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Abstract

The development of modern technologies has offered us easier ways of accessing
and modifying digital data. The analysis on such changing data challenges our
traditional view on machine learning, since the pattern observed today may be
altered tomorrow. In contrast, the dynamic view of machine learning allows us to
incorporate changing patterns in traditional learning tasks.

In this thesis, we focus on one of the dynamic learning tasks: unsupervised
change detection, and propose two novel approaches in distributional and struc-
tural change detection respectively. Guided by Vapnik’s Principle (Vapnik, 1998),
both algorithms avoid comparing two separately learned patterns by learning the
change directly.

Our first contribution is on non-parametric distributional change detection.
We propose a novel statistical change-point detection algorithm based on non-
parametric divergence estimation between time-series samples from two retro-
spective segments. Our method uses the relative Pearson divergence as a di-
vergence measure, and it is accurately estimated by a method of density ratio
estimation. Through experiments of human-activity sensing, speech and Twitter
messages, we demonstrate the usefulness of the proposed method.

Our second contribution is on structural change detection between two Markov
networks. We propose a new method of detecting changes by estimating the ratio
between Markov network models, instead of learning two Markov networks sep-
arately. This density ratio formulation naturally allows us to introduce sparsity in
the structural change, which highly contributes to enhancing the interpretability.
Furthermore, the computation of the normalization term, which is a critical bottle-
neck, can be efficiently sample-approximated. Finally, we give the dual objective
of the proposed method, which reduces the computational cost on large Markov

v



networks. The usefulness of the proposed method is examined via toy and real
experiments.

As it is shown in this thesis, the unsupervised change detection can success-
fully capture the changes of patterns in many real-world applications. We believe
it will be a very promising field of machine learning in the coming years.
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Chapter 1

Introduction

This thesis is dedicated to learning the changes hidden behind data with statistical
machine learning approaches. In this chapter, we explore the fundamental ideas
of statistical machine learning and locate our research in this field. The structure
of this thesis is illustrated at the end of this section.

1.1 Learning from Data

Data are empirical observations generated by human interactions with the envi-
ronment. Learning from data is a process of extracting patterns from such ob-
servations (Shawe-Taylor and Cristianini, 2004; Bishop, 2006). It has played an
important role in developing human knowledge. One of the great works by Jo-
hannes Kepler, unravelled the laws govern planetary bodies moving in the solar
system based on Tycho Brahe’s data, was an example that how human learning
revolutionized our understanding of the universe.

With the latest technology, the environment accessible by human has been
greatly expanded, and data is now produced and updated at a tremendous speed
(Jacobs, 2009). Clearly learning at such a scale is beyond human capability. In this
thesis, we concentrate on another type of learning, in which the learning body is
switched from human to computers. We refer to such learning process as machine
learning.

We summarize the procedure of learning in Figure 1.1.

1



2 Chapter 1. Introduction

HumanMachine

Learning Body

Pattern

Learning Target

Learning Object

Source: 
Internet, 
Satellite, 
Bio-sensors … 

Format:
Text, 
Voice, 
Images … 

DataDataData

Models

Theorems

Rules

Figure 1.1: The diagram of learning procedure.

1.1.1 Machine Learning from Big Data

Data, as the main object of learning, keeps growing in its scale. For example,
one hour of video is uploaded to YouTube every second1, 1 trillion webpages
are indexed by Google2 and 50 billion photos are handled by Facebook3 from its
users. Without interpretation, such an amount of information is too vast for human
to comprehend.

In fact, data is redundant. Imagine a data feed received from an accelerometer

1http://www.youtube.com/t/press_statistics.
2http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.

html.
3https://www.facebook.com/note.php?note_id=409881258919

http://www.youtube.com/t/press_statistics
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
https://www.facebook.com/note.php?note_id=409881258919
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sensor of a marathon runner, with sampling rate 30 Hz. We may obtain 1800
data frames per minute. However, it is clear that the data at the current second
is not completely irrelevant with the data at the previous second. The pattern of
the marathon runner can be expressed through a sequence of transitions where the
running behaviour has shifted. Thus, the entire data stream can be compressed
into an initial state followed by a series of transition states.

Patterns are regularities that characterise data in compressed rules, and help us
understand the mechanism that generates data, make decisions or even predict fu-
ture (Shawe-Taylor and Cristianini, 2004; Murphy, 2012). However, compressed
rules do not necessarily mean “simple”.

Most of the human knowledge of physics can be written down explicitly as
equations, but it is not true for learned patterns. Consider the task of identifying
genes from fragments of human DNA. Though biological laws give us clues, there
is no way to find an exact procedure to accomplish such a task. However, given
annotated samples from data, it is possible to adapt such information in samples
and apply it to new queries. Though this is hard for a human expert, computers
are capable of handling complex solutions and making inference.

Though we are entering the era where “data floods”, with the help of advanced
computing power, learning complex patterns from big data now become possible.

1.1.2 Learning under Uncertainty

There are possibilities that uncertainties are recorded within the data. Generally,
there are three types of uncertainties concerned during the learning process:

Noise: The term “big data” only refers to the quantity of data, rather than its
quality. On Internet, the owners of information tend publish it as soon as possible
so the preciseness of the data is usually compromised.

Outlier (or Missing Data) Due to the failure of instruments, corrupted records
or missing out values may frequently occur in the data.

Model Unpredictability In some cases, the data generating source contains cer-
tain level of uncertainty. Consider a movie rating dataset collected from amateur
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viewers who may rate the same movie with different scores on different days.
With uncertainty lies within, data cannot be described by exact patterns.

Therefore, we may look for a good pattern that fits the data with high probability.
If such a model is used for prediction, there is a good chance that such prediction
is fulfilled.

Statistical methods help us build such models where the uncertainty is treated
as probability. Comparing to deterministic models, statistical models are more
compact, since the deterministic models require more rules to describe exceptional
cases while the statistical models just assign them with lower probability using one
single model.

If statistical methods are employed, we refer to such machine learning pro-
cesses as Statistical Machine Learning.

1.1.3 Learning with Changing Data

The modern age has not only produced a large amount of data, but also offers easy
ways of accessing and updating data. In fact, change is one of the most important
properties of big data. For example, satellite images taken on the same spot may
be different due to lighting or clouding conditions; the trend of Twitter topics
may rapidly shift after breaking news is reported; popular queries sent to search
engines may change on an everyday basis. In fact, twenty percent of Google
queries everyday have never been seen before 4.

However, the classic machine learning methods are designed for static data
which remain the same during the learning period. Unfortunately, the patterns
obtained today may be invalid tomorrow.

Moreover, it may be more interesting to know the change of patterns than the
pattern itself in many occasions. As change is the nature of big data, analysing the
static pattern only gives the impression what data used to be.

After all,

“Nothing endures but change.”

-Heraclitus (c. 535 - c. 475 BCE)

4http://certifiedknowledge.org/blog/......

/are-search-queries-becoming-even-more-unique-statistics-from-google.

http://certifiedknowledge.org/blog/... .../are-search-queries-becoming-even-more-unique-statistic s-from-google.
http://certifiedknowledge.org/blog/... .../are-search-queries-becoming-even-more-unique-statistic s-from-google.
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1.2 Two Views of Machine Learning

As it was introduced in Section 1.1.3, the changing data has brought analysis tasks
huge challenge, while the traditional machine learning only focuses on extracting
static rules. There is a need of shifting the idea of machine learning into a more
adaptive paradigm so that the change of patterns can be naturally incorporated in
the learning framework.

In this section, we discuss machine learning methodologies from two different
perspectives.

1.2.1 Static Machine Learning

Traditional machine learning algorithms take a set of instances as their input and
discover patterns lies among data (Bishop, 2006). Instances usually consist of fea-
tures, which characterize different aspects of the data. For example, an automated
diagnosis system may take each patient as an instance, and their medical examina-
tion records as features. As side information, the learning target, supervision can
also be provided as one of the features. For example, the aforementioned system
may use previous medical decisions as supervision to diagnose new patients.

However, in some occasions, such target information may not be available
from the data, which makes the task ill-defined. We now introduce two tasks in
machine leaning with respect to the availability of their target information.

Supervised Learning Supervised learning is usually divided into two steps:
training and testing. Let the {(x, y)} be the set of training instances of our learn-
ing algorithm. y ∈ R is the learning target and x ∈ Rd are predictive features.
a learning algorithm is looking for a relationship f : Rd 7→ R, so that for each
testing instance x′, we may assign a prediction ŷ′.

From the probabilistic perspective, we assume each instance (x, y) is drawn
from a joint probability distribution p(x, y), thus supervised learning is to build a
model of conditional probability density p(y|x) (Hastie et al., 2001).

In this thesis, we only consider continuous instance values. However, patterns
can also be learned when the data is discrete. If y have discrete values, for exam-
ple, y ∈ {−1, 1}, such a learning task is referred to classification, otherwise, we
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call it regression.

Unsupervised Learning Unsupervised learning considers a scenario without a
specific learning target. The task is simply discovering “interesting” patterns from
data. From the view of probability, we may formulate such a task as estimating
the density function p(x) from training samples {x} so that the estimated den-
sity p̂(x) also holds on testing samples {x′} (Murphy, 2012). In fact, once the
generating density is found, we may recover any other statistical patterns from it.

From the above discussion, it can be seen that the supervised learning is easier
than its unsupervised counterpart. Supervised learning is to obtain an estimate
p̂(y|x) of the true conditional density p(y|x). Consider an unnormalized condi-
tional density model g(y|x;θ), we have

p(y|x) ≈ p̂(y|x;θ) = g(y|x;θ)∫
y∈R g(y|x;θ) dy

,

For unsupervised learning, we model p(x) using g(x;θ), thus

p(x) ≈ p̂(x;θ) =
g(x;θ)∫

x∈Rd g(x; θ) dx
.

Clearly normalizing an unsupervised model is more difficult than the supervised
model since the integral is in d-dimensional space Rd rather than one-dimensional
space R. The difficulty of normalizing unsupervised model will re-emerge in
Chapter 3.

1.2.2 Dynamic Machine Learning and Change Detection

In this section, we introduce a dynamic machine learning paradigm, where the
change of data is taken into account. Comparing to the static paradigm, such
dynamic approaches offer better performance on “shifting data”.

Dynamic learning approaches are extensions of traditional approaches. Given
the availability of the target feature, it can also be divided as supervised and un-
supervised learning.
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Supervised Learning (or Transfer Learning) Similarly to traditional super-
vised learning, the learning algorithm is given a set of training and testing in-
stances each. However, we assume that samples {(x, y)} and {(x′, y′)} are drawn
from two different distributions p(x, y) and p′(x, y) respectively. The target is to
learn a model of p(y|x) from {(x, y)} and have a good accuracy in predicting y′

given x′. It is a hard problem to learn if two joint distributions p(x, y) and p′(x, y)
are completely different, so we assume that only the marginal or conditional distri-
butions are different. If p(y) and p′(y) are different, we consider such problem as
learning under class-prior change (Saerens et al., 2002; Du Plessis and Sugiyama,
2014); if p(x) and p′(x) are different, it is called learning under covariate shift
(Bickel et al., 2009; Sugiyama et al., 2007). In a generalized setting, the {(x, y)}
and {(x′, y′)} are not necessarily training and testing datasets, but can be two dif-
ferent learning tasks. If p(y|x) and p′(y|x) are not exactly the same, but closely
related, it is regarded as multi-task learning, or inductive transfer learning (Raina
et al., 2006).

Unsupervised Learning (or Change Detection) The traditional unsupervised
learning is to learn interesting patterns from data. However, the unsupervised
learning under changing data is to find “interesting changes”, or detecting changes
between patterns. Such a learning task usually involves two sets of data {xP} and
{xQ}, drawn from p(x) and q(x) respectively. In order to find changes, we have
to introduce the measure of changes. In statistics, divergence is defined as distance
between two distributions (Amari and Nagaoka, 2000; Eguchi and Copas, 2006;
Wang et al., 2009). For example, an f -divergence (Ali and Silvey, 1966) is defined
as

D[p‖q] =
∫
q(x)f(

p(x)

q(x)
) dx,

where f is a convex function and f(1) = 0. Other distances are also used as
measure of changes, for example, L2-distance

L2(p, q) =

∫
(p(x)− q(x))2 dx.

In the above cases, p(x)/q(x) (or p(x) − q(x)) describes the changes on the
data and we would hope that our model can capture such information. A naive way
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is to model p(x) and q(x) separately as p(x;θ) and q(x;θ) then plug estimated
densities into the ratio or difference. However, another way is to model the change
directly, i.e.

p(x)

q(x)
:= r(x;θ), or p(x)− q(x) := w(x;θ).

In this thesis, we discuss the advantages of the latter approach. An intuitive proof
of such criteria can be given by Vapnik’s Principle (Vapnik, 1998):

“When solving a problem of interest, one should not solve a more
general problem as an intermediate step.”

-Vladimir Vapnik

However, it should be noticed that we do not claim the direct modelling ap-
proach is the universally good approach for all applications. In fact, modelling
p(x) and q(x) separately may provide useful information on the generating source
itself, which is highly beneficial in tasks requires a description of the data (e.g.
outlier detection).

We summarize two views of machine learning tasks in Table 1.1.
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Figure 1.2: The example of space shuttle valve dataset. The red segment is an
annotated anomaly (Keogh et al., 2005).

1.2.3 Change Detection Problems

Depending on the motivations of change detection, we divide change detec-
tion problems into two categories: distributional change detection and structural
change detection.

Distributional Change Detection Given two sets of data, the target of distri-
butional change detection is to determine whether the data generating probability
has altered. Always given such two sets of data at any time point, the change-
point detection problem is to assign a score that indicates how likely a change has
happened at the current point.

