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Abstract

Recently, MIMO transmission is attracting a lot of attention since it achieves much higher
transmission capability by utilizing the spatial freedom of the waves in radio propagation. In
MIMO systems, accuracy of the estimate of the channel state information (CSI) dramatically
affects the performance of transmission because the estimation error leads to a decrease of
SINR due to the degradation of the separation capability of each signal on the spatial freedom.
Generally in pilot symbol aided channel estimation with a constant noise power, the more
energy we put into the transmission of training symbols, the lower the estimation error can
be. Especially for rapidly fading channels where the channel estimation must be frequently
repeated in certain intervals to track the temporal changes of the channel, required energy
and time for channel estimation consume a lot of resources of the wireless communication
system. We address the issue of accuracy enhancement of MIMO channel estimation consuming
fewer resources spared for channel observation. Regarding system model, we adopt the MIMO
antenna selection system in order to generalize the problem formulation. In the system, we
can consider a partial measurement problem where we only measure channels for only certain
selected antenna elements, and the rest of the channels are predicted with the aid of prior spatial
correlation information. We investigated the enhancement of channel estimation accuracy of
MIMO channel with the aid of spatiotemporal channel statistics. This investigation consists of
three steps.

First, under the situation that the channel’s correlation statistics are known in advance, we
considered how to obtain the best estimate by exploiting the statistics. The spatiotemporal
correlations are incorporated to the estimation scheme by assuming the Gauss-Markov channel
model. Under the MMSE criteria, the Kalman filter performs an iterative optimal estimation in
such case. To take advantage of the enhanced estimation capability, we focused on the problem
of channel estimation from a partial channel measurement in the MIMO antenna selection
system. We discussed the optimal training sequence design, and also the optimal antenna subset
selection for channel measurement based on the statistics. In a highly correlated channel, the
estimation works even when the measurements from some antenna elements are omitted at
each fading block.

Secondly, we consider how to estimate necessary statistics which is generally unknown in
actual environments. A random-walk based Gauss-Markov model which has less parameters
to be estimated is presented for the Kalman filtering. In order to obtain the channel’s in-
novation statistical parameter, considering that the time evolution of the channel is a latent
statistical variable, the EM algorithm is applied for accurate estimation. Numerical simulations
revealed that the method is able to enhance estimation capability by exploiting spatiotemporal
correlations, and works well under the conditions where small forgetting factor employed.

Thirdly, we discussed the problem from another point of view; in estimation problems, a
property of the observation operator is generally a dominating factor for estimation accuracy.
We discussed a method to control the observation operator by means of resource allocation of
training sequences according to the channel’s temporal correlation statistics. So far, we had
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investigated that the channel estimation of MIMO antenna selection systems is improved by
using the Kalman filter under the assumptions that a temporal correlation is perfectly char-
acterized as Gauss-Markov model, and a spatial correlation is available. In such scheme, a
concrete description of how the channel’s time evolution can be expressed is necessary for chan-
nel estimation. However, such methods relying on spatial correlation statistics are fragile for a
sudden change of spatial correlation which will sometimes happen in some propagation scenar-
ios. We addressed the issue of MIMO channel estimation with the aid of only a rough estimate
of temporal correlation statistics where MIMO antenna selection system is employed. Under the
temporally correlated channel, the proposed method controls allocation of the length of train-
ing symbols for each antenna element so that the elements which are likely to be selected are
estimated more accurately than the other elements. In order to utilize this estimation scheme
effectively, we also proposed an antenna selection method which takes account of the difference
of channel estimation accuracy among antenna elements. When the ML channel estimation
was adopted, the proposed selection method is with almost the same computational cost as the
conventional selection methods. The proposed method has robustness in the sense that it does
not rely on certain mathematical models of temporal correlation, as well as spatial correlation
which is sensitive to the movement of the receiver. The numerical simulation using 3GPP-SCM
revealed that the proposed method works effectively under shorter training symbols. Though
the improvement of channel capacity is only a few percent, the implementation of the scheme
requires only a small modification to conventional antenna selection systems.
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Chapter 1

Introduction

1.1 A Channel Estimation Problem in MIMO Transmis-

sion Systems

The MIMO (Multiple-Input Multiple-Output) transmission scheme [1,2] is a recently emerging
wireless transmission technique which enables an enhancement of channel capacity by putting
information onto the spatial degree of freedom in wireless propagation channels. (Fig. 1.1)

Since the MIMO transmission utilizes orthogonality among eigen-vectors of a channel matrix
in order to realize parallel transmission of independent signals, its transmission capability suffers
significant degradation if the accuracy of channel estimation is insufficient; mismatch of the
estimated and the actual eigen-vectors yield leaks between subchannels on each spatial degree
of freedom, and thus results in degradation of SINR (Signal-to-Interference plus Noise power
Ratio).

We address the issue of accuracy enhancement of MIMO channel estimation consuming less
wireless communication resources spared for channel observation.

1.2 Exploitation of Channel Statistics in Channel Esti-

mation Problem

A typical way to enhance estimation capability of the wireless propagation channel without
increasing observation resources is utilization of constraints arising from mathematical modeling
of propagation channel.

Intrinsically, if the radio propagation environment is static, the channel’s transfer function
is determined uniquely depending only on surrounding radio scattering environments, thus it
does not fluctuate stochastically. Once we were able to obtain the precise concrete description
of scattering environments, we do not have to estimate the transfer function. However, cal-
culating the transfer function accurately from a perfect deterministic channel modeling is far
from feasible due to the following reasons: The scatterers in a realistic natural environment
possesses too much freedoms to be estimated, and the modeling becomes too complex since the
transfer function is determined by mutual interactions among such scatterers. Furthermore,
it is impossible for wireless communication systems that have poor physical resources i.e. an-
tenna aperture, frequency bandwidth, and computational power, to estimate parameters for
such precise environment modeling in a deterministic way.

Although the radio propagation channel is considered to be deterministic, it appears that the
transfer function fluctuates randomly following a certain probability distribution if we assume

11
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R x

T x

Scatterer

Spatial encoder
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array antenna

Spatial freedoms in radio propagation 

Multipath

Scatterer

Figure 1.1: The MIMO transmission scheme.

some mobile communication scenarios. For the purpose of channel estimation enhancement in
wireless communication system, simplified stochastic model is often used.

In our investigation, we focus on a situation where the channel fluctuation is not perfectly
random, but has certain correlation on either the spatial dimension, temporal dimension or
both. Assuming such scenario is considered to be valid; in fact, by using physical modeling and
analysis of propagation phenomena, it has been explained that channel’s spatial correlation
is dominated by the spatial distribution of principal scatterers in propagation environment.
Similarly, temporal correlation is dominated by moving velocity of MS.

1.3 MIMO Channel Model

1.3.1 Channel Bandwidth and Assumed Encoding Method

Throughout this paper, we will limit our discussion to the narrowband channel. The reason for
this assumption is explained as follows.

If we consider realistic wireless communication scenarios, the wideband channel model
should be employed. In such cases, it is necessary to deal with correlation of frequencies
caused by frequency selective fading.

Inherently, frequency correlation and temporal correlation are physically the same phe-
nomenon in the sense that they both deal with correlations on the time-axis. However, the
term ’frequency correlation’ in our context stands for correlation of frequency within tempo-
rally rectangular windowed signal sequence extracted at a certain symbol duration. In contrast,
temporal correlation means correlation among a series of symbols (windowed signals) from larger
view of time elapsed.

The same notion is seen in the field of time-frequency analysis, and there exists a so-called
uncertainty principle between frequency and time. Each of them corresponds to each axis of a
spectrogram.
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Figure 1.2: The freedom of MIMO-OFDM channel consists of three dimensions thanks to guard
interval with cyclic prefix which prevents ISI due to multipath delays. For simplicity, we will
consider a single sub carrier of OFDM channel.

Let us consider the case of the orthogonal frequency division multiplexing (OFDM) systems.
If the length of guard interval associated with the symbol period is long enough to be able to
include the impulse responses caused by multipath delays, we are able to avoid inter symbol
interference (ISI). In such cases, information on each symbol become statistically independent
of each other.(i.e. mutual information between symbol is zero.) Further, if symbol duration
including guard interval is short enough to be regarded as time-invariant system (i.e. impulse
response caused by multipath propagation remains constant during symbol duration in the sense
of cyclic invariance for discrete time-delay systems), we can express the channel in the frequency
domain, where sinusoidal functions are the basis functions, thanks to the guard interval with
cyclic prefix of the OFDM. The OFDM puts information bits on such sinusoidal basis function
according to the background described so far. The OFDM modulation method is widely used
because of its easier implementation for managing frequency selective fading channels.

Thanks to the guard interval with cyclic prefix of OFDM, information on frequency axis
of each symbol can be treated as independent among each other. In such a case, frequency
characteristics of channel for each symbol evolve over time with certain correlation according to
propagation scenarios. Due to this interpretation, we call temporal axis as temporal evolution
axis from now on. The frequency axis means frequency within a symbol duration. Now, we must
handle two kinds of correlation characteristics; the frequency correlation (channel correlation
among sub carriers in OFDM) and the time evolution correlation among channels for each
symbol.

If we consider MIMO-OFDM systems, spatial freedom and associated spatial correlation
characteristics are additionally incorporated. In such systems, channel state on both spatial
freedom and frequency freedom are assumed to evolve along the temporal evolution axis. The
explanation is illustrated in Fig.1.2.

When addressing channel statistics of MIMO-OFDM systems, the frequency correlation
should be considered in addition to the spatial correlation. In such cases, both correlation
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statistics can be treated in a similar way by assuming that they follow the multivariate complex
normal distribution which is characterized by the second order moment. (If we were to discuss
such channel statistics for MIMO-OFDM, it should be investigated whether the spatial and
frequency correlation statistics are statistically independent or not. If they are independent,
correlation matrix including both spatial and frequency correlation can be expressed as the
Kronecker product of each correlation matrices, which results in the required computational
cost to be rather small.)

On the other hand, if we do not employ MIMO systems but only OFDM systems, the same
formulation in this paper is considered to be applicable by replacing the spatial correlation
matrix with the frequency correlation matrix. (Of course, discussions and formulations about
antenna selection system cannot be used in such cases.)

Based on what has been described so far, we employ the simplest formulation by assum-
ing the narrowband channel in order to reduce the degrees of freedom (i.e. either spatial or
frequency) of the channel for simplicity. When using a narrowband channel, we are allowed
to consider only a flat fading channel even under the existence of frequency selective fading
caused by multipath propagation, if the signal bandwidth is narrow enough to be regarded as
flat fading. In the case of OFDM systems, this narrowband channel corresponds to single sub
carrier within the symbol.

1.3.2 Statistical Spatiotemporal MIMO Channel Model

Regarding a concrete channel model for a narrowband channel, spatial correlation statistics
are generally assumed to follow the multivariate complex normal distribution which is charac-
terized by the second order moment. In the case of a wideband channel for OFDM systems,
correlations among each frequency are also assumed to follow the multivariate complex normal
distribution. As for temporal correlation (temporal evolution) of the channel, the first-order
AR (autoregressive) model [39] is often assumed among the literatures [19–22,54,57]. A larger
model order is generally desired when using the AR model. However, due to the limitation
of the number of parameters to be estimated, and considering the tracking capability at fast
fading channels which have a wideband Doppler frequency, the first-order modeling is often
adopted.

In realistic situations, statistical parameter is unknown for communication systems, thus the
statistical channel parameters must be estimated in advance prior to receiving the full benefit
of estimation capability enhanced by the channel statistics.

1.4 Environmental Factors Dominating MIMO Channel

Capacity

The MIMO transmission scheme enhances its capacity by exploiting spatial degrees of freedom
of the radio propagation channel. This suggests that the MIMO channel capacity physically
depends on how much the propagation environment is able to transfer spatial degrees of freedom
inherently. One of the physical conditions dominating the channel capacity is that the multipath
scattering is rich enough to achieve wider angular spread toward the array antenna elements.
Also width of the array aperture against the angular spread is proven to be important for the
MIMO scheme. According to the literatures [59,60], transferable spatial degrees of freedom can
be estimated as illustrated in Fig.1.3.

The reason that both the array aperture and the angular spread are important factors for
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Figure 1.3: Upper limit of degree of spatial freedom is expressed as NF = A|Ω| according
to [59,60].

1
2

3

Array antenna

Figure 1.4: Normalized angular spread [61] is defined as σA = ∆φ/∆ψ where ∆φ and ∆ψ denote
angular spread of incoming/outgoing wave, and array beamwidth of corresponding DOA/DOD,
respectively.
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Figure 1.5: Important factors dominating MIMO channel capacity.

channel capacity is intuitively interpreted by considering how many beams corresponding to the
array aperture of the direction are included into the angular spread of incoming/outgoing waves.
This intuitive estimation gives the rough upper limit of spatial degrees of freedom transferable
between radio wave and received signal. This notion was originally introduced in [61], and it is
illustrated in Fig.1.4.

Now, it should be noted that this estimation offers only the upper limit. This is because if
the arrival angular spread wave has correlation among different angles within them, the array
antenna is unable to catch the freedom even with both large aperture and large number of
elements. For example, considering a situation that the propagation path between the Tx and
the Rx is not multi path, and the whole path connection is concentrated onto a spatially small
area around some middle point, the channel capacity degrades even if the incoming/outgoing
angular spread around array antenna is wide enough. This is known as the keyhole effect [62],
and it means that the propagation environment has a certain upper limitation of channel
capacity where the spatial freedom is not transferable enough.

The explanations given above are illustrated in Fig.1.5.

1.5 MIMO Antenna Selection System

In this study, we adopt the MIMO antenna selection systems as the system model. The system
schematic is shown in Fig.1.6.

The reason that we adopt the antenna selection system is that the system is able to offer
variety of observation models and problem formulations when discussing channel estimation
problems, and allows us to discuss from several points of view. Thus the assumption leads to
assist generalization of the problem formulation. For example, we can consider a partial mea-
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Figure 1.6: Schematic of MIMO antenna selection system. Either or both ends can have RF
switch.

surement problem where we only measure channels for only certain selected antenna elements,
and rest of the channels are predicted with the aid of prior spatial correlation information.

1.5.1 Principle for Capacity Improvement

As described above, we are unable to do anything with the channel capacity limitation caused
by propagation matter about inherent transferable spatial degrees of freedom. However, to
some extent, spatial degrees of freedom between angular spread wave and received signals via
array antenna can be improved actively by using MIMO antenna selection systems [15].

Let us consider the situation to estimate parameters of a low dimensional parametric func-
tion by observation of discrete sampling under the presence of noise. Under badly configured
sampling points, the observation operator becomes nearly singular, and the estimation problem
becomes an ill-conditioned problem. Thus the estimation procedure requires some regulariza-
tion technique in order to suppress amplification of noise. The cause of this phenomenon arises
from rank-deficiency of the sampling operator due to inadequate sampling positions. If we view
the low dimensional parametric function as a correlated angular spread wave, and also view the
sampling position as the array antenna’s each element position, then we can enhance the chan-
nel capacity (it corresponds to the estimation capability of parametric function) by actively
adjusting the antenna positions corresponding to the concrete pattern of incoming/outgoing
angular spread wave. (Fig.1.7) Based on such considerations, the MIMO antenna selection
systems have been proposed; the system has more array antenna elements than the number of
RF chains, and the system actively selects the best combination of antenna elements with the
change of surrounding propagation environment.

Mathematically, MIMO channel capacity is determined by the distribution of singular val-
ues of a MIMO channel response matrix according to the Foschini-Telatar equation [1, 2]. For
channel capacity improvement, preferably uniform values are desired rather than nonuniform
values. Roughly speaking, the reason for this property is that the channel capacity only in-
creases in log order associated with increase of signal amplitude, but it increases in linear order
associated with increase of another channels. This fact suggests that one should allocate power
resources to create another channel rather than concentrating on certain existent channels.

In this manner, the channel capacity is uniquely determined by the channel response matrix.
The channel response matrix is out of our control in normal conditions, but the MIMO antenna
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Figure 1.7: Mechanism of capacity improvement of antenna selection system in terms of optimal
sampling problem.
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selection system enables active change of the matrix in a sense that the system can choose any
submatrix by selecting a combination of constituent row or column vectors from whole channel
matrix. By employing the MIMO antenna selection system, it is known that the channel
capacity is increased by 20 to 30 percent assuming independent and identically-distributed
(i.i.d.) channel model. As previously explained, capacity improvement by the system has
upper limitation because it is determined by physical characteristics such as array aperture
and surrounding scattering environments.

1.5.2 Assumption Regarding Reradiation from Not-selected Elements

In antenna selection systems, if reradiation from antenna elements changes depending on se-
lection, and the distance between antenna elements is small, the mutual coupling between
selected and not-selected elements should be taken into account. If the mutual coupling occurs,
selection of channel states does not become a simple extraction of row/column vectors of the
whole channel matrix. In a strict sense, the channel state varies according to concrete selection
combinations.

In this paper, we assume that such change of channel state caused by change of antenna
selection does not occur. Concretely, this assumption means that the antenna termination of
the not-selected elements is properly terminated by impedance matching in order to prevent
reradiating from the antenna elements. Another condition to realize assumption is that the
distance between antennas is large enough to be able to ignore mutual coupling.

1.6 Training Sequence Design Optimized for Correlation

Statistics

In the field of the training sequence based MIMO channel estimation, under the situation
that the spatial second-order correlation statistics are available, it has been discussed that the
best estimate (in the least mean square error sense) is obtained by means of Wiener filtering.
Furthermore, the best training sequence design has been also discussed when the Wiener filter
was utilized. If we are able to design the training sequences freely, we can control distribution
of singular values of the observation matrix to any desired values. Thus we can mitigate
disturbance from noise by assigning large power onto the vector directions which are less reliable,
or conceivably having a large estimation error according to the channel model. Mathematically,
it is known that the optimal training sequence is designed by the Water-filling algorithm.
Intuitively, the algorithm assigns a large observation power onto the channels having the larger
estimation error. If the error is too large and is not cost-effective to allocate the power resources,
the algorithm ceases to assign powers onto the channels.

1.7 Channel Estimation by the Kalman Filter

In addition to the above case, if the temporal correlation statistics are available under the
assumption that the temporal evolution is modeled as AR (Autoregressive) model, then the
best estimate in the least square error sense is obtained by the Kalman filtering if the statistical
parameters are known in advance. A concrete description of how the channel’s time evolution
can be expressed is necessary for using the Kalman filter.
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1.8 Outline of Thesis

We investigate the enhancement of channel estimation accuracy of MIMO channel with the aid
of spatiotemporal channel statistics. This investigation consists of three parts.

In chapter 2, under an ideal situation that a channel’s correlation statistics remain constant,
an optimal channel estimation method is discussed after estimating the channel’s statistics
parameters by utilizing a sufficient number of observed channel realizations. This situation is
almost identical to the one where channel’s correlation statistics are known in advance. Mainly,
this chapter discusses how to obtain the best estimate by exploiting the statistics.

Chapter 3 is devoted to investigate how to estimate channel statistics which is generally
unknown but necessary for realizing the described method in the chapter 2 in actual environ-
ments. We focused on a situation that channel parameters vary depending on time elapsed.
In chapter 4, under the assumption that a fine estimation of the required channel’s statistical
parameter is difficult, we tried another approach which does not depend on volatile spatial cor-
relation parameter, but depends on only rough estimate of temporal correlation. We discussed
the problem from another point of view; in estimation problems, a property of the observation
operator is generally a dominating factor for estimation accuracy. We discussed a method to
control the observation operator by means of resource allocation of training sequences according
to the channel’s temporal correlation statistics. Note that the proposed method in this chapter
is devoted to MIMO antenna selection systems.

The whole thesis organization is shown in Fig.1.8.
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1.8.1 Optimal Training Sequence Design for the Kalman Filter

We first formulate the training sequence based channel estimation by the Kalman filter as-
suming a typical spatial correlation model so-called the Kronecker model [43]. Physically, the
Kronecker model means that the probability distribution with respect to DoD/DoA (Direction
of Departure/Arrival) of the propagation path becomes statistically independent between the
DoD and the DoA. This model is often used due to its mathematical simplicity. Mathemati-
cally, under this assumption, the correlation matrix of the channel matrix is represented as the
Kronecker product of correlation matrices of the Tx side and the Rx side.

By assuming the Kronecker model based Gauss-Markov channel, we show that the filter
calculation can be simplified under certain assumptions. We also discuss the optimal training
sequence design for the Kalman filtering. The difference from the case of the Wiener filtering
considering only spatial correlations is that in the case of the Kalman filtering, energy assign-
ment of training sequences are decided based on both the temporal evolution from the previous
time instant and the channel estimation error which has been accumulated so far during the
past estimation process. A large energy is concentrated along the eigenvectors presumably
having large estimation error accumulated so far. Resultantly, the optimal training sequence
differs among different fading blocks. In order to implement the scheme, the both ends of
the communication system must share the statistical information in advance, and they must
calculate the channel’s time evolution of statistics with time elapse to synchronize the state,
respectively.

We verified the effectiveness of the estimation method by numerical simulation assuming
typical correlation model. The estimation capability was confirmed to be enhanced under pres-
ence of high spatial and temporal correlation. We also confirmed that even under the condition
that the spatial correlation does not strictly obey the Kronecker model assuming a LOS (Line
of Sight) environment, the estimation capability becomes higher in spite of correlation model
mismatch.

To take advantage of the enhanced estimation capability, we focus on the problem of channel
estimation from a partial channel measurement in the MIMO antenna selection system. In
a highly correlated channel, the estimation works even when the measurements from some
antenna elements are omitted at each fading block.

1.8.2 Estimation of Channel Statistics by EM-based Algorithm

For channel estimation by the Kalman filter, statistical model parameters are necessary. We
investigated a method to estimate the statistical information. In mobile communication sce-
narios, the movement of MS yields continuous change of direction and angular spread of in-
coming/outgoing waves. It means that the statistical parameters vary continuously according
to time elapse.

