
論文 / 著書情報
Article / Book Information

題目(和文) 外れ値環境下におけるロバスト推定および制御に関する研究

Title(English) A Study of Robust Estimation and Control under Outliers

著者(和文) 金田泰昌

Author(English) Yasuaki Kaneda

出典(和文)  学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第9452号,
 授与年月日:2014年3月26日,
 学位の種別:課程博士,
 審査員:山北　昌毅,三平　満司,大山　真司,倉林　大輔,早川　朋久

Citation(English)  Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第9452号,
 Conferred date:2014/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文)  博士論文

Type(English)  Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/


A Study of Robust Estimation and

Control under Outliers

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Engineering

by

Yasuaki Kaneda

Supervisor

Associated Professor Masaki Yamakita

L
Graduate School of Science and Engineering

Department of Mechanical and Control Engineering
Tokyo Institute of Technology

February, 2014





Acknowledgments

I would like to express my deepest gratitude to my supervisor Associated Professor Masaki
Yamakita for his guidances and supports in many things. I would like to thank Sasebo
National College of Technology Lecture Teruyoshi Sadahiro who guided me in my entrance
to graduate school of Tokyo Institute of Technology and have advised many things. I would
also like to thank to committees, Professor Mitsuji Sampei, Associated Professor Shinji
Ohyama, Associated Professor Daisuke Kurabayashi, and Associated Professor Tomohisa
Hayakawa, who kindly spent time checking and approving this dissertation.

I would like to thank Tokyo Metropolitan Industrial Technology Research Institute and
all members of Information Technology group. President Masatoshi Kataoka has provided
me with an opportunity to apply for the graduate school for working adults program. Di-
rector Hirofumi Sawachika and Management Researcher Kazumi Sakamaki have consulted
my convenience to take a degree. Senior Researcher Yasuharu Irizuki has been discussing
about my research and supporting me. Special thanks to Dr. Yuji Takeda, Dr. Mamoru
Ohara, Mr. Yoshitsugu Nakagawa, Mr. Norihiro Ohira, Mr. Tadashi Okabe, Dr. Takashi
Yamaguchi, Dr. Masayuki Murakami, and Mr. Shinichi Tomiyama.

I am deeply grateful to all members of the research meeting “ATACS”. Tokyo Denki
University President Katsuhisa Furuta, Emeritus Professor of Tokyo Institute of Technology,
gave me very important comments and suggestions though he was very busy. Special thanks
to Tokyo Denki Univ. Prof. Shoshiro Hatakeyama, Prof. Tetsuo Shiotsuki, Prof. Jun
Ishikawa, Waseda Univ. Prof. Harutoshi Ogai, Tokyo Univ. of Tech. Prof. Yasuhiro
Ohyama, Prof. Jin-Hua She, Kumamoto Univ. Prof. Nobutomo Matsunaga, Tokyo City
Univ. Prof. Kenichiro Nonaka, Kyushu Inst. of Tech. Prof. Masanobu Koga, Osaka Univ.
Associated Prof. Masato Ishikawa, Tokyo Denki Univ. Associated Prof. Satoshi Suzuki,
Associated Prof. Masami Iwase, Associated Prof. Norihiro Kamamichi, Univ. of Yamanashi
Assistant Prof. Koji Makino, Tokyo Univ. of Tech. Assistant Prof. Kaoru Mitsuhashi,
Kumamoto Univ. Assistant Prof. Hiroshi Okajima, Tokyo Denki Univ. Assistant Prof.
Masaki Izutsu, Tokyo City Univ. Assistant Prof. Kazuma Sekiguchi, and Tokyo Inst. of
Tech. Assistant Prof. Tatsuya Ibuki. They provided me with many comments and allowed
me to grow.

I would like to thank everyone in Yamakita laboratory for supporting and helping me
succeed my degree. Ms. Mari Kobayasi, very kind secretary, has helped me a lot in every
kinds of documents. Kyushu Inst. of Tech. Assistant Prof. Yuta Hanazawa has been
discussing about my research and suggesting new ideas for me. Dr. Sirichai Pornsarayouth
and Mr. Srang Sarot have also been discussing many things in English, so they are my
English teachers. Mr. Kazuhiro Tanaka and Mr. Tadashi Sumioka have stimulated my
interests, and Mr. Yusuke Yashiro has influenced my research. Mr. Masahiro Kawaguchi
and Mr. Hiroyuki Suda were good pair in Yamakita laboratory and have made me pleasure.

i



ii Acknowledgments

Ms. Suthira Limkul has provided relaxed atmosphere in the laboratory. Mr. Kazuyoshi
Odachi , Mr. Hiroyuki Oyama, Mr. Terumitsu Hayashi, and Mr. Hiroaki Ishiyama have
been talking about many things in my public and private life, and they have made me
relaxed in the laboratory. Mr. Mikiya Hara, Mr. Yuto Noda, Mr. Yu Iemura, Mr. Umihiko
Amanuma, Mr. Yongjae Kim, Mr. Hiroki Fujii, Mr. Yusuke Yaginuma, and Mr. Mamoru
Watanabe have made me happy in the laboratory. Not to mention many friends who have
been supporting me.

Finally, I want to thank my family. Especially, I would like to offer my special thanks
to my wife and son, Kaori Yamamoto and Koushi Yamamoto. They have encouraged me to
study more and made me happy in my life.

To them, I am eternally grateful. Again, thank you.

Yasuaki Kaneda

Oh-okayama, Tokyo
December, 2013



Abstract

Outliers are a kind of non-Gaussian measurement noise generated by heavier tailed distribu-
tions than a normal distribution. Hence, abnormal values, which are distant so much from
mean values of distributions, are unusually occurred in a time domain. In other words, the
outliers are contained in measurements infrequently and their values can usually be consid-
ered as zero, so it can be said that the outliers tend to be sparse. They are happened in many
applications, and they provide negative effects on various fields. In control engineering, these
outliers deteriorate state estimates and control performances. For example, target tracking
systems using radar measurement, visual feedback systems, wireless sensor network systems,
networked control systems, and so on. Therefore, control systems require robust estimators
and controllers under outliers. We propose a practical robust estimation method and control
strategy under outliers based on robust Kalman filter (RKF) via l1 regression. In addition,
we analyze performances of the proposed methods, and the effectiveness is demonstrated by
some numerical simulations.

RKF via l1 regression is one of the most attractive reduction methods of effects of outliers
due to an easy structure and implementation. Additionally, Since the RKF truncates outliers
by some thresholds, it has less delay than the other RKF. However, regularization parameters
of the RKF need to be tuned by some heuristic design methods. First of all, we propose
a new design method of the RKF. Both primal and dual problems can derive a condition
of the proposed parameters, and it is shown that statistics of Gaussian noise determine
the parameters of the RKF. This means that the proposed design method provides the
parameters with physical meanings, and we can design the parameters systematically. It
is also shown that a covariance matrix of an innovation of the RKF is bounded by that of
normal Kalman filter (KF) without outliers. The covariance matrix of the innovation of the
RKF comes close to an ideal one under outliers. The RKF with the proposed design method
is applied to a target tracking system under clutters and two-wheeled vehicle control with
outliers.

The RKF can be formulated as a l1 optimization problem. In general, the optimization
problem cannot be solved analytically, and some numerical iterative methods are needed.
A convergence rate and accuracy of the solutions of the RKF depend on conditions of the
iterations. Secondly, we propose a closed form solution of the RKF by an approximation
of its optimal solution, and it gives a fast algorithm. The approximated solution can be
calculated by upper and lower bounds of the optimal solution. In addition, an estimation
error of the approximated solution is analyzed. It is shown that the proposed algorithm has
almost same performances as KF without outliers under some conditions.

Moreover, in order to construct a robust controller under outliers, we apply an idea of the
RKF to self-tuning controller (STC), and we propose a robust STC (RSTC) under outliers.
A parameter update law of the conventional STC can be written as a recursive least squares
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(RLS) estimation, and RLS estimation can be given by a solution of a minimization problem
of estimated errors. Therefore, the proposed method estimates parameters and outliers
explicitly by addition of a l1 regression term to the minimization problem, and the estimated
outliers are removed from measurement outputs in a controller. The proposed method is
solved in a closed form because of a l1 optimization problem with a single variable, so the
algorithm is very efficient. In order to guarantee a stability of the controller, it is required
not only to reduce effects of the outliers, but also to analyze performances of the reduction
method. We analyze control performances of the proposed method under outliers, and it
is shown that steady state errors in the proposed RSTC are nearly equal to ones in the
conventional STC without outliers.

For nonlinear systems, extended KF (EKF) is often used to extend the aforementioned
methods. However, EKF needs to compute Jacobians of the nonlinear systems and yields
unstable solutions numerically. Gaussian sum filter and Particle filter are other famous KF
for nonlinear systems and non-Gaussian measurement noise including outliers. They can
approximate arbitrary distributions and can provide global optimal estimates. However, it
takes so long time to compute the algorithms, and it is unsuitable for real time applications.
Finally, we extend the RKF to nonlinear systems by using unscented KF (UKF), and we
propose a robust UKF (RUKF). We also propose a new design method of its regularization
parameters. Similarly to linear systems, it is shown that statistics of Gaussian measurement
noise determine the parameters of RUKF, and we can design the parameters systematically.
And also, the proposed design method provides the parameters with physical meanings.
Moreover, the regularization parameters make performances of RUKF come close to ones of
UKF without outliers. Since RUKF is based on UKF and l1 optimization problem, it can
be computed more efficiently than Gaussian sum filter and particle filter.



Contents

Acknowledgments i

Abstract iii

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5
2.1 Notation about Vector and Matrix . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Definition of Derivatives of Absolute Functions . . . . . . . . . . . . . . . . . 6
2.3 Notation of Probability Density Function . . . . . . . . . . . . . . . . . . . . 6
2.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Robust Kalman Filter via l1 Regression . . . . . . . . . . . . . . . . . . . . . 7

3 Design Method of Robust Kalman Filter via l1 Regression Based on Statis-
tics and Its Application 9
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Proposed Design Method of RKF Based on Statistics . . . . . . . . . . . . . 10

3.2.1 Design Method for Single Output Systems . . . . . . . . . . . . . . . 10
3.2.2 Design Method for Multi Output Systems . . . . . . . . . . . . . . . 11

3.3 Derivation of Proposed Design Method by Lagrange Dual Problem . . . . . . 13
3.4 Covariance Matrix under outliers . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Covariance Matrices of an Innovation and Estimated Outliers and Its
Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Covariance Matrix of a State Estimation Error under Outliers . . . . 16
3.5 Application to Target Tracking Systems under Clutters . . . . . . . . . . . . 17

3.5.1 Target Tracking Using Kalman Filter . . . . . . . . . . . . . . . . . . 17
3.5.2 Model of Clutters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.3 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



vi CONTENTS

3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Application to Two-Wheeled Vehicle with Outliers . . . . . . . . . . . . . . . 27

3.6.1 Problem Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.2 Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.3 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Fast Algorithm of Robust Kalman Filter via l1 Regression by a Closed
Form Solution 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Robust Kalman Filter via l1 Regression . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Condition to Design Regularization Parameters of RKF . . . . . . . . 39

4.3 Fast Algorithm of Robust Kalman Filter by a Closed Form Solution . . . . . 39
4.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Analysis of an Estimation Error of Outliers and Innovation of RKF . 42
4.3.3 Analysis of a State Estimation Error . . . . . . . . . . . . . . . . . . 44

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Problem Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Robust Self-Tuning Controller under Outliers 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Self Tuning Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Relationship Between a Parameter Update Law of Self Tuning Con-

troller and Optimization Problem . . . . . . . . . . . . . . . . . . . . 52
5.3 Robust Self Tuning Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Parameter Update Law of Robust Self-Tuning Controller Using l1 Re-
gression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.2 Covariance Update Law of Robust Self-Tuning Controller . . . . . . . 58
5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

In the Case Using a Sinusoidal Wave as a Target . . . . . . . . . . . . 60
In the Case Using a Rectangular Wave as a Target . . . . . . . . . . 75

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Robust Nonlinear State Estimation and Design Method of Its Parameters 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Robust Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2.1 Unscented Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 94



CONTENTS vii

6.2.2 Robust Unscented Kalman Filter via l1 Regression . . . . . . . . . . . 96
6.3 Design Method of Robust Unscented Kalman Filter using a Laplace Distribution 97
6.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.1 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions 111
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Multivariate Laplace Distribution 115
A.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 First and Second Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B Derivation of an Update Law of Kalman Filter via an optimization prob-
lem 117

C A Closed Form Solution of Robust Self-Tuning Controller 119

Bibliography 121

Publications 125





List of Figures

3.1 Solution of robust Kalman filter for single output systems, where W = 1 and
λ = 10, therefore λ/(2W ) = 5. . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 North east up coordinates and polar coordinates for target tracking systems. 17
3.3 Estimates of x using KF and RKF designed by the proposed method un-

der Cauchy distribution. The solid lines are measurements, dashed lines are
estimates, and dotted lines are true signals. . . . . . . . . . . . . . . . . . . 20

3.4 Estimates of y using KF and RKF designed by the proposed method un-
der Cauchy distribution. The solid lines are measurements, dashed lines are
estimates, and dotted lines are true signals. . . . . . . . . . . . . . . . . . . 21

3.5 Estimates of z using KF and RKF designed by the proposed method un-
der Cauchy distribution. The solid lines are measurements, dashed lines are
estimates, and dotted lines are true signals. . . . . . . . . . . . . . . . . . . 22

3.6 Estimates of x using KF and RKF designed by the proposed method under
mixed Gaussian distribution. The solid lines are measurements, dashed lines
are estimates, and dotted lines are true signals. . . . . . . . . . . . . . . . . 23

3.7 Estimates of y using KF and RKF designed by the proposed method under
mixed Gaussian distribution. The solid lines are measurements, dashed lines
are estimates, and dotted lines are true signals. . . . . . . . . . . . . . . . . 24

3.8 Estimates of z using KF and RKF designed by the proposed method under
mixed Gaussian distribution. The solid lines are measurements, dashed lines
are estimates, and dotted lines are true signals. . . . . . . . . . . . . . . . . 25

3.9 Root mean square errors of estimates. Values using KF in (a) and (b) are
multiplied by 1/3 and 0.6, respectively. . . . . . . . . . . . . . . . . . . . . 26

3.10 Model of two-wheeled vehicle with a non-holonomic constraint. . . . . . . . . 27
3.11 Positions of the vehicle controlled by a time-state control form in the case

I. (a) and (b) are results in using a heuristic and proposed design method,
respectively. The solid line is x, dashed line is y, dotted line is θ, and dash-
dotted line is the target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 Absolute values of errors of the controlled vehicle in the case I. (a) and (b) are
results in the case using a heuristic and proposed design method, respectively.
The solid line is x, dashed line is y, and dotted line is θ. . . . . . . . . . . . 32

3.13 Transient errors and steady state errors in the case I. . . . . . . . . . . . . . 33
3.14 Positions of the vehicle controlled by a time-state control form in the case

II. (a) and (b) are results in using a heuristic and proposed design method,
respectively. The solid line is x, dashed line is y, dotted line is θ, and dash-
dotted line is the target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x LIST OF FIGURES

3.15 Absolute values of errors of the controlled vehicle in the case II. (a) and (b) are
results in the case using a heuristic and proposed design method, respectively.
The solid line is x, dashed line is y, and dotted line is θ. . . . . . . . . . . . 35

3.16 Transient errors and steady state errors in the case II. . . . . . . . . . . . . 36

5.1 Controlled plant with Gaussian measurement noise in the case of SISO . . . 52

5.2 Controlled plant with Gaussian measurement noise and outlier in the case of
SISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Measurement with outliers using Cauchy distribution in the case using sinu-
soidal wave as a target. (a) and (b) are output 1 and 2, respectively. . . . . . 61

5.4 Control performances using normal self tuning controller with a fixed variance
under Cauchy noise in the case using sinusoidal wave as a target: The solid
line is a reference and dashed line is an output of the controlled object. (a)
and (b) are results of output 1 and 2, respectively. . . . . . . . . . . . . . . . 62

5.5 Control performances using normal self tuning controller with an updated
variance under Cauchy noise in the case using sinusoidal wave as a target:
The solid line is a reference and dashed line is an output of the controlled
object. (a) and (b) are results of output 1 and 2, respectively. . . . . . . . . 63

5.6 Control performances using robust self tuning controller under Cauchy noise
in the case using sinusoidal wave as a target: The solid line is a reference and
dashed line is an output of the controlled object. (a) and (b) are results of
output 1 and 2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with a fixed variance
under Cauchy noise in the case using sinusoidal wave as a target . . . . . . . 65

5.8 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with an updated variance
under Cauchy noise in the case using sinusoidal wave as a target . . . . . . . 66

5.9 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using robust self tuning controller under Cauchy noise in
the case using sinusoidal wave as a target . . . . . . . . . . . . . . . . . . . . 67

5.10 Measurement with outliers using mixed Gaussian distribution in the case using
sinusoidal wave as a target. (a) and (b) are output 1 and 2, respectively. . . 68

5.11 Control performances using normal self tuning controller using a fixed variance
under mixed Gaussian noise in the case using sinusoidal wave as a target: The
solid line is a reference and dashed line is an output of the controlled object.
(a) and (b) are results of output 1 and 2, respectively. . . . . . . . . . . . . . 69

5.12 Control performances using normal self tuning controller using an updated
variance under mixed Gaussian noise in the case using sinusoidal wave as
a target: The solid line is a reference and dashed line is an output of the
controlled object. (a) and (b) are results of output 1 and 2, respectively. . . 70

5.13 Control performances using robust self tuning controller under mixed Gaus-
sian noise in the case using sinusoidal wave as a target: The solid line is a
reference and dashed line is an output of the controlled object. (a) and (b)
are results of output 1 and 2, respectively. . . . . . . . . . . . . . . . . . . . 71



LIST OF FIGURES xi

5.14 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with a fixed variance
under Gaussian mixture noise in the case using sinusoidal wave as a target . 72

5.15 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with an updated variance
under Gaussian mixture noise in the case using sinusoidal wave as a target . 73

5.16 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using robust self tuning controller under Gaussian mixture
noise in the case using sinusoidal wave as a target . . . . . . . . . . . . . . . 74

5.17 Measurement with outliers using Cauchy distribution. (a) and (b) are output
1 and 2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.18 Control performances using normal self tuning controller with a fixed variance
under Cauchy noise: The solid line is a reference and dashed line is an output
of the controlled object. (a) and (b) are results of output 1 and 2, respectively. 78

5.19 Control performances using normal self tuning controller with an updated
variance under Cauchy noise: The solid line is a reference and dashed line is
an output of the controlled object. (a) and (b) are results of output 1 and 2,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.20 Control performances using robust self tuning controller under Cauchy noise:
The solid line is a reference and dashed line is an output of the controlled
object. (a) and (b) are results of output 1 and 2, respectively. . . . . . . . . 80

5.21 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with a fixed variance
under Cauchy noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.22 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with an updated variance
under Cauchy noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.23 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using robust self tuning controller under Cauchy noise . . . 83

5.24 Measurement with outliers using mixed Gaussian distribution. (a) and (b)
are output 1 and 2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.25 Control performances using normal self tuning controller using a fixed variance
under mixed Gaussian noise: The solid line is a reference and dashed line is
an output of the controlled object. (a) and (b) are results of output 1 and 2,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.26 Control performances using normal self tuning controller using an updated
variance under mixed Gaussian noise: The solid line is a reference and dashed
line is an output of the controlled object. (a) and (b) are results of output 1
and 2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.27 Control performances using robust self tuning controller under mixed Gaus-
sian noise: The solid line is a reference and dashed line is an output of the
controlled object. (a) and (b) are results of output 1 and 2, respectively. . . 87

5.28 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with a fixed variance
under Gaussian mixture noise . . . . . . . . . . . . . . . . . . . . . . . . . . 88



xii LIST OF FIGURES

5.29 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with an updated variance
under Gaussian mixture noise . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.30 Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using robust self tuning controller under Gaussian mixture
noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Model of a two-link manipulator. m1 and l1 are mass and length of link 1,
and m2 and l2 are those of link 2. θ1 and θ2 are relative angular positions
of each link, and directions of θ1 and θ2 are counterclockwise and clockwise,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Measurement of output. (a) and (b) contain Cauchy and Gaussian mixture
noise, respectively. Parameters of Cauchy distribution are x0 = 0 and δ =
1.0 × 10−1. Parameters of Gaussian mixture distribution are µ1 = µ2 = 0,
p = 0.1, Σ1 = 2.5× 10−1I, and Σ2 = 10Σ1. . . . . . . . . . . . . . . . . . . 104

6.3 Estimates using UKF under Cauchy noise. The solid lines are true signals
and dashed lines are estimates. . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Estimates solving Eq. (6.11) directly under Cauchy noise. The solid lines are
true signals and dashed lines are estimates. . . . . . . . . . . . . . . . . . . 106

6.5 Estimates using RUKF under Cauchy noise. The solid lines are true signals
and dashed lines are estimates. . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Estimates using UKF under Gaussian mixture noise. The solid lines are true
signals and dashed lines are estimates. . . . . . . . . . . . . . . . . . . . . . 108

6.7 Estimates solving Eq. (6.11) directly under Gaussian mixture noise. The solid
lines are true signals and dashed lines are estimates. . . . . . . . . . . . . . 109

6.8 Estimates using RUKF under Gaussian mixture noise. The solid lines are true
signals and dashed lines are estimates. . . . . . . . . . . . . . . . . . . . . . 110



List of Tables

4.1 Sum of root mean squared errors of each estimate in the case I. . . . . . . . 46
4.2 Sum of root mean squared errors of each estimate in the case II. . . . . . . . 46
4.3 Average of computation time at one time step. . . . . . . . . . . . . . . . . . 47

5.1 Root mean squared errors of tracking errors the controlled plant under Cauchy
noise in the case using sinusoidal wave as a target. . . . . . . . . . . . . . . . 60

5.2 Root mean squared errors of tracking errors of the controlled plant under
Gaussian mixture noise in the case using a sinusoidal wave as a target. . . . 60

5.3 Root mean squared errors of tracking errors of the controlled plant under
Cauchy noise in the case using a rectangle wave as a target. . . . . . . . . . 76

5.4 Root mean squared errors of tracking errors of the controlled plant under
Gaussian mixture noise in the case using a rectangle wave as a target. . . . . 76

6.1 Root mean squared errors of estimates under Cauchy noise. . . . . . . . . . 102
6.2 Root mean squared errors of estimates under Gaussian mixture noise. . . . 103

xiii





Chapter 1

Introduction

1.1 Background and Motivation

Hawkins defined outliers in [1], and he said “An outlier is an observation which deviates so
much from the other observations as to arouse suspicions that it was generated by a different
mechanism”. In more detail, outliers are values which are so far from a rest of a group of
values in a sample space, and they are generated by a different probability density function
(PDF) from the rest of the group. In the Hawkins’ definition of outliers, observations con-
taining some measurement noise are called outliers, and a difference of sets of observations
defines outliers. However, in this dissertation, term “outliers” means the only measurement
noise, and two sets of measurement noise are considered, i.e., sets of “normal” and “ab-
normal” measurement noise. The normal measurement noise can usually be described as
stochastic variables generated by a normal distribution. On the other hand, the outliers are
a kind of non-Gaussian measurement noise generated by heavier tailed distributions than
a normal distribution, and abnormal values, which are distant so much from mean values
of distributions, are unusually occurred in a time domain. In other words, the outliers are
contained in measurements infrequently and their values can usually be considered as zero,
so it can be said that the outliers tend to be sparse.