For example, the detection of anomalies from space shuttle valve (Figure 1.2)
raises an alarm when the engine malfunctioning is detected (Keogh et al., 2005).

Structural Change Detection In practice, the input data is usually high-
dimensional, with multiple input variables. Variables may be correlated with each
other. For example, fMRI data may record correlated activities at different brain
regions. Given two sets of multivariate data, it may be interesting to understand
what has been changed in such correlations.

The target of structural change detection is to interpret the change of interac-
tions among variables from two sets of data.

For example, in controlled experiments of gene profiling, the change of inter-
actions between genes may reveal crucial information that how system responds
to external stimuli (Zhang and Wang, 2010).
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1.3 Contribution of This Thesis

We contribute two works to change detection problems: Robust nonparametric
distributional change detection and interpretable structural change detection.

1.3.1 Two Issues of Change Detection

In order to detect changes, most of the existing methods assume the probabil-
ity model that generates data is from a given family of distributions, however, in
some occasions, the detection of change needs to be made under a highly noisy
environment. The generating probability is not from any of the known parametric
distribution families. In comparison, the non-parametric detection methods make
no assumption on the underlying probability, and benefit from the flexibility of
capturing various kinds of changes. Unfortunately, such non-parametric meth-
ods usually require large number of samples to achieve an accurate estimation,
especially under high-dimensional settings.

In some applications, we are not only interested in detecting changes, but also
understanding changes. Though non-parametric methods are flexible, they are
less informative in showing how the generating probability has shifted from one
to another. Structural change detection is to explore the changes among the cor-
relations between random variables. Existing methods assume Gaussianity on the
generating probability. However, such model might be too restrictive in practice.
Moreover, to obtain the estimation of model parameters, the existing approaches
adopt learning procedures twice on two sets of data separately. In fact, given the
change is our only interest, such method is redundant and less accurate.

1.3.2 Robust Nonparametric Distributional Change Detection

In the first part of this thesis, we tackle the issue of improving the robustness
of change detector, under non-parametric settings. The resulting algorithm uti-
lizes the latest advances in density ratio estimation and improves the performance
of change-point detection via the technique of “relative density ratio estimation”
(Yamada et al., 2013).

We present a novel statistical change-point detection algorithm based on non-
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parametric divergence estimation between time-series samples from two retro-
spective segments. Our method uses the relative Pearson divergence as a di-
vergence measure, and it is accurately and efficiently estimated by a method
of direct density-ratio estimation. Through experiments on artificial and real-
world datasets including human-activity sensing, speech, and Twitter messages,
we demonstrate the usefulness of the proposed method.

1.3.3 Interpretable Structural Change Detection

In the second part of this thesis, we consider the problem of structural change
detection, and present a direct learning method that solves the problem in one
shot.

We propose a new method for detecting changes in Markov network structure
between two sets of samples. Instead of naively fitting two Markov network mod-
els separately to the two data sets and figuring out their difference, we directly
learn the network structure change by estimating the ratio of Markov network
models. This density-ratio formulation naturally allows us to introduce sparsity in
the network structure change, which highly contributes to enhancing interpretabil-
ity. Furthermore, computation of the normalization term, which is a critical com-
putational bottleneck of the naive approach, can be remarkably mitigated. We
also give the dual formulation of the optimization problem, which further reduces
the computation cost for large-scale Markov networks. Through experiments, we
demonstrate the usefulness of our method.

1.4 Organization of This Thesis

This dissertation consists of 4 chapters (see Figure 1.3). In this section we describe
the organization of our thesis.

In Chapter 2, we introduce our first contribution on change-point detection.
Section 2.1 gives a brief introduction of change-point detection problems and
state-of-the-art methods. Section 2.2 formulates the problem of retrospective
change-point detection and Section 2.3 reviews the latest development of den-
sity ratio estimation methods, which are main building blocks of the proposed
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Conclusion
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Figure 1.3: Organization of this thesis.

methods. Section 2.4 shows the experiments on both toy and real-world datasets,
and the superiority of the proposed method over the other existing methods. We
conclude this work in Section 2.5.

Chapter 3 covers our work on structural change detection. Section 3.1 shows
the concept of structural change learning and state-of-the-art methods. In Section
3.2 we formulate pairwise Markov network and introduce related works. In Sec-
tion 3.3, we propose the direct structural change learning method, using density
ratio estimation. We demonstrate the experiment results comparing with exist-
ing methods at Section 3.4 and 3.5 using both toy and real-world datasets, and
conclude this work in Section 3.7.

Finally, we summaries this thesis and show possible future works in Chapter
4.
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Chapter 2

Distributional Change Detection

In this section, we propose a novel non-parametric method for distributional
change detection tasks. We apply the latest advances in density ratio estimation,
to obtain a flexible and robust algorithm. The usefulness of the proposed method
is demonstrated via abundant experiments.

This section is organized as follows. Section 2.1 and 2.2 give a brief introduc-
tion of background and problem formulation. Section 2.3 describes the proposed
methods together with the review of the existing method. Finally, the results of
experiments are reported in Section 2.4 and we conclude this research in Section
2.5.

2.1 Introduction

Detecting abrupt changes in time-series data, called change-point detection, has
attracted researchers in the statistics and data mining communities for decades
(Basseville and Nikiforov, 1993; Gustafsson, 2000; Brodsky and Darkhovsky,
1993). Depending on the delay of detection, change-point detection methods
can be classified into two categories: Real-time detection (Adams and MacKay,
2007; Garnett et al., 2009; Paquet, 2007) and retrospective detection (Basseville
and Nikiforov, 1993; Takeuchi and Yamanishi, 2006; Moskvina and Zhigljavsky,
2003a).

Real-time change-point detection targets applications that require immedi-
ate responses such as robot control. On the other hand, although retrospective

15
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change-point detection requires longer reaction periods, it tends to give more ro-
bust and accurate detection. Retrospective change-point detection accommodates
various applications that allow certain delays, for example, climate change de-
tection (Reeves et al., 2007), genetic time-series analysis (Wang et al., 2011),
signal segmentation (Basseville and Nikiforov, 1993), and intrusion detection in
computer networks (Yamanishi et al., 2000). In this chapter, we focus on the ret-
rospective change-point detection scenario and propose a novel non-parametric
method.

Having been studied for decades, some pioneer works demonstrated good
change-point detection performance by comparing the probability distributions
of time-series samples over past and present intervals (Basseville and Nikiforov,
1993). As both the intervals move forward, a typical strategy is to issue an alarm
for a change point when the two distributions are becoming significantly differ-
ent. Various change-point detection methods follow this strategy, for example,
the cumulative sum (Basseville and Nikiforov, 1993), the generalized likelihood-
ratio method (Gustafsson, 1996), and the change finder (Takeuchi and Yamanishi,
2006). Such a strategy has also been employed in novelty detection (Guralnik and
Srivastava, 1999) and outlier detection (Hido et al., 2011).

Another group of methods that have attracted high popularity in recent years
is the subspace methods (Moskvina and Zhigljavsky, 2003a,b; Ide and Tsuda,
2007; Kawahara et al., 2007). By using a pre-designed time-series model, a sub-
space is discovered by principal component analysis from trajectories in past and
present intervals, and their dissimilarity is measured by the distance between the
subspaces. One of the major approaches is called subspace identification, which
compares the subspaces spanned by the columns of an extended observability ma-
trix generated by a state-space model with system noise (Kawahara et al., 2007).
Recent efforts along this line of research have led to a computationally efficient
algorithm based on Krylov subspace learning (Ide and Tsuda, 2007) and a suc-
cessful application of detecting climate change in south Kenya (Itoh and Kurths,
2010).

The methods explained above rely on pre-designed parametric models, such as
underlying probability distributions (Basseville and Nikiforov, 1993; Gustafsson,
1996), auto-regressive models (Takeuchi and Yamanishi, 2006), and state-space
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Figure 2.1: Rationale of direct density-ratio estimation.

models (Moskvina and Zhigljavsky, 2003a,b; Ide and Tsuda, 2007; Kawahara
et al., 2007), for tracking specific statistics such as the mean, the variance, and the
spectrum. As alternatives, non-parametric methods such as kernel density estima-
tion (Csörgö and Horváth, 1988; Brodsky and Darkhovsky, 1993) are designed
with no particular parametric assumption. However, they tend to be less accurate
in high-dimensional problems because of the so-called curse of dimensionality
(Bellman, 1961; Vapnik, 1998).

To overcome this difficulty, a new strategy was introduced recently, which es-
timates the ratio of probability densities directly without going through density
estimation (Sugiyama et al., 2012a). The rationale of this density-ratio estimation
idea is that knowing the two densities implies knowing the density ratio, but not
vice versa; knowing the ratio does not necessarily imply knowing the two densities
because such decomposition is not unique (Figure 2.1). Thus, direct density-ratio
estimation is substantially easier than density estimation (Sugiyama et al., 2012a).
Following this idea, methods of direct density-ratio estimation have been devel-
oped (Sugiyama et al., 2012b), e.g., kernel mean matching (Gretton et al., 2009),
the logistic-regression method (Bickel et al., 2007), and the Kullback-Leibler im-
portance estimation procedure (KLIEP) (KLI). In the context of change-point
detection, KLIEP was reported to outperform other approaches (Kawahara and
Sugiyama, 2012) such as the one-class support vector machine (Schölkopf et al.,
2001; Desobry et al., 2005) and singular-spectrum analysis (Moskvina and Zhigl-
javsky, 2003b). Thus, change-point detection based on direct density-ratio esti-
mation is promising.

The goal of this paper is to further advance this line of research. More specifi-
cally, our contributions in this chapter are two folds. The first contribution is to ap-
ply a recently-proposed density-ratio estimation method called the unconstrained
least-squares importance fitting (uLSIF) (Kanamori et al., 2009) to change-point
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detection. The basic idea of uLSIF is to directly learn the density-ratio function in
the least-squares fitting framework. Notable advantages of uLSIF are that its solu-
tion can be computed analytically (Kanamori et al., 2009), it achieves the optimal
non-parametric convergence rate (Kanamori et al., 2012b), it has the optimal nu-
merical stability (Kanamori et al., 2013), and it has higher robustness than KLIEP
(Sugiyama et al., 2012b). Through experiments on a range of datasets, we demon-
strate the superior detection accuracy of the uLSIF-based change-point detection
method.

The second contribution of this paper is to further improve the uLSIF-based
change-point detection method by employing a state-of-the-art extension of uL-
SIF called relative uLSIF (RuLSIF) (Yamada et al., 2013). A potential weakness
of the density-ratio based approach is that density ratios can be unbounded (i.e.,
they can be infinity) if the denominator density is not well-defined. The basic
idea of RuLSIF is to consider relative density ratios, which are smoother and al-
ways bounded from above. Theoretically, it was proved that RuLSIF possesses a
superior non-parametric convergence property than plain uLSIF (Yamada et al.,
2013), implying that RuLSIF gives an even better estimate from a small number
of samples. We experimentally demonstrate that our RuLSIF-based change-point
detection method compares favorably with other approaches.

The rest of this paper is structured as follows: In Section 2.2, we formulate
our change-point detection problem. In Section 2.3, we describe our proposed
change-point detection algorithms based on uLSIF and RuLSIF, together with the
review of the KLIEP-based method. In Section 2.4, we report experimental re-
sults on various artificial and real-world datasets including human-activity sens-
ing, speech, and Twitter messages from February 2010 to October 2010. Finally,
in Section 2.5, conclusions together with future perspectives are stated.

2.2 Problem Formulation

In this section, we formulate our change-point detection problem.

Let y(t) ∈ Rd be a d-dimensional time-series sample at time t. Let

x(t) := [y(t)>,y(t+ 1)>, . . . ,y(t+ k − 1)>]> ∈ Rdk
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be a “subsequence”1 of time series at time t with length k, where > represents the
transpose. Following the previous work (Kawahara and Sugiyama, 2012), we treat
the subsequence x(t) as a sample, instead of a single d-dimensional time-series
sample y(t), by which time-dependent information can be incorporated naturally
(see Figure 2.2). LetX (t) be a set of n retrospective subsequence samples starting
at time t:

X (t) := {x(t),x(t+ 1), . . . ,x(t+ n− 1)}.

Note that [x(t),x(t + 1), . . . ,x(t + n− 1)] ∈ Rdk×n forms a Hankel matrix and
plays a key role in change-point detection based on subspace learning (Moskvina
and Zhigljavsky, 2003a; Kawahara et al., 2007).

For change-point detection, let us consider two consecutive segmentsX (t) and
X (t+n). Our strategy is to compute a certain dissimilarity measure betweenX (t)
and X (t+n), and use it as the plausibility of change points. More specifically, the
higher the dissimilarity measure is, the more likely the point is a change point2.

Now the problems that need to be addressed are what kind of dissimilarity
measure we should use and how we estimate it from data. We will discuss these
issues in the next section.

2.3 Change-Point Detection via Density-Ratio Esti-
mation

In this section, we first define our dissimilarity measure, and then show methods
for estimating the dissimilarity measure.

1In fact, only in the case of one-dimensional time-series, x(t) is a subsequence. For
higher-dimensional time-series, x(t) concatenates the subsequences of all dimensions into a one-
dimensional vector.