In order to estimate both spatial and temporal correlation information, we first discussed
simplification of the statistical channel model. In the first-order AR model, both the temporal
and the spatial correlation coefficients are required. However, stably estimating both parame-
ters is generally difficult, since the estimation error occurred at one side can be absorbed into
the other side. For instance, a slight estimation error of temporal correlation coefficient can be
absorbed in the spatial correlation matrix. Furthermore, the number of the parameters to be
estimated is desired to be as small as possible in order to avoid overlearning.

Considering such points, we proposed a random walk based Gauss-Markov model which
fixes the temporal correlation coefficient to 1.0. In other words, our model deals with the 1st



1.8. OUTLINE OF THESIS 22

order differentiation of channel sequence. In the model, the channel is characterized only by
the innovation term assuming to have multivariate complex normal distribution.

Regarding the parameter estimation criterion, we adopt an exponentially weighted impor-
tance used similarly in derivation of the RLS (Recursive Least Squares) algorithm. The RLS
algorithm is often used for tracking continuously changing statistics in which method filter
coefficients are estimated by applying larger weights to temporally near channel realizations
according to exponential function.

In this problem, we must consider how to obtain a realization of channel’s time evolution
which is necessary for ML parameter estimation. A naive and the simplest way is to use
the estimated time evolution in the Kalman filter even though it is not an accurate value of
realization.

In order to investigate the effects regarding unobservable realization, we evaluated the chan-
nel estimation capability when the statistics of the latent channel realizations are calculated
by the correct estimation method. Generally in a statistical parameter estimation problem
having latent statistical variables, the EM (Expectation - Maximization) algorithm is utilized
where the expectation of the likelihood function is taken with respect to the latent variables
according to its posterior distribution. We have constructed the EM-based estimation method,
and evaluated its behavior by numerical simulation using the 3GPP-SCME channel model.

From the simulation, we confirmed that the proposed simplified channel model is able to
enhance estimation capability by exploiting both the spatial and the temporal correlations.
By employing the EM-based algorithm, it revealed that the estimation capability is enhanced
where forgetting factor is small. For the forgetting factor close to 1.0, the estimation capability
was not affected whether the EM-algorithm is employed or not.

A simulation and computational reduction in the case of antenna selection system was also
discussed.

1.8.3 A Robust Estimation by Two-Stage Training Resource Allo-
cation Exploiting Only Temporal Correlation

Generally in linear estimation problems, estimation capability is dominantly determined by the
observation matrix of the system model. For example, if all the independent variables to be
estimated are able to be observed with enough SNR, there is no concern about the estimation
problem.

Now we try to consider a design problem of observation matrix (i.e. training resource
allocation) from another point of view.

An approach to utilize prior statistical information for active improvement of the observation
matrix is already taken in the optimal training sequence design from the spatial correlation
statistics.

In the discussions so far, we have shown that the estimation capability can be significantly
enhanced by optimal training sequence design which is dedicated for a given reliable channel
statistics. However, this method has a problem in the sense that the method does not have
robustness against accuracy of the spatial correlation statistics. For instance, if a channel is
considered to have so high correlation that some eigenvalues were treated as zero, the situation
arises where the powers of training sequence is not completely assigned onto the eigenvectors
corresponding to such small eigenvalues. In such situations, if the assumed correlation statistics
turns out to be wrong, increase of the estimation error becomes an enormous influence. In
addition, sometimes the spatial correlation statistics are considered to be unstable since it
highly depends on DOA/DOD which is affected by various sensitive factors such as geometry
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Figure 1.9: Spatial correlation statistics vary according to DOA/DOD. Hence they are unstable
under certain movement of MS like rotation.

of surrounding scattering environment, and certain movement of MS like rotation. (Illustrated
in Fig.1.9)

In this study, we try to construct a training resource allocation which can enhance estimation
capability without using unreliable spatial correlation information but only rough temporal
correlation information. In later discussions, we focus on the issue of enhancement of channel
estimation efficiency in terms of control of observation matrix. In normal MIMO systems,
the training sequence design is the only way to change the observation matrix. For more
flexible design of the observation matrix, we employ MIMO antenna selection system for later
discussion.

In antenna selection system, receptions of training sequence are required several times while
changing the connection of RF switches so that all the antenna elements are measured without
fail. In our measurement scheme, we differ the training sequence length between the first and
the second measurement, so that the elements measured in the first step are estimated more
precisely than other elements. For the first step, if we could choose elements to be measured
which are likely to be chosen in the next fading block, then the estimation accuracy of the
resultant selected elements is expected to be improved.

Considering that the channel has temporal correlation, the antenna elements which are
likely to be selected are chosen from those which were selected in the previous fading block.
As the temporal correlation becomes stronger, we control the assignment of training sequences
so that the measurement in the first step becomes more precise, expecting that the precisely
measured elements are selected again.

The channel state information measured in such way has a characteristic that estimation
accuracy varies by antenna elements. In order to increase performance in such situations, we
must find the optimal antenna subset which maximizes channel capacity considering differ-
ences of estimation accuracy among antenna elements. To perform such selection with limited
computational resources, we developed a method to maximize the lower bound of mutual infor-
mation assuming that the channel has nonuniform estimation errors. This criterion means that
the channel capacity under interference due to estimation error in the worst case scenario is
to be maximized. The average channel capacity is enhanced as well by means of the criterion.
Regarding computational cost, the proposed criterion can be optimized with almost the same
computations as the case of conventional effective antenna selection algorithm.

The numerical simulation using 3GPP-SCM revealed that the proposed method works ef-
fectively under shorter training symbols employed.
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Figure 1.10: A flow chart indicating relationship between each discussion of the thesis. Note
that (*1) and (*2) are not examined in conjunction with the channel statistics estimation in
Chapter 3.

1.8.4 Relationship Between Individual Discussions

The flow chart of Fig.1.10 indicates relationships among technical investigations in this thesis.
The chart provides conditional branching of each technique in terms of both applicable system
requirements and available statistical information.

Firstly, depending on the situation whether a priori channel statistics are available or not,
requirement of estimation of channel statistics is determined. If it is an ideal situation that
the statistical parameter of channel remains constant, the estimation procedure is explained in
Chapter 2. On the other hand, if the situation was rather realistic such that the channel is
nonstationary having time-varying parameters, the estimation procedure is discussed in Chapter
3.

Next, based on the reliability of the channel statistics, types of channel estimation technique
available is provided. If the statistics are fine enough, an optimal training sequence design and
reduction of number of measurement in antenna selection system are available. On the other
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hand, if the statistics are coarse, an effective channel estimation method exploiting only rough
temporal correlation information is available. However, this method is only applicable to MIMO
antenna selection systems.

The filled area with gray color in the figure means that the included methods are dedicated
to MIMO antenna selection systems. The proposed method in chapter 3 is available for both
system configurations.



Chapter 2

MIMO Channel Estimation by the
Kalman Filter

In this chapter, we address the issue of MIMO channel estimation with the aid of a priori
temporal correlation statistics of the channel as well as the spatial correlation. The temporal
correlations are incorporated to the estimation scheme by assuming the Gauss-Markov channel
model. Under the MMSE criteria, the Kalman filter performs an iterative optimal estimation.
To take advantage of the enhanced estimation capability, we focus on the problem of channel
estimation from a partial channel measurement in the MIMO antenna selection system. We
discuss the optimal training sequence design, and also the optimal antenna subset selection for
channel measurement based on the statistics. In a highly correlated channel, the estimation
works even when the measurements from some antenna elements are omitted at each fading
block.

2.1 Introduction

Recently, MIMO transmission is attracting a lot of attention since it achieves much higher
transmission capability by utilizing the spatial freedom of the waves in radio propagation [1,2].
In MIMO systems, precision of the estimate of the channel state information (CSI) dramatically
affects the performance of transmission because the estimation error leads to a decrease of
SINR due to the degradation of the separation capability of each signal on the spatial freedom.
Generally in pilot symbol aided channel estimation with a constant noise power, the more
energy we put into the transmission of training symbols, the lower the estimation error can
be. Especially for rapidly fading channels where the channel estimation must be frequently
repeated in certain intervals to track the temporal changes of the channel, required energy and
time for channel estimation consume a lot of resources of the wireless communication system.
In order to estimate channel accurately using a limited set of resources, optimal design of
training symbol have been discussed by fully exploiting a priori channel statistics about the
spatial correlation [26]. A MIMO channel with NTx transmit and NRx receive antenna possesses
NTxNRx independent freedoms to be estimated. In pilot symbol aided estimation, certain
powers are allocated and transmitted for each freedom in order to perform their observation.
Without the channel statistics, we have no choice but to treat them equally, which is called
the orthogonal training sequence. On the other hand, if the channel is spatially correlated,
each freedom of the channel has different variance, and then the one with larger variance is
considered to be a more important unknown which contributes more to estimation capability.
In order to estimate such important unknowns by priorty, optimal training symbols are designed

26
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such that the power in the training symbols is concentrated on the important unknown of the
channel matrix. Physically, this can be interpreted as the energy of the training sequence is
focused on the significant scatterer in the propagation environment [26].

In addition to the spatial correlation, by exploiting the nature of temporal correlation of
the channel, a more effective estimation can be realized. A stochastic model for time-varying
channel is required in order to incorporate the temporal correlation into the estimation scheme,
and autoregressive (AR) modelling is widely accepted among these studies [3, 4, 18, 42]. In
such context, MMSE estimate of the channel can be performed iteratively with the Kalman
filter [17]. It should be noted that for the estimation of time-variant frequency-selective fading
channels, Kalman-based methods are quite common in the literatures [18, 19].

In this paper, we extend the optimal design of training sequence to the Kalman-based
estimation methods. The optimal training sequence of this case is determined respectively for
each fading block. Here, the allocation of power for each freedom is determined similarly, but
the variances refered are determined by accumulating the estimation errors occurred so far,
based on the model of temporal channel transition.

Also we investigate the optimal partial measurements for MIMO antenna selection systems
which can be discussed in the similar way as the optimal training sequence design. If the
temporal and spatial correlations are high enough, we can partially omit the observation of the
channel while satisfying the desired precision of the estimation. This approach might be useful
especially in situations where measurement of the full channel state costs much.

In MIMO antenna selection systems with NRF RF chains andM antenna elements, since the
number of antenna elements is larger than the number of RF chains, it requires at least dM/NRFe
times measurements to cover all the antenna elements by selecting connected subsets of elements
sequentially, where dxe means the smallest integer not exceeded by x. With presence of highly
correlated channel, measurements for all the antenna elements can be avoided by interpolating
the not measured portion of the full channel matrix with the aid of a priori correlation statistics.
This can reduce the repeated measurements in the antenna selection systems. In this paper,
the method is formulated to replace the repeated measurements with a single measurement by
utilizing the Kalman filter.

We have shown that the estimation can be also enhanced by optimally selecting the mea-
suring elements, based on the channel statistics at each time. In general, filter calculations and
optimal training sequence design, also the selection of measurement antenna subset requires
much computational costs including the large matrix calculations. But, it was shown that
with Kronecker model assumption about the spatial correlation, the filter calculations can be
reduced to some small matrix calculations, and the training sequence is designed by the simple
water-filling solutions. Also the near-optimal measurement antenna subset can be selected in
a similar way as the fast antenna subset selection algorithm [5] with the aid of the matrix
inversion lemma.

This paper is organized as follows. In section 2, the system model including the MIMO
antenna selection is described. Also the stochastic channel model considering spatial and tem-
poral correlation is explained. Section 3 is devoted to explain a channel estimation using the
Kalman filter, and section 4 discusses the optimal training symbol design and measurement an-
tenna selection to enhance the estimation capability. The effectiveness of the proposed method
is verified by numerical simulation in section 5.
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2.1.1 Mathematical Notations

Throughout this paper we will use bold-faced upper case letters to denote matrices, and bold-
faced lower case letters for column vectors, light-faced letters for scalar quantities. The sub-
scripts >, H, ∗ indicate transpose, Hermitian transpose (transpose and complex conjugate),
and complex conjugate respectively. IN denotes the N ×N identity matrix. Also the inverse,
Moore-Penrose pseudo inverse, trace, determinant, and Frobenius norm of the matrix X are
denoted by X−1, X†, trX, detX, and ‖X‖F , respectively. The m-th row and n-th column
element of the matrix X is denoted by [X]m,n. Ex means the expectation with respect to x.
The bracket < ·, · > is used for inner product on the column vector space. Also the vector
Euclidean norm is expressed as ‖ · ‖. In this paper, since we often discuss correlations between
each matrix element, it is convenient to treat matrix as one column vector that consists of all
its elements. For any m × n matrix A = [a1 a2 · · ·an], the vec operator generates a mn × 1
vector defined as

vecA ,
[
a>
1 a

>
2 · · ·a>

n

]>
(2.1)

where , means definition. The Kronecker product ⊗ is required with the use of the vec
operator.

2.2 System Model

2.2.1 MIMO Antenna Selection System

For a narrowband MIMO channel with NTx transmit antennas and NRx receive antennas,
received vector y ∈ CNRx can be expressed as

y =

√
Pr

NTx

Hkx+ n (2.2)

where Pr is average receive signal power at each receive antenna. n ∈ CNRx is the additive
noise vector typically assumed to have a white complex normal distribution with average power
σ2
n. x ∈ CNTx is the normalized transmit vector such that Exxx

H = INTx
. Hk ∈ CNRx×NTx is

the normalized channel matrix for time instant k. Since Hk varies for each time instant k, we
define the normalization as Ek‖Hk‖2F = NTxNRx. In this formulation, average signal to noise
ratio (SNR) per receive antenna can be expressed as follows:

SNR =
EHk

Ex

∥∥∥√ Pr

NTx
Hkx

∥∥∥2
En‖n‖2

=
Pr

σ2
n

(2.3)

We employ antenna selection system only for receiver side with NRF RF chains satisfying
1 ≤ NRF < NRx. If we connect the i-th RF chains to the ci-th (1 ≤ ci ≤ NRx) antenna element,
only the {ci}NRF

i=1 -th row vectors ofHk work for reception. If we define τ k as a vector specifying
connection of RF switches for transmission at time instant k by putting together all {ci}NRF

i=1

into one vector as τ k , [c1 c2 · · · cNRF
]>, the matrix employed for transmission can be written

as 
[Hk]c1, :
[Hk]c2, :

...
[Hk]cNRF

, :

 = AτkHk, Aτk ,
NRF∑
i=1

fie
>
<τ k,fi>

(2.4)
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where [Hk]cn, : means the cn-th row vector of Hk, and ei, fj are the so-called standard basis of

CNRx ,CNRF , respectively. We call τ k as the connection vector at k for later discussion. Corre-
spondingAτk works as an extraction and permutation of row vectors interest on the time instant
k. Similarly for antenna selection systems, channel model becomes y =

√
Pr/NTxAτkHk + n

(y,n ∈ CNRF).
Antenna selection is performed so that the Shannon capacity of the channel matrix

√
Pr/NTxAτkHk

becomes larger. Since the true channel matrix is not available directly, we determine the con-
nection τ k by refering to the estimated channel matrix Ĥk instead. From the Foschini-Telatar
equation [1, 2] for equal transmit power allocation, τ k is determined such that

τ k = argmax
τ

log2 det

(
INRF

+
SNR

NTx

AτĤkĤ
H
k A

H
τ

)
subject to : rankAτ = NRF . (2.5)

The imposed condition rankAτ = NRF suggests that the selected antenna elements should not
be overlapped. Practical method to get a perfectly optimal solution of the above equation is not
yet discovered. In order to obtain a quasi-optimal solution with lower computational complexity,
many antenna selection algorithms have been proposed [5–8]. Many of them require full instant

channel state Ĥk to get selection for each time instant k. In order to keep the optimal selection
in the time-varying environment, channel measurements must be frequently repeated to track
the temporal changes.

2.2.2 Spatially Correlated MIMO Channel Model

We consider quasi-static block fading channel where the channel remains constant during one
transmit block. Let us denote the channel state in the k-th fading block by Hk. Now we
assume the channel is independent between each blocks. Hence we will suppress the time index
k in Hk on such assumption.

We assume that all element of the H obeys multivariate complex normal distribution,
therefore the second-order statistics provide enough information to characterize the model. We
adopt the typical correlation model so-called the Kronecker model [43] which assumes that
spatial Tx and Rx correlations are separable. This means that the channel is determined only
by the Tx’s and Rx’s surrounding scattering environments, and they are independent each
other. Hence the existence of dependence like direct-path waves is not considered. Generally,
the Kronecker model is said to be suited to NLOS environments. A distance between antenna
elements is assumed to be close enough to have correlation among them. Applicability of this
model assumption to the LOS model is discussed later. Given the spatial correlation matrices
for each side as RTx and RRx, the channel response matrix can be generated as

H = R
1/2
RxG

(
R

1/2
Tx

)>
(2.6)

where G is a complex gaussian i.i.d. random matrix whose elements obey CN (0, 1). Also the
covariance matrix for each element of the channel matrix can be expressed as follows.

RMIMO , EH vecH (vecH)H = RTx ⊗RRx (2.7)

Due to the normalization condition imposed on H , trRMIMO = (trRTx)(trRRx) = NTxNRx

shall be satisfied. In later discussion, we will impose trRTx = NTx and trRRx = NRx. The
Kronecker model was often assumed in theoretical analysis of the MIMO channel due to its
mathematical simplicity. It is verified by measurements under certain environments in [40].
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2.2.3 Stochastic Model for Time-Varying MIMO Channel

In this section, a time varying channel model over a frame interval is discussed based on [42].
Let ρ (0 ≤ ρ ≤ 1) be a temporal correlation coefficient between adjacent blocks, channel
responce matrix for time instant k + 1 is generated from the previous channel matrix by the
following single tap Gauss-Markov model:

Hk+1 = ρHk +
√

1− ρ2X (2.8)√
1− ρ2X is called process noise. X is a random matrix whose elements obey a multivariate

normal distribution, and its covariance matrix is defined as

Qk , EX vecX (vecX)H . (2.9)

Qk shall be normalized such that trQk = NTxNRx. With Jakes’ model assumption [10], ρ can
be modeled as J0(2πfDT ) where J0, fD and T are the zeroth order Bessel function of the first
kind, maximum doppler frequency and time interval between the adjacent blocks.

In order to incorporate a spatial correlation into the sequence of {Hk}, a spatial correlation
is also imposed on the process noise term as well. In this paper, we assume that Qk is constant
during the period of our interest mainly due to mathematical simplicity. Since we address the
estimation under the presence of higher temporal correlations, it is reasonable to assume the
spatial correlations (i.e. DOAs) are nearly fixed among the fading blocks. Correlated random
matrix X is generated with the Kronecker model assumption as (2.6). With this assumption,
updating equation becomes,

Hk+1 = ρHk +
√

1− ρ2R1/2
RxG

(
R

1/2
Tx

)>
(2.10)

This model was originally assumed in [3], and employed for the practical performance eval-
uation of spatially correlated time-varying MIMO channel. From the nature of the model
assumptions, if a sudden change of the spatial correlation statistics occures, the correlations
must be remeasured.

At equilibrium, it becomes

vecHk ∼ CN
(
0, RTx ⊗RRx

)
(2.11)

regardless of initial channel state if ρ 6= 1.

2.3 Iterative Channel Estimation for Gauss-Markov Chan-

nel

2.3.1 Channel Observation Model

We formulate the observation model of the channel state for training symbol aided channel
estimation with MIMO antenna selection systems employed.

Let s
(k)
1 , s

(k)
2 , · · · , s(k)Nt

∈ CNTx be normalized training sequences, each of them being launched

from Tx side in number order at fading block k. They are normalized such that ‖S̃k‖2F = NtNTx

where S̃k , [s
(k)
1 s

(k)
2 · · · s

(k)
Nt
]. Launched sequences are caught at Rx side with its RF switches
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State transition matrix

Observation matrixProcess noise

Observation noise

Observed value

Inner state

Stochastic channel model Partial CSI measurement

Figure 2.1: Schematic block diagram of the channel transition and observation model.

connected as the connection vector ξk prepared for channel measurement. Then, the received
sequences are written as

[y
(k)
1 y

(k)
2 · · · y

(k)
Nt
] =

√
Pr

NTx
AξkHk[s

(k)
1 s

(k)
2 · · · s

(k)
Nt
] + [n1n2 · · · nNt ] (2.12)

where ni ∈ CNRx is the i-th additive noise vector and y
(k)
i is the received vector corresponding

to the transmitted vector s
(k)
i . If we do not employ antenna selection systems, Aξk shall be

altered by INRx
. As for the design of training sequences, if we have no a priori knowledge of

the channel, and also the noise is white gaussian, it has been proven that orthogonal training

matrix defined as S̃kS̃
H
k = NtINTx

provides the best estimation capability [13].
By letting Y k and N k be NRF × Nt matrices each of them consisting of received vectors

and noise vectors, respectively, (2.12) is rewritten as

Y k = AξkHkSk +N k (2.13)

where Sk is defined as Sk ,
√
Pr/NTxS̃k and hence ‖Sk‖2F = PrNt holds. Applying vec

operator on both sides of the above equation yields the linear observation model as

vecY k =
(
S>

k ⊗Aξk

)
vecHk + vecN k (2.14)

where S>
k ⊗ Aξk is an observation matrix, and channel state is observed through this linear

mapping. Our concern is to solve this linear inverse problem under certain criteria.

2.3.2 Channel Estimation by Kalman Filter

By utilizing the temporal correlation characteristics of the channel in conjunction with the
spatial correlations, we can further improve the estimation capability.

Under the MMSE condition, best linear estimate of channel state for each time instant k can
be iteratively obtained by the Kalman filter [17] if the true channel state obeys Gauss-Markov
model. We assume the channel model as (2.8).

This estimation scheme is available even when the whole channel matrix is not measured for
each fading block. Now we consider to exploit this feature in order to omit the part of repeated
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measurements in MIMO antenna selection. In the later discussion, we assume only a single
measurement of (2.14) is available at each fading block. In such context, (NRx − NRF)NTx

variables of the channel matrix are not directly observed, but they are interpolated by the
measurements of the different antenna elements, and also the one in the previous fading block.