The outliers give negative effects on various fields [2, 3]. For example, fraud detection
refers to detection of criminal activities occurring in commercial organizations such as banks,
credit card companies, insurance agencies, cell phone companies, stock market, and so on.
These frauds can be regarded as outliers. Intrusion detection refers to detection of malicious
activity in a computer related system, and it is also one of outlier detection methodologies.
Fault diagnosis refers to industrial damage detection, and it is also one of very important
problems of outlier detection.

Also in control engineering, outliers are often happened and provide control systems with
negative effects. For example, external environments introduce outliers into control systems
using non-contact sensors, e.g., radar measurements, global positioning system (GPS), ul-
trasonic wave sensors, image measurements, and so on. In target tracking systems using
radar measurements [4, 5, 6], outliers are occurred on distance and angle information due
to reflection noise, and the outliers are called clutter. In unmanned aerial vehicle (UAV)
using visual feedback [7], temporary change of image contrast in background causes outliers
of position data. In unmanned ground vehicle (UGV) using GPS [8], radio disturbances due
to some obstacles provide position data with outliers. Moreover, wireless sensor network

1
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systems include outliers, and detection methods have been proposed [9]. Networked control
systems (NCSs) [10] refer to control systems wherein the control loops are closed through
a network. When network is unstable or has variable delay to send and receive commands,
NCSs have intermittent observations and the observations can be regarded as outliers. Since
Kalman filter (KF) is well known as a linear minimum variance estimator for linear systems
with Gaussian assumptions, performances of KF cannot be guaranteed under the situations.
In [11], in order to use KF in NCSs, a stability of KF with intermittent observations was
analyzed. System identifications also deal with missing data [12] and nonuniform sampling
data [13], and these data can also be regarded as outliers. These outliers deteriorate state es-
timates and control performances, so these systems require robust estimators and controllers
under outliers.

For state estimations under outliers, many methods have been proposed [14]–[20], [34]–
[36],[49]. For example, in [14], for a system identification, multiplication of a median of past
N -th data and some coefficients gives a threshold of outliers, and the outliers are detected
and removed. The method requires many past data, and the threshold is determined by trial
and error. In [15], a reduction method of outliers using sliding mode has been proposed.
However, parameters of the method are designed by heuristic methods, and chattering is
introduced in digital implementations.

KF for non-Gaussian measurement noise including outliers has been proposed, and the
methods are called robust KF (RKF) [16]–[20]. For linear systems, in [16, 17], Bayesian
model is introduced to KF, and expectation maximization (EM) algorithm is used. In [18],
use of variational Bayesian method gives approximations of joint posterior distributions of
state and noise variances to realize a low computational cost. In [19], the method also learns
the covariance matrix of measurement noise by iterations to compute a Kalman gain. These
methods learn their parameters automatically and adjust their parameters for outliers. How-
ever, these methods use some weighted averages to reduce effects of the outliers, so these
methods have time delay. On the other hand, RKF in [20] applies l1 regression to KF. The
method uses a property that outliers tend to be sparse and estimates the outliers explicitly.
l1 regression [21] provides some thresholds of solutions and can gives sparse solutions. There-
fore, estimates of the outliers using l1 regression are truncated by the thresholds, and the
method has less delay than the other RKF. In addition, the method is easier to implement
and compute more efficiently than the other RKF due to a simple structure and convex
optimization problem, so the method attracts many attentions. However, parameters of the
method are designed by heuristic methods. Moreover, the RKF requires some iterative algo-
rithms to solve the optimization, so a convergence rate and accuracy of the solutions of the
RKF depend on conditions of the iterations. There is no practical RKF without heuristic
designs.

For state estimations under outliers in nonlinear systems, extended KF (EKF) is often
used to extend the aforementioned methods. However, EKF requires Jacobians of the non-
linear systems and yields unstable solutions numerically. Strong nonlinearity deteriorates
performances of EKF. Gaussian sum filter (GSF) is other famous KF for nonlinear systems
and non-Gaussian measurement noise including outliers [34, 35]. Since GSF can approximate
arbitrary distributions by using a Gaussian mixture distribution, GSF can provide a global
optimal estimate. However, the complex distributions need to be known, and computational
costs are very high. Particle filter [36] can also approximate arbitrary distributions by us-
ing a Monte Carlo method, and no prior information of distributions is needed. However,
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computation time becomes very large, and it is unsuitable for real time applications. In
other approaches, robust filter is realized by maximum a posterior (MAP) estimation us-
ing a Laplace distribution as a prior distribution [49]. However, it can consider only output
equations of nonlinear systems, not dynamics of the nonlinear systems. There are few robust
nonlinear estimators under outliers in practice.

In control designs under outliers, there are no methods considering outliers explicitly. The
most basic strategy to construct control systems under outliers separates control designs and
estimation problems, and the estimation problems deal with the outliers. However, in order
to guarantee a stability of the control system, it is required not only to reduce effects of the
outliers, but also to analyze performances of the reduction method. Moreover, the separation
principle is not satisfied for nonlinear systems in general. For such systems, It is important
to guarantee a stability of a total system including a controller and observer.

1.2 Purpose of this dissertation

This dissertation proposes a robust estimation under outliers without heuristic designs and
analyzes performances of the proposed estimation. We propose an efficient algorithm of
the proposed estimation, and a robust nonlinear estimation is also proposed. Additionally,
this dissertation also proposes a robust controller under outliers by applying the proposed
estimation, and we analyze a stability of the proposed controller under outliers. Concretely,
we focus on RKF via l1 regression, and we propose a new design method and efficient
algorithm of the RKF. Moreover, we propose a robust self-tuning controller and robust
nonlinear estimator by applying an idea of the RKF.

1.3 Outline

This dissertation comprises seven chapters and three appendixes, and it is organized as
follows.

Chapter 1: Introduction

Firstly, in this chapter, we introduce background, motivation, and purpose for this disserta-
tion.

Chapter 2: Preliminaries

We provide some preliminaries for this dissertation. In this chapter, KF and RKF via l1
regression, which are origins of this dissertation, are also described.

Chapter 3: Design Method of Robust Kalman Filter Based on
Statistics and Its Application

In this chapter, we propose a new design method of RKF via l1 regression. We show that
statistics of Gaussian noise determine the parameters of the RKF, and we can design the
parameters systematically. We apply the method to a target tracking system under clutter
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and a control problem of a two-wheeled vehicle under outliers. The situations are often
observed in many cases, e.g., a position control of a vehicle using GPS, using ultra sonic
sensors, using image measurements, and so on.

Chapter 4: Fast Algorithm of Robust Kalman Filter via l1 Regres-
sion by a Closed Form Solution

In this chapter, we propose an efficient algorithm of RKF via l1 regression. We derive upper
and lower bounds of an optimal estimate of the RKF and compute an approximated estimate
using the both bounds. In addition, the approximated estimate is given by a closed form, so
no iteration is needed and it gives a fast computation.

Chapter 5: Robust Self-Tuning Controller under Outliers

In this chapter, we extend a self-tuning controller (STC) in [47] and propose a robust STC
(RSTC) under outliers. A parameter update law of the conventional STC is given by a
recursive least squares (RLS) estimation. This means that the parameter update law is
equivalent to a solution of a minimization problem which consists of a quadratic form of
estimated errors. We apply an idea of RKF via l1 regression to the minimization problem,
and we estimate outliers explicitly by adding l1 regression term to the minimization problem.
We construct the RSTC by removing the estimated outliers from the STC. Moreover, we
analyze control performances of the proposed RSTC.

Chapter 6: Robust Nonlinear State Estimation and Design Method
of Its Parameters

In this chapter, we expand RKF via l1 regression to nonlinear systems under outliers by
using unscented KF (UKF) [50]–[53], and a robust UKF (RUKF) is proposed. In addition,
we also derive a design method of its parameters by using a framework of a MAP estimation,
and we show that the parameters can be determined systematically.

Chapter 7: Conclusion

This chapter summarizes the contributions of each chapter and provides our future works.



Chapter 2

Preliminaries

2.1 Notation about Vector and Matrix

A vector is represented as a bold character and its element is as a subscript i. For example,
i-th element of a vector x is represented as xi.

In this dissertation, time is expressed as k. When variables and functions depend on
time k, the time dependent variables and functions are also denoted as a subscript k. For
example, when a vector x depends on time k, the vector and its i-th element are expressed
as xk and xk,i, respectively.

|| · ||1 and || · ||∞ are represented as l1 and l∞ norms, respectively. Let x = [x1, · · · , xn]
T ,

then they are defined as

||x||1 :=
n∑

i=1

|xi|,

||x||∞ := max
i

|xi|.

A matrix is also represented as a bold character and its (i, j)-th element is as a subscript
ij. For example, (i, j)-th element of a matrix A is represented as Aij or aij. If a matrix A
depends on time k, the matrix and its (i, j)-th element are expressed as Ak and Ak,ij (or
ak,ij), respectively.

I is an identity matrix with an appropriate dimension.

diag(·) represents a diagonal matrix. For example, Λ = diag(λ1, · · · , λm) indicates the
following diagonal matrix:

Λ =

 λ1

. . .

λm

 .

E[x] is an expectation of x, and it represents a mean of x. Let x̄ = E[x], then a second
moment (covariance matrix) of x is written as E[(x− x̄)(x− x̄)T ].

5
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2.2 Definition of Derivatives of Absolute Functions

A derivative of an absolute function is defined as the following sub-gradient:

∂|xi|
∂xi

:∈


{1} xi > 0

[− 1, 1] xi = 0

{−1} xi < 0

.

2.3 Notation of Probability Density Function

A normal distribution, whose mean is µ and covariance matrix is Σ2, is described as
N (µ,Σ2), or it is denoted as pn(x) briefly.

PDFs of Cauchy and Gaussian mixture distributions are denoted as pc(x) and pg(x),
respectively, and they are given by the following equations:

pc(x) =
1

π

δ

δ2 + (x− x0)2
,

pg(x) = (1− ε)N (µ1,Σ
2
1) + εN (µ2,Σ

2
2),

where x0 is a center and δ is a width of the Cauchy distribution. ε is a random variable
distributed by a Bernoulli distribution whose probability is p.

For a stochastic variable x ∈ Rm, let pl(x) be a PDF of a Laplace distribution, and it is
defined as

pl(x) = 2−m/2det(S)−1/2 exp
[
−
√
2
∣∣∣∣S−1/2(x− µ)

∣∣∣∣
1

]
, (2.1)

where µ is a mean and S is a covariance matrix. Several kinds of multivariate Laplace
distributions have been used [22, 49], and Eq. (2.1) is a one of the multivariate Laplace
distributions. A derivation of the PDF is written in Appendix A.

2.4 Kalman Filter

Let xk ∈ Rn and yk ∈ Rm be a state and measurement at time k, respectively. We consider
the following linear time-invariant (LTI) system:

xk = Axk−1 +wk,

yk = Cxk + vk,
(2.2)

where A ∈ Rn×n is a system matrix and C ∈ Rm×n is an observation matrix. wk ∈ Rn is a
system Gaussian noise at time k and vk ∈ Rm is a Gaussian measurement noise at time k.

We assume that wk is independent of vk. Let P ∈ Rn be a covariance matrix of a state
estimation error, and let Q ∈ Rn×n and R ∈ Rm×m denote covariance matrices of wk and
vk, respectively.
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Considering the LIT system (2.2), predict and update laws of KF are expressed as

Predict law:

{
x̂k|k−1 = Ax̂k−1|k−1,

Pk|k−1 = APk−1|k−1A
T +Q,

(2.3)

Update law:


L = Pk|k−1C

T (CPk|k−1C
T +R)−1,

ek = yk −Cx̂k|k−1,

x̂k|k = x̂k|k−1 +Lek,

Pk|k = (I −LC)Pk|k−1,

(2.4)

where x̂ is an estimate of x.
A solution of the following optimization problem can derive the update law of KF (2.4):

x̂k|k = argmin
xk

vT
k R

−1vk +
(
xk − x̂k|k−1

)T
P−1

k|k−1

(
xk − x̂k|k−1

)
. (2.5)

Actually, a derivation of the solution is written in Appendix B.

2.5 Robust Kalman Filter via l1 Regression

In this section, RKF in [20] is described.
We consider the following LTI system:

xk = Axk−1 +wk,

yk = Cxk + vk + zk,
(2.6)

where zk ∈ Rm is an outlier in a measurement at time k, and it is a different point from Eq.
(2.2).

A predict law of RKF via l1 regression is given by a same form as KF:

x̂k|k−1 = Ax̂k−1|k−1,

Pk|k−1 = APk−1|k−1A
T +Q.

(2.7)

Adding l1 regularization term to Eq. (2.5) results in an update law of the RKF:

{x̂k|k, ẑk} = argminxk,zk v
T
k R

−1vk

+
(
xk − x̂k|k−1

)T
P−1

k|k−1

(
xk − x̂k|k−1

)
+ λ||zk||1,

subject to L = Pk|k−1C
T (CPk|k−1C

T +R)−1,

ek = yk −Cx̂k|k−1,

xk|k = x̂k|k−1 +L(ek − zk),

Pk|k = (I −LC)Pk|k−1,

(2.8)

where λ is a regularization parameter. In KF, the solution of the optimization problem (2.5)
yields a linear form, i.e., x̂k|k = x̂k|k−1 + Lek. However, it is assumed that an estimate of
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the RKF is given by the linear form and an innovation is represented by a prediction error
except outliers. Since a criteria using a quadratic form is very sensitive to outliers, l1 norm
is adopted to evaluate the outliers in Eq. (2.8). Additionally, by using l1 regularization
term, solutions tend to be sparse, i.e., the solutions can contain many zero values. Hence,
l1 regularization term can provide solutions containing many zero values more frequently
than l2 regularization term. The outliers are infrequent and their values can usually become
zero, and l1 regularization term provides estimates of zk with a property that solutions may
contain many zero values.

Eq. (2.8) can be rewritten as

L = Pk|k−1C
T (CPk|k−1C

T +R)−1,

ek = yk −Cx̂k|k−1,

x̂k|k = x̂k|k−1 +L(ek − ẑk),

Pk|k = (I −LC)Pk|k−1,

(2.9)

and ẑk is given by a solution of the following optimization problem via l1 regression:

ẑk = argmin
zk

(ek − zk)
T W (ek − zk) + λ||zk||1, (2.10)

where W is a positive definite matrix and given by

W = (I −CL)TR−1(I −CL) +LTP−1
k|k−1L

=
(
CPk|k−1C

T +R
)−1

. (2.11)

In multi output systems, using multi regularization parameters, i.e., λi, i = 1, · · · ,m, the
optimization problem (2.10) can be generalized as

ẑk = argmin
zk

(ek − zk)
T W (ek − zk) +

m∑
i=1

λi |zk,i| . (2.12)

where λ = [λ1, · · · , λm]
T ∈ Rm.

The regularization parameters need to be tuned suitably for each application, and it is
often determined by heuristic methods. This dissertation proposes a new systematic design
method of the parameter by using the covariance matrices, Q and R.



Chapter 3

Design Method of Robust Kalman
Filter via l1 Regression Based on
Statistics and Its Application

3.1 Introduction

In automobiles, industrial robots, medical machines, and so on, computerization gives the
machines high functionalities. However, external noise has negative effects on the comput-
erized machines, especially, outliers are contained in sensor signals of the machines. In other
cases, non-contact sensors, e.g., radar measurements, GPS, ultrasonic wave sensors, image
measurements, and so on, are often used in control systems. However, external environments
introduce outliers into these sensor signals. For example, in target tracking systems [4, 5, 6],
outliers are occurred on distance and angle information due to reflection noise, and the out-
liers are called clutter. Additionally, in UAV using visual feedback [7], temporary change
of image contrast in background causes outliers of position data. In UGV using GPS [8],
radio disturbances due to some obstacles provide position data with outliers. These outliers
deteriorate state estimates and control performances.

In order to reduce effects of the outliers, many methods have been proposed [14]–[20].
For example, for a system identification, multiplication of a median of past N -th data and
some coefficients give a threshold of outliers, and the outliers are detected and removed by
the threshold [14]. The method requires many past data, and the threshold is determined by
trial and error. In [15], a reduction method of outliers using sliding mode has been proposed.
However, parameters of the method are designed by heuristic methods, and chattering is
introduced in digital implementations.

Kalman filter (KF) for outliers has also been proposed in [16]–[20], and the methods
are called robust KF (RKF). In [16, 17], Bayesian model is introduced to KF, and EM
algorithm is used. In [18], use of variational Bayesian method gives approximations of joint
posterior distributions of state and noise variances to realize a low computational cost. In
[19], the method also learns the covariance matrix of measurement noise by iterations to
compute a Kalman gain. These methods learn their parameters automatically and adjust
their parameters for the outliers. But, these methods use some weighted averages to reduce
effects of the outliers, so these methods have time delay. On the other hand, RKF in [20]
applies l1 regression to KF. l1 regression [21] provides some thresholds of solutions and

9
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can gives sparse solutions, so estimates of the outliers using l1 regression are truncated
by the thresholds. In addition, the method is easy to implement and compute due to a
simple structure and convex optimization problem, so the method attracts many attentions.
However, parameters of the method are designed by heuristic methods.

In this chapter, we propose a new design method of RKF via l1 regression. We show that
statistics of Gaussian noise determine the parameters of the RKF, and we can design the
parameters systematically.

The organization of this chapter is as follows. In section 2, we propose a new design
method of the RKF. In section 3, we derive the proposed method from a Lagrange dual
problem. In section 4, we analyze performances of the RKF with the proposed design
method. In section 5 and 6, we apply the RKF with the proposed design method to a radar
tracking system with clutters and a two-wheeled vehicle under outliers, respectively. We
demonstrate its effectiveness by some numerical simulations in these sections. Conclusion is
given in section 7.

Hereafter, we denote RKF via l1 regression as just “RKF”, and we use the notation
without distinction from the other RKF.

3.2 Proposed Design Method of RKF Based on Statis-

tics

3.2.1 Design Method for Single Output Systems

First, to improve understanding, a design method for single output systems is explained.
In the case of single output systems, an optimal solution ẑk of Eq. (2.10) is given by the

following equation analytically [21, 23]:

ẑk =

{
ek − λ

2W
(zk ≥ 0)

ek +
λ

2W
(zk < 0)

.

