T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	 フォークリフト用油圧湿式多板クラッチの負荷形態別寿命予測に基づ く強度設計法
Title(English)	
著者(和文)	岡部一成
Author(English)	Kazunari Okabe
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第9319号, 授与年月日:2013年9月25日, 学位の種別:課程博士, 審査員:北條 春夫,横田 眞一,初澤 毅,佐藤 千明,松村 茂樹
Citation(English)	Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第9319号, Conferred date:2013/9/25, Degree Type:Course doctor, Examiner:,,,,
 学位種別(和文)	
Type(English)	Doctoral Thesis

フォークリフト用油圧湿式多板クラッチの

負荷形態別寿命予測に基づく強度設計法

東京工業大学総合理工学研究科

博士課程

メカノマイクロ工学専攻

北條·松村研究室

岡部 一成

目 次

第1章	序論	5頁
第2章	負荷形態と損傷形態の整理	17 頁
第3章	クラッチの吸収エネルギーと温度上昇	28 頁
第4章	摩擦材の寿命評価	38 頁
第5章	相手板の変形の評価	56 頁
第6章	クラッチの損傷要因と負荷形態別寿命予測に基づく強度設計法	66 頁
第7章	結論	73 頁
参考文南	Ŕ	77 頁
謝辞		79 頁

記 号

I_E :	エンジンフライホイール慣性モーメント	[kgm ²]		
I_W :	車両等価慣性モーメント(クラッチ部換算)	[kgm ²]		
<i>t</i> :	時間	[s]		
t_m :	モジュレーションまたはインチング時間	[s]		
t_e :	クラッチ係合時間	[s]		
$\omega_0(t)$:	トルクコンバータ出力角速度	[rad/s]		
$\omega_w(t)$:	クラッチ車両側角速度	[rad/s]		
$\tau_0(t)$:	トルクコンバータ出力トルク	[Nm]		
$\tau_{c}(t)$:	クラッチトルク	[Nm]		
τ_W :	走行抵抗トルク(クラッチ部換算)	[Nm]		
τ_s :	トルクコンバータストールトルク	[Nm]		
<i>k</i> :	クラッチトルク傾き	[Nm/s]		
μ :	クラッチ板摩擦材動摩擦係数	[-]		
<i>Z</i> :	クラッチ板面数	[-]		
r_m :	クラッチ板有効半径	[m]		
P(t):	クラッチ油圧	[Pa]		
A_p :	クラッチピストン受圧面積	[m ²]		
Fs:	クラッチピストンリターンスプリング力	[N]		
$\omega_{S}(t)$:	クラッチすべり角速度	[rad/s]		
$\dot{q}(t), \dot{Q}$:	単位時間当り吸収エネルギー	[W]		
q(t), Q:	吸収エネルギー	[J]		
Pc:	クラッチ板面圧	[Pa]		
ΔV :	クラッチ板,相手板間の相対速度	[m/s]		
ΔN :	クラッチ板,相手板間の相対回転速度	[rpm]		
<i>T</i> :	クラッチ板表面温度	[°C]		
T_{1}, T_{in} :	クラッチ板表面内径側温度	[°C]		
T_2, T_{out} :	クラッチ板表面外径側温度	[°C]		
<i>H</i> :	熱伝導量または熱伝達量	[W]		
C_p :	熱容量	[J/°C]		
λ_m :	相手板の熱伝導率	$[W/m^{\circ}C]$		
<i>h</i> :	相手板とオイル間の熱伝達率	$[W/m^2 C]$		
<i>A</i> :	熱伝導面または熱伝達面の面積	[m ²]		

L:	要素間の代表長さ	[m]
L_H :	寿命時間	[hr]
n_i :	負荷の頻度	[-]
N_i :	S-N線図またはT-N線図での限界頻度	[-]
<i>a</i> :	薄肉円板の内側半径	[m]
<i>b</i> :	薄肉円板の外側半径	[m]
$\sigma_{ heta}$:	円周方向応力	[MPa]
α:	線膨張係数	[1/°C]
<i>E</i> :	縦弾性係数	[MPa]

第1章

序論

- 1・1 はじめに
- 1・2 研究の背景
 - 1•2•1 社会的背景
 - 1・2・2 負荷と頻度
- 1·3 従来の研究
 - 1・3・1 歴史
 - 1・3・2 他者の研究
- 1・4 研究の目的
- 1・5 論文の構成

1・1 はじめに

湿式多板クラッチは自動車に限らず、フォークリフト、建設機械用のオートマチックトランス ミッションに広く利用されている. 複数枚の摩擦板(薄肉円板の芯金に摩擦材を貼付したもの) と相手板(軟鋼の薄肉円板)とを交互に組合せ、オイル潤滑下で油圧力により押し付けることに よって動力の伝達を行うトライボロジー部品である. その係合のプロセスは、流体潤滑と境界潤 滑が混合した複雑な系となり、また、その特性・耐久性に影響する因子が多数あり、それらがお 互いに複雑に相互作用し合うため、歯車、軸受といった金属部品のような寿命設計法が確立され ていない.

湿式多板クラッチの研究の歴史を振り返ると以下になる.日本の自動車産業の世界的発展が顕 著となる 1980 年代から研究の主体は米国から日本へ移り国産化の動きが加速した. 1980 年代 半ばからの 10 年間は、すべり試験機、SAE#2 試験機といったクラッチ単体試験機による摩擦 特性、性能評価が研究の主体であった. 1990 年代半ばから実機トランスミッションに組み込ん だ状態での性能評価や、依然クラッチ単体試験機によるが、耐久性評価に関する研究が顕在化し てきた.しかし、いずれも関係する因子の一部または部分に関して単発的に影響の評価を試みて いるにとどまり、全影響因子が相互作用し合う実機トランスミッションでの耐久性予測までには 到っていない.理想は、実車搭載トランスミッションで、フィールドでの負荷頻度を考慮した寿 命予測、限界寿命設計が机上で可能となることである.

一方,フォークリフトは,自動車のような個人所有の消費財ではなく,物流内で荷の運搬(水 平搬送),積み下ろし(垂直搬送)を担う生産財である.このため,オペレータの操作は作業効 率向上のために乱暴になりがちであり,また用途(負荷形態)も様々であって,自動車よりも負 荷のレベル,範囲,頻度が過酷である.このため湿式多板クラッチの損傷が多発した.そしてそ の損傷の形態は一定しておらず,①摩擦板の摩擦材のみが摩耗している場合,②相手板のみが変 形している場合,③両方を併発している場合に分類でき,その原因究明が望まれていた.

本論文では、フォークリフト用湿式多板クラッチに関して、以下の項目を行った.

- (1) フォークリフトの用途(負荷形態)を整理し,用途別にフィールドでの負荷パターン(負荷のレベル,範囲,頻度)を整理・分類した(第2章).
- (2) 湿式多板クラッチの損傷状態を観察して、その損傷形態を整理し、負荷形態別負荷パター ンとの因果関係を明らかにした(第2章).
- (3) この因果関係の違いが、クラッチによるエネルギー吸収の時間的遷移の違いによるクラッ チ表面温度 *T*の上昇の仕方の違いによることを明らかにした(第3章).
- (4) クラッチ表面温度 Tに着目した摩擦材の寿命評価法について提案し,実機試験結果との比較によってその正当性を検証した(第4章).
- (5) クラッチ表面温度 T の内外周間での温度差に着目した相手板変形有無の評価法について 提案し,実機試験結果との比較によってその正当性を検証した(第5章).
- (6) 摩擦材の寿命評価指標と相手板変形有無の評価指標とをクラッチ表面温度を介して同一 座標上で重ね,負荷条件の違いによってどちらが湿式多板クラッチ損傷の支配的要因とな

るかを明らかにした(第6章).

(7) 以上のプロセスは,設計の立場から見ると負荷形態の違いを考慮した摩擦材と相手板との 強度バランス設計が必要であることを示しており,それをフォークリフト用湿式多板クラ ッチの負荷形態別寿命予測に基づく強度設計法としてまとめた(第6章).

1・2 本研究の背景

1・2・1 社会的背景

地球温暖化対策としての CO2 削減は全世界の最重要課題になっている.世界的な削減義務と しての京都議定書が 1997 年に議決され 2005 年に発効し,議定書の目標達成を目処に削減が行 われてきた.

運輸部門を代表する自動車業界では各社,超低燃費・低エミッション車の実現に向けた研究開 発を精力的に進めており、ハイブリッド車,電気自動車による脱化石燃料動力源による車両の開 発,高張力鋼,アルミ,強化ナイロンや CFRP などの樹脂による軽量化,新たな熱処理技術・ 表面処理技術の開発による低フリクション化,小型化等々,各種要素技術に細分化された技術開 発のスピードには凄まじいものがある.フォークリフトの業界も状況はまったく同じである.