2 Another possible formulation is to compare distributions of samples in X (t) and X (t + n)

in the framework of hypothesis testing (Henkel, 1976). Although this gives a useful threshold
to determine whether a point is a change point, computing the p-value is often time consuming,
particularly in a non-parametric setup (Efron and Tibshirani, 1993). For this reason, we do not take
the hypothesis testing approach in this chapter, although it is methodologically straightforward to
extend the proposed approach to the hypothesis testing framework.
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2.3.1 Divergence-Based Dissimilarity Measure and Density-
Ratio Estimation

In this chapter, we use a dissimilarity measure of the following form:

D(Pt‖Pt+n) +D(Pt+n‖Pt), (2.1)

where Pt and Pt+n are probability distributions of samples in X (t) and X (t+ n),
respectively. D(P‖Q) denotes the f -divergence (Ali and Silvey, 1966; Csiszár,
1967):

D(P‖Q) :=
∫
q(x)f

(
p(x)

q(x)

)
dx, (2.2)

where f is a convex function such that f(1) = 0, and p(x) and q(x) are prob-
ability density functions of P and Q, respectively. We assume that p(x) and
q(x) are strictly positive. Since the f -divergence is asymmetric (i.e., D(P‖Q) 6=
D(Q‖P )), we symmetrize it in our dissimilarity measure (2.1) for all divergence-
based methods3.

The f -divergence includes various popular divergences such as the Kullback-
Leibler (KL) divergence by f(t) = t log t (Kullback and Leibler, 1951) and the
Pearson (PE) divergence by f(t) = 1

2
(t− 1)2 (Pearson, 1900):

KL(P‖Q) :=
∫
p(x) log

(
p(x)

q(x)

)
dx, (2.3)

PE(P‖Q) := 1

2

∫
q(x)

(
p(x)

q(x)
− 1

)2

dx. (2.4)

Since the probability densities p(x) and q(x) are unknown in practice, we
cannot directly compute the f -divergence (and thus the dissimilarity measure). A
naive way to cope with this problem is to perform density estimation and plug the
estimated densities p̂(x) and q̂(x) in the definition of the f -divergence. However,
density estimation is known to be a hard problem (Vapnik, 1998), and thus such a
plug-in approach is not reliable in practice.

3In the previous work (Kawahara and Sugiyama, 2012), the asymmetric dissimilarity measure
D(Pt||Pt+n) was used. As we numerically illustrate in Section 2.4, the use of the symmetrized
divergence contributes highly to improving the performance. For this reason, we decided to use
the symmetrized dissimilarity measure (2.1).
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Recently, a novel method of divergence approximation based on direct density-
ratio estimation was explored (Sugiyama et al., 2008; Nguyen et al., 2010;
Kanamori et al., 2009). The basic idea of direct density-ratio estimation is to learn
the density-ratio function p(x)

q(x)
without going through separate density estimation

of p(x) and q(x). An intuitive rationale of direct density-ratio estimation is that
knowing the two densities p(x) and q(x) means knowing their ratio, but not vice
versa; knowing the ratio p(x)

q(x)
does not necessarily mean knowing the two densities

p(x) and q(x) because such decomposition is not unique (see Figure 2.1). This
implies that estimating the density ratio is substantially easier than estimating the
densities, and thus directly estimating the density ratio would be more promising4

(Sugiyama et al., 2012a).
In the rest of this section, we review three methods of directly estimating the

density ratio p(x)
q(x)

from samples {xPi }ni=1 and {xQj }nj=1 drawn from p(x) and q(x):
The KL importance estimation procedure (KLIEP) (Sugiyama et al., 2008) in
Section 2.3.2, unconstrained least-squares importance fitting (uLSIF) (Kanamori
et al., 2009) in Section 2.3.3, and relative uLSIF (RuLSIF) (Yamada et al., 2013)
in Section 2.3.4.

2.3.2 KLIEP

KLIEP (Sugiyama et al., 2008) is a direct density-ratio estimation algorithm that
is suitable for estimating the KL divergence.

Density-Ratio Model

Let us model the density ratio p(x)
q(x)

by the following kernel model:

r(x;θ) :=
n∑
`=1

θ`K(x,x`), (2.5)

4 Vladimir Vapnik advocated in his seminal book (Vapnik, 1998) that one should avoid solving
a more difficult problem as an intermediate step. The support vector machine (Cortes and Vapnik,
1995) is a representative example that demonstrates the usefulness of this principle: It avoids
solving a more general problem of estimating data generating probability distributions, and only
learns a decision boundary that is sufficient for pattern recognition. The idea of direct density-ratio
estimation also follows Vapnik’s principle.
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where θ := (θ1, . . . , θn)
> are parameters to be learned from data samples, and

K(x,x′) is a kernel basis function. In practice, we use the Gaussian kernel:

K(x,x′) = exp

(
−‖x− x

′‖2

2σ2

)
,

where σ (> 0) is the kernel width. In all our experiments, the kernel width σ is
determined based on cross-validation.

Learning Algorithm

The parameters θ in the model r(x;θ) are determined so that the KL divergence
from p(x) to r(x;θ)q(x) is minimized:

KL =

∫
p(x) log

(
p(x)

q(x)r(x;θ)

)
dx

=

∫
p(x) log

(
p(x)

q(x)

)
dx−

∫
p(x) log (r(x;θ)) dx

After ignoring the first term which is irrelevant to r(x;θ) and approximating the
second term with the empirical estimates, the KLIEP optimization problem is
given as follows:

max
θ

1

n

n∑
i=1

log

(
n∑
`=1

θ`K(xPi ,x`)

)
,

s.t.
1

n

n∑
j=1

n∑
`=1

θ`K(xQj ,x`) = 1 and θ1, . . . , θn ≥ 0.

The equality constraint is for the normalization purpose because r(x;θ)q(x)

should be a probability density function. The inequality constraint comes from
the non-negativity of the density-ratio function. Since this is a convex optimiza-
tion problem, the unique global optimal solution θ̂ can be simply obtained, for
example, by a gradient-projection iteration. Finally, a density-ratio estimator is
given as

r̂(x) =
n∑
`=1

θ̂`K(x,x`).

KLIEP was shown to achieve the optimal non-parametric convergence rate
(Sugiyama et al., 2008; Nguyen et al., 2010).
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Change-Point Detection by KLIEP

Given a density-ratio estimator r̂(x), an approximator of the KL divergence is
given as

K̂L :=
1

n

n∑
i=1

log r̂(xPi ).

In the previous work (Kawahara and Sugiyama, 2012), this KLIEP-based KL-
divergence estimator was applied to change-point detection and demonstrated to
be promising in experiments.

2.3.3 uLSIF

Recently, another direct density-ratio estimator called uLSIF was proposed
(Kanamori et al., 2009, 2012b), which is suitable for estimating the PE diver-
gence.

Learning Algorithm

In uLSIF, the same density-ratio model as KLIEP is used (see Section 2.3.2).
However, its training criterion is different; the density-ratio model is fitted to the
true density-ratio under the squared loss. More specifically, the parameter θ in the
model r(x;θ) is determined so that the following squared loss J(x) is minimized:

J(x) =
1

2

∫ (
p(x)

q(x)
− r(x;θ)

)2

q(x) dx

=
1

2

∫ (
p(x)

q(x)

)2

q(x) dx−
∫
p(x)r(x;θ) dx+

1

2

∫
r(x;θ)2q(x) dx.

Since the first term is a constant, we focus on the last two terms. By substituting
r(x;θ) with our model stated in (2.5) and approximating the integrals by the
empirical averages, the uLSIF optimization problem is given as follows:

min
θ∈Rn

[
1

2
θ>Ĥθ − ĥ

>
θ +

λ

2
θ>θ

]
, (2.6)
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where the penalty term λ
2
θ>θ is included for a regularization purpose. λ (≥ 0) de-

notes the regularization parameter, which is chosen by cross-validation (Sugiyama
et al., 2008). Ĥ is the n× n matrix with the (`, `′)-th element given by

Ĥ`,`′ :=
1

n

n∑
j=1

K(xQj ,x`)K(xQj ,x`′). (2.7)

ĥ is the n-dimensional vector with the `-th element given by

ĥ` :=
1

n

n∑
i=1

K(xPi ,x`).

It is easy to confirm that the solution θ̂ of (2.6) can be analytically obtained as

θ̂ = (Ĥ + λIn)
−1ĥ, (2.8)

where In denotes the n-dimensional identity matrix. Finally, a density-ratio esti-
mator is given as

r̂(x) =
n∑
`=1

θ̂`K(x,x`).

Change-Point Detection by uLSIF

Given a density-ratio estimator r̂(x), an approximator of the PE divergence can
be constructed as

P̂E := − 1

2n

n∑
j=1

r̂(xQj )
2 +

1

n

n∑
i=1

r̂(xPi )−
1

2
.

This approximator is derived from the following expression of the PE divergence
(Sugiyama et al., 2010, 2011b):

PE(P‖Q) = −1

2

∫ (
p(x)

q(x)

)2

q(x)dx+

∫ (
p(x)

q(x)

)
p(x)dx− 1

2
. (2.9)

The first two terms of (2.9) are actually the negative uLSIF optimization objec-
tive without regularization. This expression can also be obtained based on the fact
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that the f -divergenceD(P‖Q) is lower-bounded via the Legendre-Fenchel convex
duality (Rockafellar, 1970) as follows (Keziou, 2003; Nguyen et al., 2007):

D(P ||Q) = sup
h

(∫
p(x)h(x) dx−

∫
q(x)f ∗(h(x)) dx

)
, (2.10)

where f ∗ is the convex conjugate of convex function f defined at (2.2). The PE
divergence corresponds to f(t) = 1

2
(t− 1)2, for which convex conjugate is given

by f ∗(t∗) = (t∗)2

2
+ t∗. For f(t) = 1

2
(t− 1)2, the supremum can be achieved when

p(x)
q(x)

= h(x) + 1. Substituting h(x) = p(x)
q(x)
− 1 into (2.10), we can obtain (2.9).

uLSIF has some notable advantages: Its solution can be computed analyti-
cally (Kanamori et al., 2009) and it possesses the optimal non-parametric con-
vergence rate (Kanamori et al., 2012b). Moreover, it has the optimal numerical
stability (Kanamori et al., 2013), and it is more robust than KLIEP (Sugiyama
et al., 2012b). In Section 2.4, we will experimentally demonstrate that uLSIF-
based change-point detection compares favorably with the KLIEP-based method.

2.3.4 RuLSIF

Depending on the condition of the denominator density q(x), the density-ratio
value p(x)

q(x)
can be unbounded (i.e., they can be infinity). This is actually prob-

lematic because the non-parametric convergence rate of uLSIF is governed by
the “sup”-norm of the true density-ratio function: maxx

p(x)
q(x)

. To overcome this
problem, relative density-ratio estimation was introduced (Yamada et al., 2013).

Relative PE Divergence

Let us consider the α-relative PE-divergence for 0 ≤ α < 1:

PEα(P‖Q) := PE(P‖αP + (1− α)Q)

=

∫
qα(x)

(
p(x)

qα(x)
− 1

)2

dx,

where qα(x) = αp(x) + (1− α)q(x) is the α-mixture density. We refer to

gα(x) =
p(x)

αp(x) + (1− α)q(x)
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as the α-relative density-ratio. The α-relative density-ratio is reduced to the plain
density-ratio if α = 0, and it tends to be “smoother” as α gets larger. Indeed,
one can confirm that the α-relative density-ratio is bounded above by 1/α for
α > 0, even when the plain density-ratio p(x)

q(x)
is unbounded. This was proved to

contribute to improving the estimation accuracy (Yamada et al., 2013).
As explained in Section 2.3.1, we use symmetrized divergence

PEα(P‖Q) + PEα(Q‖P )

as a change-point score, where each term is estimated separately.

Learning Algorithm

For approximating the α-relative density ratio gα(x), we still use the same kernel
model r(x;θ) given by (2.5). In the same way as the uLSIF method, the parameter
θ is learned by minimizing the squared loss between true and estimated relative
ratios:

J(x) =
1

2

∫
qα(x)

(
gα(x)− r(x;θ)

)2
dx

=
1

2

∫
qα(x)g

2
α(x) dx−

∫
qα(x)gα(x)r(x;θ) dx

+
α

2

∫
p(x)r(x;θ)2 dx+

1− α
2

∫
q(x)r(x;θ)2 dx.

Again, by ignoring the constant and approximating the expectations by sample
averages, the α-relative density-ratio can be learned in the same way as the plain
density-ratio. Indeed, the optimization problem of a relative variant of uLSIF,
called RuLSIF, is given as the same form as uLSIF; the only difference is the
definition of the matrix Ĥ:

Ĥ`,`′ :=
α

n

n∑
i=1

K(xPi ,x`)K(xPi ,x`′) +
(1− α)
n

n∑
j=1

K(xQj ,x`)K(xQj ,x`′).

Thus, the advantages of uLSIF regarding the analytic solution, numerical stability,
and robustness are still maintained in RuLSIF. Furthermore, RuLSIF possesses
an even better non-parametric convergence property than uLSIF (Yamada et al.,
2013).
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Change-Point Detection by RuLSIF

By using an estimator r̂(x) of the α-relative density-ratio, the α-relative PE diver-
gence can be approximated as

P̂Eα := − α

2n

n∑
i=1

r̂(xPi )
2 − 1− α

2n

n∑
j=1

r̂(xQj )
2 +

1

n

n∑
i=1

r̂(xPi )−
1

2
.

In Section 2.4, we will experimentally demonstrate that the RuLSIF-based
change-point detection performs even better than the plain uLSIF-based method.

2.4 Experiments

In this section, we experimentally investigate the performance of the proposed
and existing change-point detection methods on artificial and real-world datasets
including human-activity sensing, speech, and Twitter messages. The MATLAB
implementation of the proposed method is available at

http://sugiyama-www.cs.titech.ac.jp/˜song/change_

detection/.

For all experiments, we fix the parameters at n = 50 and k = 10. α in the
RuLSIF-based method is fixed to 0.1. Sensitivity to different parameter choices
and more issues regarding algorithm-specific parameter tuning will be discussed
below.

2.4.1 Artificial Datasets

As mentioned in Section 2.3.1, we use the symmetrized divergence for change-
point detection. We first illustrate how symmetrization of the PE divergence af-
fects the change-point detection performance.