Therefore,

ẑk =


ek − λ

2W

(
ek ≥ λ

2W

)
0

(
− λ

2W
≤ ek <

λ
2W

)
ek +

λ
2W

(
ek < − λ

2W

) . (3.1)

For example, Fig. 3.1 shows a graph of Eq. (3.1), where W = 1 and λ = 10. It can be
seen that ẑk = 0 in the range of − λ

2W
≤ ek ≤ λ

2W
, so Eq. (2.9) is equal to an update law

of standard KF in the range. On the other hand, ẑk is non-zero if an absolute value of the
output error ek is greater than λ

2W
. This means that λ

2W
is a threshold of outlier ẑk, and

λ
2W

can be interpreted as a possible range of ek without outlier ẑk.
Let e∗k be a prediction error without outlier zk:

e∗k := ek|zk=0

= C
(
xk − x̂k|k−1

)
+ vk. (3.2)
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Figure 3.1: Solution of robust Kalman filter for single output systems, where W = 1 and
λ = 10, therefore λ/(2W ) = 5.

The range of e∗k depends on distributions of an estimation error xk−x̂k|k−1 and measurement
Gaussian noise vk, i.e., e

∗
k also depends on a Gaussian distribution, so we use a standard

deviation (STD) of e∗k as the possible range of e∗k. Let σe∗ be a STD of e∗k, then a variance
σ2
e∗ is given by

σ2
e∗ = E

[
(e∗k)

2
]

= CPk|k−1C
T +R.

Therefore, the parameter of RKF for single output systems satisfies the following equation:

λ

2W
= σe∗ ,

∴ λ = 2Wσe∗ . (3.3)

3.2.2 Design Method for Multi Output Systems

A same procedure as the design for single output systems derives parameters of RKF for
multi output systems. A first order necessary condition of an optimality for Eq. (2.12)
derives the following inclusion:

(
2W (ek − ẑk)

)
i
∈


{λi} ẑk,i > 0

[− λi, λi] ẑk,i = 0

{−λi} ẑk,i < 0

, (3.4)

where (·)i is represented as a i-th element of a vector. Eq. (2.12) is a convex optimization
problem, so the condition is also sufficient. Note that, in general, the optimization problem
for multi output systems cannot be solved analytically.
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Assuming that measurements include no outliers in the same way as the design for single
output systems, i.e., zk = 0, Eq. (3.2) and (3.4) give the following inclusion:(

2We∗
k

)
i
∈ [− λi, λi]. (3.5)

Eq. (3.5) indicates that λi is a some upper bound for e∗k,i. In an opposite manner, if we
know a prior information of an upper bound of e∗

k for all time, we can calculate λi by the
upper bound, i.e., parameters of RKF are given by

ε = 2W sup
k

e∗
k, (3.6)

λi = |εi|, (3.7)

where supk e
∗
k := [supk e

∗
k,1, · · · , supk e

∗
k,m]

T , and ε = [ε1, · · · , εm]T ∈ Rm.

However, we cannot calculate supk e
∗
k in advance. In this chapter, we replace supk e

∗
k with

another value. Note that e∗
k is the output error considering only a Gaussian distribution as

measurement noise. Then, Eq. (3.5) is expressed as λ1η1
...

λmηm

 = 2We∗
k, (3.8)

where ηi can be chosen randomly in [−1, 1], so ηi can be regarded as a stochastic variable
without loss of generality. Moreover, ηi is independent of the other stochastic variables
because ηi can be chosen independently. Note that e∗

k is a prediction error considering only
Gaussian noise as measurement noise. A covariance matrix of e∗

k, i.e., Σe∗ , is given by

Σe∗ = E[e∗
ke

∗
k
T ]

= CPk|k−1C
T +R. (3.9)

Note that Eq. (2.11), E[η2i ] ≤ 1, and E[ηiηj] = 0 (i ̸= j) are satisfied. Eq. (3.8) yields the
following inequality: λ2

1
. . .

λ2
m

 ≥

 λ2
1E[η21]

. . .

λ2
mE[η2m]



= E


 λ1η1

...
λmηm

 [ λ1η1 · · · λmηm
]

= 4WE
[
e∗
ke

∗
k
T
]
W

= 4W . (3.10)

This means that the parameter λ should be determined to satisfy Eq. (3.10).
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Assume that Σe∗ = W−1 is a diagonal matrix and given by Σe∗ = diag(σ2
1, · · · , σ2

m). The
parameter λ can be selected as diag(λ2

1, · · · , λ2
m) = 4W . Let σe∗ = [σ1, · · · , σm]

T ∈ Rm,
then the parameter λ can be rewritten as

λ = 2

 1/σ1
...

1/σm


= 2Wσe∗ . (3.11)

In single output systems, Eq. (3.11) coincides with Eq. (3.3)
In the case of a single regularization parameter, Eq. (3.5) is replaced as the following

equation: ∣∣∣∣2We∗
k

∣∣∣∣
∞ ≤ λ.

This means that λ should be chosen by
∣∣∣∣2W supk e

∗
k

∣∣∣∣
∞, i.e., ||λ||∞ satisfying Eq. (3.10).

Some remarks are given for the proposed design method of the regularization parameter.

Remark 3.1 Eq. (3.10) and (3.11) mean that a STD is used instead of supk e
∗
k in Eq. (3.6).

It is interpreted that e∗
k is in a set except outliers, i.e., in a “normal value”, then supk e

∗
k is

replaced with the STD in practice. Use of the STD to determine the regularization parameter
can simplify computations. Additionally, a covariance matrix of an innovation of RKF can
be bounded by a covariance matrix of normal KF without outliers, and it is proven in section
3.4.

Remark 3.2 The covariance matrix P , which is used in Eq. (3.10) and (3.11), is predicted
and updated, and its tuning parameters are Q and R. This means that parameter designs
of RKF are equivalent to ones of standard KF, and we need no prior information for outliers.

Remark 3.3 Only designing of standard KF determines and updates the parameters of
RKF automatically, so we can interpret RKF with the proposed design method as a “self-
tuning” RKF.

Remark 3.4 Traditionally, the parameters of RKF are determined by heuristic methods,
so the conventional design methods might be inappropriate in physical meanings. However,
the proposed design method can determine the parameters via statistics of noise, i.e., Q and
R, so the parameters have physical meanings.

3.3 Derivation of Proposed Design Method by Lagrange

Dual Problem

We consider a new variable rk ∈ Rm. The optimization problem (2.12) can be rewritten as
the following equation [24, 25]:

minrk,zk rT
k Wrk +

∑m
i=1 λi|zk,i|,

subject to rk = ek − zk.
(3.12)
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Let ν ∈ Rm be a Lagrange multiplier, then a Lagrangian can be defined as

L(rk, zk,ν) := rT
k Wrk +

m∑
i=1

λi|zk,i|+ νT (rk − ek + zk) . (3.13)

Let g(ν) be a Lagrange dual function, then a Lagrange dual problem is given by the following
maximization problem:

maxν g(ν),

g(ν) := infrk,zk L(rk,zk,ν).

We derive the Lagrange dual function g(ν). Since the Lagrangian L is a quadratic form
for rk and W is a positive-definite matrix, L is bounded below in rk. On the other hand,
L is linear for all zk, except zk = 0, so L is bounded below only if zk = 0. Therefore, if
zk ̸= 0, infrk,zk L(rk, zk,ν) = −∞.

If zk = 0 is satisfied, ∂L
∂rk

= 0 give the following equation:

rk = −1

2
W−1ν (|νi| ≤ λi, i = 1 · · ·m).

Then, the Lagrangian L is represented as

L(ν, rk,zk) = −1

4
νTW−1ν − νTek, (|νi| ≤ λi, i = 1 · · ·m).

Therefore, the Lagrange dual function g(ν) is given by

g(ν) = inf
rk,zk

L(rk,zk,ν)

=

{
−1

4
νTW−1ν − νTek |νi| ≤ λi, i = 1 · · ·m

−∞ otherwise
.

If |νi| ≤ λi, the Lagrange dual problem has feasible solutions. This means that the regular-
ization parameters provide upper bounds for feasible solutions in a dual space. In addition,
since the primal problem (3.12) is convex and satisfies Slater’s condition [24], optimal solu-
tions of the primal and dual problem coincide with each other.

Note that zk = 0 if |νi| ≤ λi is satisfied. An optimal solution of the Lagrange dual
problem, i.e., ν∗, is given by

ν∗ = −2Wek|zk=0

= −2We∗
k (|νi| ≤ λi).

The condition is equivalent to Eq. (3.5), and the same results as the previous section can be
obtained in the dual space.

Remark 3.5 The dual problem derives Eq. (3.5) without the assumption that zk = 0 used
in the previous section.
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3.4 Covariance Matrix under outliers

3.4.1 Covariance Matrices of an Innovation and Estimated Out-
liers and Its Upper Bounds

For the proposed design method, the following theorem is satisfied.

Theorem 3.1 Assuming that regularization parameters of RKF is given by Eq. (3.10),
a covariance matrices of an innovation and estimation error of outliers are given by the
following inequalities, respectively:

E[(ek − ẑk)(ek − ẑk)
T ] ≤ γ

(
CPk|k−1C

T +R
)
, (3.14)

E
[
(zk − ẑk)(zk − ẑk)

T
]

≤ (1 + γ)
(
CPk|k−1C

T +R
)
, (3.15)

where γ is a real number, and γ ≥ 1.

Proof: Let a sub-gradient of |zk,i| be ηi ∈ [−1, 1], then the necessary condition of Eq. (2.12)
can be rewritten as

∀ẑk, − 2W (ek − ẑk) +

 λ1η1
...

λmηm

 = 0. (3.16)

In similar to Eq. (3.8), it is assumed that ηi is mutually independent stochastic variable
without loss of generality. Assuming that λ satisfies Eq. (3.10), then a real number γ ≥ 1
exists such that

4W ≤

 λ2
1

. . .

λ2
m

 ≤ 4γW .

Eq. (3.16) gives the following inequality:

4W E[(ek − ẑk)(ek − ẑk)
T ] W T ≤

 λ2
1

. . .

λ2
m


≤ 4γW .

∴ E[(ek − ẑk)(ek − ẑk)
T ] ≤ γW−1

= γ
(
CPk|k−1C

T +R
)
, γ ≥ 1.

From Eq. (2.6) and (3.16),

zk − ẑk = yk −Cxk − vk − ẑk

= ek −C(xk − xk|k−1)− vk − ẑk

=
1

2
W−1

 λ1η1
...

λmηm

−C(xk − xk|k−1)− vk.
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Since every stochastic variables are mutually independent, a covariance matrix of an estima-
tion of outliers is bounded by

E
[
(zk − ẑk)(zk − ẑk)

T
]
≤ (1 + γ)

(
CPk|k−1C

T +R
)
, γ ≥ 1.

Remark 3.6 Eq. (3.14) means that a covariance matrix of an innovation of RKF is bounded
by that of normal KF without outliers. This means that the covariance matrix of RKF can
be bounded by order of R if Pk|k−1 converges to a small value.

Remark 3.7 Single output systems satisfy γ = 1. Also in the case that the weight matrix
(2.11) is diagonal matrix, γ becomes 1. An upper bound of the covariance matrix of the
innovation comes close to an ideal one even under outliers.

3.4.2 Covariance Matrix of a State Estimation Error under Out-
liers

Eq. (2.6) and (2.9) yield the following equation:

xk − x̂k|k = xk − x̂k|k−1 −L(ek − ẑk)

= (I −LC)(xk − x̂k|k−1)−Lvk −L (zk − ẑk) .

Both in KF and RKF, Eq. (2.9) updates a covariance matrix of a state estimation error.
However, an actual updated covariance matrix under outliers is given by

Pk|k = E
[
(xk − x̂k|k)(xk − x̂k|k)

T
]

= (I −LC)Pk|k−1(I −LC)T +LRLT +LE
[
(zk − ẑk)(zk − ẑk)

T
]
LT

= (I −LC)Pk|k−1 +LE
[
(zk − ẑk)(zk − ẑk)

T
]
LT . (3.17)

In standard KF, ẑk = 0, so an actual Pk|k under outliers depends on a second moment of
zk. For example, if zk is distributed by a distribution whose second moment is infinite, like
a Cauchy distribution [26], the updated covariance matrix Pk|k should be infinite in ideal.
However, it results in no update of a state. On the other hand, in RKF using the proposed
algorithm, Eq. (3.17) satisfies the following inequality and bounded:

Pk|k ≤ (I −LC)Pk|k−1 + (1 + γ)LCPk|k−1

= (I + γLC)Pk|k−1, γ ≥ 1. (3.18)

In RKF using the proposed algorithm, the updated covariance matrix of a state estimation
error can be selected among solutions satisfying Eq. (3.18). The update law (2.9) is one of
the solutions.
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3.5 Application to Target Tracking Systems under Clut-

ters

3.5.1 Target Tracking Using Kalman Filter

We apply the proposed method to a target tracking systems under clutters shown in [4].

Fig. 3.2 shows a coordinate of the target tracking systems. An orthogonal coordinate,
whose x-axis is east, y-axis is north, and z-axis is a vertical direction, is called “north east
coordinate”. Assuming a polar coordinate consisting of a distance from a radar, elevation,
and azimuth satisfies, the following relation between the north east and polar coordinates is
satisfied:

 xk

yk
zk

 =

 rk cos θk sinφk

rk cos θk cosφk

rk sin θk

 . (3.19)

Let xk = [xk, ẋk, yk, ẏk, zk, żk]
T ∈ R6 be a state of the target at time k, and a state

equation of the target is given by the following constant acceleration model on the north
east coordinate:

xk = Aaxk−1 +wk, (3.20)

Figure 3.2: North east up coordinates and polar coordinates for target tracking systems.
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where Aa and wk are as follows:

Aa =

 A
. . .

A

 ,

wk =

 GTax
GTay
GTaz

 ,

A =

[
1 ∆t
0 1

]
,

G =

[
∆t2

2

∆t

]
,

where ∆t is a sampling time, and ax, ay, and az are accelerations of xk, yk, and zk, re-
spectively. Assume that ax, ay, and az are mutually independent. Let σax , σay , and σaz be
standard deviations of ax, ay, and az, respectively. A covariance matrix of wk, i.e., Q is
given by

Q = E
[
wkw

T
k

]
=

 σ2
axGGT 0 0

0 σ2
ayGGT 0

0 0 σ2
azGGT

 .

Suppose that an output is defined by yk = [xk, yk, zk]
T ∈ R3. An output equation is

given by

yk = Caxk + Γvk, (3.21)

where vk is a measurement noise including outliers on the polar coordinate. Ca is a mea-
surement matrix and Γ is a matrix which transform a small measurement noise on the polar
coordinate to a measurement noise on the north east coordinate, and they are given by

Ca =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 ,

Γ =


∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ


∣∣∣∣∣∣∣
r=rk

,

where r = [r, θ, φ]T ∈ R3. Actual information obtained from the radar is only output on
the polar coordinate. Eq. (3.19) transforms the output to north east coordinate’s one, then
Eq. (3.21) is applied.
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3.5.2 Model of Clutters

In target tracking systems, outliers are occurred on distance and angle information due to
reflection noise, and the outliers are called clutters. Moreover, the clutters can be modeled
as Symmetric α-Stable (SαS) distribution, or Gaussian mixture model [5, 6]. In this section,
we consider two types of outliers; one is Cauchy distribution which is SαS distribution with
α = 1, and the other is Gaussian mixture model.

3.5.3 Conditions

In reference to [4], the following scenario is considered. The radar is located in the origin,
and the target starts from the position that an attitude is 9000m and surface distance
70km. After the target starts, the target moves in the direction of the origin along x-axis
at 170m/s. Sampling time is 6 second, and a STD of an acceleration is [σax , σay , σaz ] =

[10m/s2, 0.5m/s2, 1.0m/s2].
It is assumed that a nominal measurement noise is Gaussian measurement noise whose

mean is 0 and STDs are 100m in distance and 7mrad in angle. In the use of Cauchy
distribution as the clutters, Cauchy noise is added to the nominal noise. The parameters are
x0 = 0 and δ = 5× 10−1, and its gain is tuned to be proportional to the STD of the nominal
noise. In the use of Gaussian mixture model as the clutters, p = 0.1 and its STD is 10 times
larger than the nominal noise.

Under the aforementioned conditions, we compare performances of RKF by using be-
tween the proposed design method and heuristic design method. Performances of KF are
also evaluated for comparison. As a heuristic design method, we search regularization param-
eters which minimizes a summation of root mean square errors (RMSEs) of each estimate.
However, since it is difficult to determine multi regularization parameters by the heuristic
method, we search a single regularization parameter by the heuristic method. Additionally,
in the heuristic design method, a suitable parameter depends on noise, and it is changed at
each simulation. In the demonstration, we search the parameter 10 times, and select the
average. We use λ = 0.0124 under the Cauchy noise, and λ = 0.0273 under the Gaussian
mixture noise.

In this system, a structure of the system results in a diagonal matrix W in the optimiza-
tion problem (2.12), so the regularization parameter is given by Eq. (3.11).

3.5.4 Results

Fig. 3.3 – 3.8 show estimates of x, y, and z by using KF and RKF with the proposed design
method. Fig. 3.3 – 3.5 show estimates under the Cauchy noise, and Fig. 3.6 – 3.8 show
estimates under the Gaussian mixture noise. Under clutters, estimation errors of KF are
very large. On the other hand, RKF can reduce effects of the clutters.

Fig. 3.9(a) shows RMSEs of estimates and average of all RMSEs under the Cauchy
noise. Fig. 3.9(b) shows RMSEs under the Gaussian mixture noise. RMSEs are changed
every simulations. In the demonstration, we average 10 times results.

Under the Cauchy noise, the proposed design method gives smaller means of estimation
errors than the heuristic one except ż. An estimation error of ż designed by the proposed
method is only 4.35% larger than that designed by the heuristic one. And also, the proposed
design method provides the smaller maximums of the errors than the heuristic one.
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Figure 3.3: Estimates of x using KF and RKF designed by the proposed method under
Cauchy distribution. The solid lines are measurements, dashed lines are estimates, and
dotted lines are true signals.
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Figure 3.4: Estimates of y using KF and RKF designed by the proposed method under
Cauchy distribution. The solid lines are measurements, dashed lines are estimates, and
dotted lines are true signals.
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Figure 3.5: Estimates of z using KF and RKF designed by the proposed method under
Cauchy distribution. The solid lines are measurements, dashed lines are estimates, and
dotted lines are true signals.
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Figure 3.6: Estimates of x using KF and RKF designed by the proposed method under
mixed Gaussian distribution. The solid lines are measurements, dashed lines are estimates,
and dotted lines are true signals.
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Figure 3.7: Estimates of y using KF and RKF designed by the proposed method under
mixed Gaussian distribution. The solid lines are measurements, dashed lines are estimates,
and dotted lines are true signals.
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Figure 3.8: Estimates of z using KF and RKF designed by the proposed method under
mixed Gaussian distribution. The solid lines are measurements, dashed lines are estimates,
and dotted lines are true signals.
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Figure 3.9: Root mean square errors of estimates. Values using KF in (a) and (b) are
multiplied by 1/3 and 0.6, respectively.
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Under the Gaussian mixture noise, the proposed design method results in smaller means
and maximums of estimation errors than the heuristic one.

Therefore, the proposed design method gives same or greater performances than the
heuristic one. The reason why the proposed design method is superior to the heuristic one
is because the regularization parameter with the heuristic design method is scalar, so it is
possible that the parameter is determined to be conservative in noise with different variances.
It is expected that multi parameters improve performances of RKF with the heuristic design
method. However, it is difficult to search many parameters in heuristic senses. In contrast,
the proposed design method can determine multi parameters systematically.

3.6 Application to Two-Wheeled Vehicle with Outliers

3.6.1 Problem Settings

In Section 3.5, the target tracking system is treated to evaluate estimation accuracy of the
proposed method. In this section, feedback control performances using the estimates are
evaluated. As a control problem, we consider a two-wheeled vehicle with a non-holonomic
constraint shown in Fig. 3.10. We assume that positions and a angle, i.e., x, y, and θ, are
obtained by sensors, and position sensors are contaminated by outliers. Examples of this
situation are UGV with GPS and UAV using visual feedback [7, 8].

Let m and J be a mass of the vehicle and moment of inertia about the center of gravity,
respectively. Let f and τθ denote a driving force in the direction of motion and steering

torque, respectively. Assuming q =
[
x θ y

]T
and τ =

[
f τθ

]T
, a dynamic model of

Figure 3.10: Model of two-wheeled vehicle with a non-holonomic constraint.
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the vehicle is given by

M (q)q̈ = E(q)τ , (3.22)

where

M (q) =

 m 0 0
0 J 0
0 0 m

 ,

E(q) =

 cos θ 0
0 1

sin θ 0

 .