地球温暖化対策のための CO2 削減の打ち手として、フォークリフトにおいても以下の技術開 発が進められている(図 1.1).

- ① コンベンショナル車であるエンジン車の燃費向上
- ② モーターとエンジン併用によるハイブリッド車の開発
- ③ バッテリ車(電気車)の省エネ,効率向上

Fig. 1.1 Hybrid folklift truck and battery forklift truck [1][15]

燃費向上,省エネのために,自動車同様,小型・軽量化,高効率化の動きにある.

いずれの車両においても動力源からタイヤへ動力を伝達するための機械式の動力伝達装置(ト ランスミッション)は必要であり、そのトランスミッションにも小型・軽量化、伝達効率の向上 が要求されている.

一方,エンジンは高出力化の動きにあるから,その動力をタイヤ側へ伝達するトランスミッションには,限られたスペースに小さく,軽くおさめるコンパクトな設計と,無駄のない要求寿命

をギリギリで満足させる限界寿命設計が望まれることとなる.

トランスミッションの構成部品について限界寿命設計を考えた場合,軸受,歯車,軸といった 金属部品では,応力を計算してそれをある閾値と比較することによって比較的容易に行えるが, トライボロジー部品であり,その係合メカニズムが複雑であって理論的な解明が完全にはなされ ていない湿式多板クラッチでは寿命設計法が確立されていない.

1・2・2 負荷と頻度

フォークリフトと自動車との一番の違いは,自動車が個人所有の消費財であるのに対し,フォ ークリフトは会社保有の生産財であることである.このため,フォークリフトは作業効率向上を 優先するために乱暴な運転をされやすい.

フォークリフトの作業パターンについては 2 章で詳述するが,自動車とは異なる独自の稼働 状況にあり,とりわけトランスミッションの主要部品である湿式多板クラッチの損傷が多発した. 湿式多板クラッチが損傷すると,変速不能,最悪の場合には走行不能という極めて重大な不具合 現象となって顕れる.

この不具合の原因解明と対策は重要な課題であった.

市場からの不具合返却品を観察すると損傷の形態にはバラツキがあって,以下の 3 つに分類 できた.

1) 摩擦板の摩擦材のみが磨耗,損傷している場合,

- 2) 相手板のみが変形している場合,
- 3) 両方を併発している場合

である.

この原因を摩擦材,相手板それぞれの損傷メカニズムを解明し,車両の使われ方とつき合わせることによって特定することが望まれていた.

1・3 従来の研究

1・3・1 歴史

動力伝達装置の歴史をたどると,自動変速機は1930年代から米国の自動車業界において生ま れ発展を始めた.自動変速を可能にした技術要素は,従来の手動変速機の歯車に加えて新たに開 発されたトルクコンバータと油圧によって駆動(パワーシフト)される湿式多板クラッチ,その 油圧制御機器である.

このため湿式多板クラッチの研究開発も米国の2大自動車メーカーであるGMとFordによっ て主導された.摩擦材も,Borg-Warner,RM,SK-Wellmanという米国メーカーによって開発 が進められ,また湿式多板クラッチの特性は後述するが潤滑油とのマッチングが極めて重要であ り,潤滑油メーカーである米国石油メジャーがGM,Fordの巨大自動車メーカーと3社の摩擦 材メーカーとがタイアップする形で開発が進められた. 1970年代までは第1世代といわれ、主にトルク容量重視で開発が進められた.

1980年代になると、米国以外、主に日本において自動変速機の普及が始まり、変速フィーリングの改善に研究開発の方向は移った.変速時のショックや過度応答過程での振動発生は、湿式多板クラッチが係合を開始する時(相対回転 V=Vmax)から係合を完了する(V=0)までの摩擦係数 μ の変化に密接に関係することが明らかになり、これから摩擦特性を代表する指標として台上試験機による μ -V特性の評価が始まった.この台上試験機として米国自動車技術会(SAE International = Society of Automobile Engineering International)において規格化されて開発されたのが SAE#2 試験機である(図 1.2).

Fig. 1.2 SAE#2 test bentch [2]

Fig. 1.3 Test result by SAE#2 test bentch [3]

この μ -V 特性が正勾配であると変速フィーリングが良好であることが明らかになり、様々な 使用条件において潤滑油の種類を変えて μ -V 特性の改善が試みられた. その結果として開発さ れた潤滑油は GM, Ford, それぞれの純正油として規格化され、市販された. GM で規格化さ れた純正の自動変速機用潤滑油 (ATF = Automatic Transmission Fluid)が Dexron II であり、 Ford で規格化された ATF が Mercon である. 日本の自動車メーカーも国内の石油会社、摩擦材 メーカーとタイアップして米国の規格を学び、それらに合致した潤滑油、摩擦材の開発を始めた. 日本国内の摩擦材メーカーも当初は米国の摩擦材メーカーと技術ライセンス契約を結んで摩擦 材料の開発に励んだ. Borg-Warner と NSK が (NSK ワーナー)、RM と大金製作所が (大金 RM. 現在のダイナックス)、SK-Wellman と東洋カーボン (現在の東海カーボン)が提携して いた.しかし1980年代中頃から,日本のメーカー独自による摩擦材の自主開発が始まってくる. ここまでが第2世代となる.

1980年代以降の日本の自動車産業の躍進はここに述べるまでもない. 自動変速機の普及も周知のとおりである.トョタ,日産,本田をはじめとした日本の自動車メーカーは日本の摩擦材メーカー,石油メーカーとタイアップして,自主技術による摩擦材,潤滑油の共同開発を進め,各社純正のATFを規格化し,市販を始めた. 1990年代中頃になると,自動変速機の変速用のクラッチのみでなく,トルクコンバータ内のロックアップクラッチや 4WD 車の最適トルク配分制御用に湿式多板クラッチが用いられるようになり,これらの装置では,クラッチを常時すべらせて制御するというスリップ制御という使用条件下に置かれることとなった.しかし,ここにおいてもまだ,スリップ時の振動発生の解決という特性改善の問題がクローズアップされ,依然として μ-V 特性の改善に重きが置かれていた.耐久性の評価はもっぱら実機による長時間に及ぶ耐久試験に寄っていた.言い方を変えれば,耐久性を机上で予測するという視点にまで考えが進んでいなかった.ここまでが第3世代となる.

2000年代中頃になると、本論文で初めから述べているとおり、トランスミッションにおいて も低燃費のための高効率化の動きは凄まじく、低温において粘度を落としても変速特性や耐久性 の変わらない低粘度の ATF が開発されるようになった.ここが第4世代となる.

1・3・2 他者の研究

1985年以前は、米国のGM, Fordを中心とした摩擦特性に関する研究が主体であった.

1) 1985年~1995年頃

1985年以降,日本の自動車メーカー,摩擦材メーカー,石油メーカーの共同研究による国産 化の動きが始まったことは述べた.技術開発の主導権は米国から日本へ急速に移ってきた.論文 レベルで発表された湿式多板クラッチに関する研究は1995年頃までの10年間はμ-V特性に代 表される摩擦特性に関したラボ研究(実験室的な研究)が主であった.

山本隆司らは,図 1.4 に示す回転型定速すべり試験機を用いて,すべり速度,面圧,潤滑油種, 温度等のパラメータを変化させて µ-V 特性を網羅的に計測して,そのデータを公表し,それら の相関関係を明らかにした.また,同じ試験機を使って,導電性銀ペーストを用いた湿式多板ク ラッチ係合時の流体潤滑と境界潤滑との状態観察の一手法の提案をした[4][5][6].

Fig. 1.4 Rotating type sliding test bentch [4]

楽田伸一,三好達朗らは、湿式多板クラッチの係合の過程は境界潤滑的、混合潤滑的であるので理論的に摩擦特性を予測することは難しく、実験によって評価せざるを得ないことを明らかにした上で、摩擦材の気孔性をパラメータに加えて SAE#2 試験機によってμ-V 特性との関係を発表した[7][8].

太斎正志らはLVFAタイプすべり試験機とSAE#2試験機を使って湿式多板クラッチ係合過程 での自励振動の評価を実験によって行った.

これらの研究は、いずれも、トランスミッションあるいは湿式多板クラッチパックへ実際に組み付けた状態での実機による評価ではなく、すべり試験機,SAE#2 試験機といった摩擦材と金属材、または摩擦板と相手板との組合せによるクラッチ単体試験機による実験的な摩擦特性評価,性能評価であった[9].

