of the form

g(x) =
n+n′∑
i=1

αik(x, ci), (5.10)

where k is a kernel function, α = (α1, . . . , αn+n′), and ci = xi for 1 ≤ i ≤ n and
ci = x′i−n for n+ 1 ≤ i ≤ n+ n′. Let E[·] and Ê[·] stand for the true expectation
and the empirical expectation, `(z) be the indicator loss such that

`(z) =

0 if z > 0,

1 if z ≤ 0,



74 Chapter 5. Labeling data differing by class balance

and `η(z) be the surrogate loss (Bartlett and Mendelson, 2002) such that

`η(z) =


0 if z > η,

1− z/η if 0 < z ≤ η,

1 if z ≤ 0.

Note that, for any η > 0, `η(z) is lower bounded by `(z) and approaches `(z) as η
approaches zero.

We then have the following theorem and corollary:

Theorem 5.2. Assume that

∃Bk > 0,∀x,x′ ∈ Rd, k(x,x′) ≤ B2
k.

Let α∗ be an optimal solution to DSDD, g(x) be the decision function defined in
Eq.(5.10) with parameter α∗, and

BF =
√
α∗>Kα∗, B′F = ‖α∗‖1,

whereK is the kernel matrix. Assume that the ground truth class labels y1, . . . , yn, y′1, . . . , y
′
n′

are available for evaluation. With probability at least 1− δ, we have

Epte [`(yg(x))] ≤ θ

n

n∑
i=1

`η(yig(xi)) +
1− θ
n′

n′∑
i=1

`η(y
′
ig(x′i))

+

(
θ√
n

+
1− θ√
n′

)
2BkBF
η

+

(
θ√
n

+
1− θ√
n′

)
min

(
3, 1 +

4B2
kB
′
F

η

)√
ln(2/δ)/2,

(5.11)

where the expectation Epte [`(yg(x))] follows the test distribution pte(x, y).

Corollary 5.3. Under the assumptions of Theorem 5.2, further assume that the
ground truth class prior πte, π, and π′ are available for evaluation, where πte is
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between π and π′. With probability at least 1− δ, we have

Epte [`(yg(x))] ≤ πte − π′

(π − π′)n

n∑
i=1

`η(yig(xi)) +
π − πte

(π − π′)n′
n′∑
i=1

`η(y
′
ig(x′i))

+
(π − πte)

√
n+ (πte − π′)

√
n′

(π − π′)
√
nn′

· 2BkBF
η

(5.12)

+
(π − πte)

√
n+ (πte − π′)

√
n′

(π − π′)
√
nn′

min

(
3, 1 +

4B2
kB
′
F

η

)√
ln(2/δ)/2.

Note that these bounds for unsupervised classification using DSDD can also
be applied to unsupervised classification using LSDD.

From the above, we see that the order of the bounds is O
(
1/
√
n+ 1/

√
n′
)
.

Compared to supervised classification from i.i.d. data such as support vector ma-
chines (Bartlett and Mendelson, 2002), which has an order of O(1/

√
n+ n′), our

bounds converge slower. However, we do not require class labels for training in
our problem setting.

5.4 Experiments

We first illustrate the operation of our method and characterize the failures of
other methods on various toy problems. Then we use real-world benchmark data
to show the superiority of our algorithm.

5.4.1 Numerical illustration

We first illustrate the problem of labeling and our method with a simple example.
Suppose that the class-conditional densities for the two classes are given as

p(x|y = 1) = Nx (−12, I2×2) ,

p(x|y = −1) = Nx (12, I2×2) ,

where Nx(µ,Σ) denotes the normal density with mean µ and covariance Σ

w.r.t. x. 12 is a 2× 1 vector of ones and I2×2 is a 2× 2 identity matrix. We gen-
erate 2 sets of 30 samples with class-priors p(y = 1) = 0.3 and p′(y = 1) = 0.7,
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respectively. The result is illustrated in Figure 5.1. As can be seen from this ex-
ample, we are able to obtain a discriminant that roughly corresponds to the true
(unknown) one.

Another possible way to obtain a labeling of unlabeled samples is to use clus-
tering. The tacit assumption in clustering is that samples in the same cluster be-
long to the same class. This assumption, however, is not always be true, for ex-
ample, when the class conditional densities are multimodal. Next, we consider a
problem with the following class conditional densities:

p(x|y = 1) =
1

2
Nx([3 0]> , I2×2) +

1

2
Nx([−3 0]> , I2×2)

p(x|y = −1) =
1

2
Nx([0 3]> , I2×2) +

1

2
Nx([0 − 3]> , I2×2).

The two distributions are plotted in Figure 5.2(a). We can try to obtain a class
label by performing clustering on Xp∪Xp′ 1. The results for k-means (MacQueen,
1967) and spectral clustering (Shi and Malik, 2000), given in Figures 5.2(d) and
5.2(e), show that these methods fail to reveal the true labeling. On the other hand,
the proposed method still gives a reasonable result (Figure 5.2(f)).