The vehicle satisfies the following velocity constraint:

ẋ sin θ − ẏ cos θ = 0.

3.6.2 Control Law

We assume that acceleration inputs are given by

f =
m tan θ sec2 θ

1 + tan θ
θ̇ẋ− mα(ẋ− u1)

cos θ
, (3.23)

τθ = −Jβ(θ̇ − u2). (3.24)

Application of the acceleration inputs to Eq. (3.22) and increasing of α and β result in the
following kinematic model [27]:

q̇ =

 1 0
0 1

tan θ 0

[ u1

u2

]
. (3.25)

In this chapter, u1 and u2 are designed by the kinematic model (3.25), and the inputs are
transformed into the acceleration inputs by Eq. (3.23) and (3.24). Many control laws for the
kinematic model have been proposed [28]-[31]. In this chapter, we adopt a time-state control
form [28, 29]. Applying the time-state control form to the vehicle gives a linearized system,
so we can use linear control theories. In order to verify effectiveness of noise reduction, we
selected a simple method.

Assume the following state and input transformations:

z1 = x,

z2 = tan θ,

z3 = y,

u1 = v1,

u2 = v2 cos
2 θ,

µ2 =
v2
v1
.
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The kinematic model can be transformed to the following time-state control form:

ż1 = v1,

d

dz1

[
z3
z2

]
=

[
0 1
0 0

] [
z3
z2

]
+

[
0
1

]
µ2.

One of control laws derived from the time-state control form is as follows:

v1 = ±k1z1, (3.26)

v2 = −k3z3v1 − k2z2|v1|, (3.27)

where k1, k2, and k3 are positive constants. In order to prevent a divergence of z1, a sign of
k1 needs to be changed appropriately.

Similarly to section 3.5, application of RKF to a constant acceleration model estimates
a state of the vehicle in this section.

3.6.3 Conditions

In the demonstration, we compare performances of a controlled vehicle using a heuristic and
the proposed design method.

A mean of a nominal Gaussian measurement noise is 0, and the following two cases for
its covariance matrix are considered:

Case I (same diagonal elements of a covariance matrix):

E[vk] = 0,

E[vkv
T
k ] =

 2.5× 10−3 0 0
0 2.5× 10−3 0
0 0 2.5× 10−3

 .

Case II (different diagonal elements of a covariance matrix):

E[vk] = 0,

E[vkv
T
k ] =

 2.5× 10−1 0 0
0 2.5× 10−3 0
0 0 2.5× 10−3

 .

Specially, the case II supposes a situation using different measurements like section 3.5, or
using sensors with individual differences for noise property. Outliers are assumed to be
distributed by a Cauchy distribution used in section 3.5. A center and width of the Cauchy
distribution are 0 and δ = 5.0× 10−2, respectively.

For parameters of KF and RKF, P0|0 = 10I, σ2
ax = σ2

ay = σ2
aθ

= 5.0× 102, and R is the
same value as the aforementioned covariance matrix of measurement noise. In the heuristic
design method, a suitable parameter depends on noise, and it is changed at each simulation.
In the demonstration, we search the parameter 10 times, and select its average. We use
λ = 43.2 in the case I, and λ = 26.1 in the case II.

Parameters of the two-wheeled vehicle are m = 1.0 and J = 0.1. An initial value of the
vehicle is x0 = [2.5 1.0 0.0]T , and a target is origin. For parameters of the control law,
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we set α = 1 and β = 1. Parameters of Eq. (3.26) and (3.27) are k1 = 1, k2 = 1.1, and
k3 = 0.24. A sign of Eq. (3.26) is changed every 3 second till |z2| + |z3| < 5 × 10−2. After
the inequality condition is satisfied, we make z1 converge exponentially.

3.6.4 Results

In the case I, Fig. 3.11 shows trajectories of a state of the controlled vehicle using RKF
with heuristic and proposed design method. Fig. 3.12 shows absolute values of control
errors of the controlled vehicle. It can be seen that the both responses are similar. Fig.
3.13 shows averaged absolute values of the errors before and after 20 second, i.e., transient
and steady state responses. The values are averages and STDs of 10 times simulations in
similar to section 3.5. These results show that RKF with the proposed design method has
almost same performance as RKF with the heuristic one. Actually, a steady state error of
y using the proposed design method is only 7.98% larger than that using the heuristic one,
and numerical errors of the other values are within 1.69%. Use of the both design methods
gives small STDs of control errors.

In the case II, Fig. 3.14 shows trajectories of a state of the controlled vehicle, and Fig.
3.15 shows absolute values of control errors. Fig. 3.16 shows averaged absolute values of
the errors before and after 20 second. These results show that the proposed design method
makes numerical errors except steady state errors of x and y within 2.08, and the steady
state errors of x and y are improved 49.15% and 18.90%, respectively The proposed design
method also gives smaller STDs than the heuristic one. The proposed design method gives
almost same performances as or smaller errors than the heuristic one. Similarly to the section
3.5, it is possible that the heuristic design method makes the parameter to be conservative
in noise with different variances.

3.7 Conclusion

In this chapter, we proposed a new design method of RKF via l1 regression. Regularization
parameters of RKF are determined by statistics of Gaussian noise. This means that the
proposed design method provides the parameters with physical meanings, and we can design
the parameters systematically. We applied RKF with the proposed design method to a
target tracking system with clutters and a control of a two-wheeled vehicle under outliers.
Effectiveness was demonstrated by some numerical simulations.

We will verify the proposed method by real applications as our future works. We will
also extend to non-linear systems in chapter 6. Moreover, RKF via l1 regression needs to
compute LMI and l1 optimization problem. The algorithms need some numerical iterations
in general, so a convergence rate and accuracy of the solutions depend on conditions of the
iterations. A proposition of an efficient computation algorithm is in chapter 4.
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Figure 3.11: Positions of the vehicle controlled by a time-state control form in the case I. (a)
and (b) are results in using a heuristic and proposed design method, respectively. The solid
line is x, dashed line is y, dotted line is θ, and dash-dotted line is the target.
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Figure 3.12: Absolute values of errors of the controlled vehicle in the case I. (a) and (b) are
results in the case using a heuristic and proposed design method, respectively. The solid line
is x, dashed line is y, and dotted line is θ.
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Figure 3.13: Transient errors and steady state errors in the case I.
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Figure 3.14: Positions of the vehicle controlled by a time-state control form in the case II.
(a) and (b) are results in using a heuristic and proposed design method, respectively. The
solid line is x, dashed line is y, dotted line is θ, and dash-dotted line is the target.
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Figure 3.15: Absolute values of errors of the controlled vehicle in the case II. (a) and (b) are
results in the case using a heuristic and proposed design method, respectively. The solid line
is x, dashed line is y, and dotted line is θ.
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Figure 3.16: Transient errors and steady state errors in the case II.



Chapter 4

Fast Algorithm of Robust Kalman
Filter via l1 Regression by a Closed
Form Solution

4.1 Introduction

Kalman filter (KF) is a well known global optimal estimation for linear systems under some
conditions. The condition is that an estimation error of an initial state and all noises are
distributed by normal distributions. For non-Gaussian measurement noise, KF is a unbiased
minimum variance estimator, but not global optimal [32]. Many real applications include
non-Gaussian measurement noise. For example, outlier is one of the major non-Gaussian
measurement noise. In target tracking systems with a radar measurement, a reflection noise
introduces outliers and the outliers are called clutter [6]. In UAV using visual feedback [7],
temporary change of image contrast in background causes outliers of position data. Also in
UGV using GPS [8], radio disturbances due to some obstacles provide position data with
outliers.

Many algorithms of KF for outliers have been proposed. A major KF for non-Gaussian
measurement noise including outliers is a Gaussian sum filter [34, 35]. Gaussian sum filter
can approximate arbitrary distributions by using a Gaussian mixture distribution, so it
can provide global optimal estimates. Particle filter [36] can also approximate arbitrary
distributions by using a Monte Carlo method, and no prior information of distributions is
needed. However, computational costs of the both methods are very high. In contrast,
application of l1 regression to KF gives a robust estimation under outliers and the method
is called robust KF (RKF) via l1 regression [20]. The method truncates the outliers by some
thresholds generated by l1 regression. Therefore, the method has little time delay to reduce
effects of the outliers and it attracts many attentions. In chapter 3, the new systematic
design method of the RKF was proposed. However, RKF via l1 regression needs to compute
LMI and l1 optimization problem, so the performance of the RKF depends on algorithms to
compute the problems in practice.

Many useful tools to compute LMI are existing. For example, CVX [20] and YALMIP
[37] are description languages of convex optimization problems, and the languages can model
LMI easily in MATLAB and the other softwares. SeDuMi [38] and SDPT3 [39] are solvers
for optimization problems and implement some algorithms, e.g., an interior point method is

37
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the most famous algorithm. The algorithms need some numerical iterations in general, so a
convergence rate and accuracy of the solutions depend on conditions of the iterations.

l1 optimization problems can be formulated as a quadratic programming (QP) optimiza-
tion problems, and CVX can also model the problems. Moreover, CVXGEN [40] can generate
custom C codes of the QP problems for online computations. Fast iterative shrinkage thresh-
olding algorithm (FISTA) are proposed as effective computation methods for l1 optimization
problems [33]. However, similarly to computations of LMI, these methods demand some it-
erative methods. Homotopy method is also proposed and can compute a solution in a closed
form [41], but the method uses all past data.

In this chapter, we derive upper and lower bounds of an optimal estimate of the RKF and
compute an approximated estimate using the both bounds. In addition, the approximated
estimate is given by a closed form, so no iteration is needed and it gives a fast computation.

This chapter is organized as follows: In section 2, RKF via l1 regression is explained
briefly. In section 3, a closed form solution of the RKF is proposed and estimation er-
rors of the algorithm are analyzed. In section 4, some numerical simulations demonstrate
effectiveness of the proposed algorithm. Conclusion is given in section 5.

4.2 Robust Kalman Filter via l1 Regression

4.2.1 Formula

In this section, RKF via l1 regression is explained briefly, again.
Consider the LTI system (2.6). Given Q, R, and an initial value of P , i.e., P0|0, an

update law of RKF via l1 regression are expressed as
L = Pk|k−1C

T (CPk|k−1C
T +R)−1,

ek = yk −Cx̂k|k−1,

x̂k|k = x̂k|k−1 +L(ek − z∗
k),

Pk|k = (I −LC)Pk|k−1,

(4.1)

where z∗
k is given by a solution of the following optimization problem with l1 regression:

z∗
k = argmin

zk
(ek − zk)

T W (ek − zk) +
m∑
i=1

λi |zk,i| , (4.2)

where λ = [λ1, · · · , λm]
T ∈ Rm is a regularization parameter, and W is the following positive

definite matrix:

W =
(
CPk|k−1C

T +R
)−1

. (4.3)

Chapter 3 showed that λ can be designed by the covariance matrices, Q and R, systemati-
cally. In chapter 3, an estimate of zk was expressed as ẑk. However, this chapter represents
the estimate as z∗

k instead of ẑk.
Generally, the optimization problem (4.2) requires iterative computation methods like

an interior point method. However, a convergence rate and accuracy of solutions depend on
conditions of the iterative methods. For example, accuracy of a gradient method depends
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on its step size. And also, solutions rely on stop conditions in any algorithms. Parameters
in iterative algorithms need to be tuned for each application and the tuning is heuristic in
general. In this chapter, we propose a new algorithm without iterations by an approximation
of the optimal solution, and we analyze performances of the algorithm.

4.2.2 Condition to Design Regularization Parameters of RKF

From section 3.2, a condition to design regularization parameters of RKF is as follows: λ2
1

. . .

λ2
m

 ≥ 4W . (4.4)

Therefore, a solution of LMI (4.4) determines the regularization parameter λ.
Since a sparse solution, i.e., z∗k,i = 0, can be often obtained more than necessary if λi

is large, λ should be determined in a small residual of both sides of Eq. (4.4). One of the
solutions is given by the following semi-definite programming (SDP):

min
λ2
1,··· ,λ2

m

λ2
1 + · · ·+ λ2

m,

s.t.

 λ2
1

. . .

λ2
m

 ≥ 4W . (4.5)

Remark 4.1 In general, Eq. (4.2) cannot be solved analytically, and some iterative meth-
ods are needed. Also in Eq. (4.5), iterative methods are required to solve the LMI.

4.3 Fast Algorithm of Robust Kalman Filter by a Closed

Form Solution

4.3.1 Derivation

Let ẑ∗
k be an approximated solution of z∗

k. This section shows that use of upper and lower
bounds of z∗

k provides an approximated solution ẑ∗
k, and ẑ∗

k can be written in a closed form.
The following inequality is sufficient to satisfy Eq. (4.4):

Λ ≥ 2
√
W ,

Λ =

 λ1

. . .

λm

 ,

where
√
W
(√

W
)T

= W , and it can be computed by Cholesky decomposition, so
√
W be-

comes a lower triangle matrix. The first order necessary condition of an optimality condition
can be rewritten as

W (ek − z∗
k) =

1

2
Λ
∂||z∗

k||1
∂z∗

k

.
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∴
(
∂||z∗

k||1
∂z∗

k

)T

W (ek − z∗
k) =

1

2

(
∂||z∗

k||1
∂z∗

k

)T

Λ
∂||z∗

k||1
∂z∗

k

.

Therefore, the following inequality is satisfied:(
∂||z∗

k||1
∂z∗

k

)T

W (ek − z∗
k) ≥

(
∂||z∗

k||1
∂z∗

k

)T √
W

∂||z∗
k||1

∂z∗
k

,

((√
W
)T ∂||z∗

k||1
∂z∗

k

)T ((√
W
)T

(ek − z∗
k)−

∂||z∗
k||1

∂z∗
k

)
≥ 0, (4.6)

where
(√

W
)T

is an upper triangle matrix and represented by the following equation:

(√
W
)T

=


w11 w12 · · · w1m

0 w22
. . . w2m

...
. . . . . .

...
0 · · · 0 wmm

 . (4.7)

A sufficient condition for Eq. (4.6) is as follows:
((√

W
)T

∂||z∗
k||1

∂z∗
k

)
i

≥ 0,((√
W
)T

(ek − z∗
k)−

∂||z∗
k||1

∂z∗
k

)
i

≥ 0,
(4.8)

or 
((√

W
)T

∂||z∗
k||1

∂z∗
k

)
i

≤ 0,((√
W
)T

(ek − z∗
k)−

∂||z∗
k||1

∂z∗
k

)
i

≤ 0,
(4.9)

where (·)i is represented as a i-th element of a vector.
First, consider a case of i = m. Assuming that diagonal elements of Eq. (4.7) are selected

to be positive, conditions (4.8) and (4.9) result in the following inequalities:

z∗k,m ≤ ek,m − w−1
mm

∂|z∗k,m|
z∗k,m

,
∂|z∗k,m|
z∗k,m

≥ 0, (4.10)

z∗k,m ≥ ek,m − w−1
mm

∂|z∗k,m|
z∗k,m

,
∂|z∗k,m|
z∗k,m

≤ 0. (4.11)

Right hand sides of the inequalities are interpreted as computations of upper and lower
bounds of z∗k,m. Let z̄

∗
k,m ≥ 0 and z∗k,m ≤ 0 be the upper and lower bounds of z∗k,m, respectively.

Assuming that signs of the upper and lower bounds are equal to one of the optimal solution,
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the both bounds can be calculated by the following equations, respectively:

z̄∗k,m =

{
ek,m − w−1

mm ek,m > w−1
mm

0 otherwise
, (4.12)

z∗k,m =

{
ek,m + w−1

mm ek,m < −w−1
mm

0 otherwise
. (4.13)

Since the both Eq. (4.12) and (4.13) are 0 in a common domain, an estimate of z∗k,m, i.e.,
ẑ∗k,m, is defined as

ẑ∗k,m = z̄∗k,m + z∗k,m

=


ek,m − w−1

mm ek,m > w−1
mm

0 otherwise

ek,m + w−1
mm ek,m < −w−1

mm

. (4.14)

Assume that elements from i + 1 to m are calculated. The condition (4.8) provides the
following condition for a i-th element:

∂|z∗k,i|
z∗k,i

≥ − 1
wii

∑m
j=i+1wij

∂|ẑ∗k,j |
ẑ∗k,j

,

z∗k,i ≤ e′k,i − w−1
ii

∂|z∗k,i|
z∗k,i

,

e′k,i = ek,i +
1
wii

∑m
j=i+1wij(ek,j − ẑ∗k,j).

(4.15)

In the same way as i = m, Eq. (4.15) means a calculation of an upper bound of z∗k,i, i.e.,

z̄∗k,i ≥ 0. Note that z̄∗k,i > 0 gives
∂|z̄∗k,i|
z̄∗k,i

= 1. Assuming that signs of z∗k,i and z̄∗k,i are same,

z̄∗k,i can be computed by

if − 1

wii

m∑
j=i+1

wij

∂|ẑ∗k,j|
ẑ∗k,j

≤ 1

then z̄∗k,i =

{
e′k,i − w−1

ii e′k,i > w−1
ii

0 otherwise

else z̄∗k,i = 0. (4.16)

where, for convenience, z̄∗k,i = 0 if the condition (4.8) is not satisfied. Similarly, note that
∂|z∗k,i|
z∗k,i

= −1 for z∗k,i < 0, z∗k,i is given by the following equation:

if − 1

wii

m∑
j=i+1

wij

∂|ẑ∗k,j|
ẑ∗k,j

≥ −1

then z∗k,i =

{
e′k,i + w−1

ii e′k,i < −w−1
ii

0 otherwise

else z∗k,i = 0. (4.17)
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Algorithm 1 Fast algorithm of measurement update of robust Kalman filter via l1 regression
at time k
1: ek = yk −Cx̂k|k−1

2: W = (CPk|k−1C
T +R)−1

3: compute
(√

W
)T

using Cholesky decomposition, where wij is a (i, j)-th element of(√
W
)T

4: ẑ∗k,m = max(|ek,m| − w−1
mm, 0) sign(ek,m)

5: for i = m− 1 down to 1 do

6: e′k,i = ek,i − 1
wii

∑m
j=i+1 σij

∂|ẑ∗k,j |
∂ẑ∗k,j

.

7: if − 1
wii

∑m
j=i+1wij

∂|ẑ∗k,j |
ẑ∗k,j

> 1 then

8: z̄∗k,i = 0
9: else
10: z̄∗k,i = max

(
e′k,i − w−1

ii , 0
)

11: end if
12: if − 1

wii

∑m
j=i+1wij

∂|ẑ∗k,j |
ẑ∗k,j

< −1 then

13: z∗k,i = 0
14: else
15: z∗k,i = min

(
e′k,i + w−1

ii , 0
)

16: end if
17: ẑ∗k,i = z̄∗k,i + z∗k,i.
18: end for
19: L = Pk|k−1C

TW
20: x̂k|k = x̂k|k−1 +L(ek − ẑ∗

k)
21: Pk|k = (I −LC)Pk|k−1

Also in this case, the both Eq. (4.16) and (4.17) become 0 in a common domain. Therefore,
ẑ∗k,i is defined as

ẑ∗k,i = z̄∗k,i + z∗k,i. (4.18)

Algorithm 1 shows a fast algorithm of RKF by a closed form computation.

4.3.2 Analysis of an Estimation Error of Outliers and Innovation
of RKF

In order to show performances of the proposed algorithm, an estimation error of the solution
is analyzed. Moreover, an innovation of RKF using the solution is also analyzed.

For the proposed algorithm, the following theorem is satisfied.

Theorem 4.1 Assuming that the following condition is satisfied,

−1 ≤ − 1

wii

m∑
j=i+1

wij

∂|ẑ∗k,j|
∂ẑ∗k,j

≤ 1, ∀ẑ∗k,i, (4.19)
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then covariance matrices of an estimation error of outliers and innovation are given by

E
[
(ẑ∗

k − zk)(ẑ
∗
k − zk)

T
]

≤ 2
(
CPk|k−1C

T +R
)
, (4.20)

E
[
(ek − ẑ∗

k)(ek − ẑ∗
k)

T
]

≤ CPk|k−1C
T +R. (4.21)

Proof: If Eq. (4.19) is satisfied, Eq. (4.18) can be simplified as

ẑ∗k,i =


e′k,i − w−1

ii e′k,i > w−1
ii

0, otherwise

e′k,i + w−1
ii e′k,i < −w−1

ii

. (4.22)

Eq. (4.22) is equivalent to a solution of the following equation:(√
W
)T

(ek − ẑ∗
k) =

∂||ẑ∗
k||

∂ẑ∗
k

. (4.23)

For an estimation error of outliers, Eq. (2.6) and (4.23) yield the following equation:

ẑ∗
k − zk = −

(√
W
)−T ∂||ẑ∗

k||1
∂ẑ∗

k

+C(xk − x̂k|k−1) + vk.