2) 1995年以降

1995年頃からトランスミッションあるいは湿式多板クラッチパックへ実際に組み付けた状態 での実機による性能,耐久性評価の研究が始まった.また,まだラボ研究レベルにとどまるが, 温度と摩擦材の耐久性との関係に関する研究発表が顕在化してきた.本論文に関係する主な研究 を以下に示す.

1996年に加藤芳章らは、クラッチ単体ではなく、初めて実機の自動変速機でクラッチの温度 計測を行った[10].

1998年に三浦達人らは,SAE#2 試験機を改良してクラッチ摺動面の可視化を行って,気泡の 発生と摺動面の実接触面積の増加とトルク発生のメカニズムについて明らかにすると同時に,実 機クラッチパック単体での耐久試験について発表した[11].

2002 年に三好達朗らは,連続すべり試験機によってではあるが,温度と摩擦材の耐久性の関係について解明した.しかし,連続すべり試験での評価であったため,実機での湿式多板クラッチ内部の温度把握までは明らかにされておらず,実機,実車での耐久性との関係までは論じられ

ていない[12].

2005年に顧暁明らは、摺動試験機によってではあるが、すべり時間と摺動面温度との関係は 指数関数的関係であること、摩擦係数は摺動面温度の上昇につれてほぼ直線的に低下すること、 摩擦材のセルロース量、潤滑油量をパラメータとして温度と耐久限界との関係を明らかにした. また本研究において相手板ホットスポットの不具合例について紹介がなされ、この発生メカニズ ムはまだ解明されていない、という言及がある[13].

ここまでは耐久性とそれに影響を与えるパラメータとの関係をクラッチ単体試験によって解 明しようという試みで、まだ著者が目標とする耐久性予測、寿命予測にまでの進展はみられなか ったが、2006年に齊藤俊博らが、初めてクラッチ単体耐久試験の耐久予測技術について発表し た[14]. 具体的な内容は以下である.

- 従来行っていたクラッチ単体耐久試験では、単一の負荷条件を決めてクラッチの係合を繰り返すが、その時の摩擦材の摩耗の進展は図 1.5 に示すとおりとなる.
- 2) 初期なじみ後,10000回を超えて以降の摩擦材の定常摩耗は温度と相関関係があることを 明らかにし、その相関関係はいずれも線形であるとした.
- 3) 摩擦材の表面温度を負荷条件から算出できるシミュレーションを開発し、摩擦材の摩耗進行を傾き K でとらえ、過去の様々な負荷条件でのクラッチ単体耐久試験結果を集め、それらの負荷条件での表面温度 T と傾き K との関係を Fig.1.40 のようにマップ化した.
- このマップからクラッチ単体耐久試験での任意の負荷条件での耐久性の予測を可能にした。

この研究は湿式多板クラッチの耐久性を机上で予測するという画期的な研究であった.しかし, クラッチ単体での耐久試験による耐久性の評価を机上で予測するまでにとどまり,トランスミッ ション台上耐久試験や実車フィールドでの変動する実負荷を考慮した寿命を予測するところま では論じられていない.

Fig. 1.5 Wear history of friction material on a clutch unit test bentch and Initial wear properties map and Steady-state wear properties map [14]

以上の従来の研究と筆者の研究との違い、またこれまでの研究の流れを表 1.1 に示す.

縦は、上から年代順に並べ、横は、大きく特性評価と耐久性評価に分け、そのそれぞれをさら に単体試験によるものか、実機によるものか、区分けした.各研究が取り組んだところを網がけ した.1993年の山本らの研究はクラッチ単体試験機であるすべり試験機によって摩擦特性評価 を実施しており、同年の三好らの研究は同じくクラッチ単体試験機であるが、SAE#2 試験機で の慣性吸収によって摩擦特性評価を実施した.1996年の加藤らの研究になると、実際のトラン スミッションでの特性計測が実施された.1998年の三浦らの研究になるとクラッチ単体試験で の特性評価と合わせて、クラッチ単体慣性吸収試験での耐久性評価が実施され、2002年の顧ら の研究ではクラッチ単体連続すべり試験での耐久性評価が実施された.そして 2006年に齋藤ら がクラッチ単体試験での耐久性予測を実施した.

				特性評価		耐久性評価			
			単体試験機 実機		尚佳書書	実機			
			すべり	慣性吸収	T/M	平平动映	T/M	実車	
1993	山本ら (東京農工 大)	湿式クラッチ用ペーパ系摩擦材の定 常摩擦特性に及ぼす摩擦面温度の 影響							
1993	三好ら (NSKワーナー)	フリクションプレ <i>ー</i> トの係合メカニズ ム							
1996	加藤ら (日産)	自動変速機用湿式クラッチとバンド ブレーキの温度測定							
1998	三浦ら (本田)	セグメント接着方式における自動車 用湿式クラッチの摩擦特性				3000サイクル			
2002	顧ら (NSKワーナー)	湿式クラッチ摩擦材における熱的問 題とその対策				連続すべり			
2006	齊藤ら (本田)	湿式多板クラッチの摩耗特性を考慮 した耐久性予測技術の研究				摩耗進行の 傾き予測			
2007	本研究	湿式多板クラッチ寿命設計法の研究				T-N線図	寿命予測	寿命予測	

Table 1.1 Comparison between others and this study

表 1.1 の網がけが右に行くほど技術的に進展していることを示している.以上をまとめると, 1995年くらいまでは単体試験機による摩擦特性に関する研究が主であり,1995年以降から耐久 性評価に関する研究が始まり,2006年に齋藤らが初めて耐久性予測に関する研究を発表したが, まだ,クラッチ単体耐久試験の耐久性予測にとどまっていることがわかる.著者の研究では,ク ラッチ単体慣性吸収試験機で特性把握をした上で,さらに齋藤らの研究のクラッチ単体耐久試験 に相当する試験で,齋藤らとは異なって視点から T-N 線図という耐久指標を作成し,さらにそ のデータを用いて,変動する負荷が混在する実機トランスミッション台上耐久試験およびフィー ルド実車トランスミッションでの耐久性,寿命予測を行うことを目的としている.

1・4 研究の目的

以上を鑑みて本研究の目的は以下とした.

- 1) 自動車よりも負荷のレベル,頻度,変動幅が大きいフォークリフト用トランスミッション の湿式多板クラッチに関して,変動する実負荷に対する寿命予測法を提案すること.
- 2) 湿式多板クラッチで多発した不具合が、①摩擦材のみが摩耗している、②相手板のみが変形している、③両方を併発している、という3形態に分類できた原因を、フィールド実車での業態の違いとの関係において解明すること。
- 3) 以上から、フォークリフト用湿式多板クラッチに関して、負荷形態の違いを考慮した摩擦 材と相手板との強度設計法を提案すること。

1.5 論文の構成

論文の構成を図 1.6 に示す.

Fig. 1.6 Constitution of this paper

「第1章 序論」では,背景,従来の研究について説明し,本研究の目的・意義について述べた.

「第2章 負荷形態と損傷形態の整理」では、負荷形態とクラッチ不具合品の損傷形態を整理して、以下の3通りに類別できることを示した.(1)狭い倉庫内での運搬・積降作業では前後進の切換え頻度が高く、相手板が変形している場合が多い.(2)鋳物会社での連続鋳湯作業等ではクラッチを滑らせながら運転をする作業が多く、摩擦材が摩耗している場合が多い.(3)古紙や鉄をリサイクルする集貨分別作業では(1),(2)の作業が混在し、両方の損傷が併発している場合が多い.

「第3章 クラッチの吸収エネルギーと温度上昇」では、クラッチの損傷が摩擦による発熱 によって引き起こされるものとして、温度上昇についての計算方法を示してその特徴を論じた. まず摩擦材の損傷はその主成分である繊維がクラッチ係合時の発熱による炭化で生じているこ とから.表面温度が劣化を決める主要因であると推定した.次に相手板の損傷は、内側が軸方向 に反り出た永久変形であることから、1回の負荷で塑性変形が生じるものと推定した.この変形 は、発熱による内周側の面内変形量が外周側よりも大きく、内側が座屈して軸方向に反り出ると 考え、熱による内外周間の温度差に起因すると推定した.

上記の推定を基に、温度の分布を推定するシミュレーションプログラムを作成し、これを用いて検討した結果、第2章で整理した負荷形態の違いによって温度上昇と内外周の温度差に違いがあることを明らかにした.