Fig. 2.1 is a schematic block diagram that illustrates the whole system model. Let us
denote observation matrix S>

k ⊗Aξk by Bk for simplification of notation, updating formula of
the Kalman filter is expressed as follows:

vec Ĥk|k−1 = ρ vec Ĥk−1|k−1 (2.15)

P k|k−1 = ρ2P k−1|k−1 + (1− ρ2)Qk (2.16)

z̃k = vecY k −Bk vec Ĥk|k−1 (2.17)

Ck = BkP k|k−1B
H
k +Rk (2.18)

Kk = P k|k−1B
H
k C

†
k (2.19)

vec Ĥk|k = vec Ĥk|k−1 +Kkz̃k (2.20)

P k|k =
[
INTxNRx

−KkBk

]
P k|k−1 (2.21)

Ĥk|k is the estimated channel matrix at time k, and Rk is the observation noise covariance ma-

trix defined as Rk , ENk
vecN k(vecN k)

H. Kk and z̃k are called Kalman gain and innovation
term, respectively. P k|k and P k|k−1 are error covariance matrices defined as

P k|l , EnEHk
vec
(
Hk − Ĥk|l

) [
vec
(
Hk − Ĥk|l

)]H
(2.22)

where l ∈ {k, k−1}. In general formulation of the Kalman filter, Rk and Qk can be dependent
on k. But we assume they remain constant during the period of our interest, hence we will omit
the index k from now on. If the noise is white gaussian, letting R = σ2

nINRF
and substituting

(2.18) (2.19) into (2.21), and with the aid of the matrix inversion lemma, (2.21) is rewritten as
follows:

P k|k =

(
P−1

k|k−1 +
1

σ2
n

S∗
kS

>
k ⊗AH

ξk
Aξk

)−1

(2.23)

In this paper, we assume model parameters ρ and Q are known in advance whereas they
are not available in practical situations. Therefore we must get the estimate of them and
utilize them instead of their true values. For the model parameter estimation, we require some
sequences of full channel matrix measured in training period provided right before the use of
the Kalman filter. A concrete estimation method is described in Appendix A.

2.4 Active Enhancement of Estimation

In this section, we incorporate the concept of active learning into our estimation scheme. Gener-
ally in linear inverse problems, estimation capability highly depends on the observation matrix
in (2.14). In this case, since observation matrix is composed of connection of RF switches ξk and
transmitted training sequences Sk, we can enhance estimation quality by optimally designing
ξk and Sk adaptivily to channel environments for each time instant k.
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Figure 2.2: Schematic block diagram of the whole system model. Training sequences Sk and
antenna subset ξk for CSI measurement are actively chosen in order to achieve better estimation.
This figure is depicted where Sk and ξk are optimized simultaneously, but we do not discuss
joint optimization for simplicity.

2.4.1 Problem Formulation

Let us define the MSE criteria as Jk. From (2.22), it is same as a trace of error covariance
matrix kept in the Kalman filter. For observation matrix S>⊗Aξ, Jk is written as a functional
with respect to ξ and S:

Jk [ ξ,S ] , EnEHk

∥∥∥Hk − Ĥk|k

∥∥∥2
F
= trP k|k

= tr

(
P−1

k|k−1 +
1

σ2
n

S∗S> ⊗AH
ξ Aξ

)−1

(2.24)

In order to obtain the best estimate, ξk and Sk should be chosen such that

(ξk,Sk) = argmin
ξ,S

Jk [ ξ,S ] ,

subject to : rankAξ = NRF, ‖S‖2F = PrNt . (2.25)

Finding the solution to this conditional optimization problem requires much computational
complexity. But relying on computational power is not suitable because we require this opti-
mization for each fading block. In the following, only the specific cases of which we can handle
are taken up for discussion. Schematic diagram of the system is shown in Fig. 2.2.

2.4.2 Optimal Training Sequence Design without Antenna Selection
System

In this section, we consider the case in which antenna selection system is not employed. In this
case, all Aξk in equations shall be replaced by INRx

.

Absence of Temporal Correlation (ρ = 0)

ρ = 0 means the estimation is not affected from the previous channel state, and in this case, the
situation becomes identical to the MMSE estimation by Wiener filter. Optimal transmit signal
design assuming this situation is already discussed in [26]. The optimal training sequence
becomes the weighted eigenvectors of the spatial correlation matrix of Tx side whose power
allocation is determined by water filling solution [11].



2.4. ACTIVE ENHANCEMENT OF ESTIMATION 34

Presence of Temporal Correlation (0 < ρ < 1)

This case corresponds to a simple extension of [26] to Gauss-Markov channel model. Let us
denote eigenvectors and eigen values of RTx and RRx as

RTxui = λ
(Tx)
i ui, RRxvj = λ

(Rx)
j vj, (2.26)

where λ
(Tx)
i and λ

(Rx)
j are sorted by descending order. If we assume a structure of Sk as

Sk =

NTx∑
i=1

√
α
(k)
i u

∗
iϕ

>
i , (2.27)

where {ϕi}
NTx
i=1 is any subset of arbitrary orthonormal basis of CNt , and α

(k)
i is non-negative value

specifying power allocation along the ui, then all updating equations of the error covariance
matrix can be calculated independently for each component along each eigen vector, and P k|l
can be always expressed as

P k|l =

NTx∑
i=1

NRx∑
j=1

[
Γk|l
]
i,j
uiu

H
i ⊗ vjvHj (2.28)

where l ∈ {k, k − 1}, and Γk|l ∈ RNTx×NRx contains all eigenvalues characterizing P k|l.
[
Γk|l
]
i,j

is the eigenvalue for the eigenvector ui ⊗ vj. Now, updating equations are reduced to only
arithmetic operations on the each element of Γk|l, and hence much computations are saved.
Inversely, if P k|k−1 is expressed as (2.28), the structure of the optimal training sequence becomes
as a form of (2.27) (see Appendix C).

In this case, (2.16), (2.18), (2.19), and (2.21) can be rewritten with much smaller computa-
tions as follows:

Γk|k−1 = ρ2Γk−1,k−1 + (1− ρ2)[λ(Tx)
1 λ

(Tx)
2 · · · λ(Tx)

NTx
]>[λ

(Rx)
1 λ

(Rx)
2 · · · λ(Rx)

NRx
] (2.29)

Ck =

NTx∑
i=1

NRx∑
j=1

(
α
(k)
i

[
Γk|k−1

]
i,j

+ σ2
n

)
ϕiϕ

H
i ⊗ vjvHj (2.30)

Kk =P k|k−1

(
S>

k ⊗ INRx

)H
C−1

k

=

NTx∑
i=1

NRx∑
j=1

√
α
(k)
i

[
Γk|k−1

]
i,j

α
(k)
i

[
Γk|k−1

]
i,j

+ σ2
n

uiϕ
H
i ⊗ vjvHj (2.31)

[
Γk|k

]
i,j =

σ2
n

[
Γk|k−1

]
i,j

α
(k)
i

[
Γk|k−1

]
i,j

+ σ2
n

(2.32)

The sum power constraint ‖Sk‖2F = PrNt is now reduced to
∑NTx

i=1 α
(k)
i = PrNt. Now, we

want to minimize Jk =
∑NTx

i=1

∑NRx

j=1

[
Γk|k

]
i,j
, but to simplify the problem, we will consider the

minimization only for the first column of Γk|k. From (2.29) to (2.32), we can confirm that if
the initial value Γ1|1 satisfies [Γ1|1]i,1 ≥ [Γ1|1]i,2 ≥ · · · ≥ [Γk|k]i,NRx

, it always holds for all k that
[Γk|k]i,1 ≥ [Γk|k]i,2 ≥ · · · ≥ [Γk|k]i,NRx

. Hence we can say that the first column of Γk|k has the
most important effect on our criteria, and we can determine the upper bound of Jk which only
depends on the first column of Γk|k as follows:

Jk[Sk] =

NTx∑
i=1

NRx∑
j=1

[
Γk|k

]
i,j
≤ NRx

NTx∑
i=1

[
Γk|k

]
i,1

, J ′
k[Sk] (2.33)
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Minimizing J ′
k can be solved by using Lagrange multipliers and Kuhn-Tucker conditions. {α(k)

i }
NTx
i=1

is determined as

α
(k)
i =

[
W − σ2

n[
Γk|k−1

]
i,1

]+
(2.34)

where [x]+ , max(0, x) and W is so-called the water line calculated by the water filling algo-
rithm.

At equilibrium, Γk|l converges to the solution of the algebraic Riccati equation if the system
is observable and controllable. In this paper, we will not discuss such steady-state Kalman
filter, but it might be possible to calculate the optimal training sequence and corresponding
filter gains in advance, prior to the actual iterative observations.

2.4.3 Optimal Measurement Antenna Selection

Now we consider the case of antenna selection system with its channel matrix being partially
observed. A selection of partial measurement ξk is optimized for each iteration under the
criteria of (2.25). In this time, Sk is not jointly optimized due to simplicity.

A naive implementation of (2.16) to (2.21) requires calculation of inverse of the NTxNRx ×
NTxNRx matrix for each step which results in much requirement of computations. Now we show
that if we do not optimize on Sk, and also it is given as a form of (2.27), we can implement
the Kalman filter with smaller computations by avoiding the direct calculation of the inverse
of the large error covariance matrix.

On this assumption, P k|l is always expressed as

P k|l =

NTx∑
i=1

uiu
H
i ⊗ F

(i)
k|l (2.35)

where F
(i)
k|l is NRx×NRx matrix characterizing error covariance of Rx side which corresponds to

Tx’s component along ui. Then, thanks to the relationship of Appendix B, filter calculations
are rewritten as:

F
(i)
k|k−1 = ρ2F

(i)
k−1|k−1 + (1− ρ2)λ(Tx)

i RRx (2.36)

Kk =

NTx∑
i=1

uiϕ
H
i ⊗

√
α
(k)
i F

(i)
k|k−1A

H
ξk

(
α
(k)
i AξkF

(i)
k|k−1A

H
ξk
+ σ2

nINRF

)−1

(2.37)

F
(i)
k|k =

[(
F

(i)
k|k−1

)†
+
α
(k)
i

σ2
n

AH
ξk
Aξk

]−1

(2.38)

By comparing (2.38) with (2.23), we can see the update of F
(i)
k|k is done by replacing the

observation matrix by Aξk with its noise power being scaled by 1/α
(k)
i . From (2.35), selection

criteria is rewritten as follows:

Jk [ ξk,Sk ] =

NTx∑
i=1

trF
(i)
k|k (2.39)

We must compromise the best solution of ξk, due to the required computations for optimization.
In order to find a near optimal solution, we resort to Greedy algorithm which starts from an
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empty set of selected antennas, then add one antenna which best contributes to the selection
criteria per step, continues until it reaches the desired number of selection. We show the
implementation of the Greedy algorithm with much simpler calculations by utilizing a similar
approach proposed in fast antenna subset selection [5].

Now we consider the (t+1)-th step of Greedy algorithm. Until the t-th (0 ≤ t < NRF) step,
t elements have been already selected, and we will denote ωt as a t × 1 vector that contains
already selected elements. Also we denote the extracted channel matrix specified by ωt as√
Pr/NTxAωtHk. Aωt is a t×NRx matrix defined as Aωt ,

∑t
i=1 fie

>
<ωt,fi>

where ei and fi are
the i-th standard basis of CNRx and Ct, respectivily. If we select x-th element at the (t+ 1)-th
step, x is chosen so that

Jk [ωt+1,Sk ] = Jk
[
[ω>

t x]
>,Sk

]
(2.40)

=

NTx∑
i=1

trΦ(i)
ωt+1

, Φ(i)
ωt

,
[(
F

(i)
k|k−1

)†
+
αi

σ2
n

AH
ωt
Aωt

]−1

is minimized. Substituting the relationship of

AH
ωt+1

Aωt+1 = A
H
ωt
Aωt + exe

H
x (2.41)

into (2.40), and thanks to the matrix inversion lemma, we have

Φ(i)
ωt+1

=

[(
Φ(i)

ωt

)−1

+
αi

σ2
n

exe
H
x

]−1

(2.42)

= Φ(i)
ωt
−
(
σ2
n

αi

+ eHx Φ
(i)
ωt
ex

)−1

Φ(i)
ωt
exe

H
x Φ

(i)
ωt

where Φ(i)
ω0

= F
(i)
k|k−1. Finally, the element which best contributes to the criteria (2.40) is chosen

as follows:

xopt = argmin
x
Jk
[
[ω>

t x]
>,Sk

]

= argmax
x

NTx∑
i=1

∥∥∥∥[Φ(i)
ωt

]
: ,x

∥∥∥∥2
σ2
n/αi +

[
Φ(i)

ωt

]
x,x

(2.43)

After that, the selection result is stored into ωt+1 as ωt+1 ← [ω>
t xopt]

>. Also Φ(i)
ωt+1

is
generated by (2.42) and be used for the selection of the next step.

A brief explanation of the selection method is illustrated in Fig.2.4. Also, explanation of [5]
is shown in FIg.2.3 for reference.

2.5 Simulation

We evaluated the effectiveness of the proposed scheme by numerical simulations with different
parameters for spatial and temporal correlation. As a measure of the estimation capability, we
employed the following three criteria.

• Evaluate the Frobenius norm of the estimation error, defined as (2.24).
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Figure 2.3: Brief explanation of the fast antenna subset selection method [5]. The method
reduces computation thanks to the Woodbury formula for matrix determinant.
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Figure 2.4: Brief explanation of the proposed quasi-optimal measurement antenna selection
method. An approach similar to [5] is taken for reduction of computations.
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• After the estimation by the Kalman filter, antenna subset used for transmission is chosen
according to the information of the estimation result. Then the transmission starts by
directly using the estimated channel state information. In this case, the contributing
factor for the channel capacity degradation will be the validity of antenna selection and
the decrease of SINR, both are caused by the estimation error by the Kalman filter.

• After the antenna selection based on the estimated channel, accurate channel estimation
for which only the elements used for transmission is repeated with much longer training
sequences and without using any channel statistics. In this case, only the validity of
antenna selection can be evaluated.

The Shannon capacity of the MIMO channel is evaluated considering the estimation error of
the channel under the MIMO eigenmode transmission system. Let singular value decomposition
of the estimated channel matrix be AτkĤ = USV H, where U and V are unitary matrices and
S is the diagonal matrix, respectivily. Then the diagonal element of T , UHAτkHV stands
for the SNR for each sub channel, and [T ]i,j (i 6= j) is the leak from the i-th sub channel to the
j-th sub channel which is caused by the estimation error. The SINR of the i-th sub channel is
expressed as

SINRi =
Pr [T ]i,i [T ]

∗
i,i

NTxσ2
n + Pr

∑
j 6=i [T ]i,j [T ]

∗
i,j

. (2.44)

From this, the Shannon capacity of the MIMO channel is derived as C = log2 Π
NRF
i=1 (1+SINRi).

The spatial correlation matrices of the Kronecker model was generated under the assumption
that the waves incoming from the different angles are uncorrelated, and also have the same
power. Let a(θ) be the steering vector of the array antenna for a plane wave coming from the
direction of θ. The spatial correlation matrix is generated as

R =
1

∆θ

∫ θ0+∆θ/2

θ0−∆θ/2

a(θ)a(θ)Hdθ (2.45)

where θ0 is the center of the arrival wave and ∆θ is the angular spread. We assume a linear
array whose distance between elements is half of the wavelength. θ0 is chosen randomly for 8
times, and the resultant estimation error was averaged over them. We adopt ∆θ as the indicator
of the degree of spatial correlation.

For each simulation parameter, an iteration of the Kalman filter is repeated 60 times, and
the result is averaged over them. The average SNR is set to 15dB. The number of the Tx
elements NTx is fixed to 6. Also the length of the training sequence Nt is set to 32.

2.5.1 Simulation Procedure

The simulation procedure is shown below.

1. Initialize the channel model parameters including the correlation matrices generated as
(2.45).

2. For the firstNs fading blocks, this period is devoted to learn the channel statistics required
for the Kalman filter. The estimation method is described in Appendix A.

3. Update the true channel state by (2.10).
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4. From P k|k−1, optimal training sequence Sk is calculated by (2.27) and (2.34). In the case
of the antenna selection system, ξk is chosen by (2.43).

5. Based on ξk and Sk, channel is observed by (2.14).

6. Obtain the estimate of the channel by the Kalman filter. Also P k|k in the filter is updated.

7. Evaluate the estimation error Hk − Ĥk.

8. Based on Ĥk, the connection τ k is chosen by the fast antenna subset selection algorithm
[5].

9. Evaluate the Shannon capacity of AτkĤk by using (2.44).

10. In order to evaluate only the antenna selection capability, evaluate the capacity of AτkHk

as well.

11. Return to step 3 until the required number of samples are obtained.

In step 2 of the procedure, parameters of the Gauss-Markov model shall be estimated by
using the Ns times measurements of the channel. Since the period that channel parameters
remain stationary is limited, we must learn its statistics as fast as possible. Therefore Ns

should not be too large as long as the required precision is obtained. Considering them, we
choose Ns as 10 for the estimation of the spatial correlation matrices. However, as for the
temporal correlation coefficient ρ, an accurate estimate cannot be obtained until the Ns is large
enough. Therefore for the estimation of ρ, we selected Ns as 500. In this case, the estimation
error becomes approximately less than 0.01. Later, we will show that the channel estimation
capability does not depend very much on the precision of the estimate of ρ. Therefore, by
sacrificing the precision of ρ, there might be another way that can reduce the required Ns

without losing estimation capability significantly.

2.5.2 Effect of the Spatial Correlation

Fig. 2.5 depicts the mean squared error defined as (2.24) with different spatial correlations
for various temporal correlations. The antenna selection system is not employed, hence the
equations of (2.29) to (2.32) are used. The solid lines and the dotted lines indicate the case of
optimal training sequence design by the water-filling solution, and for the case of orthogonal
training sequence (i.e. α

(k)
i = PrNt/NTx), respectively. We also compared them with the case

of maximal likelihood (ML) channel estimation [48] [49] without any channel statistics. An
advantage of the optimal training sequence design was observed especially under the presence
of stronger spatial correlations of the Tx side and weaker temporal correlations. The reason of
this seems that these conditions tend to yield nonuniform error variances among each fading
block which work advantageously for the optimal training sequence design.

2.5.3 Effect of Correlation Model Mismatch

Although the proposed method assumes the Kronecker model which is applicable to NLOS
environments, if the true channel obeys the LOS model, the model mismatch might cause a
degradation of estimation capability. In order to verify this, we generated the true channel by
using the typical LOS channel model which considers specular and diffuse components. The
channel was generated as
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Figure 2.5: Mean squared error of the channel estimate for the different spatial and temporal
correlations. (NRx = 6)
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H =

√
K

K + 1

√
1

Np

Np∑
i=1

gi · aRx(θ
(Rx)
i )

[
aTx(θ

(Tx)
i )

]>
+

√
1

K + 1
R

1/2
DiffRxG

(
R

1/2
DiffTx

)>
(2.46)

where K is the Ricean K factor, Np is the number of specular paths, and {gi}Np

i=1 ∼ CN (0, 1).
aTx and aRx are steering vectors for each side. RDiffTx and RDiffRx are correlation matrices
for diffuse component. The DOAs {θ(Tx)

i }Np

i=1 and {θ
(Rx)
i }Np

i=1 are generated randomly within the
range of the angular spread.

For various K factors, estimation error was evaluated in Fig. 2.6 using the optimal training
sequence design. Since the diffuse component was modeled as the Kronecker model, K = 0
means the model matches exactly to our original assumption. Contrary to our expectations,
the method works more effectively as the specular component beging stronger. It is considered
that the presence of specular component yields strong spatial correlation which is superior to
the proposed method rather than inferior due to the model mismatch.

2.5.4 Capacity Tracking Capability with the Time Elapse

Fig. 2.7 depicts the time varying channel capacity for each fading block.
We have compared the capacity of the following four cases; 1) Selection based on perfect

CSI. 2) Selection based on the estimated CSI. 3) In addition to the previous case, also the
transmissions are done by using the estimated CSI. 4) Random selection with perfect CSI.

The solid line indicates the capacity of the pefect channel matrix. The fluctuation of the
capacity increases as the correletion coefficient ρ decreases. We can see that a nearly optimal
selection is achieved by using the estimated channel as the selection criteria. But due to the
estimation error caused by partial channel measurement, the capacity using the estimated
channel degrades a lot. This result agrees with the description in [15] that the near optimal
selection can be achieved even if the precision of the channel estimate is poor.

2.5.5 Effect of the Temporal Correlation

From now on, we employ the antenna selection system of NRx = 7 and NRF = 4 or 6. The chan-
nel estimation is done by the equations of (2.36) to (2.38). The legend ’Kalman for transmission’
in figures 2.8 and 2.9 show the degraded capacity with the change of temporal correlation of
the actual channel. From the graphs, by utilizing the estimated channel by the Kalman fil-
ter, almost perfect selection can be achieved, but slight selection error is observed especially
for the lower correlations. The legend ’Kalman for only selection’ in the figures evaluate only
the antenna selection capability of the estimated channel. If we directly employ the estimated
channel for the transmission, the capacity is highly influenced by the temporal correlation. We
also show the result obtained by the ML channel estimation without exploiting any channel
statistics. In order to perform comparison under fair conditions, we imposed the condition
where the received signal power of the training sequence is equal among all cases. In the case
of NRF = 6, estimation by Kalman filter always exceeds the one without channel statistics. As
for the case of NRF = 4, since almost half of the channel state is not observed directly, the
estimation error becomes significant. We can read the large degradations with the correlations
below 0.95 mainly caused by the leaks between sub channels.
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Figure 2.7: Time variation of the capacity. (NRx = 7, ρ = 0.97,angular spread is 100[deg])

2.5.6 Effect of the Measurement Antenna Selection

We investigated the effect of the optimal antenna selection for the channel measurement. Fig.
2.10 shows the mean squared error of the channel matrix for different spatial correlations of
the Rx side. For comparison, we also show the case of random selection which means ξk is
determined randomly for each iteration.

The estimation quality of the optimal selection is always higher than other methods. Differ-
ence in estimation error becomes large when the spatial correlations are small, and also when
the number of the unmeasured elements (NRx −NRF) is large.