5.4.2 Benchmark datasets

We compared our method against several competing methods on benchmark datasets.

For each experiment, we constructed the datasets Xp and Xp′ by drawing n
and n′ samples from the positive and negative classes of the binary classification
datasets according to p(y = 1) and p′(y = 1). The labeling was then performed
using these two datasets. A label was assigned to each sample according to the
sign of the density difference.

Since we can obtain a labeling, but cannot determine the original class labels,
we cannot measure the performance using the misclassification rate directly. As-

1If clustering is performed separately on Xp and Xp′ , we do not know which clusters in each
dataset correspond to the clusters in the other dataset. We can also not perform clustering on one
dataset and apply it to the other dataset, since most clustering methods do not give out-of-sample
labeling. For these reasons, it makes most sense to perform clustering on the combined dataset.
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Figure 5.2: Illustration of within-class multimodality and clustering.
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sume that the label li is assigned to xi and l′j is assigned to x′j as

li =

−1 p(xi)− q(xi) < 0,

1 otherwise.

The misclassification rate (MCR) assuming that the current labels are correct is

MCR :=
1

n

∑
i:li 6=yi

1 +
1

n′

∑
j:l′j 6=y′j

1.

The misclassification rate assuming that the labels are the opposite is 1 −MCR.
We define the labeling error rate (LER) as

LER := min (MCR, 1−MCR) .

We compared the following methods:

• Direct Sign Density Difference (DSDD) estimation (proposed): Directly
estimate sign [p(x)− p′(x)] using the method described in Section 5.3. Hy-
perparameters are selected via cross-validation.

• Least-Squares Density Difference (LSDD) estimation: Estimate sign [p(x)− p′(x)]

by estimating p(x)−p′(x) using the least squares fitting method (Sugiyama
et al., 2013c). Hyperparameters are selected via cross validation.

• Kernel Density Estimation (KDE): Estimate sign [p(x)− p′(x)] by esti-
mating the densities p(x) and p′(x) with KDE. Hyperparameters are se-
lected using least-squares cross validation.

• K-Means++ (KM): Cluster the data into two clusters using the K-means al-
gorithm (MacQueen, 1967). The algorithm was seeded according to Arthur
and Vassilvitskii (2007).

• Spectral Clustering (SC): Cluster the data into two clusters using the spec-
tral clustering algorithm (Shi and Malik, 2000). The affinity matrix was
constructed with 7 nearest neighbors.
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• Squared-loss Mutual Information based Clustering (SMIC): Cluster the
data according to the SMIC method (Sugiyama et al., 2013a). SMIC was
chosen since it provides model selection, avoiding the need for subjective
parameter tuning.

We compare the performance of the methods by varying the class balance.
Two class balances were selected: one with a large difference between the classes
(p(y = 1) = 0.2 and p′(y = 1) = 0.8) and one with a small difference between
the classes (p(y = 1) = 0.35 and p′(y = 1) = 0.65). The average and standard
deviation of the labeling error rate for the two experiments, with |Xp| = |Xp′ | = 40

are given in Tables 5.1 and 5.2.

Table 5.1: Labeling error rate for experiments with a class prior of p(y = 1) = 0.2
and p′(y = 1) = 0.8. The size of each dataset was |Xp| = 40 and
|Xp′ | = 40. The best method in terms of the mean error and compara-
ble methods according to the two-sided paired t-test at the significance
level of 5% are specified by bold face. The standard deviation of the
labeling error rate is given in brackets.

Dataset DSDD LSDD KDE KM SC SMIC

australian .142(.046) .175(.109) .211(.155) .257(.145) .379(.121) .304(.109)
banana .180(.094) .171(.071) .240(.152) .432(.068) .428(.141) .425(.149)
diabetes .246(.134) .223(.080) .227(.052) .376(.088) .381(.092) .371(.115)
german .268(.076) .285(.135) .210(.051) .438(.153) .447(.133) .439(.062)
heart .175(.050) .173(.047) .209(.046) .257(.113) .310(.038) .324(.118)
image .197(.078) .206(.047) .201(.123) .387(.093) .352(.121) .382(.133)
ionosphere .157(.059) .182(.137) .193(.128) .339(.145) .321(.061) .312(.146)
saheart .310(.109) .205(.049) .238(.116) .425(.126) .394(.137) .384(.064)
thyroid .102(.051) .122(.113) .206(.068) .330(.114) .327(.111) .306(.094)
twonorm .043(.086) .051(.067) .200(.029) .035(.048) .042(.071) .048(.071)

From the results we see that methods which follow the approach proposed in
Section 4.2 of estimating the sign of the density difference (i.e., DSDD, LSDD,
and KDE) generally work better than methods using the cluster structure of the
data (i.e., KM, SC, and SMIC). The thyroid dataset lends itself to interpretation
of why these methods work better. The labels in the thyroid dataset correspond to
healthy and diseased. The diseased label is caused by either a hyper-functioning
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Table 5.2: Labeling error rate for experiments with a class prior of p(y = 1) =
0.35 and p′(y = 1) = 0.65. The size of each dataset was |Xp| = 40 and
|Xp′ | = 40. The best method in terms of the mean error and compara-
ble methods according to the two-sided paired t-test at the significance
level of 5% are specified by bold face. The standard deviation of the
labeling error rate is given in brackets.