「第4章 摩擦材の寿命評価」では、第3章で示した温度計算を基とし、温度の繰り返しが 摩擦板の炭化度合いを表すものとして、金属疲労における*S*-N線図と同様に、温度*T*とその温 度での限界係合回数*N*で表される*T*-N線図を提案し、さらに劣化蓄積則であるマイナー則を用 いて寿命時間の推定ができるとして、その理論を示すとともに検証を行った.本線図において、 変動する実負荷での温度の履歴に基づき耐久限界係合回数*N*が求められるとし、トランスミッ ション台上耐久試験及び現場での実車試験における寿命を計算し、実測寿命と比較することによ って、その正当性を検証した.

「第5章 相手板損傷の評価」では,第3章で示した内外周温度差による内部応力が閾値を 超えた時に変形に到ると考え,半径方向に温度勾配のある厚さ一様な円板モデルにおける伝熱計 算を行い,さらに再現実験によって検証を行った.この時,材料の温度依存性を考慮した降伏応 力を閾値として評価したところ,温度が低くても変形したり,温度が高くても変形しない場合な ども,温度差を評価することで変形の有無を判定できることを明らかにした.

「第6章 クラッチの損傷要因と負荷形態別寿命予測に基づく強度設計法」では,第5章で示した温度差を負荷条件から求めて摩擦材の *T-N*線図上に表し,第2章で示した負荷形態別にみたクラッチ損傷の支配要因を特定して以下のようにまとめ,これを基に強度設計法を提案した.

(1)の形態では、方向切り替え時の短時間で高いエネルギーを吸収するので、内周側温度は急激に上昇し、外周側温度はこれに追従できず、温度差が大きくなって、相手板が変形する.

(2)の形態では、長時間連続してエネルギーを吸収しており、摩擦材の内周側温度は時間とと もに上昇していくのと一緒に外周側温度も追従して上昇するため、温度差は大きくならず、摩 擦材の摩耗がクラッチの寿命を決定している.

以上の結果は,負荷形態別の摩擦材の寿命と相手板の熱変形量を考慮した強度バランス設計が 必要であることを示しており,そのプロセスを設計法としてまとめた.

「第7章 結論」

以上をまとめ、結論とした.

第2章

負荷形態と損傷形態の整理

- 2・1 本章の位置付け
- 2·2 操作系
- 2・3 基本作業パターン
 - 2・3・1 慣性エネルギー吸収型
 - 2・3・2 連続すべり型
- 2・4 負荷形態別負荷頻度の想定
 - 2·4·1 基本操作
 - 2・4・2 各基本操作のパターンの整理
 - 2・4・3 基本操作の組み合せによる作業パターンの想定
 - 2・4・4 各作業パターンでの負荷頻度の想定
- 2・5 負荷形態と損傷形態の整理

2・1 本章の位置付け

本章では、まずフォークリフトの操作方法、基本作業パターンについて説明する.次に、①基本操作の抽出、②基本操作のパラメータの整理、③それらの基本操作の組み合せによる代表的な 作業パターンの想定、④各作業パターンでの負荷頻度の想定、を行い、これらを一覧表にして整 理・俯瞰できるマトリックステーブルを提案する.一方で、ユーザーから返却されてきたクラッ チの不具合品をユーザー情報、稼働時間、および過去に実際に訪問調査した経験に照らして観察 し、車両の負荷形態の違いとクラッチ損傷の3つの形態との関係を整理する.

2•2 操作系

フォークリフトの外観と操作系を図 2.1 に示す.オペレータは前進/ニュートラル/後進切換え レバー(以降, F/N/R レバーと呼ぶ)でトランスミッション内の油圧コントロールバルブを切換 え,前進クラッチまたは後進クラッチへ油圧を供給することによって F/N/R の切換えを行う.ペ ダルは3つあり,アクセルペダルとブレーキペダルは自動車同様に右足で,インチングペダルは 左足で操作する.インチングペダルとはフォークリフトや建設機械のように作業機を有する車両 特有の操作ペダルであり,油圧コントロールバルブにリンクしていてクラッチ油圧の減圧を掌る. インチングペダルの踏み込み量を操作することによって,図 2.2 に示したクラッチ油圧のモジュ レーション時間 tm とクラッチ油圧 P₂(図 3.9 のクラッチトルク τ c2 に対応する)をコントロール することができる.これによって,①半クラッチでの微速走行や,②作業機操作時に右足でアク セル踏んでエンジン回転数を上昇させた際の走行系への動力の遮断等を行う.インチングペダル を使わずに F/N/R レバーを操作することによって前進または後進クラッチに油圧を供給した場 合には,インチングペダルに直結したインチングバルブからは独立したモジュレーションバルブ によって tm, P₂は一意に決まる.

Fig. 2.1 Full truck and operating system view of a forklift truck [15][27]

2・3 基本作業パターン

2・3・1 慣性エネルギー吸収型

フォークリフトの基本作業パターンは図 2.3 に示すように、①あるエリア(エリア A)で荷を 取る、②後進して車両の方向を転換する、③エリア A から他のエリア(エリア B)へ荷を運ぶ、 ④エリアBで荷を降ろす、⑤後進して車両の方向を転換する、⑥再びエリアAに荷を取りに行 く、を1サイクルとし、これを何度も繰り返す.ここで特徴的なことは、前進と後進、積荷と空 荷とが必ず交互に繰り返されるところである.例えば広い空港や港湾内の荷の運搬の場合には③, ⑥の走行距離が長くなり、狭い船内や倉庫内、またはトラックやコンテナからその場への荷の積 み降ろしの場合には③,⑥の走行距離が短くなるが、いずれの場合でも図4の繰り返しには違い がない.フォークリフトは生産手段内での作業車両であるから、作業能率向上のために、この繰 り返しのサイクル時間を短縮しようとして運転される.例えば、荷を降ろしてから後進し、そこ から前進に切り換える際、丁寧にブレーキを踏んで車両が完全に停止してから行えばクラッチに 対する負担は軽くなるが、実際にはブレーキを踏むことはそこそこにして、F/N/R レバーのみを 操作する場合も多い.この時、クラッチは車両の運動エネルギー(回転系での慣性エネルギー) を吸収することになり、過酷な状態に曝される.このような作業をフルリバース作業と呼ぶ.

Fig. 2.3 Basic operation of forklift-truck

2・3・2 連続すべり型

一方,フォークリフトは荷の運搬以外の特殊用途に使用されることもある.この場合はフォー クをバケット等の特殊アタッチメントに付け替えることが多い.例えば,古紙リサイクル会社の 古紙かき集め作業での車両前方への押込み力(牽引力に等しい)を保持したままでの微速走行や, 鋳物業者の鋳湯作業での回転作業機を操作しながら(エンジン回転数を上昇させながら)の微速 走行などがある.このような作業では,クラッチは強制的に連続してすべらされる.すべり時間 はオペレータの意志で決定され,長い程,クラッチの吸収エネルギーは増加する.このような作 業を連続インチング作業と呼ぶ.

2・4 負荷形態別負荷頻度の想定

本節では、業態別の負荷頻度を整理するために、以下のステップを踏んだ.

- (1) フォークリフトの代表的な操作として5つの基本操作を抽出した.
- (2) これら5つの基本操作時の吸収エネルギーを計算するために必要なパラメータを整理した.
- (3) 各業態を代表する作業パターンを,5つの基本操作を組み合せることによって想定した.

(4) 各業態を代表する作業パターンの負荷頻度を,(2)で整理した各基本動作のパラメータを 組み合せることによって想定した.

2・4・1 基本操作の抽出

図2.3に示した通り,フォークリフトの基本作業パターンでは,前進と後進を交互に繰り返し, その一方のクラッチ, ここでは使用条件が過酷である前進クラッチに着目すれば, 1 サイクル中 に発進と停止が2回ある.そしてそのうちの1回は空荷状態で,もう1回は積荷状態で行われる. 通常の丁寧な運転であれば、停止時にはブレーキを使用するためクラッチが仕事をすることはな いが、前述の通り、作業能率向上のためにサイクルタイムを短縮しようとすると、後進から前進 へ切り換える際に、前進クラッチをブレーキの代りとして使用し、停止から発進までの動作を1 度に行ってしまう場合もある (フルリバース作業). 反対に, 前進から後進へ切り換える際には, 積荷状態で荷を置きに行く, また空荷状態で荷を取りに行く動作であるため, ブレーキを使用し て停止することが一般的であり,後進クラッチをブレーキ代りに使用することは少ない.よって, 前進クラッチに着目した場合には、1サイクル中に、積荷での発進が1回、空荷での発進が1回 あり、そのそれぞれについて、きちんとブレーキを使用して停止した後に発進する場合(通常発 進)と、ブレーキペダルを使用せずにブレーキと発進とを同時にクラッチで行う場合(フルリバ ース発進)とがある比率で混在する. さらに, 作業機との同時操作時にはインチングペダルを踏 んでエンジン回転数を上げている場合もあり,インチングペダルを踏んでクラッチ油圧を低くし た状態での発進 (インチング発進, インチングフルリバース発進) がある比率で混在することと なる. 以上は慣性エネルギー吸収型の作業パターンに関するが, 連続すべり型の作業パターンの 場合には,慣性エネルギー吸収型作業パターンの前進走行時に連続インチング作業が挿入される こととなる.以上から、以下の5つの操作を基本操作として抽出した.