The top graph in Figure 2.3 shows an artificial time-series signal that consists
of three segments with equal length of 200. The samples are drawn fromN (0, 22),
N (0, 12), and N (0, 22), respectively, where N (µ, σ2) denotes the normal distri-
bution with mean µ and variance σ2. Thus, the variances change at time 200 and
400. In this experiment, we consider three types of divergence measures:

http://sugiyama-www.cs.titech.ac.jp/~song/change_detection/
http://sugiyama-www.cs.titech.ac.jp/~song/change_detection/
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Figure 2.3: (Top) The original signal (blue) is segmented into 3 sections with
equal length. Samples are drawn from the normal distributions
N (0, 22), N (0, 12), and N (0, 22), respectively. (Bottom) Symmet-
ric (red) and asymmetric (black and green) PEα divergences.

• PEα(Symmetric) : PEα(Pt||Pt+n) + PEα(Pt+n||Pt),

• PEα(Forward) : PEα(Pt||Pt+n),

• PEα(Backward) : PEα(Pt+n||Pt).

Three divergences are compared in the bottom graph of Figure 2.3.
As we can see from the graphs, PEα(Forward) detects the first change point

successfully, but not the second one. On the other hand, PEα(Backward) behaves
oppositely. This implies that combining forward and backward divergences can
improve the overall change-point detection performance. For this reason, we only
use PEα(Symmetric) as the change-point score of the proposed method from here
on.

Next, we illustrate the behavior of our proposed RuLSIF-based method, and
then compare its performance with the uLSIF-based and KLIEP-based methods.
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In our implementation, two sets of candidate parameters,

• σ = 0.6dmed, 0.8dmed, dmed, 1.2dmed, and 1.4dmed,

• λ = 10−3, 10−2, 10−1, 100, and 101,

are provided to the cross-validation procedure, where dmed denotes the median
distance between samples. The best combination of these parameters is chosen
by grid search via cross-validation. We use 5-fold cross-validation for all experi-
ments.

We use the following 4 artificial time-series datasets that contain manually
inserted change-points:

• Dataset 1 (Jumping mean): The following 1-dimensional auto-regressive
model borrowed from Takeuchi and Yamanishi (2006) is used to generate
5000 samples (i.e., t = 1, . . . , 5000):

y(t) = 0.6y(t− 1)− 0.5y(t− 2) + εt,

where εt is a Gaussian noise with mean µ and standard deviation 1.5. The
initial values are set as y(1) = y(2) = 0. A change point is inserted at every
100 time steps by setting the noise mean µ at time t as

µN =

0 N = 1,

µN−1 +
N
16

N = 2, . . . , 49,

where N is a natural number such that 100(N − 1) + 1 ≤ t ≤ 100N .

• Dataset 2 (Scaling variance): The same auto-regressive model as Dataset
1 is used, but a change point is inserted at every 100 time steps by setting
the noise standard deviation σ at time t as

σ =

1 N = 1, 3, . . . , 49,

ln(e+ N
4
) N = 2, 4, . . . , 48.

• Dataset 3 (Switching covariance): 2-dimensional samples of size 5000 are
drawn from the origin-centered normal distribution, and a change point is
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inserted at every 100 time steps by setting the covariance matrix Σ at time
t as

Σ =



 1 −4
5
− N−2

500

−4
5
− N−2

500
1

 N = 1, 3, . . . , 49,

 1 4
5
+ N−2

500

4
5
+ N−2

500
1

 N = 2, 4, . . . , 48.

• Dataset 4 (Changing frequency): 1-dimensional samples of size 5000 are
generated as

y(t) = sin(ωx) + εt,

where εt is a origin-centered Gaussian noise with standard deviation 0.8. A
change point is inserted at every 100 points by changing the frequency ω at
time t as

ωN =

1 N = 1,

ωN−1 ln(e+
N
2
) N = 2, . . . , 49.

Note that, to explore the ability of detecting change points with different sig-
nificance, we purposely made latter change-points more significant than earlier
ones in the above datasets.

Figure 2.4 shows examples of these datasets for the last 10 change points
and corresponding change-point score obtained by the proposed RuLSIF-based
method. Although the last 10 change points are the most significant, we can see
from the graphs that, for Dataset 3 and Dataset 4, these change points can be even
hardly identified by human. Nevertheless, the change-point score obtained by the
proposed RuLSIF-based method increases rapidly after changes occur.

Next, we compare the performance of RuLSIF-based, uLSIF-based, and
KLIEP-based methods in terms of the receiver operating characteristic (ROC)
curves and the area under the ROC curve (AUC) values. We define the true pos-
itive rate and false positive rate in the following way (Kawahara and Sugiyama,
2012):

• True positive rate (TPR): ncr/ncp,

• False positive rate (FPR): (nal − ncr)/nal,
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Figure 2.5: Average ROC curves of RuLSIF-based, uLSIF-based, and KLIEP-
based methods.

Table 2.1: The AUC values of RuLSIF-based, uLSIF-based, and KLIEP-based
methods. The best and comparable methods by the t-test with signifi-
cance level 5% are described in boldface.

RuLSIF uLSIF KLIEP

Dataset 1 .848(.023) .763(.023) .713(.036)
Dataset 2 .846(.031) .806(.035) .623(.040)
Dataset 3 .972(.012) .943(.015) .904(.017)
Dataset 4 .844(.031) .801(.024) .602(.036)
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where ncr denotes the number of times change points are correctly detected, ncp

denotes the number of all change points, and nal is the number of all detection
alarms.

Following the strategy of the previous researches (Desobry et al., 2005; Har-
chaoui et al., 2009), peaks of a change-point score are regarded as detection
alarms. More specifically, a detection alarm at step t is regarded as correct if
there exists a true alarm at step t∗ such that t ∈ [t∗ − 10, t∗ + 10]. To avoid
duplication, we remove the kth alarm at step tk if tk − tk−1 < 20.

We set up a threshold η for filtering out all alarms whose change-point scores
are lower than or equal to η. Initially, we set η to be equal to the score of the
highest peak. Then, by lowering η gradually, both TPR and FPR become non-
decreasing. For each η, we plot TPR and FPR on the graph, and thus a monotone
curve can be drawn.

Figure 2.5 illustrates ROC curves averaged over 50 runs with different random
seeds for each dataset. Table 2.1 describes the mean and standard deviation of the
AUC values over 50 runs. The best and comparable methods by the t-test with
significance level 5% are described in boldface. The experimental results show
that the uLSIF-based method tends to outperform the KLIEP-based method, and
the RuLSIF-based method even performs better than the uLSIF-based method.

Finally, we investigate the sensitivity of the performance on different choices
of n and k in terms of AUC values. In Figure 2.6, 2.7 , the AUC values of RuLSIF
(α = 0.1 and 0.2), uLSIF (which corresponds to RuLSIF with α = 0), and KLIEP
were plotted for k = 5, 10, and 15 under a specific choice of n in each graph. We
generate such graphs for all 4 datasets with n = 25, 50, and 75. The result shows
that the proposed method consistently performs better than the other methods, and
the order of the methods according to the performance is kept unchanged over
various choices of n and k. Moreover, the RuLSIF methods with α = 0.1 and 0.2

perform rather similarly. For this reason, we keep using the medium parameter
values among the candidates in the following experiments: n = 50, k = 10, and
α = 0.1.
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2.4.2 Real-World Datasets

Next, we evaluate the performance of the density-ratio estimation based methods
and other existing change-point detection methods using two real-world datasets:
Human-activity sensing and speech.

We include the following methods in our comparison.

• Singular spectrum transformation (SST) (Moskvina and Zhigljavsky,
2003a; Ide and Tsuda, 2007; Itoh and Kurths, 2010): Change-point
scores are evaluated on two consecutive trajectory matrices using the
distance-based singular spectrum analysis. This corresponds to a state-
space model with no system noise. For this method, we use the first 4
eigenvectors to compare the difference between two subspaces, which was
confirmed to be reasonable choice in our preliminary experiments.

• Subspace identification (SI) (Kawahara et al., 2007): SI identifies a sub-
space in which time-series data is constrained, and evaluates the distance of
target sequences from the subspace. The subspace spanned by the columns
of an observability matrix is used for estimating the distance from the sub-
space spanned by subsequences of time-series data. For this method, we
use the top 4 significant singular values according to our preliminary exper-
iment results.

• Auto regressive (AR) (Takeuchi and Yamanishi, 2006): AR first fits an
AR model to time-series data, and then auxiliary time-series is generated
from the AR model. With an extra AR model-fitting, the change-point score
is given by the log-likelihood. The order of the AR model is chosen by
Schwarz’s Bayesian information criterion (Schwarz, 1978).

• One-class support vector machine (OSVM) (Desobry et al., 2005):
Change-point scores are calculated by OSVM using two sets of descriptors
of signals. The kernel width σ is set to the median value of the distances
between samples, which is a popular heuristic in kernel methods (Schölkopf
and Smola, 2002). Another parameter ν is set to 0.2, which indicates the
proportion of outliers.
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First, we use a human activity dataset. This is a subset of the Human Activ-
ity Sensing Consortium (HASC) challenge 20115, which provides human activity
information collected by portable three-axis accelerometers. The task of change-
point detection is to segment the time-series data according to the 6 behaviors:
“stay”, “walk”, “jog”, “skip”, “stair up”, and “stair down”. The starting time of
each behavior is arbitrarily decided by each user. Because the orientation of ac-
celerometers is not necessarily fixed, we take the `2-norm of the 3-dimensional
(i.e., x-, y-, and z-axes) data.

In Figure 2.8(a), examples of original time-series, true change points, and
change-point scores obtained by the RuLSIF-based method are plotted. This
shows that the change-point score clearly captures trends of changing behaviors,
except the changes around time 1200 and 1500. However, because these changes
are difficult to be recognized even by human, we do not regard them as critical
flaws. Figure 2.8(b) illustrates ROC curves averaged over 10 datasets, and Fig-
ure 2.8(c) describes AUC values for each of the 10 datasets. The experimental
results show that the proposed RuLSIF-based method tends to perform better than
other methods.

In Figure 2.9 and 2.10, we pick up two fractions of the original datasets to
demonstrate the performance between methods on illustrative results. As we can
see from both graphs, the RuLSIF-based score is very stable and gives clear indi-
cation of all change-points, while in comparison, the SST-based score gives a few
false alarms due to outliers and misses the first change-points on Figure 2.9(c) and
the KLIEP-based score misses the second change-point and shows a very fluctu-
ated result on Figure 2.10(c).

Next, we use the IPSJ SIG-SLP Corpora and Environments for Noisy Speech
Recognition (CENSREC) dataset provided by National Institute of Informatics
(NII)6, which records human voice in a noisy environment. The task is to extract
speech sections from recorded signals. This dataset offers several voice recordings
with different background noises (e.g., noise of highway and restaurant). Segmen-
tation of the beginning and ending of human voice is manually annotated. Note
that we only use the annotations as the ground truth for the final performance

5http://hasc.jp/hc2011/
6http://research.nii.ac.jp/src/eng/list/index.html

http://hasc.jp/hc2011/
http://research.nii.ac.jp/src/eng/list/index.html
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evaluation, not for change-point detection (i.e., this experiment is still completely
unsupervised).

Figure 2.11(a) illustrates an example of the original signals, true change-
points, and change-point scores obtained by the proposed RuLSIF-based method.
This shows that the proposed method still gives clear indications for speech seg-
ments. Figure 2.11(b) and Figure 2.11(c) show average ROC curves over 10

datasets and AUC values for each of the 10 datasets. The results show that the
proposed method significantly outperforms other methods.

2.4.3 Twitter Dataset

Finally, we apply the proposed change-point detection method to the CMU Twitter
dataset7, which is an archive of Twitter messages collected from February 2010
to October 2010 via the Twitter application programming interface.

Here we track the degree of popularity of a given topic by monitoring the
frequency of selected keywords. More specifically, we focus on events related
to “Deepwater Horizon oil spill in the Gulf of Mexico” which occurred on April
20, 20108, and was widely broadcast among the Twitter community. We use the
frequencies of 10 keywords: “gulf ”, “spill”, “bp”, “oil”, “hayward”, “mexico”,
“coast”, “transocean”, “halliburton”, and “obama” (see Figure 2.12(a)). We per-
form change-point detection directly on the 10-dimensional data, with the hope
that we can capture correlation changes between multiple keywords, in addition
to changes in the frequency of each keyword.

For quantitative evaluation, we referred to the Wikipedia entry “Timeline of
the Deepwater Horizon oil spill”9 as a real-world event source. The change-point
score obtained by the proposed RuLSIF-based method is plotted in Figure 2.12(b),
where four occurrences of important real-world events show the development of
this news story.

As we can see from Figure 2.12(b), the change-point score increases imme-
diately after the initial explosion of the deepwater horizon oil platform and soon

7http://www.ark.cs.cmu.edu/tweets/
8 http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
9http://en.wikipedia.org/wiki/Timeline_of_the_Deepwater_

Horizon_oil_spill

http://www.ark.cs.cmu.edu/tweets/
http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
http://en.wikipedia.org/wiki/Timeline_of_the_Deepwater_Horizon_oil_spill
http://en.wikipedia.org/wiki/Timeline_of_the_Deepwater_Horizon_oil_spill
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based method
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(b) Average ROC curves

ID RuLSIF uLSIF KLIEP AR SI SST OSVM

1001 .974 .853 .838 .899 .958 .903 .900

1002 .996 .963 .909 .872 .969 .880 .905

1003 .989 .854 .929 .869 .895 .851 .937

1004 .996 .868 .890 .881 .941 .886 .891

1005 .938 .952 .972 .849 .972 .915 .943

1006 .933 .918 .889 .778 .890 .925 .842

1007 .972 .857 .834 .850 .941 .817 .891

1008 .995 .922 .930 .892 .981 .860 .907

1009 .987 .880 .907 .833 .979 .842 .951

1010 .991 .952 .889 .821 .915 .867 .903

Ave. .977 .902 .900 .854 .944 .875 .907

Std. .024 .044 .042 .037 .034 .034 .032

(c) AUC values. The best and comparable methods by the t-test with sig-
nificance level 5% are described in boldface.