Dataset DSDD LSDD KDE KM SC SMIC

australian .245(.115) .260(.113) .355(.086) .256(.062) .374(.083) .306(.139)
banana .338(.093) .336(.100) .367(.097) .431(.057) .428(.070) .425(.074)
diabetes .339(.076) .359(.112) .345(.033) .374(.055) .380(.038) .371(.111)
german .375(.045) .381(.097) .354(.057) .438(.030) .445(.062) .437(.048)
heart .271(.097) .248(.085) .353(.095) .256(.062) .315(.092) .327(.116)
image .332(.079) .352(.066) .350(.039) .386(.031) .353(.072) .385(.036)
ionosphere .290(.098) .356(.070) .345(.059) .341(.070) .322(.080) .315(.089)
saheart .377(.094) .353(.057) .362(.051) .422(.058) .395(.023) .385(.039)
thyroid .225(.099) .251(.116) .302(.042) .331(.053) .329(.038) .307(.079)
twonorm .160(.186) .151(.119) .352(.096) .033(.043) .041(.122) .048(.120)
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or hypo-functioning thyroid. These two underlying causes induce within-class
multimodality (Sugiyama, 2007), which may cause clustering-based methods to
fail.

Among the methods that estimate the sign of the density difference, we see
that DSDD generally performs better than LSDD and LSDD, in turn, performs
better than KDE. This is as expected since KDE solves a more general problem
than LSDD, and LSDD solves a more general problem than DSDD. This pattern
is even more pronounced on the more difficult case where the class balances are
close to each other (Table 5.2).

5.5 Discussion and conclusion

In this chapter, the problem of unsupervised labeling of two unbalanced datasets
was considered.

Since an estimate of the sign of the density difference is needed for solving the
labeling, we introduced a method to directly estimate the sign of the density dif-
ference and avoid density estimation. We derive finite-sample error bounds which
theoretically guarantee the converge of our solution to the optimal one with a rea-
sonable rate. The method was shown on various datasets to outperform competing
methods that either estimate the density difference or use the cluster structure of
the data.

Because the sign of density difference corresponds to the Bayes optimal classi-
fier under the equal class-prior, it may be estimated by any classifier that separates
Xp and Xp′ . Following this idea, we tested the support vector machine (SVM)
(Vapnik, 2000) for estimating the sign of density difference. However, this did
not work well due to the high overlap of Xp and Xp′—both the datasets are mix-
tures of two classes, only with different mixing ratios. From this classification
point of view, we can actually see that our objective function (5.8) corresponds
to the robust SVM (Shawe-Taylor and Cristianini, 2004) that minimizes the ramp
loss (a clipped hinge loss). Thanks to the robustness brought by the ramp loss, the
overlapped datasets Xp and Xp′ can be separated more reliably, and thus we ob-
tained a good estimation of the sign of density difference. Furthermore, this view
conversely shows that the robust SVM is actually a suitable classification method
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because it directly estimates the Bayes optimal classifier, the sign of density dif-
ference. Labeling and classification are different problems, but one can actually
give insight into the other.

Since the priors of the dataset to be labeled is unknown, we decided to obtain
a labeling for the equal class-prior. In this case, we showed that the discriminant
can be obtained by estimating the sign of the density difference between the two
datasets. The class priors may not be equal in many practical problems, so we
wish to clarify what assumption on the data must be made to allow for an accu-
rate labeling. The optimal expected loss (Bayes risk) according to a distribution
p(x, y) with class prior π is

Ep [`(g(x))] = min
g
π

∫
`(yg(x))p(x|y = 1)dx

+ (1− π)

∫
`(−g(x))p(x|y = −1)dx.

where g can be an arbitrary function. From inspection it is obvious that the above
function is concave with respect to π and passes through zero at π = 0 and π = 1

(see Figure 5.3). The expected loss of labeling using the optimal discriminant of
the equal class-prior is given as the dashed line (which is tangent to the concave
function at point π = 0.5). We define the “excess error” E as the difference
between the risk with the equal class-prior and the optimal Bayes risk. This is the
amount of extra error introduced to the Bayes error due to the assumption that the
class priors are equal. We see that the excess error may be small when the true
class-prior of the dataset is near 0.5 (Figure 5.3(a)) or when the different classes
are well separated (Figure 5.3(b)). Datasets originating from distributions that
satisfy these assumptions may be accurately labeled using the sign of the density
difference.
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Figure 5.3: Risk curves for two hypothetical distributions. The discriminant is
calculated according to the equal class-prior and applied to a test
dataset with class prior πte. E is the excess error due to classifica-
tion with the equal class-prior.
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Chapter 6

Prior estimation in positive-only
labeled data

In this chapter, the problem of learning from positive-only labeled data is dis-
cussed.