- (1) 通常発進
- (2) インチング発進
- (3) フルリバース発進
- (4) インチングフルリバース発進
- (5) 強制的な連続インチング

それぞれについて具体的に説明する.

(1) 通常発進(NS)

オペレータがブレーキを使って車両を完全に停止(V=0km/h)させた後、インチングペダルを 踏むことなく、F/N/R レバーをFにシフトした後にアクセルペダルを踏み込むと、クラッチはシ ョック緩衝用のモジュレーションバルブによる短時間の油圧モジュレーション間のみ滑り、その 間はエネルギーを吸収し、油圧モジュレーション完了後、クラッチは係合を完了して、その後は トルクコンバータが車両発進の仕事を掌り、その時のエネルギーはすべてトルクコンバータが吸 収する.このような操作を通常発進(NS)と呼ぶ.

(2) インチング発進(IS)

オペレータがブレーキを使って車両を完全に停止(V=0km/h)させた後、インチングペダルを 踏みながら、F/N/R レバーをFにシフトすると、クラッチはインチングペダルの踏み込み代で決 定される低油圧の間、滑ることとなる.この時、クラッチは車両発進の仕事を掌り、その間のエ ネルギーを吸収する.このような操作をインチング発進(IS)と呼ぶ.この操作は推奨されてお らず、誤操作の範疇に属すると考えられている.

(3) フルリバース発進(FRS)

2・3・1項で述べた通り、オペレータが、車両を後進に走行している状態から前進に方向を転換したい場合に、アクセルペダルは踏み込んだままで、ブレーキを踏まずに、F/N/R レバーのみをRからFにシフトすると、クラッチはブレーキの代りとして使用されることとなる.この時、クラッチはショック緩衝用のモジュレーションバルブによる短時間の油圧モジュレーション間のみ滑り、その間はエネルギーを吸収し、油圧モジュレーション完了後は係合を完了して、その後はトルクコンバータが車両の停止から発進までエネルギーを吸収する.このような操作をフルリバース発進(FRS)と呼ぶ.この操作は推奨されてはいないが、正常操作の許容限界の操作と考えられている.

(4) インチングフルリバース発進(IFRS)

オペレータが、インチングペダルを踏みながらフルリバース発進を行うと、クラッチはインチ ングペダルの踏み込み代で決定される低油圧の間、滑ることとなる.この時、クラッチはブレー キの代わりとして使用され、車両の運動エネルギーを吸収する.このような操作をインチングフ ルリバース発進(IFRS)と呼ぶ.この操作は推奨されておらず、誤操作の範疇に属すると考え られている.

(5) 強制連続インチング(CI)

上述の4つの基本操作は、いずれも基本作業パターン内での慣性エネルギー吸収型の操作である.一方、フォークリフトは、荷の運搬のみでなく、特殊な用途にも使用される.例えば、鋳物メーカーでの連続注湯作業などでは、特殊アタッチメントを使用しての高エンジン回転数、超低車速での連続走行が行われる.このような作業では、クラッチはインチングペダルを踏み込んだ状態で連続して滑らされることとなる.スリップしている時間はオペレータの操作によって決定され、こうした操作が長くなるほど、クラッチが吸収するエネルギーは大きくなる.このような操作を強制連続インチング (CI) と呼ぶ.

以上の5つの基本操作を模式的に示すと図2.4のようになる.

Fig. 2.4 Basic operation of forklift-truck

2・4・2 各基本操作のパラメータの整理

前節で抽出した各基本操作時の吸収エネルギーを計算するために必要なパラメータを以下の 通り抽出した.

- (1) 荷の有無
- (2) エンジン回転数
- (3) 車速
- (4) クラッチ油圧
- (5) クラッチ油圧モジュレーション時間またはインチング時間

これらのパラメータについて表 2.1 に示すようにいくつかの水準を想定した. エンジン回転数 は、慣性エネルギー吸収型操作(NS, IS, FRS, IFRS)では 1400rpm と 2200rpm の 2 水準,連 続インチング操作(CI)では, 1700rpm と 2000rpm の 2 水準を想定した. 車速は,通常発進(NS),

インチング発進(IS) では 0km/h の 1 水準,フルリバース発進(FRS),インチングフルリバー ス発進(IFRS) では-2km/h と-4km/h の 2 水準,連続インチング作業(CI) では 0km/h と 4km/h の 2 水準を想定した.クラッチ油圧は,通常発進(NS),フルリバース発進(FRS) ではインチ ングペダルを操作しないので,コントロールバルブのモジュレーション油圧波形の設定値に従っ て、モジュレーション最終圧 0.4MPa、モジュレーション時間 0.7sec の1 水準とした. インチン グ発進(IS)、インチングフルリバース発進(IFRS)では、インチング最終圧は 0.3MPa として インチング時間を 1sec、1.5sec、2.0sec の3水準を想定した. 連続インチング(CI)では、クラ ッチ油圧を 0.3MPa としてインチング時間を 10sec、20sec、30sec の3水準を想定した.

Basic operation	Load	Engine Speed min ⁻¹	Vehicle Speed km/h	Clutch pressure MPa	Modulation Time sec
NS			0	0.4	0.7
IS		1400/2200	0	0.3	1.0/1.5/2.0
FRS	without/with	1400/2200	2/4	0.4	0.7
IFRS			-2/-4	0.3	1.0/1.5/2.0
CI		1700/2000	0/4	0.3	10/20/30

Table 2.1 Arrangement of parameters relative to each basic operation

2・4・3 基本操作の組み合せによる作業パターンの想定

各負荷形態を代表する3つの作業パターンを表2.2に示すように想定した.作業パターン ①は通常の作業パターンの1つの想定である.図2.3で示した通り、1サイクルの作業の中 には、空荷での発進が1回、積荷での発進が1回あり、サイクルタイムを30秒とした場合、 1時間当りの頻度にすると、各発進が120回ずつあることになる.この120回のうち、80 回をNS、40回をFRSとした.作業パターン②は、通常の作業パターンに誤操作に当るIS とIFRSとが混入した場合の想定である.80回のNSのうち8回をIS、40回のFRSのうち 4回をIFRSとした.作業パターン③は、通常の作業パターンにCIが混入した場合の想定で ある.1サイクル中に1回CIがあるとして、1時間当りでは120回のCIがあるとした.

			Cycle	Cycle Number / 1 hr							
	Number / 1 Cycle	Number / 1 Cycle		ni/lhr		Basic	Oper	ration			
		sec	111/ 1111	NS	IS	FRS	IFRS	CI			
M	Start without Load	1	20	120	80	0	40	0	0		
U	Start with Load	1	50	120	80	0	40	0	0		
୍	Start without Load	1	20	120	72	8	36	4	0		
6	Start with Load	1	50	120	72	8	36	4	0		
୭	Start without Load	1	20	120	80	0	40	0	120		
୍ଷ	Start with Load	1	50	120	80	0	40	0	120		

Table 2.2 Assumption of work patterns by combining basic operations

2・4・4 各作業パターンでの負荷頻度の想定

表 2.2 に示した通り、3 つの基本となる作業パターンは5 つの基本操作の組み合せから成 り立っている.各基本操作での吸収エネルギーを計算するのに必要なパラメータは表 2.1 に 示した.ここで、表 2.2 の各作業パターンでの基本操作の1 時間当りの頻度を、さらに表 2.1 に示したパラメータ毎の頻度に割り振った.一例として、作業パターン①の場合には表 2.3 に示すように想定した. その他の作業パターンでの頻度は付録の表 2.4 に示したように 想定した. 表 2.4 は, 第4章と第5章で後述する摩擦材の寿命計算と相手板変形有無判別計 算も行えるようにプログラムされており, ①各基本操作でのパラメータの想定, ②基本操作の 組み合せによる作業パターンの想定, ④各作業パターンでの負荷頻度の想定, は任意に設定する ことができ, その条件での両計算の結果を得ることもできる.