Figure 2.8: Results on HASC human-activity dataset.
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Figure 2.9: Results on HASC human-activity dataset.
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Figure 2.10: Results on HASC human-activity dataset.
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(b) Average ROC curves

ID RuLSIF uLSIF KLIEP AR SI SST OSVM

01 1.00 .902 .650 .860 .690 .806 .800

02 .911 .845 .712 .733 .800 .745 .725

03 .963 .931 .708 .910 .899 .807 .932

04 .903 .813 .587 .816 .735 .685 .751

05 .927 .907 .565 .831 .823 .809 .840

06 .857 .913 .676 .868 .740 .736 .838

07 .987 .797 .657 .807 .759 .797 .829

08 .962 .757 .581 .629 .704 .682 .800

09 .924 .913 .693 .738 .744 .781 .790

10 .966 .856 .554 .796 .725 .790 .850

Ave. .940 .863 .638 .798 .762 .764 .815

Std. .044 .059 .061 .081 .063 .049 .057

(c) AUC values. The best and comparable methods by the t-test with
significance level 5% are described in boldface.

Figure 2.11: Results on CENSREC speech dataset.
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reaches the first peak when oil was found on the sea shore of Louisiana on April
30. Shortly after BP announced its preliminary estimation on the amount of leak-
ing oil, the change-point score rises quickly again and reaches its second peak at
the end of May, at which time President Obama visited Louisiana to assure local
residents of the federal government’s support. On June 25, the BP stock was at
its one year’s lowest price, while the change-point score spikes at the third time.
Finally, BP cut off the spill on July 15, as the score reaches its last peak.

As comparison, we also illustrate the change-point score generated by KLIEP
and SST based method with the same real-world news labelled aside, on Fig-
ure 2.13(a) and 2.13(b). In general, the KLIEP generated score roughly shows
the similar trend with the RuLSIF generated score, while the overall pattern looks
more fluctuated. In contrast, the SST generated score, only spikes right after the
initial explosion, and remains insensitive after that.

2.5 Conclusion

In this chapter, we first formulated the problem of retrospective change-point de-
tection as the problem of comparing two probability distributions over two consec-
utive time segments. We then provided a comprehensive review of state-of-the-art
density-ratio and divergence estimation methods, which are key building blocks
of our change-point detection methods. Our contributions in this chapter were
to extend the existing KLIEP-based change-point detection method (Kawahara
and Sugiyama, 2012), and to propose to use uLSIF as a building block. uLSIF
has various theoretical and practical advantages, for example, the uLSIF solution
can be computed analytically, it possesses the optimal non-parametric conver-
gence rate, it has the optimal numerical stability, and it has higher robustness
than KLIEP. We further proposed to use RuLSIF, a novel divergence estimation
paradigm emerged in the machine learning community recently. RuLSIF inherits
good properties of uLSIF, and moreover it possesses an even better non-parametric
convergence property. Through extensive experiments on artificial datasets and
real-world datasets including human-activity sensing, speech, and Twitter mes-
sages, we demonstrated that the proposed RuLSIF-based change-point detection
method is promising.
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Though we estimated a density ratio between two consecutive segments, some
earlier researches (Basseville and Nikiforov, 1993; Gustafsson, 1996, 2000) intro-
duced a hyper-parameter that controls the size of a margin between two segments.
In our preliminary experiments, however, we did not observe significant improve-
ment by changing the margin. For this reason, we decided to use a straightforward
model that two segments have no margin in between.
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Chapter 3

Structural Change Detection

In this chapter, we investigate the problem of structural change detection, and
propose a direct approach to learn changes between Markov Networks.

We first formulate the problem as estimating the ratio between two Markov
Networks which encodes the changes of conditional independence. Our contribu-
tions are:

• the number of parameters to be estimated is halved comparing to other state-
of-the-art methods;

• the normalization term can be sample-approximated for non-Gaussian dis-
tributions;

• the dual objective is derived, so problems on large Markov Networks can be
solved efficiently.

This chapter will be organized as follows. First, we introduce the background
and problem formulation in Section 3.1 and 3.2. The proposed method is illus-
trated in Section 3.3. After demonstrating the results of toy and real-world exper-
iments in Section 3.4 and Section 3.5, we conclude our work in Section 3.7.

49
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3.1 Introduction

Changes in interactions between random variables are interesting in many real-
world phenomena. For example, genes may interact with each other in differ-
ent ways when external stimuli change, co-occurrence between words may ap-
pear/disappear when the domains of text corpora shift, and correlation among
pixels may change when a surveillance camera captures anomalous activities. Dis-
covering such changes in interactions is a task of great interest in machine learning
and data mining, because it provides useful insights into underlying mechanisms
in many real-world applications.

In this chapter, we consider the problem of detecting changes in conditional
independence among random variables between two sets of data. Such conditional
independence structure can be expressed via an undirected graphical model called
a Markov network (MN) (Bishop, 2006; Wainwright and Jordan, 2008; Koller and
Friedman, 2009), where nodes and edges represent variables and their conditional
dependencies, respectively. As a simple and widely applicable case, the pairwise
MN model has been thoroughly studied recently (Ravikumar et al., 2010; Lee
et al., 2007). Following this line, we also focus on the pairwise MN model as a
representative example.

A naive approach to change detection in MNs is the two-step procedure of
first estimating two MNs separately from two sets of data by maximum likeli-
hood estimation (MLE), and then comparing the structure of the learned MNs.
However, MLE is often computationally intractable due to the normalization fac-
tor included in the density model. Therefore, Gaussianity is often assumed in
practice for computing the normalization factor analytically (Hastie et al., 2001),
though this Gaussian assumption is highly restrictive in practice. We may uti-
lize importance sampling (Robert and Casella, 2005) to numerically compute the
normalization factor, but an inappropriate choice of the instrumental distribution
may lead to an estimate with high variance (Wasserman, 2010); for more discus-
sions on sampling techniques, see Gelman (1995) and Hinton (2002). Hyvärinen
(2005) and Gutmann and Hyvärinen (2012) have explored an alternative approach
to avoid computing the normalization factor which are not based on MLE.

However, the two-step procedure has the conceptual weakness that structure
change is not directly learned. This indirect nature causes a crucial problem:
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Suppose that we want to learn a sparse structure change. For learning sparse
changes, we may utilize `1-regularized MLE (Banerjee et al., 2008; Friedman
et al., 2008; Lee et al., 2007), which produces sparse MNs and thus the change
between MNs also becomes sparse. However, this approach does not work if each
MN is dense but only change is sparse.

To mitigate this indirect nature, the fused-lasso (Tibshirani et al., 2005) is use-
ful, where two MNs are simultaneously learned with a sparsity-inducing penalty
on the difference between two MN parameters (Zhang and Wang, 2010; Dana-
her et al., 2013). Although this fused-lasso approach allows us to learn sparse
structure change naturally, the restrictive Gaussian assumption is still necessary
to obtain the solution in a computationally tractable way.

The nonparanormal assumption (Liu et al., 2009, 2012) is a useful gener-
alization of the Gaussian assumption. A nonparanormal distribution is a semi-
parametric Gaussian copula where each Gaussian variable is transformed by a
monotone non-linear function. Nonparanormal distributions are much more flex-
ible than Gaussian distributions thanks to the feature-wise non-linear transforma-
tion, while the normalization factors can still be computed analytically. Thus, the
fused-lasso method combined with nonparanormal models would be one of the
state-of-the-art approaches to change detection in MNs. However, the fused-lasso
method is still based on separate modeling of two MNs, and its computation for
more general non-Gaussian distributions is challenging.

In this chapter, we propose a more direct approach to structural change learn-
ing in MNs based on density ratio estimation (DRE) (Sugiyama et al., 2012a).
Our method does not separately model two MNs, but directly models the change
in two MNs. This idea follows Vapnik’s principle (Vapnik, 1998):

If you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible that the avail-
able information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem.

This principle was used in the development of support vector machines (SVMs):
rather than modeling two classes of samples, SVM directly learns a decision
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Knowing Separate

Markov Networks

Knowing Difference between

Markov Networks

Figure 3.1: The rationale of direct structural change learning: finding the differ-
ence between two MNs is a more specific task than finding the entire
structures of those two networks, and hence should be possible to
learn with less data.

boundary that is sufficient for performing pattern recognition. In the current con-
text, estimating two MNs is more general than detecting changes in MNs (Fig-
ure 3.1). By directly detecting changes in MNs, we can also halve the number of
parameters, from two MNs to one MN-difference.

Another important advantage of our DRE-based method is that the normal-
ization factor can be approximated efficiently, because the normalization term in
a density ratio function takes the form of the expectation over a data distribution
and thus it can be simply approximated by the sample average without additional
sampling. Through experiments on gene expression and Twitter data analysis, we
demonstrate the usefulness of our proposed approach.

The remainder of this paper is structured as follows. In Section 3.2, we for-
mulate the problem of detecting structural changes and review currently available
approaches. We then propose our DRE-based structural change detection method
in Section 3.3. Results of illustrative and real-world experiments are reported in
Section 3.4 and Section 3.5, respectively. Finally, we conclude our work and show
the future direction in Section 3.7.
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3.2 Problem Formulation and Related Methods

In this section, we formulate the problem of change detection in Markov network
structure and review existing approaches.

3.2.1 Problem Formulation

Consider two sets of independent samples drawn separately from two probability
distributions P and Q on Rd:

{xPi }
nP
i=1

i.i.d.∼ P and {xQi }
nQ

i=1
i.i.d.∼ Q.

We assume that P and Q belong to the family of Markov networks (MNs) consist-
ing of univariate and bivariate factors1, i.e., their respective probability densities
p and q are expressed as

p(x;θ) =
1

Z(θ)
exp

(
d∑

u,v=1,u≥v

θ>u,vf(x
(u), x(v))

)
, (3.1)

where x = (x(1), . . . , x(d))> is the d-dimensional random variable, > denotes the
transpose, θu,v is the parameter vector for the elements x(u) and x(v), and

θ = (θ>1,1, . . . ,θ
>
d,1,θ

>
2,2, . . . ,θ

>
d,2, . . . ,θ

>
d,d)
>

is the entire parameter vector. f(x(u), x(v)) is a bivariate vector-valued basis func-
tion. Z(θ) is the normalization factor defined as

Z(θ) =

∫
exp

(
d∑

u,v=1,u≥v

θ>u,vf(x
(u), x(v))

)
dx.

q(x;θ) is defined in the same way.

Given two densities which can be parameterized using p(x;θP ) and q(x;θQ),
our goal is to discover the changes in parameters from P to Q, i.e., θP − θQ.

1 Note that the proposed algorithm itself can be applied to any MNs containing more than two
elements in each factor.
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3.2.2 Sparse Maximum Likelihood Estimation and Graphical
Lasso

Maximum likelihood estimation (MLE) with group `1-regularization has been
widely used for estimating the sparse structure of MNs (Schmidt and Murphy,
2010; Ravikumar et al., 2010; Lee et al., 2007):

max
θ

[
1

nP

nP∑
i=1

log p(xPi ;θ)− λ
d∑

u,v=1,u≥v

‖θu,v‖

]
, (3.2)

where ‖ · ‖ denotes the `2-norm. As λ increases, ‖θu,v‖ may drop to 0. Thus,
this method favors an MN that encodes more conditional independencies among
variables.

Computation of the normalization term Z(θ) in Eq.(3.1) is often computa-
tionally intractable when the dimensionality of x is high. To avoid this computa-
tional problem, the Gaussian assumption is often imposed (Friedman et al., 2008;
Meinshausen and Bühlmann, 2006). More specifically, the following zero-mean
Gaussian model is used:

p(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

(
−1

2
x>Θx

)
,

where Θ is the inverse covariance matrix (a.k.a. the precision matrix) and det(·)
denotes the determinant. Then Θ is learned as

max
Θ

[
log det(Θ)− tr(ΘSP )− λ‖Θ‖1

]
,

where SP is the sample covariance matrix of {xPi }ni=1. ‖Θ‖1 is the `1-norm of
Θ, i.e., the absolute sum of all elements. This formulation has been studied inten-
sively in Banerjee et al. (2008), and a computationally efficient algorithm called
the graphical lasso (Glasso) has been proposed (Friedman et al., 2008).

Sparse changes in conditional independence structure between P and Q can
be detected by comparing two MNs estimated separately using sparse MLE. How-
ever, this approach implicitly assumes that two MNs are sparse, which is not nec-
essarily true even if the change is sparse.
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3.2.3 Fused-Lasso (Flasso) Method

To more naturally handle sparse changes in conditional independence structure
between P and Q, a method based on fused-lasso (Tibshirani et al., 2005) has
been developed (Zhang and Wang, 2010). This method directly sparsifies the
difference between parameters.

The original method conducts feature-wise neighborhood regression (Mein-
shausen and Bühlmann, 2006) jointly for P and Q, which can be conceptually un-
derstood as maximizing the local conditional Gaussian likelihood jointly on each
feature (Ravikumar et al., 2010). A slightly more general form of the learning
criterion may be summarized as

max
θPs ,θ

Q
s

[
`Ps (θ

P
s ) + `Qs (θ

Q
s )− λ1(‖θPs ‖1 + ‖θQs ‖1)− λ2‖θPs − θQs ‖1

]
,

where `Ps (θ) is the log conditional likelihood for the s-th element x(s) ∈ R given
the rest x(−s) ∈ Rd−1:

`Ps (θ) =
1

nP

nP∑
i=1

log p(x
(s)
i
P |x(−s)

i
P ;θ).