2.5.7 Robustness of the Estimate of ρ

Estimation error of the channel statistics causes the degradation of the channel estimation
capability. In Fig. 2.11, the channel is generated with the temporal correlation coefficient
being fixed to 0.98, although the estimator assumes its correlation coefficient as a value on the
horizontal axis. The capacity with the estimated CSI seems not to be degraded even when the
estimation error increases to 0.07. We can observe the robustness of the estimation of channel
statistics, but from the discussions so far, it is shown that the estimation is sensitive to the
actual temporal correlation itself.

2.6 Concluding Remarks

We proposed the optimal training sequence design for channel estimation by the Kalman filter.
Also in order to reduce the measurement costs for antenna selection systems, partial channel
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measurement and its optimal control based on the statistics were discussed.
The numerical simulation assuming the Gauss-Markov channel revealed that the optimal

training sequence design works effectively in the case of lower temporal correlation and higher
spatial correlation of the Tx side, although the partial channel measurement is superior for
higher temporal correlations and higher spatial correlations on the Rx side. If partial channel
measurement was employed, the estimated channel is accurate enough as the coarse estimation
which is utilized for only the selection criteria. Meanwhile, if we utilize the estimated channel
to the transmission directly, the estimation error causes the degradation of the channel capacity
to a large extent. In that case, it was shown that high spatial and temporal correlations are
required to keep the accuracy of the method. Also the simulation revealed that the estimation
capability does not suffer much degradation due to the estiamtion error of the temporal cor-
relation statistics of the channel. This implies that the method has an error tolerance about
temporal fluctuations that sometimes arise in actual propagation environments.

As future tasks, this method has a shortage that comes from the definition of the channel
model about frequent temporal change of spatial correlation statistics. This might not be
negligible especially in rapidly mobile wireless scenarios. Therefore, now we are investigating
a more robust estimation scheme for antenna selection systems which have less dependence on
the spatial correlations.



Chapter 3

EM-based Estimation of
Spatiotemporal Correlation Statistics

In this chapter, we discussed a MIMO channel estimation method which exploits the chan-
nel’s spatiotemporal correlation without the aid of a priori channel statistical information. A
random-walk based Gauss-Markov model which has less parameters to be estimated is pre-
sented for the Kalman filter. In order to obtain the channel’s innovation statistical parameter,
considering that the time evolution of the channel is a latent statistical variable, the EM al-
gorithm is applied for accurate estimation.Numerical simulations revealed that the method is
able to enhance estimation capability by exploiting spatiotemporal correlations, and works well
under the conditions where small forgetting factor employed.

3.1 Introduction

Exploitation of channel statistics for MIMO channel estimation is a challenging problem. Under
certain stationary conditions, MIMO channel statistics provide reliable information based on
physical meanings. For instance, spatial correlation statistics can be fully characterized by the
distribution of surrounding principal scatterers in the propagation channel [26]. So far, many
literatures [18–38, 44] reported that exploiting channel correlations yield significant enhance-
ment of channel estimation capability. For the channel estimation, the MMSE criterion is often
used, and the estimation methods are classified roughly into the two groups. One is the Wiener
based methods [23–30] which only consider spatial or frequency correlations within a symbol.
The other is the Kalman based methods [18–22] which additionally deal with inherent channel
correlations between symbols. The Kalman based methods can take into account a degree of
time evolution of the channel, but requires more computational cost.

Under the presence of a priori correlation statistics, or assumption that the channel obeys
typical correlation model such as the Bessel function of the Rayleigh fading model, the optimal
estimation method and detailed performance analysis have been discussed [22–24, 26–30]. In
addition, the estimation capability can be further improved by designing the optimal training
sequences considering the correlation statistics [22, 26–30]. In order to obtain benefit from the
correlation statistics based on the methods above, a method to obtain accurate channel statistics
is necessary, since a mismatch of the statistics cause degradation of estimation capability.

Regarding how to obtain the correlation statistics, many discussions have been made as-
suming various scenarios. The simplest way is to allocate a training period preceding data
transmissions, and estimate by batch process [20–22]. A training sequence can be scattered
pilots in OFDM systems [25]. In realistic situations, a method to stably-exploit the MIMO

46



3.1. INTRODUCTION 47

channel statistics is still not established. A major problem is difficulty in obtaining reliable
statistics within non-stationary wireless channels where the mobile station does not remain a
constant velocity, and moves irregularly through the scatterers. One of the methods to manage
non-stationary is to use the RLS (Recursive Least Squares) criterion which can continuously
alter the correlation statistics [31–34]. Even when using the RLS, there still exists a problem to
balance tracking capability and estimation precision by controlling a forgetting factor. Other
approaches have been proposed to establish a robust estimation method which works even
under the existence of mismatch between assumed and actual channel statistics [35–37]. The
authors have proposed a robust channel estimation method dedicated to the antenna selection
systems which does not rely on unreliable spatial correlation statistics but only rough temporal
correlation statistics [38].

In this paper, we address the issue of MIMO channel estimation including an estimation
of channel statistics assuming non-stationary channels. Our method is devoted to obtain the
channel’s innovation statistics of the Kalman filter. The same problem is discussed in [20, 21]
by utilizing batch estimation process using the training period, and incorporation of forgetting
factor is remarked. We extend the estimation method considering the following point of view.

Generally, in order to obtain channel statistics accurately, many measurements of channel
realizations are necessary. Originally however, if we could measure channel states accurately
for each channel measurement, there is no demand for the aid of channel statistics. Inherently
with limited set of resources, a true channel state is unable to be referenced directly, but it can
be only indirectly predicted as a stochastic distribution due to the received training sequences.
In addition, since the channel statistics do not remain constant, an interval update for tracking
is required. In a strict sense, if we utilize the periodically updated channel statistics for the
estimation of channel, the estimated channel state is not correct since the estimation is based on
somewhat incorrect channel statistics which was also derived from incorrectly estimated channel
state. In such way, utilizing channel statistics in a non-stationary environment has the potential
to fall into a vicious cycle. Considering the circumstances, based on the formulation that we
cannot measure the channel state directly, we developed a novel channel estimation method
via the EM-algorithm. In the proposed method, the channel statistics are calculated based
on a posterior distribution of the channel state after having observed the training sequences,
which enables an estimation of the channel statistics where the channel state is not directly
observable (or even partially not observable at extreme cases) as described above. We show
that the channel estimation can be enhanced without a priori channel statistics by utilizing the
proposed method.

As far as we know, this is the first attempt to estimate the channel’s innovation statistics
by regarding the estimated channel evolution as a latent statistical variable. Note that there
has been many studies [50–53] for the purpose of channel state estimation by means of the
EM algorithm. Though the same algorithm is utilized, our usage of the EM algorithm is
different from theirs. These preceding studies deal with simultaneous estimation of both the
channel state estimation and the data sequence estimation by regarding either of them as a
latent variable. Intuitively, these methods iteratively calculate a posterior distribution of the
transmitted data sequences, and then estimate the channel state so that its components along
the directions having a large variance of the corresponding data sequences become small values
since the estimated channel components corresponding to the unreliable data sequences are also
unreliable. As just described, the preceding studies do not deal with the estimation of channel
statistics though a formulation considering a latent channel state is similar. The differences of
these EM-based channel estimation methods are summarized in Table 3.1 and Fig.3.1. These
simultaneous estimations are often combined with DFE(Decision Feedback Equalizer) [54–57],
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Figure 3.1: The difference of scheme with preceding studies about channel estimation using
EM algorithm.

and a priori channel statistics such as the WSSUS assumption are often assumed. In this paper,
we do not mention about the DFE, but exploitation of correlation information onto the DFE
scheme is considered to be a future problem.

Literature Time evolution model Spatial correlation
statistics

Frequency correlation statistics Temporal correla-
tion statistics

Training

This study Gauss-Markov Perform estimation None (Narrowband) Perform estimation Known pilots
[50] Gauss-Markov None (Not MIMO) a priori innovation statistics a priori correlation

coefficient
Initial known pilots
and unknown data

[51] Gauss-Markov None (Not MIMO) i.i.d. innovation statistics and a
priori correlations

a priori correlation
coefficient

Unknown data

[52] Gauss-Markov a priori innovation
statistics

a priori innovation statistics a priori correlation
coefficient

Initial known pilots
and unknown data

[53] Gauss-Markov with in-
ner differential states

None (Not MIMO) a priori innovation statistics a priori correlation
coefficient

Initial known pilots
and unknown data

Table 3.1: The studies on channel estimation via the EM algorithm.

This paper is organized as follows. In section 2, the system model including the stochastic
channel model considering spatial and temporal correlation is explained. Section 3 shows the
channel estimation method by the Kalman filter assuming that a priori channel statistics are
available. Section 4 explains the proposed statistics estimation. Section 5 shows simulation
results and considerations.

3.1.1 Mathematical Notations

Throughout this paper we will use bold-faced upper case letters to denote matrices, and bold-
faced lower case letters for column vectors, light-faced letters for scalar quantities. The sub-
scripts >, H, ∗ indicate transpose, Hermitian transpose (transpose and complex conjugate),
and complex conjugate respectively. IN denotes the N ×N identity matrix. Also the inverse,
Moore-Penrose pseudo inverse, trace, determinant, and Frobenius norm of the matrix X are
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denoted by X−1, X†, trX, detX, and ‖X‖F , respectively. The m-th row and n-th column
element of the matrix X is denoted by [X]m,n. Ex means the expectation with respect to x.
The bracket < ·, · > is used for inner product on the column vector space. Also the vector
Euclidean norm is expressed as ‖ · ‖. In this paper, since we often discuss correlations between
each matrix element, it is convenient to treat matrix as one column vector that consists of all
its elements. For any m × n matrix A = [a1 a2 · · ·an], the vec operator generates a mn × 1
vector defined as

vecA ,
[
a>
1 a

>
2 · · ·a>

n

]>
(3.1)

where , means definition. The Kronecker product ⊗ is required with the use of the vec
operator.

3.2 System Model

3.2.1 MIMO Channel Model

For a narrowband MIMO channel with NTx transmit antennas and NRx receive antennas,
received vector y ∈ CNRx can be expressed as

y =

√
Pr

NTx

Hkx+ n (3.2)

where Pr is average receive signal power at each receive antenna. n ∈ CNRx is the additive
noise vector typically assumed to have a white complex normal distribution with average power
σ2
n. x ∈ CNTx is the normalized transmit vector such that Ex xxH = INTx

. Hk ∈ CNRx×NTx is
the normalized channel matrix for time instant k. Since Hk varies for each time instant k, we
define the normalization as Ek ‖Hk‖2F = NTxNRx. In this formulation, average signal to noise
ratio (SNR) per receive antenna can be expressed as follows:

SNR =
EHk

Ex
∥∥∥√ Pr

NTx
Hkx

∥∥∥2
En ‖n‖2

=
Pr

σ2
n

(3.3)

3.2.2 Stochastic Model for Time-Varying Correlated MIMO Chan-
nel

In order to exploit inherent correlation statistics of propagation channels, first we investigate
a robust channel model which employs both spatial and temporal correlations simultaneously
while not increasing the number of model parameters as far as possible. In the subsequent
section, we consider a concrete estimation method based on the channel model introduced in
this section.

We consider quasi-static block fading channel where the temporal channel evolution is small
enough to be ignored during one transmit block. Let us denote the channel state in the k-th
fading block by Hk. A temporal transition assuming a wide-sense stationary random process
is often modeled as the AR(Auto Regressive) model [39]. In MIMO case, the time evolution is
expressed as

vecHk =
M∑
i=1

Gi vecHk−i +ψk

ψk ∼ CN (0,Ψk) (3.4)
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Figure 3.2: A brief explanation of why the proposed simplified random-walk based Gauss-
Markov model is able to exploit both temporal and spatial correlation statistics.

where CN (0,Ψk) denotes the circularly-symmetric complex normal distribution with covariance
of Ψk. The tap number M is chosen depending on the shape of the power spectral density
of time evolution. Considering the points that the number of model parameters should be
small, and applicability for fast fading channels, we choose M = 1 and also G1 = ρI where
ρ(0 ≤ ρ ≤ 1) denotes the correlation coefficient which depends on the maximum Doppler
frequency and period of fading block. Such a first order AR model is widely used among
the literatures [19–22,54, 57] dealing with the similar problem. In the case of a non-stationary
channel, since the correlation coefficient varies depending on time, we rewrite the channel model
as:

vecHk = ρk vecHk−i +ψk (3.5)

The above model requires the parameters of both ρk and Ψk. However, estimating both of them
accurately using an insufficient number of channel realizations are generally difficult, since the
estimation becomes an ill-conditioned problem, which can be illustrated by the fact that an
estimation error of ρk can be absorbed into a choice of Φk. In order to avoid this matter while
further reducing parameters, we adopt the following model.

vecHk = vecHk−1 + (ρk − 1) vecHk−1 +ψk︸ ︷︷ ︸
zk

(3.6)

zk ∼ CN (0,Rk)

Now, the desired model parameters to be determined is reduced to onlyRk which is a statistical
parameter of first order differential value of channel. Note that we do not impose any normaliza-
tion on Rk, since absolute magnitude of its eigenvalues have meanings; trRk indicates strength
of temporal correlation, and also unevenness of eigen values of Rk indicates strength of spatial
correlation. Uniform eigenvalues (Rk = αkI) means that there exists no spatial correlations
exploitable. (illustrated in Fig.3.2)

It might be pointed out that a simple random walk model of (3.6) would be incapable of
expressing characteristics of true channel. In the random walk model, channel variance is simply
accumulated as time elapsed, which suggests that expected SNR will monotonically increase,
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thus the model does not belong to WSS. However, in actual operation, we assume that channel
measurement is done for each time instant, and it decreases channel variances thus prevents
SNR increase. In short, our model is only applicable for adjacent fading blocks, but is not
simply extendable to a modeling over several fading blocks. (illustrated in Fig.3.3)

3.3 Channel Estimation for Gauss-Markov Channel

3.3.1 Channel Observation Model

Let s
(k)
1 , s

(k)
2 , · · · , s(k)Nt

∈ CNTx be normalized training sequences, each of them being launched

from Tx side in number order at fading block k. They are normalized such that ‖S̃k‖2F = NtNTx

where S̃k , [s
(k)
1 s

(k)
2 · · · s

(k)
Nt
]. Then, the received sequences are written as

[y
(k)
1 y

(k)
2 · · · y

(k)
Nt
] =

√
Pr

NTx

Hk[s
(k)
1 s

(k)
2 · · · s

(k)
Nt
] + [n1n2 · · · nNt ] (3.7)

where ni ∈ CNRx is the i-th additive noise vector and y
(k)
i is the received vector corresponding

to the transmitted vector s
(k)
i .

If the second order statistic of Hk is known in advance, optimal training sequences are
determined uniquely according to the literatures [22, 26]. To simplify problems, we adopt the

orthogonal training matrix defined as S̃kS̃
H
k = NtINTx

from now on.
By letting Y k and N k be NRF × Nt matrices, each of them consisting of received vectors

and noise vectors, respectively, (3.7) is rewritten as

Y k =HkSk +N k (3.8)

where Sk is defined as Sk ,
√
Pr/NTxS̃k and hence ‖Sk‖2F = PrNt holds. Applying vec

operator on both sides of the above equation yields the linear observation model as

vecY k = Bk vecHk + vecN k (3.9)

where Bk , S>
k ⊗ INTxNRx

is an observation matrix, and an actual channel state is observed
through this linear mapping.

3.3.2 Channel Estimation by the Kalman Filter

Under the MMSE condition, best linear estimate of channel state for each time instant k can be
iteratively obtained by the Kalman filter [17] when the true channel state obeys Gauss-Markov
model. Based on the channel’s time evolution model defined as (3.6), updating formula of the
Kalman filter is expressed as follows:

P k|k−1 = P k−1|k−1 +Rk (3.10)

δk = vecY k −Bk vec Ĥk−1 (3.11)

Kk = P k|k−1B
H
k

(
BkP k|k−1B

H
k +Qk

)−1
(3.12)

ẑk =Kkδk (3.13)

vec Ĥk = vec Ĥk−1 + ẑk (3.14)

P k|k =
[
INTxNRx

−KkBk

]
P k|k−1 (3.15)
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Ĥk is the estimated channel matrix at time k, and Qk is the observation noise covariance
matrix defined as Qk , ENk

vecN k(vecN k)
H. ẑk is an estimate of latent time evolution of

channel on which we will focus in later discussion. Kk is so-called the Kalman gain which
restores channel evolution from a difference of channel observations. P k|k and P k|k−1 are error
covariance matrices defined as

P k|l , E
n

E
Hk

vec
(
Hk − Ĥ l

) [
vec
(
Hk − Ĥ l

)]H
(3.16)

where l ∈ {k, k − 1}.

3.4 Recursive Estimation of Channel Statistics

In this section, we discuss a method for estimating covariance matrix Rk from its earlier obser-
vations {Y k}Nk=1. Preceded by the problem formulation, we show the two methods for solving
the problem. One is a naive and simple method with lower computational cost, and the other
is an EM-based estimation method.

3.4.1 ML Estimation Criteria

We formulate estimation problem for time-varying statistical model parameters in terms of the
maximum-likelihood (ML) estimation. Though the resulting method is only an exponentially
weighted averaging which is seen in derivation of the RLS filter, our purpose is to incorporate
an essence of the RLS into our estimation scheme via framework of the ML estimation. Also
we consider the case of constant model parameters as comprehensible example.

Case of Rk Remains Constant

In this case, we suppress the subscript k of Rk. Assuming that {zi}Ni=1 are independent and
zero mean, we have:

L(z1,z2, · · · , zN |R) = log
N∏
i=1

CN (zi |0,R) (3.17)

Here the problem is how to obtain the realizations of channel evolution zi which are not directly
observable. One of the simplest way for this is to use estimated value ẑi of (3.14) instead. It
should be noted that this convenient substitution is not accurate, and our proposed method we
discuss later is an improvement concerning this problem.

Maximization of the above equation by using ẑi is achieved by its covariance matrix as
follows:

R̂ =
1

N

N∑
i=1

ẑiẑ
H
i (3.18)

where N denotes a number of realizations available.
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Case of Rk Varies Depending on k

Generally for estimation of time varying statistical parameters, we attach more importance
to recently occurred realizations. Since {zi}Ni=1 are assumed to be independent having zero
mean, our concern is to adjust importance weights for each realization in (3.17). In this paper,
we formulate the following exponentially weighted likelihood function so that its maximization
result matches an exponentially weighted averaging used in derivation of the RLS algorithm in
order to reduce computations for maximization. For estimation at time instant k (N ≥ k), the
function is expressed as:

L(z1, z2, · · · ,zN |Rk) = log
k∏

i=1

CN (zi |0,Rk)
λk−i

(3.19)

where λ is so-called forgetting factor which is a given hyperparameter that indicates variation
speed of channel statistics. If temporal variation of channel statistics is small, larger λ is suited.
For faster variation, small λ is suited but too small λ leads to lose accuracy of parameters due to
shortage of a number of realizations having large importance. In this paper, we do not discuss
estimation algorithm of the optimal λ.

Similarly discussed in the above section, if we employ {ẑi}Ni=1 instead of actual realizations,
the parameter maximizing above function can be obtained recursively as the following equation:

R̂k = λR̂k−1 + (1− λ)ẑiẑHi (3.20)

Here, we suppose k is large enough to hold approximation of λk−1 ≈ 0. The detailed derivation
is shown in the Appendix D.

Since {ẑi}Ni=1 are calculated by the Kalman filter assuming that the previous channel statis-
tics are still correct even at the current time instant, we call this method as a stationarity
assumption method in the rest of the paper.

3.4.2 The EM-based Estimation

The EM algorithm is an iterative parameter estimation method for finding suitable parameters
according to the criterion of maximum-likelihood, where part of the stochastic variables are
unobservable, or not directly accessible.

The method consists of an Expectation step and a Maximization step. In the Expectation
step, the Q function which is the conditional expectation of the log-likelihood function is created
using the current parameter θ(t). In the Maximization step, the updated parameter θt+1 is
calculated by maximization of the Q function. These steps are alternately iterated until the
parameter θ(t) converges. Let x and z be observed and latent stochastic variables, respectively.
The above described steps are expressed as

E− Step : Q(θ |θ(t)) = E
z |x,θ(t)

logL(θ |x,z)

M− Step : θ(t+1) = argmax
θ

Q(θ |θ(t)) (3.21)

where Ea |b means conditional expectation with respect to a under the condition of b.

In our problem, only the received symbols Y k are directly observable. Meanwhile, the zk
corresponds to the latent variable since a direct observation of realized channel evolution zi is
unavailable.
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Posterior Distribution of Latent Channel Evolution

When using the EM algorithm, one of the difficulties is that computational cost of the E-
Step is intractable in most cases. Fortunately, Q function of our problem can be calculated
easily since all distributions are the Gaussian normal. In this section, we calculate the posterior
probability of the latent variable zk for preparation of the evaluation of conditional expectation
to be described.

Let the stochastic variables zk,Hk−1,N k be independent among each other. Then the joint
distribution function of them can be expressed as follows:

P (zk,N k,Hk−1) =CN (zk |0,Rk)CN (vecN k |0,Qk)

× CN (vecHk−1 | vec Ĥk−1,P k−1 | k−1) (3.22)

After having observed Y k whose definition is expressed according to (3.6) (3.9) as

vecY k = Bk(vecHk−1 + zk) + vecN k , (3.23)

the posterior distribution of zk is obtained by marginalizing the above joint distribution function
with respect to Hk−1.

P (zk |Y k) =

∫
CNRx×NTx

P (zk,N k,Hk−1) dHk−1

=

∫
CNRxNTx

CN (zk |0,Rk) CN (hk |0,P k−1 | k−1)

× CN (δk −Bk(hk−1 + zk) |0,Qk) dhk−1 (3.24)

where

hk−1 , vec
(
Hk−1 − Ĥk−1

)
δl , vecY k −Bk vec Ĥk−1 = Bk(hk−1 + zk) +N k (3.25)

The above integration of the Gaussian (exponential quadratic) function is tractable, and the
posterior distribution is obtained as

P (zk |Y k) = CN
(
zk |ϕk,

(
R−1

k + F kCk

)−1
)

(3.26)

where

ϕk ,
(
R−1

k + F kCk

)−1
F kB

H
k Q

−1
k δk (3.27)

Ck , BkQ
−1
k Bk (3.28)

F k , I −Ck

(
P−1

k−1 | k−1 +Ck

)−1

(3.29)

A detailed derivation is shown in the Appendix E.