		Engine	Speed	Clutch	Modu.	(I)Normal operation
B.O	Load	Ne	V	P2	tm	Cycle time: 30sec
		[rpm]	[km/h]	[MPa]	[sec]	ni/1h
NS	without	1400	0	0.4	0.7	40
NS	without	2200	0	0.4	0.7	40
NS	with	1400	0	0.4	0.7	40
NS	with	2200	0	0.4	0.7	40
FRS	without	1400	-2	0.4	0.7	10
FRS	without	2200	-2	0.4	0.7	10
FRS	without	1400	-4	0.4	0.7	10
FRS	without	2200	-4	0.4	0.7	10
FRS	with	1400	-2	0.4	0.7	10
FRS	with	2200	-2	0.4	0.7	10
FRS	with	1400	-4	0.4	0.7	10
FRS	with	2200	-4	0.4	0.7	10

Table 2.3 Assumption of load frequency for each work pattern

Table 2.4 Matrix table of work patterns

		Engine	Speed	Clutch	Modu	Absorbed	Clute	ch tem	perature	M.plate	proof			①Normal ope	eration	2In	volved inchin	g IS & IFRS	3	Involved con	. inching
B.O	Load	Ne	v	P2	tm	energy Q	Tin	Tout	Tin-Tout	σ_{θ}	σу	deformed		Cycle time: 3	30sec		Cycle time: 3	0 sec		Cycle time: 3	0 sec
		[rpm]	[km/h]	[MPa]	[sec]	[J]	[°C]	[°C]	[°C]	[MPa]	[MPa]		ni/1h	Ni [cycle]	ni/Ni	ni/1h	Ni [cycle]	ni/Ni	ni/1h	Ni [cycle]	ni/Ni
NS	without	1400	0	0.4	0.7	4840	121	80	41	51	323.7	not	40	3.23E+08	1.24E-07 2.57E-06	35	3.23E+08	1.08E-07	40	3.23E+08 1.56E+07	1.24E-07 2.57E-06
NS	with	1400	0	0.4	0.7	5597	104	80	48	59	321.6	not	40	2.31E+08	2.37E-00 1.73E-07	35	2.31E+08	2.23E-00 1.52E-07	40	2.31E+08	2.37E-00 1.73E-07
NS	with	2200	0	0.4	0.7	12913	190	81	109	134	303	not	40	1.17E+07	3.43E-06	35	1.17E+07	3.00E-06	40	1.17E+07	3.43E-06
IS	without	1400	0	0.3	1.0	6795	136	81	55	68	319.2	not	0	1.57E+08	0.00E+00	2	1.57E+08	1.27E-08	0	1.57E+08	0.00E+00
IS	without	1400	0	0.3	1.5	9557	154	82	72	89	313.8	not	0	6.60E+07	0.00E+00	2	6.60E+07	3.03E-08	0	6.60E+07	0.00E+00
IS	without	1400	0	0.3	2.0	11895	167	84	83	102	309.9	not	0	3.53E+07	0.00E+00	1	3.53E+07	2.83E-08	0	3.53E+07	0.00E+00
IS	without	1400	0	0.3	2.5	13809	176	87	89	110	307.2	not	0	2.29E+07	0.00E+00	0	2.29E+07	0.00E+00	0	2.29E+07	0.00E+00
IS	without	2200	0	0.3	1.0	13764	194	82	112	138	301.8	not	0	9.61E+06	0.00E+00	2	9.61E+06	2.08E-07	0	9.61E+06	0.00E+00
IS	without	2200	0	0.3	1.5	20010	235	85	150	185	289.5	not	0	1.33E+06	0.00E+00	2	1.33E+06	1.50E-06	0	1.33E+06	0.00E+00
IS	without	2200	0	0.3	2.0	25832	270	89	181	223	279	not	0	2.47E+05	0.00E+00	1	2.47E+05	4.05E-06	0	2.47E+05	0.00E+00
15	without	2200	0	0.3	2.5	7482	298	95	205	250	217.4	not	0	0.41E+04	0.00E+00	2	0.41E+04	0.00E+00	0	0.41E+04	0.00E+00
IS	with	1400	0	0.3	1.5	11103	166	83	83	102	310.2	not	0	3 70E+07	0.00E+00	2	3 70E+07	5.40E-08	0	3.70E+07	0.00E+00
IS	with	1400	0	0.3	2.0	14643	188	85	103	127	303.6	not	0	1.28E+07	0.00E+00	1	1.28E+07	7.79E-08	0	1.28E+07	0.00E+00
IS	with	1400	0	0.3	2.5	18103	206	89	117	144	298.2	not	0	5.39E+06	0.00E+00	0	5.39E+06	0.00E+00	0	5.39E+06	0.00E+00
IS	with	2200	0	0.3	1.0	14451	199	82	117	144	300.3	not	0	7.55E+06	0.00E+00	2	7.55E+06	2.65E-07	0	7.55E+06	0.00E+00
IS	with	2200	0	0.3	1.5	21556	247	85	162	200	285.9	not	0	7.48E+05	0.00E+00	2	7.48E+05	2.67E-06	0	7.48E+05	0.00E+00
IS	with	2200	0	0.3	2.0	28581	290	90	200	246	273	not	0	9.43E+04	0.00E+00	1	9.43E+04	1.06E-05	0	9.43E+04	0.00E+00
IS	with	2200	0	0.3	2.5	35525	328	97	231	285	261.6	deformed	0	1.51E+04	0.00E+00	0	1.51E+04	0.00E+00	0	1.51E+04	0.00E+00
FRS	without	1400	-2	0.4	0.7	7111	141	81	60	14	317.7	not	10	1.23E+08	8.10E-08	8	1.23E+08	0.48E-08	10	1.23E+08	8.10E-08
FRC	without	2200	-2	0.4	0.7	1442/	205	61 81	122	1.00	299.1	not	10	0.25E+00 3.88E±07	1.01E-00 2.57E-07	8	0.25E+00 3.88E±07	1.26E-00 2.06E-07	10	0.25E+00 3.88E±07	1.01E-00 2.57E-07
FRS	without	2200	-4	0.4	0.7	17218	227	81	146	180	291.9	not	10	1.96E+06	5.10E-06	8	1.96E+06	4.08E-06	10	1.96E+06	5.10E-06
FRS	with	1400	-2	0.4	0.7	8202	150	81	69	85	315	not	10	8.00E+07	1.25E-07	8	8.00E+07	1.00E-07	10	8.00E+07	1.25E-07
FRS	with	2200	-2	0.4	0.7	15518	213	81	132	163	296.1	not	10	3.85E+06	2.60E-06	8	3.85E+06	2.08E-06	10	3.85E+06	2.60E-06
FRS	with	1400	-4	0.4	0.7	13186	193	81	112	138	302.1	not	10	1.01E+07	9.92E-07	8	1.01E+07	7.93E-07	10	1.01E+07	9.92E-07
FRS	with	2200	-4	0.4	0.7	20502	255	82	173	213	283.5	not	10	5.09E+05	1.96E-05	8	5.09E+05	1.57E-05	10	5.09E+05	1.96E-05
IFRS	without	1400	-2	0.3	1.0	8960	154	81	73	90	313.8	not	0	6.60E+07	0.00E+00	1	6.60E+07	1.52E-08	0	6.60E+07	0.00E+00
IFRS	without	1400	-2	0.3	1.5	12803	179	83	96	118	306.3	not	0	1.98E+07	0.00E+00	1	1.98E+07	5.05E-08	0	1.98E+07	0.00E+00
IFRS	without	1400	-2	0.3	2.0	16222	199	86	113	139	300.3	not	0	7.55E+06	0.00E+00	0	7.55E+06	0.00E+00	0	7.55E+06	0.00E+00
IFRS	without	1400	-2	0.3	2.5	19219	214	89	125	154	295.8	not	0	3.6/E+06	0.00E+00	0	3.6/E+06	0.00E+00	0	3.6/E+06	0.00E+00
IFRS	without	2200	-2	0.3	1.0	23256	211 260	85 85	129	216	290.7	not	0	4.24E+06 4.00E+05	0.00E+00	1	4.24E+06 4.00E+05	2.50E-07 2.50E-06	0	4.24E+00 4.00E+05	0.00E+00
IFRS	without	2200	-2	0.3	2.0	30160	302	91	211	260	269.4	not	0	5.29E+04	0.00E+00	0	5.29E+04	0.00E+00	0	5.29E+04	0.00E+00
IFRS	without	2200	-2	0.3	2.5	36641	336	98	238	293	259.2	deformed	0	1.03E+04	0.00E+00	0	1.03E+04	0.00E+00	0	1.03E+04	0.00E+00
IFRS	without	1400	-4	0.3	1.0	11942	179	81	98	121	306.3	not	0	1.98E+07	0.00E+00	1	1.98E+07	5.05E-08	0	1.98E+07	0.00E+00
IFRS	without	1400	-4	0.3	1.5	16286	206	84	122	150	298.2	not	0	5.39E+06	0.00E+00	1	5.39E+06	1.85E-07	0	5.39E+06	0.00E+00
IFRS	without	1400	-4	0.3	2.0	20555	231	87	144	177	290.7	not	0	1.62E+06	0.00E+00	0	1.62E+06	0.00E+00	0	1.62E+06	0.00E+00
IFRS	without	1400	-4	0.3	2.5	24628	252	92	160	197	284.4	not	0	5.88E+05	0.00E+00	0	5.88E+05	0.00E+00	0	5.88E+05	0.00E+00
IFRS	without	2200	-4	0.3	1.0	18911	236	82	154	190	289.2	not	0	1.27E+06	0.00E+00	1	1.27E+06	7.87E-07	0	1.27E+06	0.00E+00
IFKS	without	2200	-4	0.3	1.5	20/39	287	80	201	248	2/3.9	not	0	1.09E+05	0.00E+00	1	1.09E+05	9.18E-06	0	1.09E+05	0.00E+00
IFRS	without	2200	-4	0.3	2.0	42050	374	100	241	338	200.1	deformed	0	1.19E+04	0.00E+00	0	1.19E+04	0.00E+00	0	1.19E+04	0.00E+00
IFRS	with	1400	-2	0.3	1.0	10267	165	81	84	103	310.5	not	0	3.88E+07	0.00E+00	1	3.88E+07	2.57E-08	0	3.88E+07	0.00E+00
IFRS	with	1400	-2	0.3	1.5	14707	194	83	111	137	301.8	not	0	9.61E+06	0.00E+00	1	9.61E+06	1.04E-07	0	9.61E+06	0.00E+00
IFRS	with	1400	-2	0.3	2.0	19138	221	87	134	165	293.7	not	0	2.62E+06	0.00E+00	0	2.62E+06	0.00E+00	0	2.62E+06	0.00E+00
IFRS	with	1400	-2	0.3	2.5	23560	245	91	154	190	286.5	not	0	8.24E+05	0.00E+00	0	8.24E+05	0.00E+00	0	8.24E+05	0.00E+00
IFRS	with	2200	-2	0.3	1.0	17236	222	82	140	172	293.4	not	0	2.49E+06	0.00E+00	1	2.49E+06	4.01E-07	0	2.49E+06	0.00E+00
IFRS	with	2200	-2	0.3	1.5	25160	275	86	189	233	277.5	not	0	1.94E+05	0.00E+00	1	1.94E+05	5.15E-06	0	1.94E+05	0.00E+00
IFRS	with	2200	-2	0.3	2.0	33075	366	92	251	285	203.1	deformed	0	1.92E+04 2.42E+02	0.00E+00	0	1.92E+04 2.42E+02	0.00E+00	0	1.92E+04 2.42E+02	0.00E+00
IFRS	with	1400	-4	0.3	1.0	15635	209	82	127	156	297.3	not	0	4.67E+06	0.00E+00	1	4.67E+06	2.14E-07	0	4.67E+06	0.00E+00
IFRS	with	1400	-4	0.3	1.5	20713	241	85	156	192	287.7	not	0	9.99E+05	0.00E+00	1	9.99E+05	1.00E-06	0	9.99E+05	0.00E+00
IFRS	with	1400	-4	0.3	2.0	25783	269	89	180	222	279.3	not	0	2.59E+05	0.00E+00	0	2.59E+05	0.00E+00	0	2.59E+05	0.00E+00
IFRS	with	1400	-4	0.3	2.5	30845	296	95	201	248	271.2	not	0	7.06E+04	0.00E+00	0	7.06E+04	0.00E+00	0	7.06E+04	0.00E+00
IFRS	with	2200	-4	0.3	1.0	22604	267	83	184	227	279.9	not	0	2.86E+05	0.00E+00	1	2.86E+05	3.50E-06	0	2.86E+05	0.00E+00
IFRS	with	2200	-4	0.3	1.5	31166	322	87	235	289	263.4	deformed	0	2.02E+04	0.00E+00	1	2.02E+04	4.95E-05	0	2.02E+04	0.00E+00
IFRS	with	2200	-4	0.3	2.0	39721	372	94	278	342	248.4	deformed	0	1.82E+03	0.00E+00	0	1.82E+03	0.00E+00	0	1.82E+03	0.00E+00
IFRS	with	2200	-4	0.3	2.5	48267	417	103	314	387	234.9	deformed	0	2.08E+02	0.00E+00	0	2.08E+02	0.00E+00	0	2.08E+02	0.00E+00
C	without	1700	4	0	0.0	22/30 45472	240	100	80	99	286.2	not	0	7.85E+05 4.12E±02	0.00E+00	0	7.85E+05 4.12E+02	0.00E+00	120	7.85E+05 4.12E±02	1.53E-04 0.00E+00
CI	without	1700	4	0	0.0	20880	1/10	355	0/ 0/	116	200.0	not	0	4.12E+03	0.00E+00	0	4.12E+03	0.00E+00	0	4.12E+03	0.00E+00
CI	without	2000	4	0	0.0	20000	287	187	100	123	273.9	not	0	1.09E+05	0.00E+00	0	1.09E+05	0.00E+00	0	1.09E+05	0.00E+00
CI	without	2000	4	0	0.0	45472	423	314	109	134	233.1	not	0	1.56E+02	0.00E+00	0	1.56E+02	0.00E+00	0	1.56E+02	0.00E+00
CI	without	2000	4	0	0.0	20880	541	424	117	144	197.7	not	0	5.30E-01	0.00E+00	0	5.30E-01	0.00E+00	0	5.30E-01	0.00E+00
CI	without	1700	0	0	0.0	22736	314	202	112	138	265.8	not	0	2.97E+04	0.00E+00	0	2.97E+04	0.00E+00	0	2.97E+04	0.00E+00
CI	without	1700	0	0	0.0	45472	468	344	124	153	219.6	not	0	1.78E+01	0.00E+00	0	1.78E+01	0.00E+00	0	1.78E+01	0.00E+00
CI	without	1700	0	0	0.0	20880	602	469	133	164	179.4	not	0	2.81E-02	0.00E+00	0	2.81E-02	0.00E+00	0	2.81E-02	0.00E+00
CI	without	2000	0	0	0.0	22736	355	223	132	163	253.5	not	0	4.12E+03	0.00E+00	0	4.12E+03	0.00E+00	0	4.12E+03	0.00E+00
C	without	2000	0	0	0.0	45472	53/	527	146	180	198.9	not daforme d	0	0.42E-01 3.24E-04	0.00E+00	0	0.42E-01 3.34E-04	0.00E+00	0	0.42E-01 3.34E-04	0.00E+00
	wanout	2000	0	U	0.0	20000	094	551	137	173	1.51.8	aciofilled	0	Σ.ni/Ni	3.67E-05	0	Σ.ni/Ni	1.22F-04	0	Σ.ni/Ni	1.90F-04
														Life [hr]	27240	1	Life [hr]	8177	1	Life [hr]	5275