6.1 Introduction

The standard assumption in supervised classification problems is that all train-
ing samples are labeled. In practical problems however, only partial labels may
be available due to imperfect supervision. In this chapter, we consider the the
problem of learning a classifier from positive-only labeled data. In this setting
(illustrated in Figure 6.1) labels are only assigned to some (but not all) positive
samples. Therefore, if a sample is not labeled, the underlying true label may be
positive or negative. From the illustration we see that, unlike the fully-supervised
classification setting, the class balance can not be directly estimated.

The goal is to obtain a classifier in order to assign the true class label to the
underlying samples. This setting is often referred to as semi-supervised novelty
detection (Blanchard et al., 2010), inlier-based outlier detection (Hido et al., 2008)
or learning from positive and unlabeled data (Elkan and Noto, 2008).

This problem often occurs when a single class of interest must be separated
from spurious or unwanted classes. For instance, in the land-cover identification
task the user assigns labels only to samples of the class of interest (Li et al., 2011).
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Figure 6.1: Illustration of the positive and unlabeled learning setting. Labels are
only assigned to some examples from a single class. Unlabeled sam-
ples have a label of either +1 or −1.

A classifier should then be trained on the whole dataset in order to assign labels
to the unlabeled samples.

In the next section, the problem is discussed in detail. We will see in that
section that in order to train a classifier, an estimate for the class prior needs to be
obtained.

6.2 Problem formulation

In this section the problem setting of learning from positive and unlabeled data is
discussed. Following this, it is shown how, with a known class prior, classification
in this setting can be performed.

6.2.1 Problem setting

We assume that data samples are drawn according to

(x, y, s)
i.i.d.∼ p(x, y, s),
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where x(∈ Rd) are the unlabeled features, y(∈ {−1, 1}) are the (unknown) class
labels, and s(∈ {0, 1}) determines whether the sample is labeled or not. The
assumption is that only positive samples are labeled (Elkan and Noto, 2008),

p(s = 1|x, y = −1) = 0, (6.1)

and that the probability that a sample is labeled depends only on the underlying
label:

p(s = 1|x, y = 1) = p(s = 1|y = 1). (6.2)

Since we do not observe all class labels, the dataset would typically be

X := {(xi, si)}ni=1

i.i.d.∼ p(x, s). (6.3)

When si = 1, the sample xi would have the label yi = 1, according to the as-
sumption in Eq. (6.1). When si = 0, the sample is unlabeled and the (unknown)
underlying label may be yi = 1 or yi = −1.

We denote the subset of all labeled samples (i.e., si = 1) in X as

X ′ = {x′i}
n′

i=1 . (6.4)

This dataset will therefore be drawn according to

p′(x) = p(x|y = 1)1 + p(x|y = −1)0.

From this perspective, this is a special case of the problem in Chapter 5: We have
two datasets X and X ′ that differ by class prior. However, here we wish to adjust
the classifier to the class prior p(y = 1) in the unlabeled test set X .

Compared to a fully labeled dataset in the supervised learning case, this setting
has an intrinsic problem: unlike the traditional classification setting, we can not
trivially estimate the class prior p(y = 1) from the dataset X . The focus of this
paper is to present a new method for estimating this class prior.
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6.2.2 Classification

When the class prior p(y = 1) is estimated or specified by the user, the classifier
can be estimated from the dataset. The following lemma from Elkan and Noto
(2008) holds:

Lemma 6.1. The class posterior can be expressed as

p(y = 1|x) =
1

c
p(s = 1|x), (6.5)

where

c := p(s = 1|y = 1). (6.6)

Proof: This lemma is proved as (Elkan and Noto, 2008) 1

p(s = 1|x) =
p(x, s = 1)

p(x)

=
1

p(x)

∑
y

p(x, s = 1, y)

=
1

p(x)

∑
y

p(s = 1|x, y)p(x, y)

=
1

p(x)
p(s = 1|x, y = 1)p(x, y = 1) (6.7)

= p(y = 1|x)p(s = 1|y = 1) (6.8)

where (6.7) follows from the assumption in (6.1) and (6.8) follows from (6.2).
(Q. E. D.)

The posterior p(s = 1|x) is referred to in Elkan and Noto (2008) as a ‘non-
traditional’ classifier. This can be estimated from the training set in (6.3) by a
probabilistic classification method such as kernel logistic regression (Hastie et al.,
2001) or its squared-loss variant (Sugiyama, 2010a).