`Qs (θ) is defined in the same way as `Ps (θ).
Since the Flasso-based method directly sparsifies the change in MN struc-

ture, it can work well even when each MN is not sparse. However, using other
models than Gaussian is difficult because of the normalization issue described in
Section 3.2.2.

3.2.4 Nonparanormal Extensions

In the above methods, Gaussianity is required in practice to compute the normal-
ization factor efficiently, which is a highly restrictive assumption. To overcome
this restriction, it has become popular to perform structure learning under the non-
paranormal settings (Liu et al., 2009, 2012), where the Gaussian distribution is
replaced by a semi-parametric Gaussian copula.

A random vector x = (x(1), . . . , x(d))> is said to follow a nonparanormal dis-
tribution, if there exists a set of monotone and differentiable functions, {hi(x)}di=1,
such that h(x) = (h1(x

(1)), . . . , hd(x
(d)))> follows the Gaussian distribution.
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Nonparanormal distributions are much more flexible than Gaussian distributions
thanks to the non-linear transformation {hi(x)}di=1, while the normalization fac-
tors can still be computed in an analytical way.

However, the nonparanormal transformation is restricted to be element-wise,
which is still restrictive to express complex distributions.

3.2.5 Maximum Likelihood Estimation for Non-Gaussian
Models by Importance-Sampling

A numerical way to obtain the MLE solution under general non-Gaussian distri-
butions is importance sampling.

Suppose that we try to maximize the log-likelihood2:

`MLE(θ) =
1

nP

nP∑
i=1

log p(xPi ;θ)

=
1

nP

nP∑
i=1

∑
u≥v

θ>u,vf(x
(u)P
i , x

(v)P
i )− log

∫
exp

(∑
u≥v

θ>u,vf(x
(u), x(v))

)
dx.

(3.3)

The key idea of importance sampling is to compute the integral by the expecta-
tion over an easy-to-sample instrumental density p′(x) (e.g., Gaussian) weighted
according to the importance 1/p′(x). More specifically, using i.i.d. samples
{x′i}n

′
i=1

i.i.d.∼ p′(x), the last term of Eq.(3.3) can be approximately computed as
follows:

log

∫
exp

(∑
u≥v

θ>u,vf(x
(u), x(v))

)
dx = log

∫
p′(x)

exp
(∑

u≥v θ
>
u,vf(x

(u), x(v))
)

p′(x)
dx

≈ log
1

n′

n′∑
i=1

exp
(∑

u≥v θ
>
u,vf(x

′(u)
i , x

′(v)
i )
)

p′(x′i)
.

We refer to this implementation of Glasso as IS-Glasso below.
However, importance sampling tends to produce an estimate with large vari-

ance if the instrumental distribution is not carefully chosen. Although it is often

2From here on, we simplify
∑d

u,v=1,u≥v as
∑

u≥v .
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suggested to use a density whose shape is similar to the function to be integrated
but with thicker tails as p′, it is not straightforward in practice to decide which p′

to choose, especially when the dimensionality of x is high (Wasserman, 2010).
We can also consider an importance-sampling version of the Flasso method

(which we refer to as IS-Flasso)3

max
θP ,θQ

[
`PMLE(θ

P ) + `QMLE(θ
Q)− λ1(‖θP‖2 + ‖θQ‖2)− λ2

∑
u≥v

‖θPu,v − θQu,v‖

]
,

where both `PMLE(θ
P ) and `QMLE(θ

Q) are approximated by importance sampling for
non-Gaussian distributions. However, in the same way as IS-Glasso, the choice of
instrumental distributions is not straightforward.

3.3 Direct Learning of Structural Changes via Den-
sity Ratio Estimation

The Flasso method can more naturally handle sparse changes in MNs than sepa-
rate sparse MLE. However, the Flasso method is still based on separate modeling
of two MNs, and its computation for general high-dimensional non-Gaussian dis-
tributions is challenging. In this section, we propose to directly learn structural
changes based on density ratio estimation (Sugiyama et al., 2012a). Our approach
does not involve separate modeling of each MN and allows us to approximate the
normalization term efficiently for any distributions.

3.3.1 Density Ratio Formulation for Structural Change Detec-
tion

Our key idea is to consider the ratio of p and q:

p(x;θP )

q(x;θQ)
∝ exp

(∑
u≥v

(θPu,v − θQu,v)>f(x(u), x(v))

)
.

3For implementation simplicity, we maximize the joint likelihood of p and q, instead of its
feature-wise conditional likelihood. We also switch the first penalty term from `1 to `2.
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Here θPu,v − θQu,v encodes the difference between P and Q for factor f(x(u), x(v)),
i.e., θPu,v − θQu,v is zero if there is no change in the factor f(x(u), x(v)).

Once we consider the ratio of p and q, we actually do not have to estimate θPu,v
and θQu,v; instead estimating their difference θu,v = θPu,v − θQu,v is sufficient for
change detection:

r(x;θ) =
1

N(θ)
exp

(∑
u≥v

θ>u,vf(x
(u), x(v))

)
, (3.4)

where

N(θ) =

∫
q(x) exp

(∑
u≥v

θ>u,vf(x
(u), x(v))

)
dx.

The normalization term N(θ) guarantees4∫
q(x)r(x;θ)dx = 1.

Thus, in this density ratio formulation, we are no longer modeling p and q sep-
arately, but we model the change from p to q directly. This direct nature would be

4 If the model q(x;θQ) is correctly specified, i.e., there exists θQ
∗

such that q(x;θQ
∗
) = q(x),

then N(θ) can be interpreted as importance sampling of Z(θP ) via instrumental distribution q(x).
Indeed, since

Z(θP ) =

∫
q(x)

exp
(∑

u≥v θ
P
u,v

>
f(x(u), x(v))

)
q(x;θQ

∗
)

dx,

where q(x;θQ
∗
) = q(x), we have

N(θP − θQ∗) =
Z(θP )

Z(θQ
∗
)

=

∫
q(x) exp

∑
u≥v

(θPu,v − θ
Q
u,v

∗
)
>
f(x(u), x(v))

 dx.

This is exactly the normalization term N(θ) of the ratio p(x;θP )/q(x;θQ
∗
). However, we note

that the density ratio estimation method we use in this chapter is consistent to the optimal solution
in the model even without the correct model assumption (Kanamori et al., 2010). An alternative
normalization term,

N ′(θ,θQ) =

∫
q(x;θQ)r(x;θ)dx,

may also be considered, as in the case of MLE. However, this alternative form requires an extra
parameter θQ which is not our main interest.
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more suitable for change detection purposes according to Vapnik’s principle that
encourages avoidance of solving more general problems as an intermediate step
(Vap). This direct formulation also allows us to halve the number of parameters
from both θP and θQ to only θ.

Furthermore, the normalization factor N(θ) in the density ratio formulation
can be easily approximated by the sample average over {xQi }

nQ

i=1
i.i.d.∼ q(x), be-

cause N(θ) is the expectation over q(x):

N(θ) ≈ 1

nQ

nQ∑
i=1

exp

(∑
u≥v

θ>u,vf(x
(u)Q
i , x

(v)Q
i )

)
.

3.3.2 Direct Density-Ratio Estimation

Density ratio estimation has been recently introduced to the machine learning
community and is proven to be useful in a wide range of applications (Sugiyama
et al., 2012a). Here, we concentrate on the density ratio estimator called the
Kullback-Leibler importance estimation procedure (KLIEP) for log-linear mod-
els (Sugiyama et al., 2008; Tsuboi et al., 2009).

For a density ratio model r(x;θ), the KLIEP method minimizes the Kullback-
Leibler divergence from p(x) to p̂(x) = q(x)r(x;θ):

KL[p‖p̂] =
∫
p(x) log

p(x)

q(x)r(x;θ)
dx

= Const.−
∫
p(x) log r(x;θ)dx. (3.5)

Note that our density-ratio model (3.4) automatically satisfies the non-negativity
and normalization constraints:

r(x;θ) ≥ 0 and
∫
q(x)r(x;θ)dx = 1.

In practice, we maximize the empirical approximation of the second term in
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Eq.(3.5):

`KLIEP(θ) =
1

nP

nP∑
i=1

log r(xPi ;θ)

=
1

nP

nP∑
i=1

∑
u≥v

θ>u,vf(x
(u)P
i , x

(v)P
i )

− log

(
1

nQ

nQ∑
i=1

exp

(∑
u≥v

θ>u,vf(x
(u)Q
i , x

(v)Q
i )

))
.

Because `KLIEP(θ) is concave with respect to θ, its global maximizer can be nu-
merically found by standard optimization techniques such as gradient ascent or
quasi-Newton methods. The gradient of `KLIEP with respect to θu,v is given by

∇θu,v`KLIEP(θ) =
1

nP

nP∑
i=1

f(x
(u)P
i ,x

(v)P
i )

−
1
nQ

∑nQ

i=1 exp
(∑

u′≥v′ θ
>
u′,v′f(x

(u′)Q
i , x

(v′)Q
i )

)
f(x

(u)Q
i , x

(v)Q
i )

1
nQ

∑nQ

j=1 exp
(∑

u′′≥v′′ θ
>
u′′,v′′f(x

(u′′)Q
j , x

(v′′)Q
j )

) ,

which can be computed in a straightforward manner for any feature vector
f(x(u), x(v)).

3.3.3 Sparsity-Inducing Norm

To find a sparse change between P and Q, we propose to regularize the KLIEP
solution with a sparsity-inducing norm

∑
u≥v ‖θu,v‖. Note that the MLE approach

sparsifies both θP and θQ so that the difference θP − θQ is also sparsified, while
we directly sparsify the difference θP − θQ; thus our method can still work well
even if θP and θQ are dense.

In practice, we may use the following elastic-net penalty (Zou and Hastie,
2005) to better control overfitting to noisy data:

max
θ

[
`KLIEP(θ)− λ1‖θ‖2 − λ2

∑
u≥v

‖θu,v‖

]
, (3.6)

where ‖θ‖2 penalizes the magnitude of the entire parameter vector.
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3.3.4 Dual Formulation for High-Dimensional Data

The solution of the optimization problem (3.6) can be easily obtained by standard
sparse optimization methods. However, in the case where the input dimension-
ality d is high (which is often the case in our setup), the dimensionality of pa-
rameter vector θ is large, and thus obtaining the solution can be computationally
expensive. Here, we derive a dual optimization problem (Boyd and Vandenberghe,
2004), which can be solved more efficiently for high-dimensional θ (Figure 3.2).

As detailed in Appendix, the dual optimization problem is given as

min
α=(α1,...,αnQ

)>

nQ∑
i=1

αi logαi +
1

λ1

∑
u≥v

max(0, ‖ξu,v‖ − λ2)2

subject to α1, . . . , αnQ
≥ 0 and

nQ∑
i=1

αi = 1, (3.7)

where

ξu,v = gu,v −Hu,vα,

Hu,v = [f(x
(u)Q
1 , x

(v)Q
1 ), . . . ,f(x(u)QnQ

, x(v)QnQ
)],

gu,v =
1

nP

nP∑
i=1

f(x
(u)P
i , x

(v)P
i ).

The primal solution can be obtained from the dual solution as

θu,v =


1

λ1

(
1− λ2
‖ξu,v‖

)
ξu,v if ‖ξu,v‖ > λ2,

0 if ‖ξu,v‖ ≤ λ2.

(3.8)

Note that the dimensionality of the dual variable α is equal to nQ, while that
of θ is quadratic with respect to the input dimensionality d, because we are con-
sidering pairwise factors. Thus, if d is not small and nQ is not very large (which
is often the case in our experiments shown later), solving the dual optimization
problem would be computationally more efficient. Furthermore, the dual objec-
tive (and its gradient) can be computed efficiently in parallel for each (u, v), which
is a useful property when handling large-scale MNs. Note that the dual objective
is differentiable everywhere, while the primal objective is not.
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3.4 Numerical Experiments

In this section, we compare the performance of the proposed KLIEP-based
method, the Flasso method, and the Glasso method for Gaussian models, nonpara-
normal models, and non-Gaussian models. Results are reported on datasets with
three different underlying distributions: multivariate Gaussian, nonparanormal,
and non-Gaussian “diamond” distributions. We also investigate the computation
time of the primal and dual formulations as a function of the input dimensionality.
The MATLAB implementation of the primal and dual methods are available at

http://sugiyama-www.cs.titech.ac.jp/˜song/SCD.html.

3.4.1 Gaussian Distribution

First, we investigate the performance of each method under Gaussianity.
Consider a 40-node sparse Gaussian MN, where its graphical structure is char-

acterized by precision matrix ΘP with diagonal elements equal to 2. The off-
diagonal elements are randomly chosen5 and set to 0.2, so that the overall sparsity
of ΘP is 25%. We then introduce changes by randomly picking 15 edges and
reducing the corresponding elements in the precision matrix by 0.1. The resulting
precision matrices ΘP and ΘQ are used for drawing samples as

{xPi }
nP
i=1

i.i.d.∼ N (0, (ΘP )−1) and {xQi }
nQ

i=1
i.i.d.∼ N (0, (ΘQ)−1),

where N (µ,Σ) denotes the multivariate normal distribution with mean µ and
covariance matrix Σ. Datasets of size n = nP = nQ = 50, 100 are tested.

We compare the performance of the KLIEP, Flasso, and Glasso methods. Be-
cause all methods use the same Gaussian model, the difference in performance is
caused only by the difference in estimation methods. We repeat the experiments
20 times with randomly generated datasets and report the results in Figure 3.3.

The top 6 graphs are examples of regularization paths6. The dashed lines
represent changed edges in the ground truth, while the solid lines represent un-
changed edges. The top row is for n = 100 while the middle row is for n = 50.