2・5 負荷形態と損傷形態の整理

前節では任意の作業の負荷形態を想定・整理できるマトリックステーブルについて述べた.本 節では、もう一方の整理としてクラッチの損傷形態と実際の負荷形態別の作業パターンとの関係 を整理した.方法は以下によった.

市場で不具合が発生した場合、その不具合品は、ユーザーの業種、稼働時間等の情報が記載された連絡票とともに製造元へ返却されてくる.この連絡票の情報との関係をつき合わせながら観

察を行った.また,それらのユーザーの中には過去に出向いて実際の稼働状況を確認したところ も多数あり,これらの経験にも照らしながら観察した.その結果,定性的に以下のことがわかっ た.

まず,ユーザーの負荷形態は大きく表2.5に示すように整理でき,以下のことがわかった.

- (1) 狭い船内や倉庫内等での運搬・積降作業では、短サイクル作業で前進/後進の切換え頻度が 高く、インチング発進(IS) やインチングフルリバース発進(IFRS)のような誤操作に近 く、クラッチにとって過酷な操作が多い.
- (2) 広い空港,港湾での倉庫間での運搬作業では、長サイクル作業が主体で、IS や IFRS のようなクラッチにとって過酷な操作は少ない.
- (3) 鋳物会社での鋳湯作業のようなクランプアタッチメントを操作しながらの微速走行操作や, ガラス製品製造会社での精密位置決め操作では,連続インチング(CI)作業が多い.
- (4) 古紙や鉄のリサイクル会社では、(1)のような短サイクルでの運搬・積降作業と、床に散らかった古紙や鉄を作業機を床に滑らせながら集めるような作業とが混在し、慣性エネルギー吸収作業と連続インチング作業とが混在する負荷パターンとなる.