The constant c = p(s = 1|y = 1) that is used to reweight the non-traditional

1For the sake of clarity, the proof here is more verbose than in Elkan and Noto (2008, Lemma
1). The content however, is essentially the same.
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classifier is unintuitive, but can be rewritten as,

p(s = 1) =
∑
y

p(s = 1, y)

=
∑
y

p(s = 1|y)p(y)

= p(s = 1|y = 1)p(y = 1). (6.9)

Therefore, the constant weight is

1

c
=
p(y = 1)

p(s = 1)
.

p(s = 1) can be directly estimated from (6.3), so the reweighting constant can be
calculated if we can obtain an estimate of p(y = 1).

We propose a method in the next section to estimate this class prior from
the training data. In Section 6.4 we show that the existing method of Elkan and
Noto (2008) can be interpreted as indirectly estimating the same quantity as the
proposed method. The superiority of our proposed method is illustrated on bench-
mark datasets in Section 6.5.

6.3 Prior estimation via partial matching

In this section we will propose a new method to estimate the class prior by partial
matching.

6.3.1 Basic idea

From the assumptions, the set of labeled samplesX ′ (defined in Eq. (6.4)) is drawn
according to

p(x|s = 1) = p(x|y = 1). (6.10)
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p(x)

p(x|y=1)

p(x|y=−1) p(x)

p(x|y=1)

Figure 6.2: Estimating the class prior via full matching (left-hand side) and par-
tial matching (right-hand side).

We model the input density as

q(x; θ) := θp(x|y = 1) + (1− θ)p(x|y = −1),

where θ(∈ [0, 1]) is a scalar value that represents the unknown class prior p(y =

1). The above model q(x; θ) would equal p(x) if θ is the unknown class prior
p(y = 1). Therefore, by selecting θ so that the two distributions are equal (illus-
trated in the left graph of Fig. 6.2), the class prior can be estimated as in Chapter 4.
This setup will however not work in our current context, since we do not have
samples drawn from p(x|y = −1) and consequently q(x; θ) can not be estimated.

Nevertheless, if the class-conditional densities p(x|y = 1) and p(x|y = −1)

are not strongly overlapping, we may estimate θ so that θp(x|y = −1) is as
similar to p(x) as possible (this is illustrated in the right graph of Fig. 6.2). Here
we propose to use the Pearson (PE) divergence for matching θp(x|y = −1) to
p(x):

θ∗ = arg min
θ

PE(θ),

where PE(θ) denotes the PE divergence from θp(x|y = 1) to p(x)2:

PE =
1

2

∫ (
θp(x|y = 1)

p(x)
− 1

)2

p(x)dx

=
1

2

∫ (
θp(x|y = 1)

p(x)

)2

p(x)dx− θ +
1

2
. (6.11)

2Note that θp(x) is not a density unless θ = 1. This causes a small difference in the second
line of the definition of the Pearson divergence (cf. Eq. (2.3))
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The above PE divergence is defined in terms of unknown densities, and only
samples drawn from these densities are available. A possible approach is to first
estimate p(x|y = 1) and p(x) from the samples using, e.g., kernel density estima-
tion and then plug these estimators into the above expression. This, however, does
not work well since high-dimensional density estimation is a difficult problem
(Vapnik, 2000). Furthermore, the division by an estimated density may exacer-
bate the estimation error.

6.3.2 Estimation algorithm

Here we show how we can avoid density estimation and directly minimize the PE
divergence.

Our idea is to consider a lower bound which is linear in the unknown densities
and can then be estimated from sample averages. Using the inequality y2/2 ≥
ty − t2/2 we can lower bound (6.11) in a pointwise manner as follows3:

1

2

(
θp(x|y=1)

p(x)

)2

≥
(
θp(x|y=1)

p(x)

)
r(x)− 1

2
r(x)2,

where r(x) fulfills the role of t. This yields

1

2

(
θp(x|y=1)

p(x)

)2

p(x)≥θp(x|y=1)r(x)− 1

2
r(x)2p(x).

Therefore the PE divergence is lower bounded as

PE(θ) ≥ θ

∫
r(x)p(x|y=1)dx− 1

2

∫
r(x)2p(x)dx− θ +

1

2
.

The above lower bound can be turned into a practical estimator by using a para-
metric model for r(x), replacing the integrals with sample averages, and selecting
the tightest bound via maximization of the right-hand side.

We approximate the function r(x) by a linear-in-parameter model r̂(x) =

α>ϕ(x), whereα = (α1, . . . , αn)> are the parameters andϕ(x) = (ϕ1(x), . . . , ϕn(x))>

are the basis functions. In practice, we use Gaussian basis functions centered at
3This inequality can be obtained via the squared-loss expansion (discussed in Section 3.2) or

via Fenchel duality (discussed in Section 3.3).
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the training points:

ϕi(x) = exp

(
− 1

2σ2
‖x− xi‖2

)
, i = 1, . . . , n.

Using this model, we can rewrite the objective function as

α̂ := arg max
α

θα>h− 1

2
α>Hα− θ +

1

2

= arg max
α

θα>h− 1

2
α>Hα,

where

H =

∫
ϕ(x)ϕ(x)>p(x)dx, h =

∫
ϕ(x)p(x|y = 1)dx.