EM-based Recursive Estimation of Latent Channel Statistics

Based on the discussions so far, we design the concrete updating equation of the EM algorithm.
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Case of Rk Remains Constant

By taking conditional expectation of (3.17) with respect to zi, the Q function is calculated as

Q(R |R(t)) = E
{zi |Y i,R

(t)}Ni=1

log
N∏
i=1

CN (zi |0,R)

= N log detR−1 −

〈
R−1,

N∑
i=1

E
zi |Y i,R

(t)
ziz

H
i

〉
HS

+ const (3.30)

where the notation E{xi}Ni=1
means Ex1 Ex2 · · ·ExN

. Maximization with respect to R is
achieved in a similar way to the Appendix D. From (3.26) to (3.29), the resultant update
equation is

R(t+1) = argmax
R

Q(R |R(t))

=
1

N

N∑
i=1

E
zi |Y i,R

(t)
ziz

H
i

=
1

N

N∑
i=1

E
∆zi

(ϕi +∆zi) (ϕi +∆zi)
H ,

∆zi ∼ CN
(
0,
[
(R(t))−1+ F iCi

]−1
)

=
1

N

(
N∑
i=1

ϕiϕ
H
i +

[(
R(t)

)−1

+ F iCi

]−1
)

(3.31)

where ϕi is defined as (3.27) except that theRk is replaced withR(t). Unfortunately, calculation
of (3.31) takes a lot of computation since ϕi and F i require P k−1 | k−1 and δk which are obtained

by Kalman iteration under the updated parameter R(t). As shown in Fig.3.4, it means that
the past N Kalman estimation procedures must be recalculated for each iteration of the EM
algorithm. In the following time-varying statistics case, we do not have to face this problem.

Case of Rk Varies Depending on k

In the case of time varying parameter, derivation is similar to the above section except that
the log-likelihood function is replaced with (3.19). For time instant k satisfying N ≥ k, the Q
function is

Q
(
Rk |R(t)

1 ,R
(t)
2 , · · · ,R

(t)
N

)
= E

{zi |Y i,R
(t)
i }ki=1

log
k∏

i=1

CN (zi |0,Rk)
λk−i

(3.32)

A straightforwardly associated procedure from the above is that after fixing all {R(t)
k }Nk=1,

maximization of {R(t+1)
k }Nk=1 at the next iteration can be finally started. As shown below,

since optimization with respect to the R
(t+1)
k only depends on R

(t+1)
k−1 and R

(t)
k , it is possible to
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Figure 3.4: Schematics explaining parameter updating in EM algorithm. In stationary case,
EM iteration can start by using all the observations. In non-stationary case, EM iteration can
only utilize the latest observations, so doing many iterations result in too much dependence on
the latest observation.
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proceed iteration of t without updating the future ones subsequent to k.

R
(t+1)
k = argmax

Rk

Q
(
Rk |R(t)

1 ,R
(t)
2 , · · · ,R

(t)
N

)
=

1

τ

k∑
i=1

λk−i

(
ϕiϕ

H
i +

[(
R

(t)
i

)−1

+ F iCi

]−1
)

= λR
(t+1)
k−1 + (1− λ)

(
ϕkϕ

H
k +

[(
R

(t)
k

)−1

+ F kCk

]−1
)

(3.33)

where τ is the same definition as used in (D.2). Equality of the last equation of (3.33) holds

when λk−1 ≈ 0. For initial iteration at k = 1, R
(t+1)
k−1 should be replaced with an initial guess

R̂0.
Originally, the scheme of the EM algorithm states that the parameter update of (3.33) should

be iterated until convergence. However, because of the following two reasons, we employ only
a single iteration.

The first reason is to prevent increase of computational cost. Due to temporal correlation,
the desired parameter R

(t+1)
k would be near to the one of the previous time instant R

(t+1)
k−1 . In

order to start the iteration with as good parameter as possible, the initial value of the iteration
is set to R

(t+1)
k−1 . Thus the single EM-update increases likelihood of the latest parameter based

on criterion of the latest likelihood function.
The second reason comes from the formulation of the problem. Since each R

(t+1)
i only

depends on the past inputs Y 1,Y 2, · · · ,Y i until time instant i, as illustrated in Fig.3.4, the
EM iteration for determination of R

(t+1)
k is only affected by the latest input Y k. Therefore,

doing many iterations results in too much dependence on the latest single realization.
From now on, we focus on the scenario described in this section. The derived parameter

updating steps are executed followed by the Kalman steps, thereby the following updating
equations are inserted before (3.10).

δk = vecY k −Bk vec Ĥk−1 (3.34)

Ck , BkQ
−1
k Bk (3.35)

F k , I −Ck

(
P−1

k−1 | k−1 +Ck

)−1

(3.36)

ϕk ,
(
R−1

k + F kCk

)−1
F kB

H
k Q

−1
k δk (3.37)

Rk = λRk−1 + (1− λ)
(
ϕkϕ

H
k +

[
R−1

k−1 + F kCk

]−1
)

(3.38)

3.4.3 Reduction of Computations by Parametric Covariance Mod-
eling

The derived updating equations above includes many matrix-inverses, which results in consump-
tion of considerable amount of computational resources. Those matrix inversions are required
for accurate calculation of non-stationary spatial covariance matrix. However, if we abandon
some estimation accuracy by confining the form of covariance matrix to a certain parametric
model, computations of matrix-inverse can be avoided, and significant computations are saved.

If there holds a situation where eigenvectors of both spatial covariance matrix and observa-
tion matrix are identical among all the time instants, matrix calculations can be substituted
by scalar arithmetic operations for eigenvalues corresponding to the fixed eigenvectors. The
assumption that eigenvectors of correlation matrix remain constant is also used in [44].
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Since the observation matrix has the form of BHB = S∗S> ⊗ I, its eigenvectors should

belong to CNTx ⊗CNRx . Let {φj ⊗ψi}
NTx,NRx

i=1,j=1 be common fixed eigenvectors of BHB,Rk, and

P k | l. Now, ψi can be an arbitrary orthonormal basis, and {φj}N
Tx

j=1 should be eigenvectors

of S∗S>. If S is the orthogonal training sequence, also a choice of φj can be an arbitrary
orthonormal basis, and in such a case, φj and ψi are decided by other aspects such as a priori
correlation statistics. Considering this, we assume that the spatial correlation matrix can be
expressed as

Rk =

NTx∑
j=1

NRx∑
i=1

r
(k)
i,j φjφ

H
j ⊗ψiψ

H
i (3.39)

where φj and ψi are eigenvectors of a priori correlation matrices of Tx and Rx, respectively.

Here, we can say thatRk is parameterized with the parameters of {r(k)i,j }
NRx,NTx
i=1,j=1 , thus we call this

simplification as parametric covariance modeling for later discussion. The degrees of freedom
of Rk is reduced to NTxNRx from (N2

TxN
2
Rx − NTxNRx)/2 + NTxNRx. If there holds a special

case that r
(k)
i,j are determined independently with respect to combinations of i and j (i.e. if

r
(k)
i,j = s

(k)
i t

(k)
j holds), (3.39) is identical to the Kronecker model assumption [40, 41] which

means correlations between Tx and Rx are independent.
For more generalized formulation, we assume that the observation matrix can be expressed

as follows:

BH
k Bk =

NTx∑
j=1

NRx∑
i=1

β
(k)
i,j φjφ

H
j ⊗ψiψ

H
i (3.40)

If B = S>⊗ I holds, β
(k)
i,j becomes the j-th eigenvalue of S∗S>. Under these assumptions, the

error covariance matrices are always expressed as:

P k | l =

NTx∑
j=1

NRx∑
i=1

ν
(k | l)
i,j φjφ

H
j ⊗ψiψ

H
i (3.41)

Let α
(k)
i,j , f

(k)
i,j , and η

(k)
i,j be eigenvalues corresponding to eigenvector φj⊗ψi of matrices Ck, F k,

(R−1
k−1+F kCk)

−1, respectively. Assuming that observation noise is Gaussian white (Qk = σ2
nI),

andRk is nonsingular, the update equations of (3.10) (3.38) and (3.15) are rewritten with small
computations as follows:

νi,j
(k | k−1) = ν

(k−1 | k−1)
i,j + r

(k)
i,j (3.42)

αk
i,j = βk

i,j/σ
2
n (3.43)

f
(k)
i,j =

1

1 + ν
(k−1 | k−1)
i,j α

(k)
i,j

(3.44)

η
(k)
i,j =

r
(k−1)
i,j (1 + ν

(k−1 | k−1)
i,j α

(k)
i,j )

1 + ν
(k−1 | k−1)
i,j α

(k)
i,j + r

(k−1)
i,j α

(k)
i,j

(3.45)

r
(k)
i,j = λr

(k−1)
i,j + (1− λ)

[(
γ
(k)
i,j

)2 ∥∥< φj ⊗ψi,B
H
k δk >

∥∥2 + η
(k)
i,j

]
(3.46)

ν
(k | k)
i,j =

(
1

ν
(k | k−1)
i,j

+ α
(k)
i,j

)−1

(3.47)
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where

γ
(k)
i,j ,

r
(k−1)
i,j

(1 + ν
(k−1 | k−1)
i,j α

(k)
i,j + r

(k−1)
i,j α

(k)
i,j )σ

2
n

(3.48)

A detailed calculation of the maximization step required in the derivation of (3.46) is described
in the Appendix F.

3.4.4 Parametric Covariance Modeling in the Case of Antenna Se-
lection Systems

In the previous section, eigenvectors of the parametric covariance matrix are assumed by a priori
channel assumptions. In contrast, if eigenvectors of the observation matrix are determined due
to some system configurations, eigenvectors of the parametric covariance matrix are imposed
to be ones of the observation matrix regardless of a priori channel assumptions, since they
should be common in order to apply this computational reduction. In this case, degradation
of estimation capability is expected because of mismatch between the true and the assumed
eigenvectors.

One of the examples of this situation arise when we employ antenna selection systems on
either Tx or Rx. In antenna selection systems, since the number of RF chains are smaller than
the number of antenna elements, only several rows or columns of channel matrix are measured
at single reception of training sequences. According to [22] [38], observation equation of antenna
selection system on Rx side is expressed as:

Y k = AτkHkSk +N k (3.49)

where Aτk is antenna selection matrix which performs extraction and permutation of row vec-
tors of channel matrix. By using the antenna connection vector τ k , [c1 c2 · · · cNRF

]>, Aτk is
expressed as 

[Hk]c1, :
[Hk]c2, :

...
[Hk]cNRF

, :

 = AτkHk, Aτk ,
NRF∑
i=1

fie
>
<τ k,fi>

where [Hk]cn, : means the cn-th row vector of Hk, and ei, fj are the so-called standard basis of

CNRx ,CNRF , respectively. In this situation, considering the relationship of BH
k Bk = S∗

kS
>
k ⊗

AH
τk
Aτk , and A

H
τk
Aτk is a diagonal matrix, ψi should be the i-th standard basis of CNRx .

(3.49) expresses a single measurement which measures only a part of the whole channel
matrix.Another canonical case is that, in order to cover all the elements, measurements are
repeated several times assuming that the channel remains constant during our time period of
interest. In such cases, if we employ orthogonal training sequences, the observation matrix can
be expressed as

BH
k Bk =

1

NTx

INTx
⊗ diag [ T1, T2, · · · , TNRx

] (3.50)

where Ti denotes the total number of received training sequences of the i-th element during the
measurements.

As discussed above, if we employ antenna selection systems on Rx, the common eigenvectors
are forced to be φj ⊗ ei where ei is the i-th standard basis, and this constraint results in
degradation of estimation capability. Similarly, if antenna selection is applied on Tx, the
common eigenvectors are forced to be ej ⊗ ψi.
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3.5 Simulation

We evaluated the effectiveness of the proposed scheme by numerical simulations with different
parameters for spatial and temporal correlation. As a measure of the estimation capability, we
employed the squared error of channel matrix defined as ‖Hk − Ĥk‖2F where Ĥk is estimate
of the true channel state Hk. Note that the channel state is normalized such that E‖Hk‖2F =
NTxNRx.

3.5.1 Verification by the 3GPP SCME

In order to generate spatially and temporally correlated channel, we resort to the 3GPP Spatial
Channel Model Extended (SCME) [46]. The SCME has features such as time-variant shadow
fading and time-variant angles and delays, which coincide with our channel assumption that the
channel is non-stationary. A scenario is selected to “Urban micro,” and all other parameters
are default settings except a number of antenna elements, sampling interval, and velocity of the
mobile station. The path delays calculated by the SCME are transformed into a narrowband
transfer function at 2GHz. This operation corresponds to deal with a single carrier of the
OFDM systems under frequency selective fading channel.

For each simulation parameter, an iteration of the Kalman filter is repeated 5000 times,
and the result is averaged over them. The average SNR is set to 15dB. The number of Tx and
Rx elements (NTx and NRx) are fixed to 7. Also the length of the training sequence Nt is set
to 8. Fig.3.5 depicts an ensemble average and a maximum value of squared error for different
velocity of the mobile station. In the figure, two estimation methods are compared. One is the
EM-based estimation method described in 3.4.2, and the other is the stationarity assumption
method which is calculated as (3.20).

For both methods, as the velocity becomes faster, smaller estimation error is achieved,
which suggests that the methods can exploit the temporal correlation characteristics of the
propagation channel. The EM-based method marks better estimation performance than the
stationarity assumption method, especially on the point of the maximum error value, which
means that the proposed method can better suppress errors when the worst mistakes happen.
This phenomenon would be a difference of convergence speed of parameters, and we analyze
the reason for this by using s simple channel model in the following sections.

3.5.2 Analysis by Simple Channel Model

In order to obtain more comprehensible behavior of the algorithms, we also investigated them by
using the single tapped Gauss-Markov model. To generate a non-stationary channel assuming
change of channel statistics due to shadowing or irregular movements of mobile station, we
update the statistical parameters every certain period (every Np time instants). In each period,
spatial correlation matrices are interpolated by means of bilinear method so that the statistics
change continuously. The updating equation is expressed as

Hk = ρtHk−1 +
√

1− ρ2t (RRx)
1/2Xk

[
(RTx)

1/2
]>

(3.51)

RRx ,
Np − s
Np

R
(t)
Rx +

s

Np

R
(t+1)
Rx , s , k −Np × t (3.52)

RTx ,
Np − s
Np

R
(t)
Tx +

s

Np

R
(t+1)
Tx (3.53)
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Figure 3.5: Channel estimate error of the 3GPP-SCME channel model.(SNR is 15[dB], Nt = 8,
λ = 0.98)
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Figure 3.6: Squared error of channel estimate with elapse of time.(SNR is 15[dB], Nt = 8,
Np = 50, λ = 0.98)
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Figure 3.7: Squared error of channel estimate with elapse of time.(SNR is 15[dB], Nt = 8,
Np = 50, λ = 0.99)
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where ρt (0 ≤ ρ ≤ 1) is the temporal correlation coefficient between adjacent fading blocks, and
the subscript t indicates the parameter index defined as t , bk/Npc. bxc denotes integer part
of x. Xk is a random matrix which obeys vecXk ∼ CN (0, INTxNRx

). ρt is generated randomly
by N (µρ, σρ), and then clipped into [0,1]. (3.51) is the same channel model as described in [42]
if ρ does not depend on time.

Fig.3.6, Fig.3.7 shows squared channel estimation error of both methods with elapse of time.
From the graph, we can see that the stationarity assumption method has weak estimation
capability on the switching points of channel statistics (occurs per Np samples), but the EM-
based method has smaller estimation error in such points. This indicates that the EM-based
method has superiority for variation of channel statistics, and is suited for non-stationary
channels.

In general, if the number of channel realizations for statistics estimation is not enough,
estimation will become unstable. In contrast, the EM-based method is able to estimate sta-
ble parameters with relatively fewer channel realizations. The reason is considered that an
expectation of estimation error is taken in the expectation step, thus virtually acts as using
many channel realizations. In the notion of the bias-variance tradeoff [58], this advantage is
interpreted as decrease of variance which is brought by expectation step using a posterior prob-
ability. However, incorporating a bias like this would lead to increase estimation error if there
is a mismatch in estimation model of the posterior probability.

In order to investigate these characteristics in detail, we evaluated the average and maximum
value of the estimation errors for various degrees of stationarities indicated by Np. Fig.3.9 shows
the mean squared error of channel estimate for different forgetting factors ranging from λ = 1.0
to 0.9. Also Fig.3.8 shows its magnification of the range from λ = 1.0 to 0.975. Fig.3.10,3.11
shows the maximum value of estimation error for the same conditions. Note that λ = 1.0 means
that the channel statistics are not updated and they are fixed to its initial values.

In these configurations, considering that NTx = NRx = 7, the rank of the spatial correlation
matrix is up to 49. Therefore, the forgetting factor requires at least about 0.975 (0.97549 ≈ 0.29)
in order to prevent rank-deficiency.

In the case of non-stationary channels(Np = 50, 100), the EM-based method provides better
estimation capability especially for smaller forgetting factors. The EM-based method suffers
from less influence of the smaller forgetting factors, thanks to the effect of variance suppression
as previously mentioned.

In the case of stationary channels(Np = ∞), if the forgetting factor is large enough, the
stationarity assumption method performs better estimation than the EM-based method. Other-
wise, where the forgetting factor is small, both methods have almost same estimation capability.
If the channel is stationary, even the stationarity assumption method can achieve precise esti-
mation since enough channel realizations are available by employing large forgetting factors. In
this way, it is difficult for the EM-based method to exhibit its superiority of obtaining better
performance when using fewer channel realizations.

It should be noted that the EM-based method has inferior performance to the stationarity
assumption method when larger forgetting factors employed, but the EM-based method achieves
same performance for smaller forgetting factors (about 0.91). In this manner, both methods
have a different choice of the optimal parameters, respectively. The EM-based methods tends
to perform better when the dependency on the past channel realizations is small.

Exploitation of Spatiotemporal Correlation

We confirmed that both the proposed and the stationarity assumption methods are surely
able to exploit spatiotemporal correlations. For this observation, in order to specify degree of
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correlation, whole snapshots are generated by the same parameters thus the channel is set to a
stationary process (i.e. Np =∞). Fig.3.12 and Fig.3.13 show estimation capability for various
degrees of spatial and temporal correlations, respectively. In the figures, the “No channel
statistics” means that the channel is estimated without any statistical information by means
of the ML estimation [48] [49] whose procedure is only a multiplication of pseudoinverse of
the training sequence. Also the “A priori statistics” means that the estimation is done by the
Kalman filter with true statistical parameters which are inaccessible in practical situations.
We can see that both algorithms can reduce estimation error under presence of higher spatial
correlations. On the other hand, temporal correlations can also be exploited, but its effect is
rather insignificant compared to spatial correlations.

Reduction of Computations by Parametric Covariance Matrix

Fig.3.14 shows channel estimation capability when the parametric covariance matrix described
in the section 3.4.3 was employed. The true channel states are generated by the SCME. The
fixed eigenvectors are determined from the covariance matrix defined as

RRx =

∫ 2π

0

aRx(θ)a
H
Rx(θ) dθ (3.54)

where aRx(θ) denotes the steering vector at the Rx side for an incident plane wave from the
direction of θ. It means that the arrival waves are assumed to be uncorrelated and uniformly
distributed over all directions. Note that we will uniformly use such derived eigenvectors
regardless of the actual correlation statistics. (In this case, the actual correlation model within
the SCME is different from the assumed correlation model.) The intention of using such derived
eigenvectors is that it would contain correlation of the array antenna configuration itself to some
extent, which is independent of the distribution of arrival waves.

From Fig.3.14, the result of the parametric covariance matrix is not largely degraded, but
limited to the case of the slower MS velocity in order to keep superiority to the stationarity
assumption method.

Parametric Covariance Matrix for Antenna Selection Systems

Fig. 3.15 shows channel estimation capability when the parametric covariance matrix for an-
tenna selection systems described in the section 3.4.4 was employed. As expressed in (3.49), we
employ a partial observation which measures only selected antenna elements, and rest of the
unobserved channels are inferred via channel statistics. In the simulation, we choose NRx = 7
and NRF = 3.

In this scenario, since not all the channel elements are directly observed, channel estimation
error increases rapidly as the temporal correlation becomes weaker due to increase of the MS
velocity. In the result, this kind of partial observation method is only useful where the MS
velocity is slow enough. This result is same with the result of [22] which discusses on similar
system configurations except that the ideal channel statistics are available.

The simulation also revealed that the EM based parameter estimation scheme works ef-
fectively for partial measurement problem in antenna selection system. In the partial channel
measurement, since the scheme has the characteristic that the channel estimation error varies
by antenna elements, the acquisition of its statistics becomes a difficult problem. This is be-
cause, we have to acquire correlation between elements while the elements are not observed
simultaneously in uniform precision. The reason for the effectiveness of the EM based method
is considered as follows. In the EM based method, the information of observation matrix is
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Figure 3.12: Mean squared error of channel estimate for different spatial correlations.
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Figure 3.14: Mean squared error of channel estimate with parametric covariance matrix em-
ployed.
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Figure 3.16: A brief explanation of why the EM-based method has benefit when time-varying
partial measurement matrix was employed.

utilized for estimation of the channel statistics. In the EM based parameter estimation, the
channels for measured antenna elements are treated as highly reliable information, thus it is
utilized for a large update of existing channel statistic. In contrast, the channels for unmea-
sured antenna elements are treated as unreliable, so the information is only utilized for a small
update of existing statistics. Such mechanism as so far described is considered to perform
effectively under the scenario involved with antenna selection system in the sense that it has
varying observation matrices. (illustrated in Fig.3.16)

By utilizing the parametric covariance matrix, the maximum estimation error is reduced and
becomes stable regardless of the existence of correlation model mismatch. Since the parametric
covariance matrix has the smaller amount of model parameters, in the notion of bias-variance
tradeoff [58], it has smaller variance which is advantageous for such a severe statistics estimation
problem.