Note that
∂||ẑ∗

k||1
∂ẑ∗

k
is a vector consisting of sub-gradients. This means that each element

of the vector can be interpreted as mutually independent stochastic variable which is in

[−1, 1]. Since E
[
∂||ẑ∗

k||1
∂ẑ∗

k

(
∂||ẑ∗

k||1
∂ẑ∗

k

)T]
≤ I and Eq. (4.3) is satisfied, a covariance matrix of an

estimation error of outliers is given by

E
[
(ẑ∗

k − zk)(ẑ
∗
k − zk)

T
]

≤
(√

W
)−T (√

W
)−1

+CPk|k−1C
T +R

= W−1 +CPk|k−1C
T +R

= 2
(
CPk|k−1C

T +R
)
.

Moreover, for an innovation of RKF, Eq. (4.23) yields

ek − ẑ∗
k =

(√
W
)−T ∂||ẑ∗

k||
ẑ∗
k

.

Therefore, its covariance matrix is given by

E
[
(ek − ẑ∗

k)(ek − ẑ∗
k)

T
]

≤
(√

W
)−T (√

W
)−1

= CPk|k−1C
T +R.
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Remark 4.2 Note that Eq. (4.22) is an approximated solution, not optimal, again. How-
ever, a covariance matrix of an estimation error of ẑ∗

k is bounded by Eq. (4.20) under the
condition (4.19).

Remark 4.3 The covariance matrix of an innovation of RKF is bounded by that of standard
KF without outliers. The fact shows that performances of RKF computed by the proposed
algorithm become ideal ones in some meanings.

Remark 4.4 The covariance matrices are satisfied only under the condition (4.19). In
other words, the condition (4.19) can judge whether the proposed algorithm is good or not.

Remark 4.5 Theorem 3.1 shows that performances of RKF are given by Eq. (4.20) and
(4.21) only ifW is a diagonal matrix. The condition of Theorem 4.1 includes such a situation.
Conversely, even ifW has non-zero cross terms, performances of RKF are given by Eq. (4.20)
and (4.21) under the condition (4.19).

4.3.3 Analysis of a State Estimation Error

Eq. (2.6) and (4.1) yield the following equation:

xk − x̂k|k = xk − x̂k|k−1 −L(ek − ẑ∗
k)

= (I −LC)(xk − x̂k|k−1)−Lvk −L (zk − ẑ∗
k) ,

where ẑ∗
k is used in Eq. (4.1) instead of z∗

k. Both in KF and RKF, Eq. (4.1) updates a
covariance matrix of a state estimation error. However, under outliers, an actual updated
covariance matrix of a state estimation error is given by

Pk|k = E
[
(xk − x̂k|k)(xk − x̂k|k)

T
]

= (I −LC)Pk|k−1(I −LC)T +LRLT +LE
[
(zk − ẑ∗

k)(zk − ẑ∗
k)

T
]
LT

= (I −LC)Pk|k−1 +LE
[
(zk − ẑ∗

k)(zk − ẑ∗
k)

T
]
LT . (4.24)

ẑ∗
k = 0 in the standard KF, so an actual Pk|k under outliers depends on a second moment of

zk. For example, if zk is distributed by a distribution whose second moment is infinite, like a
Cauchy distribution[26], the updated covariance matrix Pk|k should be infinite in ideal, and
it results in no update of a state. On the other hand, in RKF using the proposed algorithm,
Eq. (4.24) satisfies the following inequality and bounded.

Pk|k ≤ (I −LC)Pk|k−1 + 2LCPk|k−1

= (I +LC)Pk|k−1. (4.25)

In RKF using the proposed algorithm, the updated covariance matrix of a state estimation
error can be selected among solutions satisfying Eq. (4.25). The update law (4.1) is one of
the solutions.
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4.4 Simulation

4.4.1 Problem Settings

In this section, we consider a state estimation problem of two-wheel vehicle under outliers
shown in the section 3.6. A model used in the estimation is constant acceleration model
(3.20).

Examples of this situation are UGV with GPS and UAV using a visual feedback [7,
8]. In feedback systems using non-contact sensors, outliers are often occurred because of
temporary change of image contrast in background and radio disturbances due to some
obstacles. Moreover, a coordinate and dynamics are different from the situation, but a clutter
which is one of outliers is happened in a target tracking by using a radar measurement [6].

4.4.2 Noise Model

Two cases of distributions are considered as outliers, i.e., Cauchy and Gaussian mixture dis-
tributions, pc and pg. Cauchy distribution has heavier tails more than Gaussian distribution
and is often used to represent impulsive unexpected values of sensors [26]. Gaussian mixture
distribution is also used to express unusual outliers, e.g., clutter of target tracking systems
[6].

4.4.3 Conditions

An initial value of the vehicle is x0 = [2.5 1.0 0.0]T , and parameters of the vehicle are
m = 1.0 and J = 0.1.

A nominal measurement noise is Gaussian white noise whose mean is 0. Consider two
casess of covariance matrices of the nominal measurement noise. In the case I, the covariance
matrix has small non-zero cross terms. On the other hand, cross terms of the covariance
matrix are about as large as its diagonal elements in the case II. Concretely, the covarinace
matrices in the case I and II are given by the following equations, respectively:

Case I: R =

 0.25 0.16 0.01
0.16 0.25 0.09
0.01 0.09 0.25

 .

Case II: R =

 0.29 0.30 0.36
0.30 0.53 0.30
0.36 0.30 0.49

 .

In the use of the Cauchy distribution, Cauchy noise is added to the nominal measurement
noise. Its parameters are x0 = 0 and δ = 5×10−2. In the use of the Gaussian mixture distri-
bution, we set p = 0.3. Additionally, Nx(0,Σ

2
1) is a distribution of the nominal measurement

noise, and Nx(0,Σ
2
2) is a distribution whose STD is 20 times more than that of the nominal

measurement noise.
Parameters of RKF are P0|0 = I, σ2

ax = σ2
ay = 1.0×104, and σ2

aθ
= 5.0×10. A covariance

matrix of the nominal measurement noise assumes to be known.
MATLAB is used to compute the simulation. A CPU of a computer used in the simulation

is Xeon X5550 (2.66GHz) and memory is 3GB. The proposed algorithm is compared with
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Table 4.1: Sum of root mean squared errors of each estimate in the case I.
Type of methods Cauchy noise Gaussian mixture noise

KF without outliers 1.41
KF with outliers 82.2 13.3
RKF using CVX 1.46 2.24

RKF using CVXGEN with
fixed regularization parameter

1.55 2.42

RKF using FISTA with
fixed regularization parameter

1.47 2.77

RKF using only diagonal elements 1.43 1.78
proposed method 1.41 1.81
proposed method (Compiled ver.) 1.42 1.80

Table 4.2: Sum of root mean squared errors of each estimate in the case II.
Type of methods Cauchy noise Gaussian mixture noise

KF without outliers 1.31
KF with outliers 50.1 12.2
RKF using CVX 1.66 4.35

RKF using CVXGEN with
fixed regularization parameter

1.54 4.94

RKF using FISTA with
fixed regularization parameter

2.18 4.35

RKF using only diagonal elements 2.04 2.17
proposed method 1.52 1.80
proposed method (Compiled ver.) 1.52 1.78

four methods, i.e., CVX, CVXGEN, FISTA and RKF using only diagonal elements of W .
Since RKF can compute its solution analytically if W is a diagonal matrix, RKF using
only the diagonal elements results in a fast computation. CVXGEN generates C code of
QP optimization problems in CVX, and the compiled code can be used in MATLAB to
accelerate a computation. A solution of Eq. (4.2) requires a computation of LMI (4.5).
However, CVXGEN cannot deal with SDP like LMI. FISTA also cannot solve LMI. One
regularization parameter calculated by CVX is fixed in CVXGEN and FISTA. Furthermore,
an estimation procedure of outlier in the proposed algorithm is implemented in C code, and
the compiled code is also compared with them.

4.4.4 Results

Table 4.1 and 4.2 show summations of root mean square errors (RMSEs) of each state in the
case I and II, respectively. Table 4.3 shows averaged computation times of each algorithm
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Table 4.3: Average of computation time at one time step.
Type of methods Computation time [ms]

KF 0.06
RKF using CVX 239

RKF using CVXGEN with
fixed regularization parameter

0.11

RKF using FISTA with
fixed regularization parameter

0.30

RKF using only diagonal elements 0.09
proposed method 0.10
proposed method (Compiled ver.) 0.08

at one time step. These values are averages of 10 times simulations. Results of standard
KF with and without outliers are also shown in the table for comparison. In the simulation,
results using the proposed algorithm satisfy the condition (4.19).

Table 4.1 shows that, under Cauchy noise, RMSEs of RKF using any algorithms are close
to that of KF without outliers. It also shows that RKF can reduce effects of Gaussian mixture
noise. However, accuracy of the solutions depends on the algorithms, and iterative algorithms
give larger RMSEs than the proposed algorithm and RKF using only diagonal elemnets. In
case I, RKF using only diagonal elements has same performances as the proposed algorithm
because the cross terms of the covariance matrix R are small.

Table 4.2 also shows that RKF can reduce effects of both Cauchy and Gaussian mixture
noises. In addition, it can be seen that the proposed algorithm gives smaller RMSE than
the other algorithms including RKF using only diagonal elements. If the covariance matrix
R has large cross terms, RKF using only diagonal elements deteriorates its performances.
However, the proposed algorithm provides good performances also under such a situation.

Table 4.3 shows that, using CVXGEN, FISTA, RKF using only diagonal elements, and
the proposed algorithm, computation times are about 1/1000 times less than one using
CVX. Moreover, the compiled version of the proposed algorithm is more accelerated, and a
computation time of the compiled version comes close to that of KF.

4.5 Conclusion

In this chapter, we proposed a fast algorithm of RKF via l1 regression, which consists of
a l1 optimization problem. The proposed algorithm approximates the optimal solution by
using its upper and lower bounds, and the approximated solution is given by a closed form.
Moreover, it was shown that the proposed algorithm has almost same performances as KF
without outliers. Effectiveness was demonstrated by some numerical simulations.

In larger scale optimization problems, or in some conditions of covariance matrix of Gaus-
sian noise, the condition (4.19) was not satisfied at times, then performances of RKF were
sometimes deteriorated. A proposition of efficient algorithms for the large scale problems is
one of our future works.





Chapter 5

Robust Self-Tuning Controller under
Outliers

5.1 Introduction

Self-tuning controller (STC) has been studied as one of control strategies for systems with
unknown parameters and varying systems [42]–[47]. And also, STC has been applied to
various industrial applications. Recently, an application of STC to an engine control was
reported [47], and STC still has many attentions not only in theory, but also in practice.

In a field of studies for STC theory, since Kalman [42] proposed a method combining a
least squares (LS) estimation and feedback control, many researchers have proposed various
types of STC and discussed about their stabilities. For example, in [43], a method to non-
minimum phase systems was proposed. However, stability of the method was proven only
for the case of known parameters, and stability using a recursive LS (RLS) to estimate the
parameters on-line could not be proven. In [44], global stability of MIMO systems for the
noise-free case was proven. Many other methods were proposed, e.g., an estimation method
of parameters of PID in on-line [45], but a proof of global stability for general MIMO systems
had been a difficult problem for a long time. However, recently, in [46, 47], a global stability
for MIMO systems was proven using an idea of sliding mode control.

In this manner, many researchers have studied and improved STC until now. However,
these methods consider no measurement noise or only measurement Gaussian noise as mea-
surement noise, and these methods cannot deal with non-Gaussian measurement noise like
outliers. Outliers are often happened in many applications. For example, non-contact sen-
sors, e.g., radar measurement, GPS, image measurements, and so on, attract attentions.
However, it is known that external environments introduce outliers, which cannot be repre-
sented as a normal distribution, into these sensor signals [6, 7]. A use of these sensors in
feedback control systems deteriorates control performances, so some methods to reduce the
effect of the outliers are required.

In this chapter, we extend a method in [47] and propose a robust STC (RSTC) under
outliers. A parameter update law of the conventional STC is given by a RLS estimation.
This means that the parameter update law is equivalent to a solution of a minimization
problem which consists of a quadratic form of estimated errors. We apply an idea of robust
Kalman filter (RKF) via l1 regression [20] to the minimization problem, and we estimate
outliers explicitly by adding l1 regression term to the minimization problem. We construct

49
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RSTC under outliers by removing the estimated outliers from a controller. Moreover, we
analyze control performances of the proposed RSTC.

The organization of this chapter is as follows. In section 2, a conventional STC is ex-
plained. In section 3, we propose a RSTC under outliers. And also, we analyze control
performances of the proposed method, and it is shown that steady state errors in the pro-
posed method with outliers are nearly equal to ones in the conventional STC without outliers.
In section 4, we demonstrate its effectiveness by some numerical simulations. Conclusion is
given in section 5.

5.2 Self Tuning Controller

5.2.1 Formula

In this section, STC in [46, 47] is described.
Consider the following p-input p-output linear polynomial systems:

A(z−1)y∗
k = B(z−1)z−duk, (5.1)

where uk ∈ Rp is an input, y∗
k ∈ Rp is an output, and d ∈ R is a known delay index. Since

an output with outliers are treated in this chapter, an output without outliers is expressed
as y∗

k to distinguish the output with outliers. A(z−1) and B(z−1) are the following p × p
square matrix polynomials:

A(z−1) = I +A1z
−1 + · · ·+Anz

−n,

B(z−1) = B0 +B1z
−1 + · · ·+Bmz

−m,

where B0 is assumed to be non-singular.
Consider the following constraint s∗k,i (i = 1, · · · , p):

s∗k+d := C(z−1)(y∗
k+d − rk+d) +Q(z−1)uk, (5.2)

where rk ∈ Rp is a reference signal, C(z−1) and Q(z−1) are given by the following diagonal
matrices:

C(z−1) =

 C11(z
−1) 0

. . .

0 Cpp(z
−1)

 , (5.3)

Q(z−1) =

 Q11(z
−1) 0

. . .

0 Qpp(z
−1)

 , (5.4)

where an element of Eq. (5.3) is Cii(z
−1) = 1 + c1iiz

−1 + · · · + cn−1
ii zn−1 and designed to be

a Schur polynomial. Eq. (5.4) is chosen to be Qii(z
−1) = qii(1− z−1). G(z−1) is defined as

the following equation:

G(z−1) = E(z−1)B(z−1) +Q(z−1),
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where E(z−1) is p× p symmetric square matrix polynomial and satisfies the following Dio-
phantine equation:

C(z−1) = E(z−1)A(z−1) + z−dF (z−1),

where E(z−1) and F (z−1) are given by the following equations:

E(z−1) = I +E1z−1 + · · ·+Ed−1z−(d−1),

F (z−1) = F 0 + F 1z−1 + · · ·+ F n−1z−(n−1).

At that time, the constraint (5.2) can be rewritten as the following equation:

s∗k+d = G(z−1)uk + F (z−1)y∗
k −C(z−1)rk+d. (5.5)

Moreover, the following theorem is satisfied:

Theorem 5.1 Consider p-input p-output linear polynomial systems described as Eq. (5.1).
For design parameters of the constraint (5.2), it is assumed that Eq. (5.3) is designed to
satisfy a Schur polynomial and Eq. (5.4) is chosen to be Qii(z

−1) = qii(1 − z−1). Then, a
control law (5.6) results in s∗k → 0 (k → ∞).

uk = Ĝ−1
k (z−1)

[
C(z−1)rk+d − F̂k(z

−1)y∗
k

]
, (5.6)

where F̂k(z
−1) and Ĝk(z

−1) are estimated polynomials of F (z−1) and G(z−1) at time k,
respectively. (i, j)-th elements of the polynomials are given by the following polynomials:

F̂k,ij(z
−1) = f̂ 0

k,ij + f̂ 1
k,ijz

−1 + · · ·+ f̂n−1
k,ij z

−(n−1),

Ĝk,ij(z
−1) = ĝ0k,ij + ĝ1k,ijz

−1 + · · ·+ ĝm+d−1
k,ij z−(m+d−1).

A coefficient vector consisting of i-th row of the estimated polynomial matrix is given by

θ̂i
k =

[
ĝ0k,i1 · · · ĝm+d−1

k,i1 · · · ĝ0k,ip · · · gm+d−1
k,ip

f̂ 0
k,i1 · · · f̂n−1

k,i1 · · · f̂ 0
k,ip · · · fn−1

k,ip

]T
,

which is estimated as follows:

θ̂i
k = θ̂i

k−1 +Ki
ke

∗
k,i, (5.7)

e∗k,i = s∗k,i + Cii(z
−1)rk,i − (ϕ∗

k−d)
T θ̂i

k−1, (5.8)

Ki
k =

P i
k−1ϕ

∗
k−d

(ϕ∗
k−d)

TP i
k−1ϕ

∗
k−d +Rs

i

, (5.9)

P i
k =

(
I −Ki

k(ϕ
∗
k−d)

T
)
P i

k−1, (5.10)

ϕ∗
k =

[
uk,1 · · · uk−(m+d−1),1 · · · uk,p · · · uk−(m+d−1),p

y∗k,1 · · · y∗k−(n−1),1 · · · y∗k,p · · · y∗k−(n−1),p

]T
, (5.11)

where Rs
i ∈ R, i = 1, · · · , p, is a weight of the error e∗k,i.
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Proof: See [47].

In [47], Eq. (5.9) is given by a RLS estimation without Rs
i . However, use of the following

Lyapunov function candidate can prove Eq. (5.9):

Vk,i =
1

2
(e∗k,i)

T (Rs
i )

−1e∗k,i +
1

2
(θi

k − θ̂i
k)

T (P i
k)

−1(θi
k − θ̂i

k).

Remark 5.1 Since design parameters (5.3) and (5.4) in the constraint (5.2) are diagonal
matrices, Eq. (5.7)–(5.11) are satisfied independently for each element of s∗k. This means
that the problem in the theorem is equivalent to solving a single output system whose output
is s∗k,i + Cii(z

−1)rk,i.

5.2.2 Relationship Between a Parameter Update Law of Self Tun-
ing Controller and Optimization Problem

Consider the following system which has measurement Gaussian noise vk ∈ Rp explicitly
(see Fig. 5.1):

A(z−1)y∗
k = B(z−1)z−duk, (5.12)

y∗
k = ȳk + vk, (5.13)

where ȳk is a nominal output without measurement noise.

Consider the following optimization problem for Eq. (5.12) and (5.13):

θ̂i
k = argminθi

k
vsk,i

T (Rs
i )

−1vsk,i + (θi
k − θ̂i

k−1)
T (P i

k−1)
−1(θi

k − θ̂i
k−1),

subject to s∗k,i + Cii(z
−1)rk,i = (ϕ∗

k−d)
Tθi

k + vsk,i,
(5.14)

where vsk,i is a virtual measurement Gaussian noise in the constraint associated with vk,i,
and Rs

i is a variance of vsk,i. A solution of the optimization problem (5.14) becomes the
parameter update law (5.7). This means that the parameter update law (5.7) is equivalent
to the solution of the optimization problem (5.14).

Figure 5.1: Controlled plant with Gaussian measurement noise in the case of SISO
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If the regressor is not contaminated by measurement noise, i.e., the regressor is given by

ϕ̄k =
[
uk,1 · · · uk−(m+d−1),1 · · · uk,p · · · uk−(m+d−1),p

ȳk,1 · · · ȳk−(n−1),1 · · · ȳk,p · · · ȳk−(n−1),p

]T
, (5.15)

then, from Eq. (5.2), noise vsk,i in the constraint s∗k,i is expressed as

vsk,i = Cii(z
−1)vk,i. (5.16)

If measurement Gaussian noise vk is white noise, vs
k is also distributed by a normal distri-

bution due to a reproductive property of the normal distribution.

5.3 Robust Self Tuning Controller

5.3.1 Parameter Update Law of Robust Self-Tuning Controller
Using l1 Regression

In this chapter, the following controlled plant is considered (see Fig. 5.2):

A(z−1)yk = B(z−1)z−duk, (5.17)

yk = ȳk + vk + zk = y∗
k + zk, (5.18)

where zk ∈ Rp is an outlier and assumed to be independent of measurement Gaussian noise
vk. A control law and parameter update law of a RSTC under zk,i are defined as follows.

Definition 5.1 RSTC is defined as the following equation:

uk = Ĝ−1
k (z−1)

[
C(z−1)rk+d − F̂k(z

−1)(yk − ẑk)
]
, (5.19)

where ẑk is an estimate of zk and can be computed by a parameter update law.