Estimating the integrals by their sample averages gives

Ĥ =
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
>, ĥ =

1

n′

n′∑
i=1

ϕ(x′i).

Using these empirical estimates and adding an `2 regularizer leads to the following
optimization problem:

α̂ := arg max
α

θα>ĥ− 1

2
α>Ĥα− λ

2
α>α,

where λ(≥ 0) is the regularization parameter. This can be analytically solved as

α̂ = θĜ
−1
ĥ,

Ĝ = Ĥ + λI,

where I denotes the identity matrix.

Substituting the analytical solution into the lower bound yields the following
PE divergence estimator:

P̂E(θ) = θ2ĥ
>
Ĝ
−1
ĥ− θ21

2
ĥ
>
Ĝ
−1
ĤĜ

−1
ĥ− θ +

1

2
.
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This can be analytically minimized with respect to θ to yield the following esti-
mator of the class prior:

θ̂ =
[
2ĥ
>
Ĝ
−1
ĥ− ĥ

>
Ĝ
−1
ĤĜ

−1
ĥ
]−1

.

6.3.3 Theoretical analysis

Here, we theoretically investigate the bias of our algorithm when the assumption
that class-conditional densities are non-overlapping is violated.

Assuming that the densities p(x|y = 1) and p(x) are known, we can analyti-
cally find the minimizer of (6.11) with respect to θ as

θ =

[∫
p(x|y = 1)2

p(x)
dx

]−1
. (6.12)

Substituting the identity

p(x|y = 1) =
p(x)− (1− p(y = 1))p(x|y = −1)

p(y = 1)

into the above gives

θ =
p(y = 1)

1− [1− p(y = 1)]
∫ p(x|y=1)p(x|y=−1)

p(x)
dx

.

If the class-conditional densities are completely non-overlapping, then p(x|y =

1)p(x|y = −1) = 0 and the estimator will be unbiased. Otherwise, we see that the
value in the denominator is always smaller than 1, which means that the estimator
will have a positive bias.

6.4 Analysis of existing method

In this section we analyze the method of estimating the class prior introduced
in Elkan and Noto (2008). The paper proposed that a non-traditional classifier
g(x) ≈ p(s = 1|x) is obtained from the training data. Using this classifier and
a holdout set of positive samples P of size |P |, the constant c given by (6.6) is
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estimated as

c ≈ 1

|P |
∑
x∈P

g(x). (6.13)

Since samples in P are drawn from p(x|y = 1), (6.13) is essentially an esti-
mate of

c =

∫
p(s = 1|x)p(x|y = 1)dx,

where p(s = 1|x) is estimated by a non-traditional classifier and the summation
in (6.13) is due to estimation via an empirical average. Using (6.10) the above can
be expressed as

c =

∫
p(x|y = 1)p(s = 1)

p(x)
p(x|y = 1)dx.

Following from Eq. (6.6), the class prior is expressed as

p(y = 1) =
p(s = 1)

c
=

[∫
p(x|y = 1)2

p(x)
dx

]−1
,

which corresponds to Eq. (6.12).

Therefore, both methods can be viewed as estimating the class prior via PE
divergence estimation. The important difference is how this estimation is per-
formed. The existing method first learns a function g to estimate the posterior
p(s = 1|x) using a method such as kernel logistic regression. The PE divergence
is then estimated using this function. This two-step approach may, however, not
be optimal, since the best function estimated in the first step may not be the best
for PE divergence estimation.

Our proposed method follows a single step approach: We directly learn a func-
tion based on how well the PE divergence is estimated. Therefore, our method is
expected to perform better. We will experimentally investigate the superiority of
our proposed approach in the next section.
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6.5 Experiments

We compared the accuracy of the estimate of the class prior on several UCI bench-
mark datasets4. The following methods were compared:

• PE (proposed): The method described in Section 6.3 that directly estimates
the PE divergence. All hyper-parameters was set using fivefold cross vali-
dation.

• EN: The method of Elkan and Noto (2008) discussed in Section 6.4. Data
was split into 5 folds {Xt}5t=1 and the posterior p(s = 1|x) was estimated
from X \Xt (i.e., all samples except Xt). The score in (6.13) was computed
with P = Xt. This was repeated for t = 1, . . . , 5 and the average was used
as the estimate of c.

The posterior p(s = 1|x) was estimated using kernel logistic regression (Hastie
et al., 2001). The accuracy of the estimate of the class prior and the resulting clas-
sification accuracy are given in Fig. 6.3. The classification accuracy was computed
by classifying an unlabeled hold-out dataset. As can be seen from the results, our
proposed method gave a more accurate estimate of the class prior. Furthermore,
the more accurate estimate of the class prior translated into a higher classification
accuracy.