3.6 Concluding Remarks

We proposed a random-walk based Gauss-Markov model which does not require a correlation
coefficient between fading blocks, and confirmed that the model is able to exploit the channel’s
spatiotemporal correlation properties. In order to obtain the channel’s innovation statistical
parameter, we also proposed a novel online estimation method by means of the EM algorithm
noticing that an observed channel state is a latent statistical variable, and discussed its char-
acteristics.

The numerical simulation revealed that the method works well under the conditions where
small forgetting factor employed. A small forgetting factor has a merit in rapid tracking capabil-
ity, but causes degradation of statistical parameter because the number of channel realizations
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that contribute to the statistics estimation becomes small. The proposed method is considered
to mitigate such effects by expectation average of the latent channel realizations. This charac-
teristics lead to a rapid convergence of channel statistics even if a sudden change of statistics
happens caused by shadowing, etc. On the other hand, if the channel is stationary enough to
allow large forgetting factor, the method has no advantage over the stationarity assumption
method which does not have the E-step.

The proposed method has shortcoming in computational costs. We investigated that the
computations can be reduced by imposing constraints onto spatial correlation modeling. Due to
the model mismatch, estimation capability degrades to some extent, but the approach is consid-
ered to be still useful depending on system model and situations. For practical implementation,
further reduction will be preferred.

As future tasks, the proposed method is considered to be extendable to the problem of both
data sequence and channel state estimation without using fixed training sequence as discussed
in the literatures [50–53].

As explained in the derivation of (3.33), in the case of estimation of time-varying channel,
only a single EM iteration was employed since the innovation statistics only depends on the past
inputs. In order to improve this, it is considered that the dependence of the statistics estimation
should be extended to future inputs as well. This means that the likelihood function of (3.19)
is modified as follows:

L(z1, z2, · · · ,zN |Rk) = log
N∏
i=1

CN (zi |0,Rk)
w(|i−k|) (3.55)

where w(i), i ≥ 0 denotes decaying weight function for each realization. w(i) = λi was utilized
in (3.19). As illustrated in Fig.3.17, if we modify weights so that the statistical parameter
at time instant depends on observed inputs at future, the latest input Y k would be able to
update not only R

(t+1)
k but also R

(t+1)
k−1 ,R

(t+1)
k−2 , · · · during EM iterations. By such improvement,

we can expect enhancement of the estimation capability by increasing the number of the EM
iterations. However, similar to the case of stationary in Fig.3.4, required computational cost
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would become very large for each iteration. An idea to reduce computational cost should be
necessary for practical application.



Chapter 4

Two-Stage Training Resource
Allocation for Antenna Selection
Systems

This chapter addresses the issue of MIMO channel estimation with the aid of a rough estimate
of temporal correlation statistics where MIMO antenna selection system is employed. Under
the temporally correlated channel, proposed method controls allocation of length of training
symbols for each antenna element so that the elements which are likely to be selected are
estimated more accurately than the other elements. In order to utilize this estimation scheme
effectively, this paper also proposes the antenna selection method which takes account of the
difference of channel estimation accuracy among antenna elements. When the ML channel
estimation was adopted, the proposed selection method has almost the same computational
cost as the conventional selection methods. The proposed method does not rely on spatial
correlation statistics which is not always stable in real propagation scenarios. The numerical
simulation using 3GPP-SCM revealed that the proposed method works effectively under shorter
training symbols employed.

4.1 Introduction

MIMO transmission attracts much attention since it achieves much higher transmission ca-
pability by carrying an information via spatial degrees of freedom of the radio propagation
channel [1,2]. Especially for the multi stream MIMO transmission, its performance is dramat-
ically affected by whether the surrounding propagation environment is capable of conveying
spatial degrees of freedom effectively or not. In order to improve such inherent channel capabil-
ities, MIMO antenna selection system has been proposed which enables to control the channel
conditions by actively changing the antenna subset to use so that the rank of the channel matrix
can be improved [14]. In addition, the system can save hardware cost by reducing expensive
RF chains while not losing its performance to a large extent. In the system, the antenna subset
for transmission is optimally chosen to enhance the MIMO channel capacity. A number of
antenna selection algorithms have been proposed in order to perform a near-optimal selection
with a smaller computational complexity [5, 5–9]. Many of them require a full channel state
information, so the channel measurement must precede the antenna selection.

Generally in pilot symbol aided channel estimation with a constant noise power, the more
energy is put into the transmission of training symbols, the lower the estimation error can be.
The authors’ interest is how to estimate the channel accurately within a limited set of resources.

73
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The authors had investigated that the channel estimation of MIMO antenna selection sys-
tems is improved by using the Kalman filter under the assumptions that the temporal cor-
relation is perfectly characterized as the Gauss-Markov model, and the spatial correlation is
available [22]. However, as many conditions are imposed on the channel, the estimation method
loses its robustness. Furthermore, for realistic use, estimations of many statistical parameters
are also required. However, such methods relying on spatial correlation statistics are fragile
for a sudden change of spatial correlation which will sometimes happen in some propagation
scenarios.

This paper proposes a novel channel estimation scheme for MIMO antenna selection sys-
tems which exploits only the temporal correlation statistics. In antenna selection systems, the
channel state information for all the antenna elements is required as a selection criteria. How-
ever, if the channel state information is estimated within the same precision for all the antenna
elements, the measurements for elements which turned out to be not selected become in vain
since they are only discarded. Therefore, we propose an estimation scheme which measures the
channel accurately only for the elements which are likely to be selected in the next step, and
the rest of the elements are coarsely estimated by shorter training symbols. In order to utilize
this scheme effectively, we also consider an antenna selection method which takes account of
the difference of estimation precision of each antenna element. If the ML channel estimation
is adopted, the proposed selection method requires almost the same computational cost as the
conventional selection method. The proposed method has robustness in the sense that it does
not rely on certain mathematical models of temporal correlation, as well as spatial correlation
which is sensitive to the movement of the receiver.

Literature(s) Method Channel statistics Required statistical param-
eters

Advantage(s) Shortcoming(s)

[23–30] Wiener based Spatial Exact spatial correlation
matrix

High performance Requires exact
spatial correlation
statistics

[18–22] Kalman based Spatial & Temporal Exact spatial correlation
matrix and exact parame-
ters of channel transition
model

High performance Requires exact
model of temporal
channel transition

Proposed Training resource
allocation

Temporal Rough temporal correlation
coefficient

Not require exact
model of temporal
channel transition

Only available for
antenna selection
systems, Moder-
ate performance

Table 4.1: MIMO channel estimation methods exploiting a priori channel statistics.

It should be noted that for the estimation of time-variant frequency selective fading chan-
nels, exploiting temporal correlation is quite common among literatures. [18,19]. However, the
proposed method is substantially different from them in the points that the proposed method
deals with only the resource allocation of channel estimation dedicated for antenna selection
systems, and has nothing in common with the Kalman-based methods. In fact, the currently
estimated channel state itself is independent with the previously estimated one. This feature
is advantageous in a way that it can prevent degradation of capacity even when sudden change
of channel state happens induced by shadowing, rotation of mobile station, etc. The differ-
ences of the proposed method compared to the other correlation based estimation methods are
summarized in Table 4.1.
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4.1.1 Mathematical Notations

Throughout this paper we will use bold-faced upper case letters to denote matrices, and bold-
faced lower case letters for column vectors, light-faced letters for scalar quantities. The sub-
scripts >, H, ∗ indicate transpose, Hermitian transpose (transpose and complex conjugate),
and complex conjugate respectively. IN denotes the N ×N identity matrix. Also the inverse,
trace, determinant, and Frobenius norm of the matrix X are denoted by X−1, trX, detX,
and ‖X‖F, respectively. A diagonal matrix having elements of x1,1, x2,2, · · · , xn,n is denoted by
diag[x1,1, x2,2, · · · , xn,n]. The m-th row and n-th column element of the matrix X is denoted
by [X]m,n. Ex means the expectation with respect to x. The bracket < ·, · > is used for inner
product on the column vector space. Also the vector Euclidean norm is expressed as ‖·‖. Since
we often discuss correlations between each matrix element, it is convenient to treat matrix as
one column vector that consists of all its elements. For any m × n matrix A = [a1 a2 · · ·an],
the vec operator generates a mn× 1 vector defined as

vecA ,
[
a>
1 a

>
2 · · ·a>

n

]>
(4.1)

where , means definition. The Kronecker product ⊗ is required with the use of the vec
operator.

4.2 System Model

4.2.1 MIMO Antenna Selection System

For simplicity, we consider antenna selection system only for the receiver side with NTx transmit
antennas and NRx receive antennas, and NRF RF chains satisfying 1 ≤ NRF < NRx. For a
narrowband frequency nonselective MIMO channel, if we connect the i-th RF chains to the
ci-th (1 ≤ ci ≤ NRx) antenna element, the received vector y ∈ CNRF can be expressed as

y = AτkHkx+ n (4.2)

where n ∈ CNRF is additive noise vector typically assumed to have a white complex Gaussian
distribution with average power σ2

n, and x ∈ CNTx is the normalized transmit vector such that
Exxx

H = INTx
. Hk ∈ CNRx×NTx is the complex channel gain matrix at time instant k. The

channel is normalized such that E‖Hk‖2F = PrNRx where Pr is average receive signal power for
each receive antenna. Average signal to noise ratio (SNR) per receive antenna can be expressed
as Pr/σ

2
n. Aτk performs extraction and permutation of row vectors ofHk. By using the antenna

connection vector τ k , [c1 c2 · · · cNRF
]>, Aτk is expressed as

[Hk]c1, :
[Hk]c2, :

...
[Hk]cNRF

, :

 = AτkHk, Aτk ,
NRF∑
i=1

fie
>
<τ k,fi>

where [Hk]cn, : means the cn-th row vector of Hk, and ei, fj are the so-called standard basis of

CNRx ,CNRF , respectively. Antenna subset is selected so that the Shannon capacity of extracted
channel matrix AτkHk becomes the largest of all the combinations. Since the true channel
matrix is not available directly, we determine the connection τ k by referring to the estimated
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Figure 4.1: Basic idea of the proposed channel estimation scheme.

channel matrix Ĥk instead. From the Foschini-Telatar equation for equal transmit power
allocation, τ k is determined such that:

τ k = argmax
τ

log2 det
(
INRF

+AτĤkĤ
H
k A

H
τ

)
(4.3)

In order to obtain a near-optimal solution with lower computational complexity, many antenna
selection algorithms have been proposed. Many of them require full instant channel state Ĥk

to get selection for each time instant k. In order to keep the optimal selection in the time-
varying environment, channel measurements must be frequently repeated to track the temporal
changes.

4.3 Channel Estimation with a Selection Bias

In this section, we design a channel estimation scheme based on the idea of how to save the
energy to measure the channels which are not to be selected. (illustrated in Fig.4.1) Concretely,
the proposed method assigns longer training symbols to the antenna elements which are likely
to be selected in the next step, and estimate them more accurately compared to the other
antenna elements.
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Figure 4.2: Precision control considering temporal correlation. In this example, we assume
ξ1 = (1, 3, 4, 5)> and ξ2 = (1, 2, 5, 6)>.

4.3.1 Fine and Coarse Estimation

We introduce a two stage channel estimation which consists of a fine estimation phase and a
coarse estimation phase. In antenna selection systems, since the number of antenna elements is
larger than the number of RF chains, receptions of training symbols must be repeated several
times while changing the connection of RF switches. The repeated trainings are required to be
at least Nm = dNRx/NRFe times where dxe means the smallest integer greater than or equal to
x. In the fine estimation phase, the measurement is done by longer training symbols, and the
channel is estimated finely. The rest of measurement is utilized for the coarse estimation phase
by using shorter training symbols.

In the fine estimation phase, a measured antenna subset should be chosen in such a way
that they have a high probability to be selected in the next frame. In order to realize this,
we introduced the assumption that “In temporally correlated channels, the antenna subset
which was selected as the best combination in the (k − 1)-th fading block is likely to have
high transmission capability also in the k-th fading block”. The assumption is considered
reasonable because in temporally correlated channels, the channel state information does not
change significantly between adjacent fading blocks.

This plot is illustrated in Fig.4.2. In the figure, we assume NRF < NRx ≤ 2NRF, so it
requires at least two times measurements in order to measure all the antenna elements. Let us
assume that the subset τ k−1 = (1, 3, 4, 5)> of receiver elements was chosen for transmission at
the (k − 1)-th fading block. Then, in the k-th fading block, same subset (ξ1 = τ k−1) is finely
measured by the training symbols with length of T1. The rest of the elements, ξ2 = (1, 2, 5, 6)>

are coarsely measured with length of T2 (T1 > T2). SinceNRx is not divisible byNRF, 2NRF−NRx

elements (in the figure, the 1st and 5th elements) receive training sequence in both the fine
and the coarse phases. We do not define which elements should receive symbols twice in such
cases. (In simulation, we select them randomly.)

In later discussions, we denote the total length of training symbols as Nt , T1 + T2. Also
we introduce a parameter α which indicates ratio between T1 and T2 as follows:

T1 = αNt, T2 = (1− α)Nt (0.5 ≤ α < 1) (4.4)
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If α = 0.5, the proposed method is equivalent to the conventional method.

4.4 Antenna Selection Considering Estimate Error

The channel estimation scheme explained so far has a characteristic that the estimation error
varies by antenna element. In order to efficiently exploit this feature, we cannot utilize directly
the antenna selection criteria of (4.3) because the criteria assumes uniform estimation error at
each element.

In later discussions, we consider the best antenna selection method when the channel esti-
mation error is generally expressed as the multivariate Gaussian distribution. Let us denote
the true channel of time instant k asHk, and the corresponding estimate as Ĥk. The behavior
of the estimation error is fully characterized by the error covariance matrix defined as

P k , EnEHk
vec
(
Hk − Ĥk

) [
vec
(
Hk − Ĥk

)]H
(4.5)

where E means expectation with respect to its subscript. Although obtaining P k seems difficult,
we will show later that it can be calculated easily like (4.20) by only using length of training
sequences if the ML channel estimation was adopted.

4.4.1 Antenna Selection Method Maximizing Lower-Bound of Mu-
tual Information

Although how to incorporate the estimation error into the antenna selection criterion can be
considered in various ways, desired properties are its validity and feasibility of optimization.
In this paper, we propose to maximize the lower bound of mutual information. This means
that antenna subset is chosen such that the capacity degradation in the worst case scenario is
minimized.

4.4.2 Lower-Bound of Mutual Information

According to [3], we derive the lower-bound [12] of degraded channel capacity caused by the es-
timate error of channel. This method is originally introduced to evaluate the degraded capacity
under the continuous fading channel characterized by temporal correlation coefficient.

If the receiver employes a synchronized detection, i.e. Ĥk is used at the Rx side as if it
were a true channel matrix, (4.2) can be separated into the two terms [16] as

y = AτkĤkx+Aτk

(
Hk − Ĥk

)
x+ n

= AτkĤkx+ n̂ (4.6)

where the first term contains information received at the Rx, and the second term n̂ is called
the effective noise term which is regarded as an additive noise caused by the estimate error,
because a synchronized detection virtually cannot exploit the information in this term. The
covariance matrix of n̂ is expressed as

Φ , ExEnEĤk
n̂n̂H

= EĤk
AτkĤkĤ

H
k A

H
τk
+ σ2

nINRF

= AτkRkA
H
τk
+ σ2

nINRF
(4.7)
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where Rk is determined by P k of (4.5) as described later. The mutual information of this
channel has the lower-bound expressed as

I(x, y|Ĥk) ≥ log2 det
(
INRF

+AτkĤkĤ
H
k A

H
τk
Φ−1

)
, CLB . (4.8)

Instead of directly maximizing the instantaneous channel capacity from the estimated channel
as in (4.3), our proposal is to maximize CLB of (4.8).

As for the optimization method, the greedy algorithm is available as well as the case of
(4.3). In the case of criteria (4.3), the greedy algorithm can be implemented with significantly
small computations by utilizing the Sherman-Morrison formula [5]. However, in the case of
CLB, generally we cannot simplify the computation like that due to the additional term of Φ−1.

Let us discuss the special case when Rk is expressed as a diagonal form. Generally, such
situation arises when P k has the form of

P k =
N∑
i=1

Bi ⊗Di (4.9)

where N is any positive integer, {Bi}Ni=1 is any NTx × NTx positive semi-definite matrices,
and {Di}Ni=1 is any NRx × NRx diagonal matrices, respectively. In this case, substituting the
relationship of

Φ−1/2 = Aτk

(
Rk + σ2

nINRx

)−1/2
AH

τk
(4.10)

into (4.8) yields,

CLB = log2 det
[
INRF

+Aτk

(
Rk + σ2

nINRx

)−1/2

AH
τk
AτkĤkĤ

H
k A

H
τk
Aτk

(
Rk + σ2

nINRx

)−1/2
AH

τk

]
. (4.11)

SinceAτk (Rk + σ2
nINRx

)
−1/2

AH
τk
Aτk is equivalent toAτk (Rk + σ2

nINRx
)
−1/2

, replacing this and
denoting Rk = diag[r1 r2 · · · rNRx

] yields,

CLB = log2 det
(
INRF

+AτkH̃kH̃
H
k A

H
τk

)
(4.12)

H̃k is defined as

H̃k ,


[Ĥk]1, : /

√
r1 + σ2

n

[Ĥk]2, : /
√
r2 + σ2

n
...

[Ĥk]NRx, :
/
√
rNRF

+ σ2
n

 . (4.13)

where ri is the i-th diagonal element of Rk. (4.12) is exactly the same form as (4.3) except that

Ĥk is replaced by H̃k. This implies that the maximization of CLB can be achieved by exactly
the same method as a number of conventional antenna selection methods proposed so far. For
example, applying the fast antenna subset selection [5] can save much computational costs.
Additional calclations required for (4.13) is only a division of row vectors by corresponding
effective noise.

Intuitively, (4.13) can be interpreted that the antenna elements which have larger estimation
error tend not to be selected as compared to the other elements.
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Figure 4.3: Pilot symbol aided channel estimation.

4.5 Fast Antenna Subset Selection in the Case of ML

Channel Estimation

In MIMO antenna selection systems, because we have only a small set of RF chains available
at the same time compared to the all antenna elements, if we want to obtain the full channel
state, measurements should be repeated while changing the connection of the RF switches,
required at least Nm = dNRx/NRFe times where dxe means the smallest integer not exceeded
by x. Now we consider the case where length of training sequence is different for each repeated
measurement. Furthermore, if NRF is not divisible by NRF, some elements receive training
sequence two times. Such overlapped measurements also yield the differences of the estimate
error for each element. In this section we show that Rk becomes diagonal if the ML channel
estimation is employed under a block fading channel.

4.5.1 Channel Observation Model under a Block Fading Channel

We assume for each fading block, training is repeated Nm times while changing the antenna
connection as ξp (1 ≤ p ≤ Nm). Let s

(p)
1 , s

(p)
2 , · · · , s(p)Tp

∈ CNTx be normalized training symbols,
each of them being launched from Tx side in number order at fading block k. And let Tp
denote the length of training symbols for the p-th measurement. They are normalized such
that ‖s(p)i ‖2 = 1 i.e. ‖Sp‖2F = Tp where Sp , [s

(p)
1 s

(p)
2 · · · s

(p)
Tp
]. Launched symbols are caught

at the Rx side with its RF switches connected as ξp. Then, the received sequences are written
as

Y p = AξpHkSp +N p . (4.14)

where Y p , [y
(p)
1 y

(p)
2 · · · y

(p)
Tp
] and N p are NRF × Tp matrices and each of them consisting

of received vectors and noise vectors, respectively. (illustrated as Fig.4.3) y
(p)
i is the received

vector corresponding to the transmitted vector s
(p)
i . Applying vec operator on both sides of the

above equation yields,

vecY p =
(
S>

p ⊗Aξp

)
vecHk + vecN p . (4.15)

Now, our aim is to obtain the best estimate ofHk from the set of received signals Y 1, Y 2, · · · ,Y Nm .
The matrix equations of (4.15) can be united as

ϕ = Ψ vecHk + u (4.16)
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where ϕ, Ψ, and u are defined as

ϕ ,
Nm∑
i=1

ei ⊗ vecY i, Ψ ,
Nm∑
i=1

ei ⊗ S>
i ⊗Aξi

u ,
Nm∑
i=1

ei ⊗ vecN i , (4.17)

respectively. ei is the i-th standard basis of column vector space RNm , and Ψ is an observation
matrix of this observation model.

4.5.2 ML Channel Estimation

If the spatial correlation characteristics of the channel is not available, and also the noise
is white gaussian, it has been proven that the best linear estimate of a channel is obtained
by pseudoinverse of

(
S>

p ⊗Aξp

)
in conjunction with orthogonal training sequence (SpS

H
p =

Tp/NTxINTx
) [13]. Such estimation is called the maximal likelihood (ML) estimation [48] [49].