Figure 5.2: Controlled plant with Gaussian measurement noise and outlier in the case of
SISO
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Definition 5.2 A constraint and regressor are defined as follows:

sk+d := C(z−1)(yk+d − rk+d) +Q(z−1)uk

= G(z−1)uk + F (z−1)yk −C(z−1)rk+d, (5.20)

ϕk :=
[
uk,1 · · · uk−(m+d−1),1 · · · uk,p · · · uk−(m+d−1),p

yk,1 · · · yk−(n−1),1 · · · yk,p · · · yk−(n−1),p

]T
. (5.21)

Parameters of the control law and an estimate of zk,i are given by

{θ̂i
k, ẑk,i} = argminθi

k,zk,i
vsk,i

T (Rs
i )

−1vsk,i(θ
i
k − θ̂i

k−1)
T (P i

k−1)
−1(θi

k − θ̂i
k−1) + λi||zk,i||1,

subject to sk,i + Cii(z
−1)rk,i = ϕT

k−dθ
i
k + vsk,i + zsk,i,

θi
k = θ̂i

k−1 +Ki
k(ek,i − zsk,i),

ek,i = sk,i + Cii(z
−1)rk,i − ϕT

k−dθ̂
i
k−1,

zsk,i = Cii(z
−1)zk,i,

(5.22)

where λi is a regularization parameter.

We give some remarks about Definition 5.1 and 5.2.

Remark 5.2 Use of the control law (5.19) means considering the following constraint:

ŝk+d = Ĝk(z
−1)uk + F̂k(z

−1)(yk − ẑk)−C(z−1)rk+d. (5.23)

In order to reduce the effects of outliers, outliers are estimated explicitly, and the estimated
outliers are subtracted from outputs. However, a constraint contaminated by outliers, i.e.,
Eq. (5.20), is used to estimate the outliers.

Remark 5.3 In order to estimate outliers whose values may often become zero, Eq. (5.22)
is constructed by adding a sparse regularization term, by which estimates may contain zero
values, to Eq. (5.14). The idea is same as an idea of a derivation of RKF via l1 regression
[20]. Among all sparse regularization techniques, use of l1 regression results in a convex
optimization and the solution can be easily calculated.

Remark 5.4 In Definition 5.2, θi
k, vk, and zk are regarded as stochastic variables, and an

expectation θ̂i
k = E[θi

k] and ẑk,i which is an estimate of zk,i at a time k are computed. Note
that ẑk,i is not an expectation of zk,i.

Remark 5.5 An outlier in the constraint, i.e., zsk,i, is written as

zsk,i = Cii(z
−1)zk,i, (5.24)

only if a regressor is given by Eq. (5.15). However, for simplicity, zsk,i is assumed to be given
by Eq. (5.24) in Eq. (5.22).

Moreover, the relationship between outliers in the constraint and measurement outputs,
i.e., the relationship between zs

k and zk, is one-to-one at each element. Each element of noise
in the constraint is decoupled like Remark 5.1, so Eq. (5.22) deals with the elements of zk

independently.
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Lemma 5.1 Eq. (5.22) can be rewritten as

ẑk,i = argmin
zk,i

ξTi Wi ξi + λi||zk,i||1, (5.25)

θ̂i
k = θ̂i

k−1 +Ki
k

(
ek,i − ẑsk,i

)
, (5.26)

where ξi := ek,i − Cii(z
−1)zk,i,

and Wi := (1− ϕT
k−dK

i
k)

T (Rs
i )

−1(1− ϕT
k−dK

i
k) + (Ki

k)
T (P i

k)
−1Ki

k ∈ R.

Eq. (5.25) is solved in a closed form due to a l1 optimization problem with a single variable
(see Appendix C).

In order to derive a theorem for RSTC in Definition 5.1 and 5.2, the following assumption
and lemma are given.

Assumption 5.1 Assume that Eq. (5.3) is designed to be a sufficient condition of Schur
stable [48]. Namely, either

1 > c1ii > · · · > cn−1
ii > 0,

or

1 > |c1ii|+ · · ·+ |cn−1
ii |,

are satisfied.

Lemma 5.2 Consider p-input p-output linear polynomial systems described as Eq. (5.17)
and (5.18). For design parameters of the constraint (5.23), it is assumed that Eq. (5.3) is
designed to satisfy a Schur polynomial and Eq. (5.4) is chosen to be Qii(z

−1) = qii(1− z−1).
Assume that zk is white noise, and stochastic variables θi

k and vk are mutually independent.
In addition, it is assumed that regularization parameters are given by

σ2
i = ϕT

k−dP
i
k−1ϕk−d +Rs

i , (5.27)

λi = 2Wi σi. (5.28)

If Assumption 5.1 is satisfied, a variance of estimated outliers, i.e., E[(zk,i−ẑk,i)
2], is bounded.

Moreover, a limit superior of the variance, i.e., lim supk→∞ E[(zk,i− ẑk,i)
2], is bounded by the

following inequality:

lim sup
k→∞

E
[
(zk,i − ẑk,i)

2
]
≤ αi

(
ϕT

∞P i
∞ϕ∞ +Rs

i

)
, (5.29)

where αi =
2∑n−1

j=0 (c
j
∞,ii)

2
and c0∞,ii = 1.

Proof: Define ηi :∈ [−1, 1]. The necessary condition of an optimality of Eq. (5.25) can be
written as

∀zk,i, − 2Wi(ek,i − ẑsk,i) + λiηi = 0. (5.30)
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Since ηi can be chosen randomly in [−1, 1], ηi can be regarded as a stochastic variable
without loss of generality. Moreover, ηi is independent of the other stochastic variables
because ηi can be chosen independently. From Eq. (5.28), the following equation is satisfied:

ek,i − ẑsk,i = σi ηi. (5.31)

Therefore, from Eq. (5.22),

zsk,i − ẑsk,i = ek,i − ϕT
k−d

(
θi
k − θ̂i

k−1

)
− vsk,i − ẑsk,i,

= σi ηi − ϕT
k−d

(
θi
k − θ̂i

k−1

)
− vsk,i. (5.32)

Note that each stochastic variable is mutually independent. From Eq. (5.27) and η2i ≤ 1, a
variance of estimates of zsk,i is bounded as

E
[
(zsk,i − ẑsk,i)

2
]
≤ ϕT

k−dP
i
k−1ϕk−d +Rs

i + σ2
i

= 2
(
ϕT

k−dP
i
k−1ϕk−d +Rs

i

)
. (5.33)

Therefore, E[(zsk,i− ẑsk,i)
2] is bounded. From the assumption, zk,i− ẑk,i has a whiteness, then

Eq. (5.24) gives E[(zsk,i − ẑsk,i)
2] =

∑n−1
j=0 (c

j
ii)

2 E[(zk−j,i − ẑk−j,i)
2]. From Assumption 5.1,

E[(zk,i − ẑk,i)
2] is also bounded because (cjii)

2 is also a coefficient of Schur polynomials. At
k → ∞,

lim sup
k→∞

E[(zsk,i − ẑsk,i)
2] = lim sup

k→∞
E[(zk,i − ẑk,i)

2]
n−1∑
j=0

(cj∞,ii)
2.

Therefore, from Eq. (5.33), Eq. (5.29) is satisfied.

Theorem 5.2 Consider p-input p-output linear polynomial systems described as Eq. (5.17)
and (5.18). For design parameters of the constraint (5.23), it is assumed that Eq. (5.3) is
designed to satisfy a Schur polynomial and Eq. (5.4) is chosen to be Qii(z

−1) = qii(1− z−1).
Assuming that zk is white noise and its each element is mutually independent. Stochastic
variables, i.e., θi

k, vk, and zk, are assumed to be mutually independent. Moreover, it is
assumed that regularization parameters are denoted as Eq. (5.28). If a covariance matrix
P i

k (k → ∞) is sufficient small and Assumption 5.1 is satisfied, steady state errors of RSTC
with outliers and normal STC without outliers, i.e., sk,i and s∗k,i, satisfy

lim sup
k→∞

E
[
(s∗k,i − ŝk,i)

2
]
≤ O

(
max

i
Rs

i

)
. (5.34)

Proof: The constraint of the normal STC without outliers (5.5) can be rewritten as

s∗k+d,i = gi(z−1)uk + f i(z−1)y∗
k − Cii(z

−1)rk+d,i

= (ϕ∗
k)

Tθi
k − Cii(z

−1)rk+d,i,
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where f i(z−1) = [Fi1(z
−1), · · · , Fip(z

−1)] and gi(z−1) = [Gi1(z
−1), · · · , Gip(z

−1)].

Note that yk = y∗
k +zk. Similarly, from Eq. (5.23), the constraint of RSTC with outliers

can be rewritten as

ŝk+d,i = (ϕ∗
k)

T θ̂i
k − Cii(z

−1)rk+d,i + f̂ i
k(z

−1)z̃k,

where z̃k = zk − ẑk. Therefore, the following equation is satisfied:

s∗k+d,i − ŝk+d,i = (ϕ∗
k)

T θ̃i
k − f̂ i

k(z
−1)z̃k,

where θ̃i
k = θi

k − θ̂i
k.

From the assumption, z̃k−d−i is independent of other elements at each time. A limit
superior of a variance of f̂ i

k(z
−1)z̃k−d is given by the following inequality:

lim sup
k→∞

E
[(

f̂ i
k(z

−1)z̃k

)2]
=

p∑
r=1

n−1∑
s=0

(
f s
∞,ir

)2
lim sup
k→∞

E[z̃2k,r]

≤
p∑

r=1

n−1∑
s=0

αi

(
f s
∞,ir

)2 (
ϕT

∞P r
∞ϕ∞ +Rs

r

)
.

Therefore, the following inequality is satisfied:

lim sup
k→∞

E
[
(s∗k,i − ŝk,i)

2
]
≤ (ϕ∗

∞)TP i
∞ϕ∗

∞

p∑
r=1

n−1∑
s=0

αi

(
f s
∞,ir

)2 (
ϕT

∞P r
∞ϕ∞ +Rs

r

)
. (5.35)

If the covariance matrix P i
∞ is sufficient small, that is ϕT

∞P r
∞ϕ∞ ≪ Rs

r, Eq. (5.35) results
in Eq. (5.34).

We give some remarks about the steady state errors and variances of noise in constraint.

Remark 5.6 If the variance of Gaussian noise in the constraint, i.e., Rs
i , is either 0 or

sufficient small, the steady state errors in the RSTC are equal to ones in the normal STC
without outliers.

Remark 5.7 Theorem 5.2 means that performances of the proposed method depend on
the variance Rs

i . Therefore, Rs
i is needed to be determined accurately. Since the proposed

method can estimate outlier zk,i, we can estimate the variance using the estimated outlier
numerically. Namely, Rs

i can be estimated by

Rs
k,i =

1

N − 1

N−1∑
j=0

ε2k−j,i − ϕT
k−dP

i
kϕk−d, (5.36)

where εk−j,i = ek−j,i−Cii(z
−1)ẑk−j,i, andN is a length of previous data used in the estimation.
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5.3.2 Covariance Update Law of Robust Self-Tuning Controller

In the previous subsection, we discussed the parameter update law of the proposed method
under outliers. In this subsection, we discuss an update law of covariance matrix under
outliers.

Let θi
k = θi

k−1, then an estimation error is given by

θi
k − θ̂i

k = θi
k−1 − θ̂i

k−1 −Ki
k(ek,i − ẑsk,i)

=
(
I −Ki

kϕ
T
k−d

) (
θi
k−1 − θ̂i

k−1

)
−Ki

kv
s
k,i −Ki

k

(
zsk,i − ẑsk,i

)
. (5.37)

Therefore, a covariance matrix of the estimation error, P i
k, is given by

P i
k = E

[
(θi

k − θ̂i
k)(θ

i
k − θ̂i

k)
T
]

= (I −Ki
kϕ

T
k−d)P

i
k−1 +Ki

k E
[
(zsk,i − ẑsk,i)

2
]
(Ki

k)
T . (5.38)

The normal STC (ẑsk,i = 0) computes the covariance matrix P i
k by Eq. (5.10). However,

the actual covariance matrix P i
k with outliers contains a second order moment of zsk,i. If z

s
k,i

is distributed by some probability distribution whose second moment is infinite like Cauchy
distribution, P i

k should be infinite. However, the fact is inconsistent with a parameter update.
On the other hand, from Eq. (5.38) and (5.33), the covariance matrix of the RSTC satisfies
the following equations:

P i
k ≤

(
I +Ki

kϕ
T
k−d

)
P i

k−1. (5.39)

This means that the covariance matrix of the RSTC under outliers should be a solution
satisfying Eq. (5.39) Moreover, in the RSTC, the update law of the covariance matrix (5.10)
is one of the solutions. Therefore, in the RSTC, Eq. (5.10) can estimate a state even under
outliers, and the covariance matrix may converge.

5.4 Simulation

5.4.1 Conditions

Consider the following non-minimum phase system with the unstable zeros at −5.00 and
−1.11:

yk = −A1yk−1 +B0uk−1 +B1uk−2,

where

A1 =

[
0.4 0.2
0.1 0.3

]
,

B0 =

[
0.8 0.3
0.2 0.3

]
,

B1 =

[
1 0
0 1

]
.
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Parameters of the constraint is designed as follows:

C(z−1) = diag(1 + 0.2z−1, 1− 0.1z−1),

Q(z−1) = diag(1.3(1− z−1), 1.7(1− z−1)).

Then, all roots of A(z−1)Q(z−1) + B(z−1)C(z−1) are located in a unit circle. And also,
the Diophantine equation determines ideal polynomials of F (z−1) and G(z−1), and they are
given by

F (z−1) = F0,

G(z−1) = G0 +G1z
−1.

where

F 0 =

[
−0.6 −0.2
−0.1 −0.4

]
,

G0 =

[
2.1 0.3
0.2 2.0

]
,

G1 =

[
−0.3 0
0 −0.7

]
.

Consider the two cases of distributions as outliers, i.e., Cauchy distribution and Gaussian
mixture distribution, pc(x) and pg(x). Consider a Gaussian white noise whose mean is 0 and
covariance matrix is diag(1× 10−2, 1× 10−2) as a nominal measurement noise. In the case of
Cauchy distribution as a model of outliers, outliers distributed by Cauchy distribution are
added to the nominal noise. Parameters of Cauchy distribution are x0 = 0 and δ = 1×10−3.
In the case of Gaussian mixture distribution as a model of outliers, p = 0.1 and a standard
deviation of Gaussian mixture distribution is 5 times as large as one of the nominal noise.

Initial parameters of RSTC are Rs
0,1 = Rs

0,2 = 1 and P 1
0 = P 2

0 = I. A length of past data

to estimate the variance in the constraint is N = 20. Initial parameters of F̂ 0
k , Ĝ

0
k, and Ĝ1

k

are set as

F̂ 0
0 =

[
−0.5 −0.1
0 −0.8

]
,

Ĝ0
0 =

[
2.0 −0.1
0.2 3.0

]
,

Ĝ1
0 =

[
−0.1 −0.2
0.1 −1.0

]
.

As the variance in the constraint of the normal STC, two cases are considered. One
case is that the normal STC uses a fixed variance estimated in RSTC as the variance in the
constraint. The other case is that the normal STC updates the variance by using Eq. (5.36).
Other parameters of the normal STC are same as ones of RSTC.
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Table 5.1: Root mean squared errors of tracking errors the controlled plant under Cauchy
noise in the case using sinusoidal wave as a target.

output 1 output 2

self tuning controller with a fixed
variance

9.0× 10−3 1.4× 10−2

self tuning controller with an up-
dated variance

6.2× 10−3 5.1× 10−3

robust self tuning controller
(proposed method)

5.9× 10−3 5.1× 10−3

Table 5.2: Root mean squared errors of tracking errors of the controlled plant under Gaussian
mixture noise in the case using a sinusoidal wave as a target.

output 1 output 2

self tuning controller with a fixed
variance

2.0× 10−2 2.4× 10−2

self tuning controller with an up-
dated variance

7.3× 10−3 9.5× 10−3

robust self tuning controller
(proposed method)

3.6× 10−3 6.2× 10−3

5.4.2 Results

In the Case Using a Sinusoidal Wave as a Target

Fig. 5.3 – 5.16 show simulation results in the case using a sinusoidal wave as a target.
Fig. 5.3 – 5.9 show results in the case of Cauchy distribution. Fig. 5.3 shows measurement

outputs with outliers. Fig. 5.4 – 5.6 show outputs of STC with a fixed variance, STC with
an updated variance, and RSTC, respectively. Fig. 5.7 – 5.9 show estimates of parameters
of these methods.

Fig. 5.10 – 5.16 show results in the case of Gaussian mixture distribution. Fig. 5.10
shows measurement outputs with outliers. Fig. 5.12 – 5.13 show outputs of STC with a
fixed variance, STC with an updated variance, and RSTC, respectively. Fig. 5.15 – 5.16
show estimates of parameters of these methods.

Table 5.1 and 5.2 show root mean squared errors (RMSEs) of the control errors.
These results show that the proposed RSTC can remove the outliers and reduce control

errors more than STC.
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Figure 5.3: Measurement with outliers using Cauchy distribution in the case using sinusoidal
wave as a target. (a) and (b) are output 1 and 2, respectively.
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Figure 5.4: Control performances using normal self tuning controller with a fixed variance
under Cauchy noise in the case using sinusoidal wave as a target: The solid line is a reference
and dashed line is an output of the controlled object. (a) and (b) are results of output 1 and
2, respectively.
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Figure 5.5: Control performances using normal self tuning controller with an updated vari-
ance under Cauchy noise in the case using sinusoidal wave as a target: The solid line is a
reference and dashed line is an output of the controlled object. (a) and (b) are results of
output 1 and 2, respectively.
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Figure 5.6: Control performances using robust self tuning controller under Cauchy noise in
the case using sinusoidal wave as a target: The solid line is a reference and dashed line is an
output of the controlled object. (a) and (b) are results of output 1 and 2, respectively.
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(c) estimates of F0
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Figure 5.7: Estimates of parameters and ∞-norms of covariance matrices of parameter esti-
mation errors using normal self tuning controller with a fixed variance under Cauchy noise
in the case using sinusoidal wave as a target
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Figure 5.8: Estimates of parameters and ∞-norms of covariance matrices of parameter es-
timation errors using normal self tuning controller with an updated variance under Cauchy
noise in the case using sinusoidal wave as a target
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Figure 5.9: Estimates of parameters and ∞-norms of covariance matrices of parameter es-
timation errors using robust self tuning controller under Cauchy noise in the case using
sinusoidal wave as a target
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Figure 5.10: Measurement with outliers using mixed Gaussian distribution in the case using
sinusoidal wave as a target. (a) and (b) are output 1 and 2, respectively.
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Figure 5.11: Control performances using normal self tuning controller using a fixed variance
under mixed Gaussian noise in the case using sinusoidal wave as a target: The solid line is
a reference and dashed line is an output of the controlled object. (a) and (b) are results of
output 1 and 2, respectively.
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Figure 5.12: Control performances using normal self tuning controller using an updated
variance under mixed Gaussian noise in the case using sinusoidal wave as a target: The solid
line is a reference and dashed line is an output of the controlled object. (a) and (b) are
results of output 1 and 2, respectively.
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Figure 5.13: Control performances using robust self tuning controller under mixed Gaussian
noise in the case using sinusoidal wave as a target: The solid line is a reference and dashed line
is an output of the controlled object. (a) and (b) are results of output 1 and 2, respectively.



72 CHAPTER 5. ROBUST SELF-TUNING CONTROLLER UNDER OUTLIERS

0 50 100 150 200
-10

-5

0

5

10

15

20

Time [s]

G
0

 

 

G0
11

G0
12

G0
21

G0
22

(a) estimates of G0

0 50 100 150 200
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time [s]

G
1

 

 

G1
11

G1
12

G1
21

G1
22

(b) estimates of G1

0 50 100 150 200
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time [s]

F0

 

 

F0
11

F0
12

F0
21

F0
22

(c) estimates of F0

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time [s]

P
 n

or
m

 

 

P1
P2

(d) ∞-norms of covariance matrices of
parameter estimation errors

Figure 5.14: Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with a fixed variance under Gaussian
mixture noise in the case using sinusoidal wave as a target
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Figure 5.15: Estimates of parameters and ∞-norms of covariance matrices of parameter es-
timation errors using normal self tuning controller with an updated variance under Gaussian
mixture noise in the case using sinusoidal wave as a target
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Figure 5.16: Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using robust self tuning controller under Gaussian mixture noise in the
case using sinusoidal wave as a target
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In the Case Using a Rectangular Wave as a Target

Fig. 5.17 – 5.30 show simulation results in the case using a rectangular wave as a target.
Fig. 5.17 shows measurement outputs with outliers in the case of Cauchy distribution,

Fig. 5.18 – 5.20 show outputs of STC with a fixed variance, STC with an updated variance,
and RSTC, respectively. Fig. 5.21 – 5.23 show estimates of parameters of these methods.