5We set Θu,v = Θv,u for not breaking the symmetry of the precision matrix.
6Paths of univariate factors are omitted for clear visibility.

http://sugiyama-www.cs.titech.ac.jp/~song/SCD.html
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The bottom 3 graphs are the data generating distribution and averaged precision-
recall (P-R) curves with standard error over 20 runs. The P-R curves are plotted
by varying the group-sparsity control parameter λ2 with λ1 = 0 in KLIEP and
Flasso, and by varying the sparsity control parameters as λ = λP = λQ in Glasso.

In the regularization path plots, solid vertical lines show the regularization
parameter values picked based on hold-out data {x̃Pi }3000i=1

i.i.d.∼ P and {x̃Qi }3000i=1
i.i.d.∼

Q as follows:

• KLIEP: The hold-out log-likelihood (HOLL) is maximized:

1

ñP

ñP∑
i=1

log
exp

(∑
u≥v θ̂

>
u,vf(x̃

(u)P
i , x̃

(v)P
i )

)
1
ñQ

∑ñQ

j=1 exp
(∑

u′≥v′ θ̂
>
u′,v′f(x̃

(u′)Q
j , x̃

(v′)Q
j )

) .
• Flasso: The sum of feature-wise conditional HOLLs for p(x(s)|x(−s);θs)

and q(x(s)|x(−s);θs) over all nodes is maximized:

1

ñP

ñP∑
i=1

d∑
s=1

log p(x̃
(s)
i
P |x̃(−s)

i
P ; θ̂

P

s ) +
1

ñQ

ñQ∑
i=1

d∑
s=1

log q(x̃
(s)
i
Q|x̃(−s)

i
Q; θ̂

Q

s ).

• Glasso: The sum of HOLLs for p(x;θ) and q(x;θ) is maximized:

1

ñP

ñP∑
i=1

log p(x̃Pi ; θ̂
P
) +

1

ñQ

ñQ∑
i=1

log q(x̃Qi ; θ̂
Q
).

When n = 100, KLIEP and Flasso clearly distinguish changed (dashed lines)
and unchanged (solid lines) edges in terms of parameter magnitude. However,
when the sample size is halved to n = 50, the separation is visually rather unclear
in the case of Flasso. In contrast, the paths of changed and unchanged edges are
still almost disjoint in the case of KLIEP. The Glasso method performs rather
poorly in both cases. A similar tendency can be observed also in the P-R curve
plot: When the sample size is n = 100, KLIEP and Flasso work equally well, but
KLIEP gains its lead when the sample size is reduced to n = 50. Glasso does not
perform well in both cases.
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Figure 3.3: Experimental results on the Gaussian dataset.
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3.4.2 Nonparanormal Distribution

We post-process the Gaussian dataset used in Section 3.4.1 to construct nonpara-
normal samples. More specifically, we apply the power function,

h−1i (x) = sign(x)|x|
1
2 ,

to each dimension of xP and xQ, so that h(xP ) ∼ N (0, (ΘP )−1) and h(xQ) ∼
N (0, (ΘQ)−1).

To cope with the non-linearity in the KLIEP method, we use the power non-
paranormal basis functions with power k = 2, 3, and 4:

f(xi, xj) = (sign(xi)|xi|k, sign(xj)|xj|k, 1)>.

Model selection of k is performed together with the regularization parameter by
HOLL maximization. For Flasso and Glasso, we apply the nonparanormal trans-
form as described in Liu et al. (2009) before the structural change is learned.

The experiments are conducted on 20 randomly generated datasets with n =

50 and 100, respectively. The regularization paths, data generating distribution,
and averaged P-R curves are plotted in Figure 3.4. The results show that Flasso
clearly suffers from the performance degradation compared with the Gaussian
case, perhaps because the number of samples is too small for the complicated
nonparanormal distribution. Due to the two-step estimation scheme, the perfor-
mance of Glasso is poor. In contrast, KLIEP separates changed and unchanged
edges still clearly for both n = 50 and n = 100. The P-R curves also show the
same tendency.

3.4.3 “Diamond” Distribution with No Pearson Correlation

In the experiments in Section 3.4.2, though samples are non-Gaussian, the Pear-
son correlation is not zero. Therefore, methods assuming Gaussianity can still
capture some linear correlation between random variables. Here, we consider a
more challenging case with a diamond-shaped distribution within the exponential
family that has zero Pearson correlation between variables. Thus, the methods as-
suming Gaussianity cannot extract any information in principle from this dataset.
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(f) Glasso, n = 50
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Figure 3.4: Experimental results on the nonparanormal dataset.
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The probability density function of the diamond distribution is defined as fol-
lows (Figure 3.5(a)):

p(x) ∝ exp

− d∑
i=1

2x2i −
∑

(i,j):Ai,j 6=0

20x2ix
2
j

 , (3.9)

where the adjacency matrix A describes the MN structure. Note that this distri-
bution cannot be transformed into a Gaussian distribution by any nonparanormal
transformations.

We set d = 9 and nP = nQ = 5000. AP is randomly generated with 35%

sparsity, while AQ is created by randomly removing edges in AP so that the
sparsity level is dropped to 15%. Samples from the above distribution are drawn
by using a slice sampling method (Neal, 2003). Since generating samples from
high-dimensional distributions is non-trivial and time-consuming, we focus on a
relatively low-dimensional case. To avoid sampling error which may mislead the
experimental evaluation, we also increase the sample size, so that the erratic points
generated by accident will not affect the overall population.

In this experiment, we compare the performance of KLIEP, Flasso, and Glasso
with the Gaussian model, the power nonparanormal model, and the polynomial
model:

f(xi, xj) = (xki , x
k
j , xix

k−1
j , . . . , xk−1i xj, x

k−1
i , xk−1j , . . . , xi, xj, 1)

> for i 6= j.

The univariate polynomial transform is defined as f(xi, xi) = f(xi, 0). We test
k = 2, 3, 4 and choose the best one in terms of HOLL. The Flasso and Glasso
methods for the polynomial model are computed by importance sampling, i.e.,
we use the IS-Flasso and IS-Glasso methods (see Section 3.2.5). Since these
methods are computationally very expensive, we only test k = 4 which we found
to be a reasonable choice. We set the instrumental distribution p′ as the standard
normal N (0, I), and use sample {x′i}70000i=1 ∼ p′ for approximating integrals. p′

is purposely chosen so that it has a similar “bell” shape to the target densities but
with larger variance on each dimension.

The averaged P-R curves over 20 datasets are shown in Figure 3.5(e). KLIEP
with the polynomial model significantly outperforms all the other methods, while
the IS-Glasso and especially IS-Flasso give better result than the KLIEP, Flasso,
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Figure 3.5: Experimental results on the diamond dataset. “NPN” and “POLY”
denote the nonparanormal and polynomial models, respectively. Note
that the precision rate of 100% recall for a random guess is approxi-
mately 20%.
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and Glasso methods with the Gaussian and nonparanormal models. This means
that the polynomial basis function is indeed helpful in handling completely non-
Gaussian data. However, as discussed in Section 3.2.2, it is difficult to use such
a basis function in Glasso and Flasso because of the computational intractabil-
ity of the normalization term. Although IS-Glasso can approximate integrals, the
result shows that such approximation of integrals does not lead to a very good
performance. In comparison, the result of the IS-Flasso method is much im-
proved thanks to the coupled sparsity regularization, but it is still not comparable
to KLIEP.

The regularization paths of KLIEP with the polynomial model illustrated in
Figure 3.5(b) show the usefulness of the proposed method in change detection
under non-Gaussianity. We also give regularization paths obtained by the IS-
Flasso and IS-Glasso methods on the same dataset in Figures 3.5(c) and 3.5(d),
respectively. The graphs show that both methods do not separate changed and
unchanged edges well, though the IS-Flasso method works slightly better.

3.4.4 Computation Time: Dual versus Primal Optimization
Problems

Finally, we compare the computation time of the proposed KLIEP method when
solving the dual optimization problem (3.7) and the primal optimization problem
(3.6). Both the optimization problems are solved by using the same convex op-
timizer minFunc7. The datasets are generated from two Gaussian distributions
constructed in the same way as Section 3.4.1. 150 samples are separately drawn
from two distributions with dimension d = 40, 50, 60, 70, 80. We then perform
change detection by computing the regularization paths using 20 choices of λ2
ranging from 10−4 to 100 and fix λ1 = 0.1. The results are plotted in Figure 3.6.

It can be seen from the graph that as the dimensionality increases, the com-
putation time for solving the primal optimization problem is sharply increased,
while that for solving the dual optimization problem grows only moderately: when
d = 80, the computation time for obtaining the primal solution is almost 10 times
more than that required for obtaining the dual solution. Thus, the dual formulation

7http://www.di.ens.fr/˜mschmidt/Software/minFunc.html

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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Figure 3.6: Comparison of computation time for solving primal and dual opti-
mization problems.

is computationally much more efficient than the primal formulation.

3.5 Applications

In this section, we report the experimental results on a synthetic gene expression
dataset and a Twitter dataset.

3.5.1 Synthetic Gene Expression Dataset

A gene regulatory network encodes interactions between DNA segments. How-
ever, the way genes interact may change due to environmental or biological stim-
uli. In this experiment, we focus on detecting such changes. We use SynTReN,
which is a generator of gene regulatory networks used for benchmark validation
of bioinformatics algorithms (Van den Bulcke et al., 2006).

We first choose a sub-network containing 13 nodes from an existing signal-
ing network in Saccharomyces cerevisiae (shown in Figure 3.7(a)). Three types
of interactions are modeled: activation (ac), deactivation (re), and dual (du). 50

samples are generated in the first stage, after which we change the types of in-
teractions in 6 edges, and generate 50 samples again. Four types of changes are
considered: ac→ re, re→ ac, du→ ac, and du→ re.
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We use KLIEP and IS-Flasso with the polynomial transform function for k ∈
{2, 3, 4}. The regularization parameter λ1 in KLIEP and Flasso is tested with
choices λ1 ∈ {0.1, 1, 10}. We set the instrumental distribution p′ as the standard
normal N (0, I), and use sample {x′i}70000i=1 ∼ p′ for approximating integrals in
IS-Flasso.

The regularization paths on one example dataset for KLIEP, IS-Flasso, and
the plain Flasso with the Gaussian model are plotted in Figures 3.7(b), 3.7(c), and
3.7(d), respectively. Averaged P-R curves over 20 simulation runs are shown in
Figure 3.7(e). We can see clearly from the KLIEP regularization paths shown
in Figure 3.7(b) that the magnitude of estimated parameters on the changed pair-
wise interactions is much higher than that of the unchanged edges. IS-Flasso
also achieves rather clear separation between changed and unchanged interac-
tions, though there are a few unchanged interactions drop to zero at the final stage.
Flasso gives many false alarms by assigning non-zero values to the unchanged
edges, even after some changed edges hit zeros.

Reflecting a similar pattern, the P-R curves plotted in Figure 3.7(e) show that
the proposed KLIEP method has the best performance among all three methods.
We can also see that the IS-Flasso method achieves significant improvement over
the plain Flasso method with the Gaussian model. The improvement from Flasso
to IS-Flasso shows that the use of the polynomial basis is useful on this dataset,
and the improvement from IS-Flasso to KLIEP shows that the direct estimation
can further boost the performance.

3.5.2 Twitter Story Telling

Finally, we use KLIEP with the polynomial transform function for k ∈ {2, 3, 4}
and Flasso as event detectors from Twitter. More specifically, we choose the
Deepwater Horizon oil spill8 as the target event, and we hope that our method
can recover some story lines from Twitter as the news events develop. Count-
ing the frequencies of 10 keywords (BP, oil, spill, Mexico, gulf, coast, Hayward,
Halliburton, Transocean, and Obama), we obtain a dataset by sampling 4 times
per day from February 1st, 2010 to October 15th, 2010, resulting in 1061 data

8http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill

http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
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Figure 3.7: Experiments on synthetic gene expression datasets.
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samples.

We segment the data into two parts: the first 300 samples collected before the
day of oil spill (April 20th, 2010) are regarded as conforming to a 10-dimensional
joint distributionQ, while the second set of samples that are in an arbitrary 50-day
window after the oil spill accident happened is regarded as following distribution
P . Thus, the MN of Q encodes the original conditional independence of frequen-
cies between 10 keywords, while the underlying MN of P has changed since an
event occurred. We expect that unveiling changes in MNs between P and Q can
recover the drift of popular topic trends on Twitter in terms of the dependency
among keywords.

The detected change graphs (i.e., the graphs with only detected changing
edges) on 10 keywords are illustrated in Figure 3.8. The edges are selected at a cer-
tain value of λ2 indicated by the maximal cross-validated log-likelihood (CVLL).
Since the edge set that is picked by CVLL may not be sparse in general, we spar-
sify the graph based on the permutation test as follows: we randomly shuffle the
samples between P andQ and repeatedly run change detection algorithms for 100
times; then we observe detected edges by CVLL. Finally, we select the edges that
are detected using the original non-shuffled dataset and remove those that were
detected in the shuffled datasets for more than 5 times (i.e., the significance level
5%). For KLIEP, k is also tuned by using CVLL. In Figure 3.8, we plot detected
change graphs which are generated using samples of P starting from April 17th,
July 6th, and July 26th, respectively.