6.6 Conclusion

We proposed a new method to estimate the class prior from positive and unlabeled
samples by partial matching under the PE divergence. By obtaining a lower bound
for the PE divergence, we can directly get an analytical divergence estimator and
estimate the class prior in a single step.

As was shown, the existing method of Elkan and Noto (2008) can also be inter-
preted as matching using the PE divergence. However, in that work, the estimation
was indirectly performed using a two-step approach.

4The datasets can be obtained from ‘http://archive.ics.uci.edu/ml/’.
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We experimentally illustrated on benchmark data that our single-step approach
gave a more accurate estimate of the class prior, which, in turn, resulted in a higher
classification accuracy.
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Figure 6.3: Experimental results on several UCI benchmark datasets. ‘PE’ and
‘PE (CA)’ indicates the squared-error and classification accuracy for
class-prior estimation via direct PE divergence estimation. ‘EN’ and
‘EN (CA)’ indicates the squared error and classification accuracy for
class-prior estimation using the method of (Elkan and Noto, 2008).
The diamond symbol means that the method is the best or comparable
in terms of the mean performance by t-test with significance level 5%.
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Chapter 7

Conclusions and future work

In this chapter, a conclusion is presented and several future directions for research
is discussed.

7.1 Conclusion

This thesis was devoted to situations where a class balance change occurs – ei-
ther due to non-stationarity or imperfect supervision. Three such problems were
investigated:

• Semi-supervised class-prior estimation in situations where class-prior change
occurs.

• Unsupervised labeling of data using two unlabeled datasets differing by
class prior.

• Class-prior estimation from positive-only labeled datasets.

These problems were solved using the framework of divergence estimation.

In Chapter 4 the semi-supervised class-prior estimation problem was consid-
ered. This problem was solved by matching a model based on the the training
class-conditional densities to the test input density under some divergence mea-
sure. The f -divergences and the L2 distance were investigated as divergence mea-
sures. Using the Pearson divergence and L2 distance resulted in computationally
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simple estimators of the class prior. Experimentally, these direct divergence es-
timators led to more accurate estimates of the class prior than existing indirect
methods. Furthermore, these more accurate class-prior estimates, in turn, led to
a higher classification accuracy when the classifier was adapted for a change in
class priors.

In Chapter 5 the problem of clustering a dataset was considered. In this setup,
it was assumed that two datasets with different class priors are available. It was
shown that by directly estimating the sign of the density difference, a labeling can
be obtained. Theoretical analysis revealed that the asymptotic convergence rate
of our method is of the same order as the fully supervised case. However, our
method does not require any labeled samples.

In Chapter 6 the problem of estimating the class-prior in positive-only labeled
data was considered. To solve this problem, the idea of partially matching a scalar
multiplied by a probability distribution to a probability distribution was intro-
duced. Using the Pearson divergence, a simple and direct estimator for the class
prior was obtained. Analysing the existing method with the framework intro-
duced here showed that the existing method can also be interpreted as matching
the Pearson divergence. However, in the existing method, this Pearson divergence
was estimated in an indirect manner. Experimental results showed that the pro-
posed method gives a more accurate estimate of the class-prior than the existing
indirect method.

Although the proposed solutions for estimating the class prior in a semi-supervised
case and from positive-only labeled data worked well, the proposed framework is
perhaps more important. By posing existing machine learning problems as di-
vergence minimization problems direct divergence estimators can be used. By
directly estimating these divergences, algorithms that outperform existing indirect
methods can be obtained.

7.2 Future problems

In this final section, we discuss several important problems for the future.
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7.2.1 Investigation of density-difference divergences

A drawback of f -divergences is that they are defined in terms of the density ratio.
This density ratio may not be bounded, making estimation of these divergences
difficult in many instances. To solve this problem, a new class of divergences
was introduced in Section 2.3 that is defined in terms of the density difference.
These divergences are a generalization of the L2 distance between probability
distributions (Sugiyama et al., 2012c, 2013c).

There are several aspects of these divergences that still have to be investigated.
The first is the identification of new functions ψ(t) that define the divergence and
the properties of these new functions. Secondly, the estimation aspect is impor-
tant. For many functions, the last term in Eq. (3.6) can not be calculated analyti-
cally, making the estimation difficult.

The question of reducing variance is also important. For the L2 distance be-
tween probability densities this aspect has already been investigated, leading to the
constrained least-squares density difference formulation (Nguyen et al., 2012).

7.2.2 Reduction of bias in class-prior estimation from positive
and unlabeled data

In Chapter 6 the problem of estimating the class-prior from positive and unlabeled
data was discussed. The framework for estimating the class prior by partially
matching a function to a density was introduced. We showed that the existing
method can also be interpreted as matching distributions under a divergence. In
that section, we showed that both methods are biased if the class-conditional den-
sities significantly overlap.

A possible approach to reduce this bias is to consider other non-f -divergences
as measures of similarity. The motivation for this is that we used an f -divergence
to match a non-density to a density: θp(x|y = 1) was matched to p(x) under an
f -divergence, but θp(x|y = 1) is not a density (unless θ = 1).