Fig. 5.24 shows measurement outputs with outliers in the case of Gaussian mixture
distribution, Fig. 5.26 – 5.27 show outputs of STC with a fixed variance, STC with an
updated variance, and RSTC, respectively. Fig. 5.29 – 5.30 show estimates of parameters of
these methods.

Table 5.3 and 5.4 show RMSEs of the control errors.
These results show that the proposed RSTC can remove the outliers in steady state and

reduce control errors more than STC. However, the proposed method deteriorates a transient
response. For example, in Fig. 5.20 at 100 second, output 1 has an overshoot more than
STC. The proposed method cannot estimate outliers at the change point well, then it results
in a degradation of a control performance. The proposed method may estimate the change
point as outliers.

From Fig. 5.21, 5.23, 5.28, and 5.30, covariance matrices of STC with an updated variance
and RSTC are changed at 100 second, discontinuously. Kalman gain depends on Rs

k,i, and
Rs

k,i is estimated by Eq. (5.36) in which estimated outliers and parameters are used. These
estimates have smaller variances after a changing point of a target than before because the
target has no offset after the changing point. Therefore, Rs

k,i becomes smaller after the
changing point than before, and the covariance matrices also become small, discontinuously.
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Table 5.3: Root mean squared errors of tracking errors of the controlled plant under Cauchy
noise in the case using a rectangle wave as a target.

output 1 output 2

self tuning controller with a fixed
variance

1.5× 10−2 2.0× 10−2

self tuning controller with an up-
dated variance

3.8× 10−3 6.1× 10−3

robust self tuning controller
(proposed method)

3.3× 10−3 5.7× 10−3

Table 5.4: Root mean squared errors of tracking errors of the controlled plant under Gaussian
mixture noise in the case using a rectangle wave as a target.

output 1 output 2

self tuning controller with a fixed
variance

1.3× 10−2 2.0× 10−2

self tuning controller with an up-
dated variance

9.5× 10−3 8.9× 10−3

robust self tuning controller
(proposed method)

4.6× 10−3 5.9× 10−3
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Figure 5.17: Measurement with outliers using Cauchy distribution. (a) and (b) are output
1 and 2, respectively.
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Figure 5.18: Control performances using normal self tuning controller with a fixed variance
under Cauchy noise: The solid line is a reference and dashed line is an output of the controlled
object. (a) and (b) are results of output 1 and 2, respectively.
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Figure 5.19: Control performances using normal self tuning controller with an updated
variance under Cauchy noise: The solid line is a reference and dashed line is an output of
the controlled object. (a) and (b) are results of output 1 and 2, respectively.
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Figure 5.20: Control performances using robust self tuning controller under Cauchy noise:
The solid line is a reference and dashed line is an output of the controlled object. (a) and
(b) are results of output 1 and 2, respectively.
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Figure 5.21: Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with a fixed variance under Cauchy
noise
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(c) estimates of F0
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Figure 5.22: Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with an updated variance under Cauchy
noise
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Figure 5.23: Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using robust self tuning controller under Cauchy noise
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Figure 5.24: Measurement with outliers using mixed Gaussian distribution. (a) and (b) are
output 1 and 2, respectively.
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Figure 5.25: Control performances using normal self tuning controller using a fixed variance
under mixed Gaussian noise: The solid line is a reference and dashed line is an output of the
controlled object. (a) and (b) are results of output 1 and 2, respectively.
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Figure 5.26: Control performances using normal self tuning controller using an updated
variance under mixed Gaussian noise: The solid line is a reference and dashed line is an
output of the controlled object. (a) and (b) are results of output 1 and 2, respectively.
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Figure 5.27: Control performances using robust self tuning controller under mixed Gaussian
noise: The solid line is a reference and dashed line is an output of the controlled object. (a)
and (b) are results of output 1 and 2, respectively.
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(c) estimates of F0
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Figure 5.28: Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using normal self tuning controller with a fixed variance under Gaussian
mixture noise
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(c) estimates of F0
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Figure 5.29: Estimates of parameters and ∞-norms of covariance matrices of parameter es-
timation errors using normal self tuning controller with an updated variance under Gaussian
mixture noise
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(c) estimates of F0
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Figure 5.30: Estimates of parameters and ∞-norms of covariance matrices of parameter
estimation errors using robust self tuning controller under Gaussian mixture noise
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5.5 Conclusion

In this chapter, we proposed RSTC under outliers. A parameter update law of a conven-
tional STC is given by a solution of a minimization problem of estimated errors. Therefore,
the proposed method estimated parameters and outliers explicitly by addition of a l1 re-
gression term to the minimization problem, and the estimated outliers were removed from
measurement outputs in a controller. And also, it was shown that steady state errors in the
proposed method with outliers are nearly equal to ones in the conventional STC without
outliers. Some numerical simulations demonstrated effectiveness of the proposed method.

We will verify the proposed method by real applications as our future work. STC and
RSTC in this chapter have a multi-loop structure, i.e., each constraint is mutually indepen-
dent. A proposition of RSTC for more general forms is also our future work. Moreover, the
proposed method deteriorates a transient response because it may estimate the change point
as outliers and it cannot estimate outliers at the change point well. An improvement of the
drawback is also our future work.





Chapter 6

Robust Nonlinear State Estimation
and Design Method of Its Parameters

6.1 Introduction

Recently, non-contact sensors, e.g., radar measurements, GPS, ultrasonic wave sensors, image
measurements, and so on, attract attentions, and these sensors are often used in control
systems. However, external environments introduce outliers into these sensor signals. For
example, in target tracking systems, outliers are happened due to interference of reflections
from different elements of the target, and the outliers are called clutter [5, 6]. In UAV using
visual feedback and UGV using GPS, temporary change of image contrast in background
and radio disturbances due to some obstacles cause outliers of position data [7, 8]. These
outliers deteriorate accuracy of state estimates and control performances.

In order to reduce effects of outliers, Kalman filter (KF) for non-Gaussian measurement
noise has been proposed, and these methods are called robust KF (RKF) [16]–[20], [34]–
[36],[49]. For linear systems, many reduction methods have been proposed. For example,
in [16], Bayesian model is introduced to KF, and expectation maximization (EM) algorithm
is used. In [18], use of variational Bayesian method gives approximations of joint posterior
distributions of state and noise variances to realize a low computational cost. In [19], the
method also learns the covariance matrix of measurement noise by iterations, and compute
a Kalman gain. Especially, among these methods, RKF via l1 regression [20] attracts many
attentions. l1 regression [21] provides some thresholds of solutions and can gives sparse
solutions. The thresholds can truncate estimates of the outliers, and the method has little
time delay to reduce the outliers. In addition, the method is easy to implement and compute
due to a simple structure and convex optimization problem. It can be seen that parameters
for standard KF can determine parameters of the RKF systematically in chapter 3. An
efficient algorithm of the RKF is shown in chapter 4.

On the other hand, for nonlinear systems, extended KF (EKF) is often used to extend
the aforementioned methods, but Jacobians of the nonlinear systems are required. Gaussian
sum filter [34, 35] and Particle filter [36] are other famous KF for nonlinear systems and
non-Gaussian measurement noise including outliers. They can approximate arbitrary distri-
butions. However, it takes so long time to compute the algorithms, and it is unsuitable for
real time applications. In other approaches, robust filter is realized by maximum a posterior
(MAP) estimation using a Laplace distribution as a prior distribution [49]. However, it can
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consider only output equations of nonlinear systems, not dynamics of nonlinear systems.
In this chapter, we extend RKF via l1 regression to nonlinear systems using unscented

KF (UKF) [50]–[53], and propose a robust UKF (RUKF). UKF is a state estimation method
for nonlinear systems without calculus of Jacobians of the systems. In addition, we also
derive a design method of its parameters using a framework of a MAP estimation, and we
show that the parameters can be determined systematically. Moreover, we also show that
the proposed method can update a covariance matrix of a state estimation error, and can
reduce orders of an optimization problem more than those of the MAP estimation using a
Laplace distribution [49].

The organization of this chapter is as follows. In section 2, UKF is explained, and RUKF
via l1 regression is proposed. In section 3, we propose a new design method of RUKF. In
section 4, we apply RUKF to a state estimation of a two-link manipulator under outliers, and
demonstrate its effectiveness by some numerical simulations. Conclusion is given in section
5.

6.2 Robust Unscented Kalman Filter

6.2.1 Unscented Kalman Filter

We consider the following nonlinear systems:

xk+1 = f(xk,uk,wk),

yk = h(xk,uk) + vk,
(6.1)

where xk ∈ Rn is a state of the system at time k, uk ∈ Rnu is an input, wk ∈ Rn is a
Gaussian system noise whose mean is 0 and covariance matrix is Q ∈ Rn×n, yk ∈ Rm is a
measurement, and vk ∈ Rm is a Gaussian measurement noise whose mean is 0 and covariance
matrix is R ∈ Rm×m. It is assumed that wk is independent of vk.

KF has a predictor-corrector structure. Let Y k be all of the observations up to time
k, and let x̂i|j denote a mean of xi conditioned on Y j, i.e., x̂i|j = E[xi|Y j]. A predicted
covariance matrix of a state estimation error is denoted as Pk|k−1 ∈ Rn×n. Given an estimate
x̂k|k, the predictor consists of the following equations:

x̂k+1|k = E[f(xk,uk,wk)|Y k],

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T |Y k].

(6.2)

The corrector of KF is given by the following equations:

x̂k+1|k+1 = x̂k+1|k +Kν,

Pk+1|k+1 = Pk+1|k −KPννK
T ,

Kk+1 = PxνP
−1
νν ,

(6.3)

where, ν = yk − ŷk+1|k, ŷk+1|k = h(x̂k+1|k,uk), Pνν ∈ Rm×m is a covariance matrix of ν,
and Pxν ∈ Rn×m is one between x and ν.

For linear systems, the covariance matrices can be calculated analytically. However, in
nonlinear systems, some approximation methods are required. EKF uses a linearized system
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to calculate the covariance matrices, so it requires a Jacobian of the nonlinear system. In
contrast, UKF approximates the covariance matrices using an unscented transformation, and
it can estimate a state of the nonlinear system without calculus of the Jacobian.

One of the algorithms of UKF is as follows [51]:

Step 1. Determine sigma points:

X 0,k|k = x̂k|k,

W0 =
κ

n+ κ
,

X i,k|k = x̂k|k +
(√

(n+ κ)Pk|k

)
i
,

Wi =
1

2(n+ κ)
,

X i+n,k|k = x̂k|k −
(√

(n+ κ)Pk|k

)
i
,

Wi+n =
1

2(n+ κ)
,

where κ ∈ R is a design parameter to approximate high order moments.
(√

(n+ κ)Pk|k
)
i
is

a i-th column vector of N satisfying (n+ κ)Pk|k = NNT .

Step 2. Transform the sigma points using a state equation, and estimate a mean and
covariance matrix of the state:

X i,k+1|k = f(X i,k|k,uk),

x̂k+1|k =
2n∑
i=0

WiX i,k+1|k,

Pk+1|k =
2n∑
i=0

Wi{X i,k+1|k − x̂k+1|k}{X i,k+1|k − x̂k+1|k}T .

Step 3. Predict a mean of an output, ŷk+1|k, and its covariance matrix, Pyy, by using the
transformed sigma points:

Y i,k+1|k = h(X i,k|k,uk),

ŷk+1|k =
2n∑
i=0

WiY i,k+1|k,

Pyy =
2n∑
i=0

Wi{Y i,k+1|k − ŷk+1|k}{Y i,k+1|k − ŷk+1|k}T .
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Step 4. Calculate Pνν and Pxν :

Pνν = R+ Pyy,

Pxν =
2n∑
i=0

Wi{X i,k+1|k − x̂k+1|k}{Y i,k+1|k − ŷk+1|k}T .

Step 5. Update the state by using Eq. (6.3).
The above algorithm doesn’t contain state noise explicitly. If the systems have state

noise, we consider the following augmented systems:

xa
k :=

[
xk

vk

]
.

Moreover, a mean and covariance matrix of the augmented systems are defined by the fol-
lowing equations:

x̂a
k|k :=

[
x̂k

0

]
,

P a
k|k :=

[
Pk|k 0
0 Q

]
.

6.2.2 Robust Unscented Kalman Filter via l1 Regression

From this subsection, systems without inputs are considered for convenience. For linear
systems, it is well-known that an update law of KF can be derived from the optimization
problem (2.5). Actually, the optimal solution of Eq. (2.5) gives a linear minimum variance
estimation, i.e.,

x̂k|k = x̂k|k−1 +K(yk −Cx̂k|k−1),

where K = Pk|k−1C
T (R+CPk|k−1C

T )−1.
In RKF via l1 regression, outlier zk ∈ Rm is added to the output equation, and it is

estimated as a solution of the optimization problem with l1 regression. Specifically, RKF
via l1 regression is given by Eq. (2.8), and its general form is described as the following
equation, again:

{x̂k|k, ẑk} = argminxk,zk vT
k R

−1vk

+(xk − x̂k|k−1)
TP−1

k|k−1(xk − x̂k|k−1) +
∑m

i=1 λi|zk,i|,

subject to yk = h(xk) + vk + zk,

xk = x̂k|k−1 +Kk(ek − zk),

ek = yk − h(x̂k|k−1),

(6.4)

where λi (i = 1, · · · ,m) are regularization parameters.
RUKF computes the Kalman gain K in Eq. (6.4) by an UKF algorithm. Note that,

for nonlinear systems, the optimal solution of Eq. (2.5) cannot be calculated analytically
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and dose not coincide with the linear minimum variance estimation, except that output
equations are linear or can be linearized. However, Eq. (2.5) evaluates a quadratic form of
an estimation error and minimizes it. Therefore, it can be interpreted as minimizing some
kind of expectations of variances, and it is reasonable to consider the criterion not only for
linear systems, but also for nonlinear systems.

Remark 6.1 In general, output equation can be linearized exactly by some coordinate
transformations [54, 55]. If a property of the outliers, which their values may usually be
zero, is maintained after the transformations, the coordinate transformations can make the
optimization problem (6.4) same as RKF via l1 regression for in Chapter 3. However, if the
property is not kept before and after the transformation, the optimization problem needs l1
regularization term for transformed outliers and requires a nonlinear relation between the
outliers before and after. At that time, Eq. (6.4) is still a nonlinear optimization problem.

6.3 Design Method of Robust Unscented Kalman Fil-

ter using a Laplace Distribution

Assuming that outlier zk is independent of vk, and it is distributed by the following Laplace
distribution, whose mean is 0 and covariance matrix is S,

pl(zk) = 2−m/2det(S)−1/2 exp
[
−
√
2
∣∣∣∣S−1/2zk

∣∣∣∣
1

]
, (6.5)

then the following theorem is derived.

Theorem 6.1 Assume that outlier zk is independent of vk, and it is distributed by a
Laplace distribution whose mean is 0 and covariance matrix is S. The regularization pa-
rameter of RUKF, i.e., λ = [λ1, · · · , λm]

T , is given by

λi = 2
√
2si, (6.6)

where s be a vector consisting of diagonal elements of S−1/2, and si is a element of s.

Proof: If we compute a MAP estimation using the Laplace distribution as a prior distribu-
tion, the MAP estimator gives an optimization problem via l1 regression. We derive RKF
via l1 regression by using the fact, again.

From the Bayes’ theorem, a conditional PDF of xk given by yk, i.e., p(xk|yk), is as
follows:

p(xk|yk) =
p(yk|xk)p(xk)

p(yk)

∝ p(yk|xk)p(xk). (6.7)

In UKF, it is assumed that xk is distributed by a normal distribution pn(xk), whose mean
is x̂k|k−1 and covariance matrix is Pk|k−1, i.e.,

pn(xk) = (2π)−n/2
(
det(Pk|k−1)

)−1/2
exp

[
−1

2
(xk − x̂k|k−1)

TP−1
k|k−1(xk − x̂k|k−1)

]
. (6.8)



98
CHAPTER 6. ROBUST NONLINEAR STATE ESTIMATION AND DESIGN METHOD

OF ITS PARAMETERS

In addition, an output equation is given by the following equation:

yk = h(xk) + vk + zk, (6.9)

where vk is distributed by a normal distribution pn(vk), whose mean is 0 and covariance
matrix is R. From the assumption that vk is independent of zk, the conditional PDF of yk

given by xk, i.e., p(yk|xk), is written as the following convolution:

p(yk|xk) =

∫ ∞

−∞
pl(h(xk)− yk − vk)pn(vk)dvk

= 2−m/2(2π)−m/2 (det(R) det(S))−1/2

×
∫ ∞

−∞
exp

[
−1

2
vT
k R

−1vk −
√
2
∣∣∣∣S−1/2zk

∣∣∣∣
1

]
dvk.

Therefore,

p(yk|xk)pn(xk) = 2−m/2(2π)−(m+n)/2
(
det(R) det(S) det(Pk|k−1)

)−1/2

×
∫ ∞

−∞
exp

[
−1

2
vT
k R

−1vk

−1

2
(xk − x̂k|k−1)

TP−1
k|k−1(xk − x̂k|k−1)

−
√
2
∣∣∣∣S−1/2zk

∣∣∣∣
1

]
dvk. (6.10)

A maximization of Eq. (6.7) is equivalent to a maximization of the integrand of Eq. (6.10)
because of a positiveness of a PDF, and the maximization problem is equivalent to the
following minimization problem:

{x̂k|k, ẑk} = arg min
xk,zk

vT
k R

−1vk + (xk − x̂k|k−1)
TP−1

k|k−1(xk − x̂k|k−1)

+2
√
2
∣∣∣∣S−1/2zk

∣∣∣∣
1
. (6.11)

On the other hand, let Λ = diag(λ1, · · · , λm), Eq. (6.4) can be rewriten as the following
equation:

{x̂k|k, ẑk} = arg min
xk,zk

vT
k R

−1vk + (xk − x̂k|k−1)
TP−1

k|k−1(xk − x̂k|k−1) + ||Λzk||1 . (6.12)

Comparing Eq. (6.11) and Eq. (6.12), we can regard Eq. (6.12) as a MAP estimator
considering a Laplace distribution with only diagonal elements of the covariance matrix S.
Therefore, let s be a vector consisting of diagonal elements of S−1/2, the regularization
parameter is given by Eq. (6.6).

Theorem 6.1 means that if the covariance matrix of the outliers S can be estimated, the
regularization parameter is determined automatically. RUKF can estimate outlier ẑk, so use
of the estimates can calculate a sample covariance matrix of the outlier. On the other hand,
we use a covariance matrix Pνν as that of outliers, i.e., S = Pνν . In the case using Pνν as
the covariance matrix of outliers, the following lemma is satisfied.
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Lemma 6.1 Assume that ẑk can be estimated satisfying E[zkz
T
k ] = E[ẑkẑ

T
k ], and zk and

ẑk are mutually independent. If S is given by

S := E[zkz
T
k ]

= γPνν , (6.13)

where γ is a positive real number, then the following equation is satisfied:

E[(νk − ẑk)(νk − ẑk)
T ] = O(Pνν). (6.14)

This means that performances of RUKF come close ones of UKF without outliers.

Proof: The assumptions result in

E[(zk − ẑk)(zk − ẑk)
T ] = E[zkz

T
k ]− 2E[zkẑ

T
k ] + E[ẑkẑ

T
k ]

= 2E[zkz
T
k ]

= 2γPνν .

Eq. (6.9) yields the following equation:

νk − ẑk = h(xk)− h(x̂k) + vk + zk − ẑk.

Each stochastic variable is independent of the other variables, so the following equation is
satisfied:

E[(νk − ẑk)(νk − ẑk)
T ] = Pyy +R+ E[(zk − ẑk)(zk − ẑk)

T ]

= (1 + 2γ)Pνν . (6.15)

Therefore, E[(νk − ẑk)(νk − ẑk)
T ] is given by order of Pνν .

Remark 6.2 In the proposed method, the covariance matrix of the Laplace distribution is
estimated using sigma points, and the regularization parameter is calculated by Eq. (6.6).
This means that a design of a standard UKF determines the parameter of RUKF systemat-
ically.

Remark 6.3 The proposed method realizes a robust filter combining UKF and l1 mini-
mization. On the other hand, a robust filter can be realized without UKF by solving Eq.
(6.11) directly. In fact, in [49], a minimization problem derived by a MAP estimation is
solved directly. However, use of UKF can update the covariance matrix of Eq. (6.11). This
means that the proposed method is adaptive to uncertainty of parameters more than the
method in [49].