The initial explosion happened on April 20th, 2010. Both methods dis-
cover dependency changes between keywords. Generally speaking, KLIEP cap-
tures more conditional independence changes between keywords than the Flasso
method, especially when comparing Figure 3.8(c) and Figure 3.8(f). At the first
two stages (Figures 3.8(a), 3.8(b), 3.8(d) and 3.8(e)), the keyword “Obama” is
very well connected with other keywords in the results given by both methods.
Indeed, at the early development of this event, he lies in the center of the news
stories, and his media exposure peaks after his visit to the Louisiana coast (May
2nd, May 28nd, and June 5th) and his meeting with BP CEO Tony Hayward on
June 16th. Notably, both methods highlight the “gulf-obama-coast” triangle in
Figures 3.8(a) and 3.8(d) and the “bp-obama-hayward” chain in Figures 3.8(b)
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and 3.8(e).

However, there are some important differences worth mentioning. First, the
Flasso method misses the “transocean-hayward-obama” triangle in Figures 3.8(d)
and 3.8(e). Transocean is the contracted operator in the Deepwater Horizon plat-
form, where the initial explosion happened. On Figure 3.8(c), the chain “bp-
spill-oil” may indicate that the phrase “bp spill” or “oil spill” has been publicly
recognized by the Twitter community since then, while the “hayward-bp-mexico”
triangle, although relatively weak, may link to the event that Hayward stepped
down from the CEO position on July 27th.

It is also noted that Flasso cannot find any changed edges in Figure 3.8(f),
perhaps due to the Gaussian restriction.

3.6 Derivation of the Dual Optimization Problem

First, we rewrite the optimization problem (3.6) as

min
θ,w

[
log

(
nQ∑
i=1

exp (wi)

)
− θ>g + λ1

2
θ>θ + λ2

∑
u≥v

‖θu,v‖ − C

]
(3.10)

subject to w =H>θ,

where

w = (w1, . . . , wnQ
)>,

H = (H>1,1, . . . ,H
>
d,1,H

>
2,2, . . . ,H

>
d,2, . . . ,H

>
d,d)
>,

Hu,v = [f(x
(u)Q
1 , x

(v)Q
1 ), . . . ,f(x(u)QnQ

, x(v)QnQ
)],

g = (g>1,1, . . . , g
>
d,1, g

>
2,2, . . . , g

>
d,2, . . . , g

>
d,d)
>,

gu,v =
1

nP

nP∑
i=1

f(x
(u)P
i , x

(v)P
i ),

C = log nQ.
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With Lagrange multipliersα = (α1, . . . , αnQ
)>, the Lagrangian of (3.10) is given

as

L(α) = min
w,θ

[
log

nQ∑
i=1

exp (wi)− θ>g +
λ1
2
θ>θ + λ2

∑
u≥v

‖θu,v‖ − (w −H>θ)>α

]
− C

= min
w

[
log

nQ∑
i=1

exp (wi)−w>α

]

+min
θ

[
θ>(Hα− g) + λ1

2
θ>θ + λ2

∑
u≥v

‖θu,v‖

]
− C

= min
w

ψ1(w) + min
θ
ψ2(θ)− C. (3.11)

A few lines of algebra can show that ψ1(w) reaches the minimum
−
∑nQ

i=1 αi logαi at

αi =
exp(wi)∑nQ

i=1 exp(wi)
, i = 1, . . . , nQ.

Note that extra constraints are implied from the above equation:

α1, . . . , αnQ
≥ 0 and

nQ∑
i=1

αi = 1.

Since ψ2(θ) is not differentiable at θu,v = 0, we can only obtain its sub-
gradient:

∇θu,vψ2(θ) = −ξu,v + λ1θ + λ2∇θu,v‖θu,v‖,

where

ξu,v = gu,v −Hu,vα,

∇θu,v‖θu,v‖ =


θu,v
‖θu,v‖

if θu,v 6= 0,

{y | ‖y‖ ≤ 1} if θu,v = 0.

By setting∇θtψ2(θ) = 0, we can obtain the solution to this minimization problem
by Eq.(3.8).

Substituting the solutions of the above two minimization problems with re-
spect to θ and w into (3.11), we obtain the dual optimization problem (3.7).
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3.7 Conclusion

In this chapter, we proposed a direct approach to learning sparse changes in MNs
by density ratio estimation. Rather than fitting two MNs separately to data and
comparing them to detect a change, we estimated the ratio of the probability den-
sities of two MNs where changes can be naturally encoded as sparsity patterns in
estimated parameters. This direct modeling allows us to halve the number of pa-
rameters and approximate the normalization term in the density ratio model by a
sample average without sampling. We also showed that the number of parameters
to be optimized can be further reduced with the dual formulation, which is highly
useful when the dimensionality is high. Through experiments on artificial and
real-world datasets, we demonstrated the usefulness of the proposed method over
state-of-the-art methods including nonparanormal-based methods and sampling-
based methods.



Chapter 4

Conclusions and Future Works

4.1 Conclusions

This thesis is devoted to statistical machine learning approaches to unsupervised
change detection problems. In Chapter 1, We introduced machine learning tasks
under the static view and dynamic view respectively. Under the dynamic view, we
focus on detecting the changes of patterns from two sets of data. Two tasks were
investigated: distributional change detection and structural change detection. For
each task, we considered tackling one of the major issues.

In Chapter 2, the distributional change detection was formulated as testing
the statistical divergence between two consecutive segments of time-series data.
To improve the accuracy of the distributional change detection, we employed the
latest advances of density ratio estimation and proposed a flexible and robust al-
gorithm. The proposed algorithm extended the previous effort of non-parametric
change-point detection method, and used unconstrained Least-Square Importance
Fitting (uLSIF) as a building block. Comparing to the previous density ratio es-
timation method, uLSIF enjoys various theoretical and practical advantages. Fur-
thermore, we proposed to use Relative Pearson Divergence, which has been pro-
posed recently, as change-point score. Through experiments on toy and real-world
datasets, we demonstrated the proposed method was promising.

In Chapter 3, to solve the problem of structural change detection in pairwise
Markov network, we formulated the problem into density ratio estimation, and
estimated the density ratio directly using log-linear model. In order to obtain in-

79
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terpretable results, the group sparse regularizer was adopted which helped produce
a result with sparsity. We also derived a dual objective function, and experimental
results showed that optimizing the dual objective was much faster than the pri-
mal objective. Comparing to existing methods, the proposed method adopted a
single-shot procedure instead of twice estimation. Moreover, its novel density ra-
tio formulation allowed us to consider a far richer distribution family rather than
only Gaussian distributions. Through experiments on both toy and real-world
datasets, we demonstrated the usefulness of our methods.

4.2 Discussions

The focus of this thesis was purely on statistical changes, i.e. changes between
probability density functions. In order to capture changes, we estimated density
ratio function using two sets of samples. However, it should be noticed that the
definition of changes heavily relies on applications where the statistical change
detection may or may not be applied.

Particularly, in the distributional change detection, the type of change we may
detect depends on the construction of samples. In the estimation algorithm, we do
not limit our approach to long-term or short-term changes, however, such time-
scope information is already encoded into samples, as part of the problem setting
(see Figure 2.2). Recently, Yamanaka et al. (2013) has shown that changes in
different time-scopes can be captured by varying problem settings (e.g. n, k).

In practice, looking for a proper choice of such problem setting is crucial, how-
ever, due to the research focus, we regarded them as known issues, and focused
on investigating the statistical properties of each method.

By quoting the Vapnik’s principle, we compared the direct and separated learn-
ing methods in this thesis. Experiment results showed that the direct method
demonstrated better performance. However, it should not be understood as the
direct method is always better in all applications.

The direct learning method does not provide information regarding to the gen-
erating source itself, so it may not be used if the model “before” or “after” the
change is part of the learning target.

Moreover, since the separated generating probability is not modelled, the do-



4.3 Future Works 81

main/expert knowledge on the separated patterns may not be used in our approach.

4.3 Future Works

Our research in this thesis has demonstrated that under the dynamic view of ma-
chine learning, the unsupervised change detection is a very promising area. How-
ever, limited by the scope of this thesis, we did not investigate many other impor-
tant tasks. In this section, we will illustrate the future works.

4.3.1 Future Works for Distributional Change Detection

First, some enhancements of the proposed method in Chapter 2 need to be devel-
oped.

Through the experiment illustrated in Figure 2.6, 2.7 in Section 2.4.1, we
can see that the performance of the proposed method is affected by the choice
of hyper-parameters n and k. However, discovering optimal values for these pa-
rameters remains a challenge, which will be investigated in our future work.

RuLSIF was shown to possess a better convergence property than uLSIF (Ya-
mada et al., 2013) in terms of density ratio estimation. However, how this theo-
retical advantage in density ratio estimation can be translated into practical per-
formance improvement in change detection is still not clear, beyond the intuition
that a better divergence estimator gives a better change score. We will address this
issue more formally in the future work.

In addition, it is also interesting to discover the physical meanings of (Rela-
tive) Pearson divergence. As the Relative Entropy, Kullback-Leibler divergence
plays an important role in Information Theory. However, similar interpretation
for Pearson divergence is not yet known. Understanding such physical meaning
of Pearson divergence would help us find a guideline of choosing appropriate sta-
tistical distance in change-point detection.

Second, to improve the performance of the proposed method on more chal-
lenging data, we may consider several advanced techniques.

Although the proposed RuLSIF-based change-point detection was shown to
work well even for multi-dimensional time-series data, its accuracy may be fur-
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ther improved by incorporating dimensionality reduction. Recently, several at-
tempts were made to combine dimensionality reduction with direct density-ratio
estimation (Sugiyama et al., 2010, 2011b; Yamada and Sugiyama, 2011). Our fu-
ture work will apply these techniques to change-point detection and evaluate their
practical usefulness. A more ambitious plan is to consider multi-modal data where
more than one class of time-series are considered. Such high-dimensional mixed-
source data appears in many applications, such as text-audio change-detection.

Compared with other approaches, methods based on density ratio estimation
tend to be computationally more expensive because of the cross-validation proce-
dure for model selection. However, thanks to the analytic solution, the RuLSIF-
and uLSIF-based methods are computationally more efficient than the KLIEP-
based method that requires an iterative optimization procedure (see Figure 9 in
Kanamori et al. (2009) for the detailed time comparison between uLSIF and
KLIEP). Our important future work is to further improve the computational ef-
ficiency of the RuLSIF-based method.

In Chapter 2, we focused on computing the change-point score that represents
the plausibility of change points. Another possible formulation is hypothesis test-
ing, which provides a useful threshold to determine whether a point is a change
point. Methodologically, it is straightforward to extend the proposed method to
produce the p-values, following the recent literatures (Sugiyama et al., 2011a;
Kanamori et al., 2012a). However, computing the p-value is often time consum-
ing, particularly in a non-parametric setup. Thus, overcoming the computational
bottleneck is an important future work for making this approach more practical.
Moreover, the model-based method may include certain prior knowledge and offer
an appropriate threshold based on learnt models. Combining these two methods
may lead to a highly efficient algorithm for determining the threshold.

In this research, our interest was developing a generalized learning method,
however, the proposed method also has many potential applications in reality.

Recent reports pointed out that Twitter messages can be indicative of real-
world events (Petrović et al., 2010; Sakaki et al., 2010). Following this line, we
showed in Section 2.4.3 that our change-detection method can be used as a novel
tool for analyzing Twitter messages. An important future challenge along this line
includes automatic keyword selection for topics of interests.
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4.3.2 Future Works for Structural Change Detection

In Chapter 3, we only considered MNs with pairwise factors. However, such a
model may be misspecified when higher order interactions exist. For example,
combination with the idea of hierarchical log-linear models presented in Schmidt
and Murphy (2010) may lead to a promising solution to this problem.

If the purpose is only for detecting changes in parameters, our method can still
be directly applied to models that contains higher-order interactions, and adopt
group lasso regularizer to induce group sparsity on each factors. However, unlike
pairwise models, such group sparsity in higher order log-linear model does not
directly correspond to the structural information of changes.

Consider the structure of a single MN, variable set A is conditionally inde-
pendent with variable set B if and only if θC on variable set C is zero, for all
C that C contains at least one variable from A and at least one variable from
B (Whittaker, 1990). Generally speaking, a non-zero factor induces a complete
connected graphical structural among corresponding random variables, even the
factors defined on a subset of random variables with lower orders are zero. This
phenomena is demonstrated in Figure 4.1. To solve this problem, hierarchical
log-linear model (Wasserman, 2010; Schmidt and Murphy, 2010) is introduced:

Theorem 4.1. A log-linear model

p =
1

Z
exp

(∑
C⊆X

φC

)
,

is hierarchical if φA = 0 and A ⊆ B implies φB = 0, where φA and φB are
functions defined only on subsets of variable set X .

Such hierarchy enforces that whenever a higher order factor does not equal to
0, all factors defined on lower order subsets of variables much be non-zero. The
sparsity in such log-linear model directly reflects the network structure. Schmidt
and Murphy (2010) showed that we can enforce such hierarchical sparsity pattern
by using hierarchical regularization.

A problem caused by introducing higher order factors is the exponentially
large number of factors. Via active set selection, an effective method can be
developed for solving the maximal likelihood estimation under weak optimality
(Schmidt and Murphy, 2010).
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Beyond the modelling of higher order interactions, some theoretical issues
also need to be analysed. For example, how to theoretically elucidate the advan-
tage of the proposed method, beyond the Vapnik’s principle of solving the target
problem directly. Such theoretical results may also give insights on how to in-
terpret Vapnik’s principle in the change detection context. Moreover, the relation
to score matching (Hyvärinen, 2005), which avoids computing the normalization
term in density estimation, is also an interesting issue to be further investigated.

In the context of change detection, we are mainly interested in the situation
where p and q are close to each other (if p and q are completely different, it is
straightforward to detect changes). When p and q are similar, density ratio esti-
mation for p(x)/q(x) or q(x)/p(x) perform similarly. However, given the asym-
metry of density ratios, the solutions for p(x)/q(x) or q(x)/p(x) are generally
different. The choice of the numerator and denominator in the ratio is left for
future investigation.
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