In this case, the origin of channel estimation error is only additive noise term N p of (4.15).
The estimate is obtained as

vec Ĥ =XMLϕ (4.18)

where XML is a NTxNRx × NRF(T1 + · · · + Tp) matrix. If the orthogonal training sequence
(SpS

H
p = Tp/NTxINTx

) was employed, such XML is expressed as

XML = Ψ† =
(
ΨHΨ

)†
ΨH =

(
Nm∑
i=1

S∗
iS

>
i ⊗AH

ξi
Aξi

)†

ΨH

= NTx

Nm∑
i=1

e>i ⊗ S∗
i ⊗ diag

[
1

β1

1

β2

1

β3
· · · 1

βNRx

]
AH

ξi
(4.19)

Therefore P k of (4.5) is

P k = σ2
nXML (XML)

H = σ2
n

(
ΨHΨ

)†
ΨHΨ

(
ΨHΨ

)†
= σ2

n

(
ΨHΨ

)†
= σ2

nNTxINTx
⊗ diag

[
1

β1

1

β2

1

β3
· · · 1

βNRx

]
(4.20)

where βi means the total length of received training symbols at the i-th Rx element in the
k-th fading block. If βi equals to zero, the term 1/βi should be replaced by zero. For any
positive semi-definite matrices A and B, if X obeys vecX ∼ CN (0, A⊗B) , it holds that
EXXX

H = (trA)B. By utilizing this relationship, we can obtain the Rk in (4.7) as follows:

Rk = σ2
nN

2
Tx diag

[
1

β1

1

β2

1

β3
· · · 1

βNRx

]
(4.21)

Since Rk is diagonal, the optimization with respect to the criteria CLB is tractable with much
smaller computations. In this case, ri in (4.13) is expressed as follows:

ri = σ2
nN

2
Tx/βi (4.22)
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4.6 Simulation

4.6.1 Verification by 3GPP SCM

We verified the effectiveness of the proposed method by numerical simulation. In order to
generate a temporally correlated channel, we resort to the 3GPP Spatial Channel Model [45].
The “Urban micro” scenario was selected, and all other parameters are default settings except
a number of antenna elements, sampling interval, and velocity of the mobile station. The path
delays calculated by the SCM are transformed into a narrowband transfer function at 2GHz.
This operation corresponds to deal with a single carrier of the OFDM systems under frequency
selective fading channel.

Fig.4.4 depicts an ensemble average of channel capacity and the lower-bound of capacity
for different velocities of the mobile station. The channel capacity was calculated by changing
initial channel state 400 times, and correlated channels are generated 80 times for each initial
channel state. The results are obtained by averaging over them. In the conventional method,
we let α = 0.5, and antenna subset is selected not considering estimate error as (4.3). In the
proposed method, in order to exploit the temporal correlation, we let α = 0.8, and utilized the
selection criteria of (4.12). For fair comparison, the number of channel measurements per unit
time is chosen as the same value. From the graph, we can see that as the velocity of the mobile
station becomes slower, the capacity is enhanced.

4.6.2 Analysis by Simple Channel Model

In order to obtain more comprehensible results, we also investigated by using a simple single
tapped Gauss-Markov model. The updating equation is

Hk = ρHk−1 +
√

1− ρ2X (4.23)

where ρ (0 ≤ ρ ≤ 1) is the temporal correlation coefficient between adjacent fading blocks, and
X is a random matrix which obeys vecX ∼ CN (0, Pr/NTxINTxNRx

).

4.6.3 Channel Estimation

Estimated channel is calculated as

vec Ĥk = vecHk + z, z ∼ (0, P k) (4.24)

where z is additive estimate error. P k is directly calculated by using (4.20). Therefore, Nt is
treated only as the index of total power of training sequences. In realistic situation, in order to
observe all degrees of freedom in the channel, the length of training sequence must be chosen
not to be less than NTx. For example, if α = 0.8 and NTx = 4, in order to satisfy T2 ≥ 4,
Nt ≥ 20 is necessary as long as the transmitted power is fixed to Pr.

Fig.4.5 depicts an ensemble average of channel capacity and the lower-bound of capacity for
different temporal correlation(ρ) where Nt = 20. Fig.4.7 depicts the capacity for different Nt

where ρ = 0.95. For both simulations, other configurations are the same as the case of Fig.4.5.
As the temporal correlation becomes higher, the proposed method achieves better perfor-

mance than the conventional method. We can observe 3 to 5 percent improvement for both
ensemble mean and lower-bound of capacity. In the method 2, although the criteria which we
directly maximize is the lower-bound of capacity, by selecting antennas to raise the worst case
of capacity, the ensemble mean of capacity increased as well.
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Figure 4.4: Channel capacity for different velocities of MS. (α = 0.8, SNR=8dB)
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Figure 4.5: Channel capacity for different ρ . (α = 0.8, SNR=8dB)
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Figure 4.6: Tradeoff between total power for measurement and estimation error. A reciprocal
relationship holds in case of ML estimation.

From Fig.4.7, as the length of training symbols becomes larger, the effectiveness of proposed
method becomes weaker. As for the average SNR, more improvement of capacity was observed
in the lower SNR conditions (less than 8dB). The superiority of this method is weakened
under relatively high SNR conditions (more than 15dB). The reason for this phenomenon is
explained as follows. Under situations having either high SNR or longer training symbols,
channel estimation can be achieved easily with high estimation accuracy. (Fig. 4.6) In such
easy cases, it is difficult for the proposed method to exhibit its superiority since both estimation
stages (fine and coarse) have small differences in estimation precision.

The effectiveness of this method depends on channel conditions such as ρ and SNR. In such
poor conditions, the method marks almost the same capacity as the naive antenna selection.
But even in the worst case, the capacity of proposed method does not become worse than the
naive method unless the choice of α becomes extremely close to either 0 or 1.

4.6.4 Optimal Choice of α

Fig.4.8 depicts the lower-bound of capacity for different temporal correlations and α. We can
find that as the temporal correlation of channel becomes higher, larger α is suitable. Presum-
ably, the reason of this phenomenon is that the antennas measured in the fine estimation phase
tend to be selected. Even at extremely high temporal correlations, the optimal α appears to
be at most 0.75. The reason for this is that using too large α results in inhibition of change
of antenna combination. This is because, in such situations, the channels estimated in the
coarse estimation stage become too coarse to be selected. Therefore, too large α spoils merits
of antenna selection systems.
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On the other hand, α = 0.5 is suitable for the lower temporal correlations. This makes
sense because we cannot predict in advance which antennas are selected in that case, hence the
channel should be estimated equally for all the antenna elements. In the presence of temporal
correlations below 0.5, α = 0.5 appears to be the optimal.

We can observe that the proposed method works the best at especially high temporal cor-
relations such as ρ > 0.95. From the figure, small deviation of α from its optimal value does
not yield much degradations in capacity. It is advantageous for us, because choosing α has
robustness. This implies that a precise estimation of temporal correlation is not necessary in
order to determine α.

4.7 Concluding Remarks

We proposed a novel channel estimation scheme for MIMO antenna selection systems as well
as a new antenna selection criteria dedicated for the method. The simulation revealed that the
proposed method works more effectively when shorter length of training sequence is used under
the lower average SNR conditions. Though an improvement of channel capacity is only a few
percent, the implementation of the scheme requires only a small modification to conventional
antenna selection systems.

As future tasks, an easy method which measures the degree of temporal correlation by small
computation should be investigated in order to implement this scheme.
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Chapter 5

Conclusion

In this chapter, we summarize important points and findings obtained by the discussions so
far.

5.1 Optimal Training Sequence Design for the Kalman

Filter

We showed that an enhancement of channel capacity exploiting spatiotemporal correlation
characteristics can be realized under channel environments whose temporal evolution can be
known and expressed as the Gauss-Markov model and also has spatiotemporal correlation with
known parameters.

Also, we confirmed that the estimation assuming the Kronecker spatial correlation model is
capable of enhancing estimation accuracy even when the actual environment does not obey the
Kronecker model, i.e. the channel has LOS components so it has strong correlation dependency
between the Tx and the Rx.

We discussed whole channel estimation from partial channel measurement in MIMO antenna
selection system. The numerical simulation revealed that if we directly utilized the estimated
channel for MIMO transmission, a high temporal correlation coefficient (ρ > 0.98) is essential
in order to receive the benefit of MIMO antenna selection system compared to the case without
antenna selection system.

This indicates that channel measurements for all the antenna elements are preferable rather
than the partial measurements under absence of sufficient spatiotemporal correlation such that
the channel roughly remains static.

5.2 Estimation of Channel Statistics by EM-based Algo-

rithm

We investigated the estimation of time-varying channel statistics by means of the EM algo-
rithm. The investigation consists of simplification of the channel model and parameter esti-
mation by the EM algorithm. We confirmed that enhancement of the estimation capability
can be achieved by proposed methods. The proposed parameter estimation method enhances
estimation capability when smaller forgetting factors are employed.

We also applied this estimation scheme to the problem of whole channel estimation from
partial channel measurement at MIMO antenna selection systems. The result of numerical
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simulation revealed that the estimation works well when spatiotemporal correlation of the
actual channel is large enough. The estimation capability is almost same as the case of using
a prior statistics.

Even if a prior statistics are available, achievement of accurate estimation by the partial
measurement requires a high temporal correlation. The proposed parameter estimation scheme
cannot surpass the estimation capability of the case of using a prior statistics.

The simulation also revealed that the EM based parameter estimation scheme works ef-
fectively for partial measurement problem in antenna selection system. The reason of this is
considered that the information of observation matrix is utilized for estimation of the channel
statistics. In the EM based parameter estimation, the channels for measured antenna elements
are treated as highly reliable information, thus it is utilized for a large update of existing channel
statistic. In contrast, the channels for unmeasured antenna elements are treated as unreliable,
thus the information is only utilized for a small update of existing statistic. Such mechanism as
so far described is considered to perform effectively under the scenario involved with antenna
selection system in the sense that it has varying observation matrices.

The reason for estimation enhancement under small forgetting factors can be explained as
an effect of expectation of unobserved realizations performed in the EM algorithm.

Presumably, treating the forgetting factor as a latent statistical variable may be one of the
breakthroughs for further improvement of the estimation capability. A similar idea is already
available as a variable forgetting factor [63]. Adaptive optimization of the forgetting factor in
the scheme of the EM algorithm based parameter estimation may lead to an acceptable result.

5.3 A Robust Training Resource Allocation Exploiting

Only Temporal Correlation

Focusing on the problem of power resource allocation of training sequences, we discussed a
robust channel estimation method which is insusceptible to a change of the channel’s tempo-
ral evolution model and spatial correlation statistic. The proposed method enhances channel
capacity by controlling the channel estimation accuracy for each antenna element according
to the degree of the channel’s temporal correlation. The method is able to enhance channel
capacity by a few percent, but its required hardware and computations for antenna selection is
almost the same as the case of conventional antenna selection algorithms.

From a channel estimation technique point of view, the proposed method conducts only
a simple ML estimation without exploiting any correlation statistics. The temporal correla-
tion statistic is only utilized for determination of observation matrix via control of training
sequences. This leads to an idea that it is possible to incorporate the aid of correlation infor-
mation into the channel estimation method itself in the proposed scheme.

The situation enabling easy computation of our proposed antenna selection criterion which
deals with uneven estimation error is realized because the simple ML estimation method is
employed for channel estimation. If we utilized a spatial correlation aided channel estimation
method, it might be difficult to conduct the proposed antenna selection method with lower
computational cost. Furthermore, it is concerned that by employing correlation based estima-
tion enhancement, the channel estimation error among antenna elements becomes small which
might result in inefficiency of the proposed method.

The idea of the proposed method is based on the optimal control of power resource allocation
of observation system based on correlation information. On this occasion, we realize such
concept by exploiting an observation model structure of antenna selection system. However,
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such approach is not always possible in general observation model of wireless communication
systems.

5.4 Important Factors for Correlation Based Enhance-

ment of Channel Estimation

Let us consider important factors for correlation based enhancement of channel estimation by
reflecting the essential points of the discussions so far. Effective and realistic methods from the
viewpoint of implementation are as follows:

• The Kalman based estimation methods can exploit a spatiotemporal correlation.

• The proposed random walk based Gauss-Markov model is useful for channel modeling.
The model can reduce necessary temporal correlation parameters without losing estima-
tion capability to a large extent.

• If computational resources are acceptable, the optimal training sequence design based on
correlation statistics is effective.

• The proposed power resource allocation method considering temporal correlation offers
robust enhancement of channel capacity but it is dedicated to antenna selection systems.

• For antenna selection systems, partial measurement scheme is usable only where spa-
tiotemporal correlation is high enough. Otherwise, at least all the elements are recom-
mended to be measured even if some elements are coarsely estimated by small observation
power.

5.5 Future Works

The following points are perspectives for continuing this study.

5.5.1 Improvement of Estimation Method of Statistical Model Pa-
rameters

Regarding estimation of statistical parameters, factors that dominantly influence the estimation
capability has not been analyzed sufficiently. For instance, the behavior of tradeoff between
tracking capability and estimation accuracy where the forgetting factor becomes large is not
fully analyzed yet. Detailed analysis is required in order to find the bottleneck of estimation
enhancement. Also, an idea for improvement of EM iteration by using future observations
expressed in (3.55) should be discussed.

We should also consider the possibility that the limit of estimation capability of the linear
estimation methods based on Gaussian modeling and least square criterion has already been
reached. Also, an incorporation of DFE into our estimation scheme is considered to be worth
exploring.
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5.5.2 Channel Prediction for Channel Aging Problem in Massive
MIMO Systems

Recently, in the field of future cellular network, a novel multiuser MIMO system called massive
MIMO [66–68] has been got a lot of attention. The massive MIMO system employs hundreds
of antennas at the base station serving tens of uses, and it has merits of simplified multiuser
processing and reduced transmit power.

Meanwhile, its performance is sensitive to channel aging effects which is progressive over
time. In order to overcome the channel aging effects, channel prediction exploiting spatiotem-
poral correlation statistics has been studied [69]. So far, such study assumes a priori channel
statistics, and system investigation under realistic environments is not enough. Contribution
to solve such problem based on our study is considered.

5.5.3 Exploitation of Sparsity of the Channel

There is another approach for estimation enhancement exploiting statistical behavior of the
channel. The approach is to change the statistical model of the channel.

Recently, modeling of natural signals by means of a sparse statistical distribution is attract-
ing much attention.

It has been experimentally and theoretically proven that the behavior of neuron activity
in the brain, and coefficients of wavelet transform of natural images and sounds obey the
sparse distribution. Also, it has been studied that a signal having sparsity can be estimated
by Bayesian estimation assuming a sparse distribution. Generally, imposing strong sparsity
results in an increase of computational cost, but introducing appropriate mitigation such as
Laplace distribution enables the optimization problem to be easily computed by the L1-norm
optimization by means of the linear programming. Such discussions are made in the field of
compressed sensing, sparse coding, sparse regularization, and independent component analysis,
etc.

Under the situation that correlation information such as the second order moment is known
in advance, once the signal is known to obey the sparse distribution, more accurate estimation
can be achieved since the sparse distribution has less entropy than the Gauss distribution. It
suggests that if we manage to find a suitable model of the signal to be estimated, more fine
results might be obtained.

In the field of wireless communications, there have been many studies incorporating this
concept into channel estimation problems. One of them takes note of the characteristics that
the propagation channel’s impulse response function obeys the sparse distribution, and extends
the RLS algorithm with the aid of sparse channel estimation, which is known as the sparse
RLS [64,65].

For sparse signals, it is possible to apply a novel sampling theorem called the compressed
sensing [70–73]. The theorem states that the sparse signals can be accurately reconstructed from
an even much smaller number of sampling observations (by means of particular observations
such as random projections) compared to the conventional Nyquist sampling theorem. For
example, many applications have been studied such as CT, MRI image reconstructions [77],
and a single-pixel digital camera [75–77].

Originally, the idea of the compressed sensing comes from in the field of image processing.
Until now, active introductions into the field of wireless communication have been made [78,
79] since sparse characteristics are often found in the wireless channel scenarios. One of the
examples is the decoding problem of UWB signals. Since UWB signals have wide bandwidth,
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a full observation of them requires many samplings. However, by employing the compressed
measurement, it is possible to reduce the number of samplings for signal reconstruction. Thus
we can reduce hardware cost for samplings. [80,81].

Many studies have emerged that incorporate the sparse estimation into the issue of MIMO
channel estimation in order to improve estimation capability with smaller observation resources
[82–84]. We expect that such novel attempts can be a breakthrough for solving the problem.



Appendix A

Estimation of Channel Statistics in
Batch Process

We require Ns sequences of full channel matrix in order to estimate the parameters in the
Kalman filter. Estimates ρ̂ and Q̂ are given as:

ρ̂ =
1

NTxNRx(Ns − 1)

NTx∑
i=1

NRx∑
j=1

Ns−1∑
k=1

[Hk+1]i,j[H
∗
k]i,j

[Hk]i,j[H
∗
k]i,j

(A.1)

2(1− ρ)Q̂ = 2(1− ρ)Ek vecXk(vecXk)
H

= (1− ρ)2Ek vecHk(vecHk)
H + (1− ρ2)Ek vecXk(vecXk)

H(... Ek vecHk(vecHk)
H = Ek vecXk(vecXk)

H)
= Ek vec (Hk −Hk+1) [vec (Hk −Hk+1)]

H (A.2)(
... Ek vecHk (vecXk)

H = 0
)

In addition, if channel obeys (2.10), spatial correlation matrices of the Kronecker model R̂Tx

and R̂Rx can be estimated as follows:

R̃Tx ,
Ns−1∑
k=1

(Hk −Hk+1)
> (Hk −Hk+1)

∗ (A.3)

R̃Rx ,
Ns−1∑
k=1

(Hk −Hk+1) (Hk −Hk+1)
H (A.4)

R̂Tx = NTxR̃Tx/(tr R̃Tx) (A.5)

R̂Rx = NRxR̃Rx/(tr R̃Rx) (A.6)
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Appendix B

Proof of Equation for Filter
Calculations

Let {ϕi}Mi=1 be any subset of arbitrary orthonormal basis of CN (N ≥ M), and {X i}Mi=1 be a
set of any matrices of the same size, following relationship holds:(

M∑
i=1

ϕiϕ
H
i ⊗X i

)†

=
M∑
i=1

ϕiϕ
H
i ⊗X

†
i (B.1)

(Proof) Let {Ai}Mi=1 and {Bi}Mi=1 be sets of any matrices of the conforming size, then we have:(
M∑
i=1

ϕiϕ
H
i ⊗Ai

)(
M∑
i=1

ϕiϕ
H
i ⊗Bi

)
=

M∑
i=1

ϕiϕ
H
i ⊗AiBi (B.2)

From the above relationship, we can confirm that the right side of (B.1) satisfies the four
conditions of the Moore-Penrose generalized inverse, i.e. XX†X = X, X†XX† = X†,
XX† = (XX†)H, and X†X = (X†X)H.
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Appendix C

Optimal Training Sequence Structure
for Kalman Filter

Let singular value decomposition of S>
k be ΦΣΨH where Φ, Ψ and Σ are Nt×Nt, NTx×NTx

unitary matrices and Nt×NTx diagonal matrix, respectively. Substituting it into (2.24) yields,

Jk[Sk] = tr

(
P−1

k|k−1 +
1

σ2
n

ΨΣHΣΨH ⊗ INRx

)−1

. (C.1)

This implies that Φ can be chosen arbitraily. For any NRx ×NRx unitary matrix V , Jk can be
transformed into:

Jk = tr

[
(Ψ⊗ V )HP−1

k|k−1(Ψ⊗ V ) +
1

σ2
n

ΣHΣ⊗ INRx

]−1

(C.2)

It is proven that Jk is minimized if inside of [ · ] in (C.2) becomes diagonal form ( [26] : Theorem
1). If P k|k−1 have the form of (2.28), diagonalization of (C.2) is achieved if and only if Ψ =
[u1 u2 · · · uNTx

] and V = [v1 v2 · · · vNRx
]. Denoting the i-th column vector of Φ as ϕi, and

ΣHΣ = diag [α1 α2 · · · αNTx
] yield (2.27).
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Appendix D

ML Estimation of (3.19)

Let {ẑi}Ni=1 be available estimated realization of latent channel evolution where its indexes
indicate time instant. Based on our definition of likelihood function, in order to find covariance
parameter at time instant k, we want to maximize

L(ẑ1, ẑ2, · · · , ẑN |Rk) = log
k∏

i=1

CN (ẑi |0,Rk)
λk−i

=

(
k∑

i=1

λk−i

)[
− log πNTxNRx + log detR−1

k

]
−

k∑
i=1

〈
R−1

k , λk−iẑiẑ
H
i

〉
HS

(D.1)

where < ·, · >HS is the Hilbert-Schmidt inner product defined as < A,B >HS, trABH. To
find the extremal value, differentiating with respect to R−1

k yields,

τRk =
k−1∑
i=1

λk−iẑiẑ
H
i

(
τ ,

k∑
i=1

λk−i =
k−1∑
i=0

λi

)

= λ
k−1∑
i=1

λk−i−1ẑiẑ
H
i + ẑkẑ

H
k

= λ

(
k−2∑
i=0

λi

)
Rk−1 + ẑkẑ

H
k

= λ(τ − λk−1)Rk−1 + ẑkẑ
H
k (D.2)

If k is large enough to approximate λk−1 ≈ 0, substituting it and multiplying 1/τ = (1−λ)/(1−
λk) ≈ 1− λ on both side yields (3.20).
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Appendix E

Posterior Probability of Latent
Channel Evolution

Note that the notation of variables in this section is different from other sections for simplicity.
Let us consider the following linear observation model where the statistical variables x and y
are observed through matrix A.

z = A(x+ y) + n (E.1)

We assume that x,y and n are independent, and their prior distributions are available as
follows:

x ∼ CN (0,R)

y ∼ CN (0,S)

n ∼ CN (0,Q) (E.2)

P (x,y,n) = CN (x |0,R) CN (y |0,S) CN (n |0,Q) (E.3)

After having observed z, a posterior distribution of x is obtained by marginalization of the
simultaneous distribution with respect to y as follows:

P (x |z) =
∫
P (x,y,z −A(x+ y)) dy (E.4)

Now, the above integrand can be decomposed as

P (x,y,z −A(x+ y)) = C × P (y |x,z)P (x |z)
= C × CN (y |µy,Σy) CN (x |µx,Σx) (E.5)

where C denotes constant, and

µy = ΣyA
HQ−1(z −Ax) (E.6)

Σy =
(
S−1 +AHQ−1A

)−1
(E.7)

µx = Σx

[
I −AHQ−1AΣy

]
AHQ−1z (E.8)

Σx =
(
R−1 +

[
I −AHQ−1AΣy

]
AHQ−1A

)−1
(E.9)

From (E.4) and (E.5), we obtain the following result.