Remark 6.4 The proposed method assumes that an update law is obtained as xk =
x̂k|k−1 + Kk(ek − zk), and uses it as a constraint of xk. Therefore, Eq. (6.4) becomes
a minimization problem about only zk. This means that the minimization problem of the
proposed method has lower order dimension of variables than solving Eq. (6.11) directly.
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6.4 Simulation

6.4.1 Conditions

We consider a state estimation problem of a two-link manipulator shown in Fig. 6.1, where
m1 and l1 are mass and length of link 1, and m2 and l2 are those of link 2. θ1 and θ2
are relative angular positions of each link, and directions of θ1 and θ2 are counterclockwise
and clockwise, respectively. Let q = [θ1, θ2]

T be a generalized coordinate. Assuming that a
center of mass is located in a top of the link and moment of inertia and viscosity are zero, a
dynamics of the manipulator is written as

M (q)q̈ +C(q, q̇) +G(q) = τ , (6.16)

where

M (q) =

[
α + γ + 2β sin θ2 γ + β sin θ2

γ + β sin θ2 γ

]
,

C(q, q̇) =
[
β(2θ̇1 + θ̇2)θ̇2 cos θ2 −βθ̇21 cos θ2

]T
,

G(q) =

[
(m1 +m2)gl1 sin θ1 +m2gl2 sin(θ1 + θ2)

m2gl2 sin(θ1 + θ2)

]
,

where

α = m1l
2
1 +m2l

2
2,

β = m2l1l2,

γ = m2l
2
2.

An output of the system is y coordinate of the top of the second link, i.e.,

y = −l1 cos θ1 − l2 cos(θ1 + θ2). (6.17)

Parameters of the model are l1 = 1.0, l2 = 2.0, m1 = 0.5, and m2 = 0.5. An initial value
is x0 = [1.4, 0, 0, 0]T , and inputs to each link are zero.

We consider Gaussian noise as a nominal measurement noise. Parameters of the nominal
measurement noise is as follows:

E[vk] = 0,

E[v2k] = (2.5× 10−1)2.

In addition, for outliers, two cases of distributions are considered, i.e., Cauchy and Gaussian
mixture distributions, pc(x) and pg(x). In the case of Cauchy distribution as a model of out-
liers, outliers distributed by Cauchy distribution are added to the nominal noise. Parameters
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Figure 6.1: Model of a two-link manipulator. m1 and l1 are mass and length of link 1, and
m2 and l2 are those of link 2. θ1 and θ2 are relative angular positions of each link, and
directions of θ1 and θ2 are counterclockwise and clockwise, respectively.

of these distributions are as follows:

x0 = 0,

δ = 1.0× 10−2,

µ1 = µ2 = 0,

p = 0.1,

Σ1 = 2.5× 10−1,

Σ2 = 10Σ1.

It is assumed that a covariance matrix of the nominal measurement noise is known. κ is
determined satisfying n+κ = 3, and the other parameters of UKF and RUKF are as follows:

P0|0 = 1× 10−5I,

Q = 1× 10−8I.

6.4.2 Results

Fig. 6.2 (a) and (b) show measurements under Cauchy and Gaussian mixture noise, respec-
tively.

Fig. 6.3 – Fig. 6.5 show estimates of the two-link manipulator with Cauchy noise using
UKF, solving Eq. (6.11) directly, and RUKF, respectively. These graphs show that UKF
and a direct solution of Eq. (6.11) have larger estimation errors than RUKF under the
influence of the outliers. If the manipulator operates around the origin, the direct solution
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of Eq. (6.11) can estimate the state well. However, it cannot estimate the state in a large
operating range like these simulations.

Fig. 6.6 – Fig. 6.8 show estimates of the two-link manipulator with Gaussian mixture
noise using UKF, a direct solution of Eq. (6.11), and RUKF, respectively. Also in Gaussian
mixture noise, it can be seen that estimation errors using RUKF are smaller than those using
UKF and the direct solution.

Table 6.1 and Table 6.2 show root mean squared errors (RMSEs) of each estimate. The
errors are changed at each simulation, so these are averaged values of 10 times simulations.
In the tables, a result using RUKF designed by a heuristic method is also shown. As the
heuristic design method, we search regularization parameters which minimizes a summation
of RMSEs of each estimate. We set λ = 8.87 in the case of Cauchy noise, and λ = 10.1 in
the case of Gaussian mixture noise.

These tables show that estimation errors using RUKF are smaller than those using UKF
and the direct solution of Eq. (6.11) for the both types of outliers. These results also show
that, in RUKF, the proposed design method can reduce more errors than the heuristic design
method.

6.5 Conclusions

In this chapter, we proposed RUKF via l1 regression and a new design method of its regu-
larization parameters. Regularization parameters of RUKF are determined by statistics of
Gaussian measurement noise. This means that the proposed design method provides the
parameters with physical meanings, and we can design the parameters systematically. We
applied RUKF to a state estimation of a two-link manipulator under outliers. Effectiveness
was demonstrated by some numerical simulations.

We will verify the proposed method by real applications as our future works.

Table 6.1: Root mean squared errors of estimates under Cauchy noise.
θ1 θ2 θ̇1 θ̇2

UKF 4.23× 10−1 6.40× 10−1 2.35 3.98
direct solution of Eq.(6.11) 1.16 1.62 5.02 1.76

RUKF with a heuristic
design method

2.09× 10−1 3.88× 10−1 1.44 2.03

RUKF with a proposed
design method

1.37× 10−1 2.23× 10−1 1.05 2.41
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Table 6.2: Root mean squared errors of estimates under Gaussian mixture noise.
θ1 θ2 θ̇1 θ̇2

UKF 3.57× 10−1 6.15× 10−1 2.20 3.91
direct solution of Eq.(6.11) 1.11 1.74 5.23 7.87

RUKF with a heuristic
design method

2.79× 10−1 4.34× 10−1 1.75 3.19

RUKF with a proposed
design method

1.35× 10−1 2.27× 10−1 1.02 1.88
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Figure 6.2: Measurement of output. (a) and (b) contain Cauchy and Gaussian mixture noise,
respectively. Parameters of Cauchy distribution are x0 = 0 and δ = 1.0× 10−1. Parameters
of Gaussian mixture distribution are µ1 = µ2 = 0, p = 0.1, Σ1 = 2.5×10−1I, and Σ2 = 10Σ1.
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Figure 6.3: Estimates using UKF under Cauchy noise. The solid lines are true signals and
dashed lines are estimates.



106
CHAPTER 6. ROBUST NONLINEAR STATE ESTIMATION AND DESIGN METHOD

OF ITS PARAMETERS

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time [s]

 

 

true x1
estimate x1

(a) estimate of x1 (θ1)

0 2 4 6 8 10
-2

-1

0

1

2

3

4

Time [s]

 

 

true x2
estimate x2

(b) estimate of x2 (θ2)

0 2 4 6 8 10
-15

-10

-5

0

5

10

Time [s]

 

 

true x3
estimate x3

(c) estimate of x3 (θ̇1)

0 2 4 6 8 10
-25

-20

-15

-10

-5

0

5

10

15

20

Time [s]

 

 

true x4
estimate x4

(d) estimate of x4 (θ̇2)

Figure 6.4: Estimates solving Eq. (6.11) directly under Cauchy noise. The solid lines are
true signals and dashed lines are estimates.
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Figure 6.5: Estimates using RUKF under Cauchy noise. The solid lines are true signals and
dashed lines are estimates.
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Figure 6.6: Estimates using UKF under Gaussian mixture noise. The solid lines are true
signals and dashed lines are estimates.
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Figure 6.7: Estimates solving Eq. (6.11) directly under Gaussian mixture noise. The solid
lines are true signals and dashed lines are estimates.
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Figure 6.8: Estimates using RUKF under Gaussian mixture noise. The solid lines are true
signals and dashed lines are estimates.



Chapter 7

Conclusions

7.1 Summary

Outliers are a kind of non-Gaussian measurement noise generated by heavier tailed distribu-
tions than a normal distribution. Hence, abnormal values, which are distant so much from
mean values of distributions, are unusually occurred in a time domain. They are happened
in many applications, e.g., automobiles, industrial robots, medical machines, and so on, and
they provide negative effects on various applications. Examples of the applications are tar-
get tracking systems, unmanned vehicles, visual feedback systems, and so on. Such systems
have non-contact sensors, e.g., radar measurements, GPS, ultrasonic wave sensors, image
measurements, and so on. The sensors are influenced by external environments and contam-
inated by outliers. Moreover, networked control systems have intermittent observations due
to instability and variable delay of its network. System identifications also deal with missing
observations and irregular sampling data. They can be regarded as a kind of outliers. Gen-
erally, in control designs under outliers, there are no methods considering outliers explicitly.
The most basic strategy to construct control systems under outliers separates control designs
and estimation problems, and the estimation problems deal with the outliers. It is required
not only to reduce effects of the outliers, but also to analyze performances of the reduction
method. Therefore, it is required to construct reduction methods of effects of the outliers and
to analyze performances of the methods. For this reasons, this dissertation proposed robust
estimation methods and a control strategy under outliers based on RKF via l1 regression. In
addition, we analyzed performances of the proposed methods and demonstrated effectiveness
of the proposed methods by some numerical simulations.

RKF via l1 regression is one of the most attractive methods because of an easy structure
and implementation. Additionally, the RKF truncates outliers by some thresholds and has
less delay than the other RKF. However, regularization parameters of the RKF needed to
be tuned by heuristic methods. In chapter 3, we proposed a new design method of the
RKF. Regularization parameters of the RKF are determined by statistics of Gaussian noise.
Both primal and dual problems can derive a condition of the proposed parameters. This
means that the proposed design method provides the parameters with physical meanings,
and we can design the parameters systematically. We analyzed performances of the RKF
with the proposed design method. It was shown that a covariance matrix of an innovation
of the RKF is bounded by that of normal KF without outliers. The covariance matrix
of the innovation of the RKF comes close to an ideal one under outliers. We applied the

111
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RKF with the proposed design method to a target tracking systems with clutters and a
control problem of a two-wheeled vehicle under outliers. Effectiveness was demonstrated by
some numerical simulations. Especially, the simulations showed that the multi-parameters
were automatically determined to be no conservative under measurement noise with different
variances.

Since RKF via l1 regression consists of a convex optimization problem, a computation is
more effective than the other robust estimations. However, the RKF requires some iterative
algorithms to solve the optimization, so a convergence rate and accuracy of the solutions of
the RKF depend on conditions of the iterations. In chapter 4, we proposed a fast algorithm
of RKF via l1 regression. The proposed algorithm approximates the optimal solution by
using its upper and lower bounds, and the approximated solution is given by a closed form.
Moreover, it was shown that the proposed algorithm had almost same performances as
KF without outliers under some conditions. Some numerical simulations demonstrated a
comparison of performances using CVX, CVXGEN, FISTA, and the proposed algorithm.
The proposed algorithm gave smaller RMSEs than the other algorithms. Moreover, using
CVXGEN, FISTA, and the proposed algorithm, computation times are about 1/1000 times
less than one using CVX. A compiled version of the proposed algorithm is more accelerated,
and a computation time of the compiled version comes close to that of normal KF.

In chapter 5, in order to construct a robust controller under outliers, we applied an
idea of RKF via l1 regression to self-tuning controller (STC), and we proposed robust STC
(RSTC) under outliers. A parameter update law of the conventional STC can be written as a
recursive least square (RLS) method, and RLS can be given by a solution of a minimization
problem of estimated errors. Therefore, the proposed method estimated parameters and
outliers explicitly by addition of a l1 regression term to the minimization problem, and the
estimated outliers were removed from measurement outputs in a controller. The proposed
method is solved in a closed form due to a l1 optimization problem with a single variable,
so the algorithm is very efficient. And also, it was shown that steady state errors in the
proposed method with outliers are nearly equal to ones in the conventional STC without
outliers. A numerical simulation demonstrated that the proposed RSTC can remove effects
of the outliers and reduce control errors more than STC.

RKF via l1 regression is a method only for linear systems. In chapter 6, we extend
the RKF to non-linear systems using unscented KF (UKF) and we proposed robust UKF
(RUKF) via l1 regression. And also, we proposed a new design method of its regulariza-
tion parameters. It was shown that regularization parameters of RUKF are determined
by a covariance matrix of Laplace distributions. Similarly to linear systems, regularization
parameters of RUKF are determined by statistics of Gaussian measurement noise in this
dissertation. Therefore, the proposed design method provides the parameters with physical
meanings, and we can design the parameters systematically. Moreover, the regularization
parameters make performances of RUKF come close ones of UKF without outliers. We ap-
plied RUKF to a state estimation of a two-link manipulator under outliers. Some numerical
simulations demonstrated that RUKF had smaller estimation errors than the other algo-
rithms under outliers. Since RUKF is based on UKF and l1 optimization problem, it can be
computed more efficiently than Gaussian sum filter and particle filter.
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7.2 Future Works

In our contributions, effectiveness is shown only by some numerical simulations. We will
verify the proposed methods by real applications as our future works. As we mentioned
before, there are many control systems under outliers. We will apply the proposed method
to the systems.

In larger dimension of RKF via l1 regression, or in some conditions of covariance matrix of
Gaussian noise, the proposed algorithm of the RKF sometimes could not satisfy the condition
(4.19), and performances of the RKF were deteriorated. A proposition of efficient algorithms
for the large scale problems is one of our future works.

Performances of the proposed RKF and RUKF depend on the covariance matrix R.
The proposed methods can estimate outlier zk. Therefore, we can estimate the covarinace
matrix R using the estimated outlier like Eq. (5.36), and we can construct an adaptive
RKF and RUKF. However, stability of the method cannot be guaranteed. We have tried
the methods and the methods sometimes made unstable. A proposition of a method with
unknown covariance matrix, whose stability is guaranteed by a theory, is also one of the our
future works.

In RSTC, the proposed method has a multi-loop structure, i.e., each constraint is mutu-
ally independent. Therefore, the proposed method can be used only in the case that number
of inputs is equal to one of outputs. A proposition of RSTC for more general forms is our
future work. Moreover, the proposed method deteriorates a transient response because it
may estimate the change point as outliers and it cannot estimate outliers at the change point
well. An improvement of the drawback is also our future work.

Finally, we want to expand ideas of this dissertation to more general l1 optimization, i.e.,
least absolute shrinkage and selection operator (LASSO), in future.





Appendix A

Multivariate Laplace Distribution

A.1 Derivation

First, a standard multivariate Laplace distribution is derived.

Define X and x as follows:

X :=


X1

X2
...

Xn

 ,

x :=


x1

x2
...
xn

 ∈ X,

where X1, X2, · · · , Xn are independent stochastic variables and distributed by the following
Laplace distribution whose mean is 0 and variance is 1:

pl(xi) =

√
2

2
exp

(√
2|xi|

)
.

Therefore, a marginal probability density function (marginal PDF) of X is given by

pl(x) =
n∏

i=1

p(xi) = 2−
n
2 exp

(√
2||x||1

)
.

Secondly, consider the coordinate transformation of Y = AX +µ, where A ∈ Rn×n is a
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non-singular transform matrix, and Y , y, µ are defined as follows:

Y :=


Y1

Y2
...
Yn

 ,

y :=


y1
y2
...
yn

 ∈ Y ,

µ :=


µ1

µ2
...
µn

 .

From X = A−1(Y − µ),

dx1dx2 · · · dxn = det(A−1)dy1dy2 · · · dyn.

Therefore,

p(x)dx1dx2 · · · dxn = 2−
n
2 exp

(√
2||x||1

)
det(A−1)dy1dy2 · · · dyn

= 2−
n
2 exp

(√
2||A−1(y − µ)||1

)
det(A−1)dy1dy2 · · · dyn

= 2−
n
2 (det(A))−1 exp

(√
2||A−1(y − µ)||1

)
dy1dy2 · · · dyn.

Let Σ = AAT , then A = Σ1/2, and

det(Σ) = det(A) · det(AT ) ⇔ det(A) = (det(Σ))1/2.

Therefore, PDF of Y is given by

p(y) = 2−
n
2 (det(Σ))−

1
2 exp

(√
2||Σ− 1

2 (y − µ)||1
)
.

This is one of PDFs of multivariate Laplace distributions.

A.2 First and Second Moments

From the relation Y = AX + µ, first and second moments of Y are given by

E[Y ] = E[AX + µ] = µ,

E[(Y − E[Y ])(Y − E[Y ])T ] = E[AX(AX)T ]

= AAT

= Σ.

This means that µ and Σ are calculated by a sample mean and covariance.



Appendix B

Derivation of an Update Law of
Kalman Filter via an optimization
problem

In this chapter, Let J be a criterion in Eq. (2.5), i.e.,

J = vT
k R

−1vk +
(
xk − x̂k|k−1

)T
P−1

k|k−1

(
xk − x̂k|k−1

)
.

A necessary condition of an optimality gives the following equation:

∂J

∂xk

∣∣∣∣
xk=x̂k|k

= −2CTR−1
(
yk −Cx̂k|k

)
+ 2P−1

k|k−1

(
x̂k|k − x̂k|k−1

)
= 0.

Therefore,

CTR−1
(
Cx̂k|k − yk

)
+ P−1

k|k−1

(
x̂k|k − x̂k|k−1

)
= 0.

⇔
(
P−1

k|k−1 +CTR−1C
)
x̂k|k = P−1

k|k−1x̂k|k−1 +CTR−1yk.

⇔ x̂k|k =
(
P−1

k|k−1 +CTR−1C
)−1

P−1
k|k−1x̂k|k−1

+
(
P−1

k|k−1 +CTR−1C
)−1

P−1
k|k−1C

TR−1yk. (B.1)

An inverse matrix lemma gives the following equation:(
P−1

k|k−1 +CTR−1C
)−1

= Pk|k−1 − Pk|k−1C
T
(
I +R−1CPk|k−1C

T
)−1

R−1CPk|k−1.

From Eq. (B.1),

x̂k|k = x̂k|k−1 − Pk|k−1C
T
(
I +R−1CPk|k−1C

T
)−1

R−1Cx̂k|k−1

+
(
P̂k|k−1 − Pk|k−1C

T
(
I +R−1CPk|k−1C

T
)−1

R−1CPk|k−1

)
CTR−1yk

= x̂k|k−1 − Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

Cx̂k|k−1

+P̂k|k−1C
T
(
I −

(
I +R−1CPk|k−1C

T
)−1

R−1CPk|k−1C
T
)
R−1yk.
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OPTIMIZATION PROBLEM

Again, the inverse matrix lemma results in the following equation:

I −
(
I +R−1CPk|k−1C

T
)−1

R−1CPk|k−1C
T =

(
I +R−1CPk|k−1C

T
)−1

.

Therefore,

x̂k|k = x̂k|k−1 − Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

Cx̂k|k−1

+P̂k|k−1C
T
(
I +R−1CPk|k−1C

T
)−1

R−1yk

= x̂k|k−1 − Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

Cx̂k|k−1

+P̂k|k−1C
T
(
CTPk|k−1C

T +R
)−1

yk

= x̂k|k−1 + Pk|k−1C
T
(
CPk|k−1C

T +R
)−1 (

yk −Cx̂k|k−1

)
.
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A Closed Form Solution of Robust
Self-Tuning Controller

Let J be a criteria of Eq. (5.25), i.e.,

J =
(
ek,i − Cii(z

−1)zk,i
)T

Wi

(
ek,i − Cii(z

−1)zk,i
)
+ λi||zk,i||1,

a first-order necessary condition of an optimality yields the following equation.

∂J

∂zk,i

∣∣∣∣
zk,i=ẑk,i

= −2Cii(z
−1)Wi

(
ek,i − Cii(z

−1)ẑk,i
)
+ λi

∂||ẑk,i||1
∂ẑk,i

= 0. (C.1)

The regularization parameter λi is given by Eq. (5.28) and Wi is a scalar, so Eq. (C.1) is
results in the following equation.

−Cii(z
−1)
(
ek,i − Cii(z

−1)ẑk,i
)
+ σi

∂||ẑk,i||1
∂ẑk,i

= 0.

⇔ Cii(z
−1)

(
ek,i −

n−1∑
j=1

cjiiẑk−j,i − ẑk,i

)
− σi

∂||ẑk,i||1
∂ẑk,i

= 0.

⇔
n−1∑
l=0

cliiek−l,i −
n−1∑
l=0

clii

n−1∑
j=1

cjiiẑk−j−l,i −
n−1∑
j=1

cjiiẑk−j,i − ẑk,i − σi
∂||ẑk,i||1
∂ẑk,i

= 0. (C.2)

Let e′k,i be a new variable given by

e′k,i =
n−1∑
l=0

cliiek−l,i −
n−1∑
l=0

clii

n−1∑
j=1

cjiiẑk−j−l,i −
n−1∑
j=1

cjiiẑk−j,i,

then Eq. (C.2) results in the following equation:

e′k,i − ẑk,i − σi
∂||ẑk,i||1
∂ẑk,i

= 0.

(C.3)
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Therefore, 
ẑk,i = e′k,i − σi ẑk,i > 0,

ẑk,i ∈ e′k,i − σi[−1, 1] ẑk,i = 0,

ẑk,i = e′k,i + σi ẑk,i < 0,

∴ ẑk,i =


e′k,i − σi e′k,i > σi

0 −σi ≤ e′k,i ≤ σi

e′k,i + σi e′k,i < −σi

.
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