Following this line of reasoning, we consider the following penalized version
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of the L1 distance1

f(t) =


−(t− 1) 0 ≤ t ≤ 1,

∞ t > 1,

∞ t < 0.

The result for the ideal case (when the densities are known) is illustrated in Fig-
ure 7.1. As can be seen from this graph, the minimum for the penalized divergence
is closer to the true value than the unpenalized case.

The penalized distance can be estimated from samples according to

D(θ) = sup
α

θ
1

n′

n′∑
j=1

b∑
`=1

α`ϕ`(x
′
j)−

1

n

n∑
i=1

max

(
b∑
`=1

α`ϕ`(xi),−1

)
.

The max operation is due to the fact that the conjugate of f(t) is f ∗(z) = max(z,−1).
An `2 regularizer can be added to the above with the dual purpose of regulariza-
tion and ensuring that the problem is bounded. By calculating the dual, it can be
shown that the above can be solved analytically.

7.2.3 Statistical guarantees for class-prior estimation

An important aspect is investigating several statistical aspects of class-prior esti-
mation. Currently, the divergence estimation for estimating the class-priors achieves
the optimal convergence rate, however, no guarantees are given on the accuracy
of the estimate of the class prior. The formulation of estimating the class-prior
using the L2-distance in Section 4.5 would perhaps be more amendable to such a
statistical analysis due to the simplicity of the estimator.

7.2.4 Class-prior change model for time-series data

In this thesis a fixed change in the class-prior between the training and test phase
was considered. However, many time series problems may be characterized by

1The L1 distance was considered here for the sake of simplicity since it leads to a drastically
simpler optimization problem.
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Figure 7.1: Example of partial matching for the L1 distance and a penalized L1

distance in a highly overlapped case. The true underlying densities
are given in 7.1(a), where the unknown class prior is p(y = 1) = 3

4
.

The L1 distance and penalized distance for θp(x|y = 1) to p(x) is
given in 7.1(b). As can be seen from this, the bias of the penalized
formulation is much smaller.

a continuous change in class priors. For example, the number of outliers in an
industrial process may vary by time. Such a scenario can be modeled by a class
prior that changes at each time step.

Assume that the sample xt drawn at timestep t is drawn according to

xt
i.i.d.∼ pt(x),

where

pt(x) = p (x|y = 1) pt(y = 1) + p (x|y = −1) [1− pt(y = 1)] .

Comparing samples at different timesteps give,

pt(x)− pt−n(x) = [pt(y = 1)− pt−n(y = 1)]︸ ︷︷ ︸
Depends on t

[p (x|y = 1)− p (x|y = −1)]︸ ︷︷ ︸
Depends on x

.

Therefore, the difference between densities factorizes such that one factor varies
with t and the factor that varies with x. By using an appropriate model of the
class-prior and density difference, the time-varying class priors may be estimated.
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Different variations on this theme of modeling problems based on a change in
class priors can also be investigated.

7.2.5 Semi-supervised classification via small-support assump-
tion

In many problems, for instance image-category identification, we wish to only
recognize one specific class from among several different classes. For instance,
we may have a large set of images, but only want to select images of the category
‘cat’ from that dataset. In the supervised setup, we can view this as a classification
problem where the one class y = 1 consists of ‘cat’ training images and the other
class y = −1 consists of images of all other classes (e.g. ‘dog’, ‘car’, etc. . . ).

Unlabeled samples can be assigned labels by

ŷ = sign [p(x|y = 1)p(y = 1)− p(x|y = −1)p(y = −1)] . (7.1)

The above expression must be estimated from the dataset.

In practical problems, however, often only a small number of labeled samples
may be available. The small number of samples may not be descriptive of the neg-
ative class. This is because the negative class consists of many different categories
that are combined. An example of such a situation is illustrated in Figure 7.2.

Often we have a large unlabeled dataset in addition to a labeled dataset. To use
this additional data, most semi-supervised learning methods make an assumption
on the data such as the cluster assumption, smoothness assumption or manifold
assumption (Chapelle et al., 2006). These assumptions may or may not hold de-
pending on the dataset.

Since the unlabeled data drawn from p(x) is available, a class label can be
assigned with

ŷ = sign (2p(x|y = 1)p(y = 1)− p(x)) , (7.2)

= sign (2p(x|y=1)p(y=1)− [p(x|y=1)p(y=1) + p(x|y=−1)p(y=−1)]) .

In situations where p(x|y = −1) is a combination of different underlying classes,
estimating the above may be more accurate. To clarify the assumption: The as-
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sumption is that the positive class-conditional density has a small support and the
negative class-conditional density has a wide support.

This idea may be incorporated by combining the loss functions for estimating
Eq. (7.2) and Eq. (7.2).
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Figure 7.2: Example of the problem described in Sec. 7.2.5. Samples from y =−1
is from many different underlying classes and has a wide support.
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