P (x |z) = CN (x |µx,Σx) (E.10)
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Appendix F

ML Estimation of the Parametric
Covariance Matrix

Let r
(k,t)
i,j be the eigenvalue corresponding to the eigenvector φj ⊗ψi of R

(t)
k .

r(k,t+1)
m,n = argmax

rm,n

Q

(
NTx∑
j=1

NRx∑
i=1

ri,jφjφ
H
j ⊗ψiψ

H
i |R

(t)
k

)

= argmax
rm,n

τ

(
−NTxNRx log π +

NTx,NRx∑
i=1,j=1

log
1

ri,j

)

−
∑
i,j,p

λk−p

ri,j

[(
γ
(p)
i,j

)2 ∥∥< φj ⊗ψi,B
H
p δp >

∥∥2 + η
(p)
i,j

]
(F.1)

where τ is the same definition as one used in (D.2). To find the extremal value, differentiating
with respect to 1/rm,n yields,

τrm,n =
k−1∑
p=1

λk−p
[(
γ(p)m,n

)2 ∥∥< φn ⊗ψm,B
H
p δp >

∥∥2 + η(p)m,n

]
(F.2)

Similarly as in the Appendix D, if k is large enough to approximate λk−1 ≈ 0, this yields (3.46).
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List of Publications

Journal Papers

1. Yousuke Naruse and Jun-ichi Takada, “Iterative Channel Estimation in MIMO An-
tenna Selection Systems for Correlated Gauss-Markov Channel,” IEICE Trans.Commun.,
vol.E92B, no.3, pp.922-932, Mar.2009.

2. Yousuke Naruse and Jun-ichi Takada, “EM-based Recursive Estimation of Spatio-temporal
Correlation Statistics for Non-stationary MIMO Channel,” to be submitted to IEICE
Trans.Commun.

International Conference

1. Yousuke Naruse and Jun-ichi Takada, “Efficient Channel Estimation Method for MIMO
Antenna Selection Systems Exploiting Temporal Correlation of Channel,” Vehicular Tech-
nology Conference (VTC Spring), 2012 IEEE 75th, pp.1-5, 6-9 May 2012.

Domestic Conference

1. Yousuke Naruse and Jun-ichi Takada, “Channel estimation method for MIMO antenna
selection system exploiting temporal correlation of the channel,”(In Japanese) Technical
Report of IEICE, pp.269-274, 27 Feb.2008.

98



Bibliography

[1] G.J. Foschini and M.J Gans, “On limits of wireless communications in a fading environment
when using multiple antennas,” Wireless Personal Commun., vol. 6, pp. 311-355, 1998.

[2] I.E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell Lab. Internal
Tech. Memo., June. 1995. (European Trans. Telecom., vol. 10, pp. 585-595, Nov. 1999.)

[3] S. H. Ting, K. Sakaguchi and K. Araki, “Performance Analysis of MIMO Eigenmode
Transmission System under Realistic Channel and System Conditions,” IEICE Trans.
Commun., vol.E87-B, no.8, pp.2222-2232, Oct. 2004.

[4] K. J. Kim and R. A. Iltis, “Joint detection and channel estimation algorithms for QS-
CDMA signals over time-varying channels,” IEEE Trans. on Commun., vol. 50, no. 5, pp.
845-855, May. 2002.

[5] M. Gharavi-Alkhansari and A.B. Gershman, “Fast antenna subset selection in MIMO
systems,” IEEE Trans. Signal Processing, vol. 52, no. 2, pp. 339-347, Feb. 2004.

[6] S. Sandhu, R. Nabar, D. A. Gore, and A. J. Paulraj, “Near-optimal selection of transmit
antennas for a MIMO channel based on shannon capacity,” 34th Asilomar Conferenceon
Signals, Systems and Computers, vol. 1, pp. 567-571, Nov. 2000.

[7] A. Gorokhov, D. A. Gore, and A. J. Paulraj, “Receive Antenna Selection for MIMO Spatial
Multiplexing: Theory and Algorithms,” IEEE Trans. Signal Processing, vol. 51, no. 11,
pp. 2796-2807, Nov. 2003.

[8] H. Zhang and H. Dai, “Fast transmit antenna selection algorithms for MIMO systems with
fading correlation,” Vehicular Technology Conference, 2004. VTC2004-Fall.

[9] Inaki Berenguer, Xiaodong Wang, Vikram Krishnamurthy, “Adaptive MIMO antenna se-
lection via discrete stochastic optimization,” IEEE Trans. Signal Processing, vol. 53, no.
11, Nov. 2005.

[10] W.C. Jakes, Microwave Mobile Communications, New York: Wiley, 1974.

[11] T.M. Cover and J.A. Thomas, Elements of Information Theory, New York: Wiley, 1991.

[12] Medard, M, “The effect upon channel capacity in wireless communications of perfect
and imperfect knowledge of the channel,” IEEE Trans. Information Theory, vol.46, no.3,
pp933-946, May 2000.

[13] M. Sugiyama, and H. Ogawa, “Pseudo orthogonal bases give the optimal generalization
capability in neural network learning,” in Proceedings of SPIE, Wavelet Applications in
Signal and Image Processing VII, vol.3813, pp.526-537, Jul. 1999.

99



BIBLIOGRAPHY 100

[14] A. F. Molisch, M. Z. Win, and J. H. Winters, “Capacity of MIMO systems with antenna
selection,” in Proc. IEEE Int. Conf. Commun., pp. 570-574, Jun. 2001.

[15] A.F. Molisch, “MIMO systems with antenna selection - an overview,” in Proc. IEEE Radio
and Wireless Conf. (RAWCON ’03), pp. 167-170, 10-13 Aug. 2003.

[16] Jens Baltersee, Gunnar Fock, and Heinrich Meyr, “An Information Theoretic Foundation
of Synchronized Detection,” IEEE Transactions on Communications, vol. 49, no. 12, pp.
2115-2123, Dec. 2001.

[17] S. Haykin, “Adaptive Filter Theory, 4th Edition,” Prentice hall information and system
sciences series, Sep. 2001.

[18] C. Komninakis, C. Fragouli, A. H. Sayed and R. D. Wesel, “Multi-Input Multi-Output Fad-
ing Channel Tracking and Equalization Using Kalman Estimation,” IEEE Trans. Signal
Processing, vol. 50, no. 5, May. 2002.

[19] D. Schafhuber, G. Matz, F. Hlawatsch, “Kalman Tracking of Time-Varying Channels in
Wireless MIMO-OFDM Systems,” invited paper in Proc. 37th Asilomar Conf. Signals,
Systems, Computers, Pacific Grove (CA), pp. 1261-1265, Nov. 2003.

[20] M. Enescu, M. Herdin, T. Roman and V. Koivunen, “Parameter estimation of measured
channels in mobile MIMO OFDM system,” in Proc. of the Fourth IEEE Int. Symp. on,
pp.123-126, 18-21 Dec. 2004.

[21] M. Enescu, T. Roman and V. Koivunen, “Channel estimation and tracking in spatially
correlated MIMO OFDM systems,” Workshop on Stat. Signal Processing, 2003 IEEE,
pp.347-350, 28 Sept. - 1 Oct. 2003.

[22] Y. Naruse and J. Takada “Iterative Channel Estimation in MIMO Antenna Selection
Systems for Correlated Gauss-Markov Channel,” IEICE Trans. Commun., vol.E92B, no.3,
pp.922-932, Mar.2009.

[23] M.K. Ozdemir, H. Arslan and E. Arvas “MIMO-OFDM Channel Estimation for Correlated
Fading Channels,” IEEE Int. Conf. Commun. 2005 (ICC 2005), vol.4, pp.2626-2630, 16-20
May 2005.

[24] H. Miao and M.J.Juntti, “Space-time MMSE channel estimation for MIMO-OFDM system
with spatial correlation,” Vehicular Technology Conference (VTC Spring), 2004 IEEE
59th, vol. 3, pp.1806-1810, 17-19 May 2004.

[25] J. Choi and Y. Lee, “Complexity-Reduced Channel Estimation in Spatially Corre-
lated MIMO-OFDM Systems,” IEICE Trans. Commun., vol.E90B, no.9, pp.2609-2612,
Sep.2007.

[26] J.H. Kotecha and J.H.Sayeed, “Transmit signal design for optimal estimation of correlated
MIMO channels,” IEEE Trans. Signal Processing, vol. 52, pp. 546-557, Feb. 2004.

[27] E. Bjornson and B. Ottersten, “A Framework for Training-Based Estimation in Arbitrarily
Correlated Rician MIMO Channels with Rician Disturbance,” IEEE Trans. Signal Pro-
cessing, vol. 58, no. 3, pp.1807-1820, Mar. 2010.



BIBLIOGRAPHY 101

[28] H. Nooralizadeh and S.S. Moghaddam, “Performance Improvement in Estimation of Spa-
tially Correlated Rician Fading MIMO Channels Using a New LMMSE Estimator,” Int.
J. Communications, Network and System Sciences, vol. 3, pp.962-971, Dec. 2010.

[29] M. Kiessling, J. Speidel and Y. Chen, “MIMO Channel Estimation in Correlated Fad-
ing Environments,” Vehicular Technology Conference (VTC Fall), 2003 IEEE 58th, vol.2,
pp.1187-1191, 6-9 Oct. 2003.

[30] O. Weikert and U. Zolzer, “Efficient MIMO Channel Estimation With Optimal Training
Sequences,” in Proc. of 1st Workshop on Commercial MIMO-Components and -Systems
(CMCS 2007), Duisburg, Germany, 13-14 Sept. 2007.

[31] M. A. Saeed, N. K. Noordin, B. M. Ali, S. Khatun and M. Ismail, “RLS Channel Estimation
and Tracking for MIMO-extended IEEE 802.11a WLANs,” Int. J. Computer Science and
Network Security (IJCSNS), vol.8, no.2, Feb. 2008.

[32] D. Schafhuber, G. Matz and F. Hlawatsch, “Adaptive Wiener Filters For Time-Varying
Channel Estimation In Wireless OFDM Systems,” in Proc. IEEE ICASSP-03, vol. IV, pp.
688-691, Hong Kong, Apr. 2003.

[33] Y.C. Chen and Y.T. Su, “MIMO channel estimation in spatially correlated environments,”
Personal, Indoor and Mobile Radio Commun. (PIMRC), 2004 IEEE 15th, vol.1, pp.498-
502, 5-8 Sept. 2004.

[34] X. Hou, S. Li, C. Yin and G. Yue, “Two-dimensional recursive least square adaptive channel
estimation for OFDM systems,” in Proc. Int. Conf. Wireless Commun., Networking and
Mobile Computing, vol.1, pp.232-236, 23-26 Sept. 2005.

[35] M.D. Nisar, W. Utschick and T. Hindelang, “Maximally Robust 2-D Channel Estimation
for OFDM Systems,” IEEE Trans. Signal Processing, vol. 58, no. 6, pp. 3163-3172, June
2010.

[36] Z. Luo and D. Huang, “Optimal and Robust MMSE Channel Estimation for MIMO-
OFDM Systems,” Personal, Indoor and Mobile Radio Commun. (PIMRC), 2008 IEEE
19th, pp.1-5, 15-18 Sept. 2008.

[37] Y. Li, L.J. Cimini and N.R. Sollenberger, “Robust channel estimation for OFDM systems
with rapid dispersive fading channels,” IEEE Trans. Commun., vol. 46, no. 7, pp.902-915,
Jul. 1998.

[38] Y. Naruse and J. Takada “Efficient Channel Estimation Method for MIMO Antenna Se-
lection Systems Exploiting Temporal Correlation of Channel,” Vehicular Technology Con-
ference (VTC Spring), 2012 IEEE 75th, pp.1-5, 6-9 May 2012.

[39] F. Hlawatsch and G. Matz “Fundamentals of Time-Varying Communication Channels,”
in Wireless Communications over Rapidly Time-Varying Channels, Chapter 1, pp.1-63,
Amsterdam, The Netherlands: Academic Press, 2011.

[40] D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. Costa and K. Huber “Multiple-
input multiple-output measurements and modeling in Manhattan,” IEEE J. Sel. Areas
Commun., vol. 21, no. 3, pp. 321-331, Apr. 2003.



BIBLIOGRAPHY 102

[41] J.P. Kermoal, L. Schumacher, K.I. Pedersen, P.E. Mogensen and F. Frederiksen, “A
Stochastic MIMO Radio Channel Model With Experimental Validation,” IEEE J. Sel.
Areas Commun., vol. 20, no. 6, pp. 1211-1226, Aug. 2002.

[42] S. H. Ting, K. Sakaguchi and K. Araki, “A Markov-Kronecker model for analysis of closed-
loop MIMO systems,” IEEE Commun. Letters, vol. 10, no. 8, pp. 617-619, Aug. 2006.

[43] K. I. Pedersen, J. B. Andersen, J. P. Kermoal and P. Mogensen, “A stochastic multiple-
input multiple-output radio channel model for evaluation of space-time coding algorithms,”
Vehicular Technology Conference, 2000. IEEE-VTS Fall VTC 2000. 52nd, vol.2, pp.893-
897, 2000.

[44] Y.C. Chen and Y.T. Su, “MIMO Channel Estimation in Correlated Fading Environments,”
IEEE Trans. Wireless Commun., vol.9, no.3, pp.1108-1119, Mar. 2010.

[45] J. Salo, G. Del Galdo, J. Salmi, P. Kyosti, M. Milojevic, D. Laselva, and C. Schneider,
“MATLAB implementation of the 3GPP Spatial Channel Model (3GPP TR 25.996) [On-
line],” Available: http://www.tkk.fi/Units/Radio/scm/ (2005, Jan.)

[46] D. S. Baum, J. Salo, M. Milojevic, P. Kyosti and J. Hansen, “MATLAB implementation
of the interim channel model for beyond-3G systems (SCME),” [Online]. May 2005.

[47] M. Biguesh and A.B. Gershman, “Training-based MIMO channel estimation: a study of
estimator tradeoffs and optimal training signals,” IEEE Trans. Signal Processing, vol.54,
no.3, pp.884-893, Mar. 2006.

[48] T. L. Marzetta, “BLAST training: Estimation channel characteristics for high-capacity
space-time wireless,” in Proc. 37th Annu. Allerton Conf. Commun., Comput., Control,
Sep. 1999.

[49] Q. Sun, D. C. Cox, A. Lozano and H. C. Huang, “Training-based channel estimation for
continuous flat fading BLAST,” in Proc. Int. Conf. Commun., New York, Apr. 2002.

[50] T. Y. Al-Naffouri, O. Awoniyi, O. Oteri and A. Paulraj, “Receiver Design for MIMO-
OFDM Transmission over Time Variant Channels,” in Proc. IEEE GLOBECOM, vol. 4,
pp. 2487-2492, Nov. 2004.

[51] J.M.M. Ocloo and F. Alberge, “OFDM channel estimation by a linear EM-MAP algo-
rithm,” IEEE Trans. Signal Processing, vol. 4, pp. 109-112, May 2006.

[52] Tareq Y. Al-Naffouri, “An EM-Based Forward-Backward Kalman Filter for the Estimation
of Time-Variant Channels in OFDM,” IEEE Trans. Signal Processing, vol. 1, no. 11, Nov.
2006.

[53] K. Muraoka, K. Fukawa, H. Suzuki and S. Suyama, “Joint signal detection and channel
estimation using differential models via EM algorithm for OFDMmobile communications,”
IEICE Trans. Commun., vol. E94-B, no. 2, pp. 533-545, Feb. 2011.

[54] C. Komninakis, C. Fragouli, A. H. Sayed and R.D. Wesel, “Multi-Input Multi-Output Fad-
ing Channel Tracking and Equalization Using Kalman Estimation,” IEEE Trans. Signal
Processing, vol.50, no.5, pp.1065-1076, May 2002.



BIBLIOGRAPHY 103

[55] Y.H. Chan and X. Yu, “A reduced-rank MMSE-DFE receiver for space-time coded DS-
CDMA systems,” Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th,
vol.5, pp.3659-3663, 26-29 Sept. 2004.

[56] N. Al-Dhahir and A.H. Sayed, “The finite-length multi-input multi-output MMSE-DFE,”
IEEE Trans. Signal Processing, vol.48, no.10, pp.2921-2936, Oct. 2000.

[57] F.H. Chiu, S.H. Wu and C.C.J. Kuo, “Joint MIMO Channel Tracking and Symbol Detec-
tion with EM Algorithm and Soft Decoding,” in Proc. IEEE GLOBECOM, vol.4, pp.2404-
2408, 2 Dec. 2005.

[58] S. Geman, E. Bienenstock and R. Doursat, “Neural networks and the bias/variance
dilemma,” Neural Computation, vol. 4, no. 1, pp.1-58, 1992.

[59] A. S. Y. Poon, R. W. Brodersen, and D. N. C. Tse, “Degrees of freedom in multiple-
antenna channels: a signal space approach,” IEEE Trans. Information Theory, vol. 51, no.
2, pp.523-536, Feb. 2005.

[60] A. S. Y. Poon, D. N. C. Tse, and R. W. Brodersen, “Impact of scattering on the capacity,
diversity, and propagation range of multiple-antenna channels,” IEEE Trans. Information
Theory, vol. 52, no. 3, pp.1087-1100, Mar. 2006.

[61] T. Inoue, and Y. Karasawa, “Theoretical Analysis on the Performance of Optimal Com-
bining for Multipath Waves Distributed in Spatial and Time Domains,” Technical report
of IEICE (in Japanese), CS98-25/RCS98-25, May 1998.

[62] P. Almers, F. Tufvesson, and A.F. Molisch, “Keyhole Effect in MIMO Wireless Channels:
Measurements and Theory,” Wireless Commun., IEEE Trans. on, vol.5, no.12, pp.3596-
3604, Dec. 2006.

[63] C. Paleologu, J. Benesty, and S. Ciochina, “A Robust Variable Forgetting Factor Recur-
sive Least-Squares Algorithm for System Identification,” IEEE Signal Processing Letters,
vol.15, pp.597-600, 2008.

[64] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The Sparse RLS Algorithm,” IEEE
Trans. Signal Processing, vol.58, no.8, pp.4013-4025, Aug. 2010.

[65] B. Dumitrescu, A. Onose, P. Helin, and I. Tabus, “Greedy Sparse RLS,” IEEE Trans.
Signal Processing, vol.60, no.5, pp.2194,2207, May 2012.

[66] R. W. Heath, Jr., “What is the Role of MIMO in Future Cellular Networks: Massive? Co-
ordinated? mmWave?,” IEEE CTS COMSOC/SP and I&M Joint DLT Meeting, Austin,
TX, October 21, 2013.

[67] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station
antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp.3590-3600, Nov. 2010.

[68] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F.
Tufvesson, “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE
Signal Processing Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013.

[69] K. T. Truong and R. W. Heath, Jr., “Effects of Channel Aging in Massive MIMO Systems,”
IEEE/KICS Journal of Communications and Networks, Special Issue on Massive MIMO,
vol. 15, no. 4, pp. 338-351, Aug. 2013.



BIBLIOGRAPHY 104

[70] D.L. Donoho, “Compressed sensing,” IEEE Trans. Information Theory, vol.52, no.4,
pp.1289-1306, Apr. 2006.

[71] E.J. Candes, and M.B. Wakin, “An Introduction To Compressive Sampling,” IEEE Signal
Processing Magazine, vol.25, no.2, pp.21-30, Mar. 2008.

[72] E.J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal re-
construction from highly incomplete frequency information,” IEEE Trans. Information
Theory, vol.52, no.2, pp.489-509, Feb. 2006.

[73] J.A. Tropp, and A.C. Gilbert, “Signal Recovery From Random Measurements Via Orthog-
onal Matching Pursuit,” IEEE Trans. Information Theory, vol.53, no.12, pp.4655-4666,
Dec. 2007.

[74] D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly,
and R. G. Baraniuk, “A New Compressive Imaging Camera Architecture using Optical-
Domain Compression,” Proc. IS&T/SPIE Computational Imaging IV, Jan. 2006.

[75] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G.
Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag.,
vol. 25, no. 2, pp. 83-91, 2008.

[76] Gang Huang, Hong Jiang, Kim Matthews, and Paul A. Wilford, “Lensless Imag-
ing by Compressive Sensing,” DBLP, http://dblp.uni-trier.de [Online], Available:
http://arxiv.org/abs/1305.7181 , 2013.

[77] M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly, “Compressed Sensing MRI,” IEEE
Signal Processing Magazine, vol.25, no.2, pp.72-82, Mar. 2008.

[78] Chun-Yang Chen, and P.P. Vaidyanathan, “Compressed sensing in MIMO radar,” Signals,
Systems and Computers, 2008 42nd Asilomar Conference on, pp.41-44, 26-29 Oct. 2008.

[79] T. Zhi, and G.B. Giannakis, “Compressed Sensing for Wideband Cognitive Radios,” IEEE
Trans. Acoust. Speech Signal Process. (ICASSP 2007), vol.4, pp.IV1357-IV1360, 15-20 Apr.
2007.

[80] J.L. Paredes, G.R. Arce, and Z.M. Wang, “Ultra-wideband compressed sensing: channel
estimation,” IEEE Journal of Selected Topics in Signal Processing, vol.1, no.3, pp.383-395,
Oct. 2007.

[81] N.T. Dung, N.V. Sinh, N.T. Hoa, and N.T. Hieu, “Application of compressive sensing in
time hopping multi-user UWB system,” 2011 International Conference on IEEE Advanced
Technologies for Communications (ATC). Danang, Vietnam, pp.248-251, 2-4 Aug. 2011.

[82] W.U. Bajwa, J. Haupt, A.M. Sayeed, and R. Nowak, “Compressed Channel Sensing: A
New Approach to Estimating Sparse Multipath Channels,” Proc. of the IEEE, vol.98, no.6,
pp.1058-1076, Jun. 2010.

[83] G. Taubock, and F. Hlawatsch, “A compressed sensing technique for OFDM channel es-
timation in mobile environments: Exploiting channel sparsity for reducing pilots,” IEEE
Trans. Acoust. Speech Signal Process. (ICASSP 2007), pp.2885-2888, Mar. 31 2008-Apr. 4
2008.



BIBLIOGRAPHY 105

[84] C.R. Berger, Zhaohui Wang, Jianzhong Huang, and Shengli Zhou, “Application of com-
pressive sensing to sparse channel estimation,” IEEE Communications Magazine, vol.48,
no.11, pp.164-174, Nov. 2010.