負荷形態	サイクル タイム	オペレーション	NS	IS	FRS	IFRS	CI
狭い倉庫内,船内等での 運搬・積降	短	ハード		0		0	
広い空港,港湾での 倉庫間での運搬	長	標準的	0		0		
鋳物, ガラス製品等の 精密作業	長	特殊					0
古紙・鉄等の リサイクル業者	長短両方	ハード		0		0	0

次に、これらの各負荷形態と、そのユーザーでのクラッチの損傷形態との関係は表 2.6 に示すように整理でき、以下のことがわかった.

- (1) 狭い船内や倉庫内等での運搬,積降作業のような短サイクル作業で,車両の慣性エネルギーをクラッチで吸収する作業が主体の負荷形態では,相手板の変形が多い.
- (2) 広い空港,港湾での倉庫間での運搬のような長サイクル作業が主体の負荷形態では、クラ ッチの損傷は少ない.
- (3) 鋳物やガラス製品の製造会社のような,連続インチング作業が多い負荷形態では,摩擦材の摩耗が多い.
- (4) 古紙や鉄のリサイクル業者のような長短サイクル作業が混在し、慣性エネルギー吸収作業 と連続インチング作業とが混在する負荷形態では、相手板の変形と摩擦材の摩耗の両方を 併発している場合が多い.

Table 2.6 Relation between work application and clutch damage

負荷形態	サイクルタイム	オペレーション	損傷形態
狭い倉庫内,船内等での運搬・積降	短	ハード	相手板の変形が多い
広い空港,港湾での倉庫間での運搬	長	標準的	クラッチの損傷は少ない
鋳物, ガラス製品等の精密作業	長	特殊	摩擦材の摩耗が多い
古紙・鉄等のリサイクル業者	長短両方	ハード	両方発生している場合が多い

2・6 本章のまとめ

本節では,まず,任意に作業の負荷形態を想定・整理・俯瞰できるマトリックステーブルを提 案した.

次に,ユーザーから返却されてきた不具合品を,その連絡票上の業種,稼働時間等の情報,お よび過去に訪問調査した経験に照らして観察し,その結果,以下のことが明らかになった.

- (1) 狭い船内や倉庫内等での運搬,積降作業のような短サイクル作業で,車両の慣性エネルギ ーをクラッチで吸収する作業が主体の負荷形態では,相手板の変形が多い.
- (2) 広い空港,港湾での倉庫間での運搬のような長サイクル作業が主体の負荷形態では、クラ ッチの損傷は少ない.
- (3) 鋳物やガラス製品の製造会社のような,連続インチング作業が多い作業が主体の負荷形態では,摩擦材の摩耗が多い.
- (4) 古紙や鉄のリサイクル業者のような長短サイクル作業が混在し、慣性エネルギー吸収作業 と連続インチング作業とが混在する負荷形態では、相手板の変形と摩擦材の摩耗の両方を 併発している場合が多い.

以上から,表 2.5 のように整理できた各負荷形態を表 2.4 に示したマトリックステーブル上で 想定できれば,後述する各負荷形態での摩擦材の寿命計算,相手板の変形有無判別計算ができる ことを示した.

第3章

クラッチの吸収エネルギーと温度上昇

- 3・1 本章の位置付け
- 3・2 クラッチの損傷を決める主要因
 - 3・2・1 摩擦材の摩耗を決める主要因
 - 3・2・2 相手板の変形を決める主要因
- 3・3 吸収エネルギーとクラッチ温度計算
 - 3・3・1 吸収エネルギー計算
 - 3・3・2 クラッチ温度計算
- 3・4 負荷形態別の吸収エネルギーとクラッチ温度上昇の違い
- 3・5 本章のまとめ

3・1 本章の位置付け

本章では、クラッチを構成する2つの部品である摩擦板の摩擦材と相手板のそれぞれについて、 その損傷を決める主要因を明らかにする.その結果を受け、主要因となるクラッチの表面温度T を計算するためのシミュレーション計算について提案する.このシミュレーション計算を用いて、 第2章でまとめた代表的な負荷形態の違いによってクラッチの表面温度の上昇の仕方に違いが あることを明らかにする.

3・2 クラッチの損傷を決める主要因

3・2・1 摩擦材の摩耗を決める主要因

摩擦材の損傷形態は摩耗であった.湿式多板クラッチの係合開始から完了までのプロセスは, 流体潤滑と境界潤滑が混在した複雑な系となり,また,その特性・耐久性に影響する因子が以下 の通り多数あって,それらがお互いに複雑に相互作用し合うため,系統だった理論解析,定量化 が難しいとされてきた.

- ① 吸収エネルギ
- ② 吸収エネルギ率
- ③ 面圧
- ④ 周速
- ⑤ 摩擦係数
- ⑥ 潤滑条件

摩擦材は、図 3.1, 3.2 に示す通り、構成成分である繊維、充てん材、摩擦調整剤などを配合し、 抄紙薬品を添加して湿式抄造したペーパを製品形状に打ち抜き、熱硬化性樹脂を含浸して乾燥・硬 化して製造される.摩擦材の物理的特性、摩擦特性は構成成分である繊維と充てん物質との配合比 をニーズに対応して最適化することによって決定される[3].そして摩擦材の劣化は熱による繊維の 炭化度によって決まる[16].そこで本研究では、クラッチの係合プロセスに影響を与える多数のパラ メータの代表としてクラッチ係合時に発生する熱による表面温度 T に着目した.上述のパラメータ が、いかに複雑に絡み合おうとも、クラッチ板のペーパー摩擦材にとっては、絡み合いの結果とし て決まるクラッチ板表面温度 Tが、劣化を決める直接の要因であると考えた.

Fig. 3.2 Manufactuering process of paper friction material [3]

小山内らの研究では、 クラッチ単体要素試験装置によって、

- ① 吸収エネルギと摩擦表面温度を把握(線形)
- ② 吸収エネルギのレベル(摩擦表面温度の違い)をパラメータとして係合回数と動摩擦係数 変化の関係を把握
- ③ TG分析によって炭化度を把握し,吸収エネルギのレベルをパラメータとして炭化度と動 摩擦係数変化の関係を把握
- ④ 炭化度と動摩擦係数の関係を把握し、動摩擦係数が急激に低下する、炭化度の臨界値 Dc
 を定義、把握
- ④ ④で得られた Dc を③にあてはめることによって,異なった吸収エネルギ(摩擦表面温度)
 での臨界係合回数を得,ここから,摩擦表面温度 Tと臨界係合回数 Nc との関係(図 3.3)
 を把握している. [16]

図3・3の劣化線図は、金属疲労のS-N線図と同じ傾向を示している.この劣化線図をS-N線図のように捉えると、クラッチにかかる負荷頻度とその時のクラッチ板温度Tがわかれば、マイナー則を用いて、金属疲労と同様な手法で摺動部品である湿式多板クラッチの寿命を評価できると考えた.

マイナー則(線形累積損傷則)とは、*S-N*線図を用いて金属疲労の寿命を計算する場合には、 σ 1、 σ 2、 σ 3、・・の応力が単独に作用した時破壊する繰返し数N1、N2、N3、・・を知れば、これらが混在した状態における個々の応力の頻度n1、n2、n3、・・・を把握し、

$$\sum_{i=1}^{m} \frac{n_i}{N_i} = 1$$
(3.1)

を満足する時を疲労寿命と仮定するものである.

Fig. 3.4 Durability calculation by Miner's law

niを1時間あたりの繰返し数とすると寿命時間LHは以下の式で求められる.

$$L_{H} = \frac{1}{\sum_{i=1}^{m} \frac{n_{i}}{N_{i}}}$$
(3.2)

以上より、摩擦材の摩耗、寿命は、摩擦材の表面の温度Tで評価できると考えた.

3・2・2 相手板の変形を決める主要因

相手板の損傷形態は、図 3.5 に模式的に示した通り、内側が軸方向に反り出て皿状に変形する ものであった.相手板は軟鋼の薄肉円板である.図 3.6 に一般的な軟鋼の応力-ひずみ線図を示 すが、損傷の形態が割れや折損であれば、弾性域内での応力の繰り返しによる金属組織の疲労破 壊であると推定できる.しかし、損傷の形態が割れや折損ではなく、変形であったことから、弾 性限界を超えた応力での1回の負荷による塑性変形であると推定した.この変形は、発熱による 内周側の面内変形量が外周側よりも大きく、内側が座屈して軸方向に反り出ると考え、熱による 内外周間の温度差に起因すると推定した.

Fig. 3.5 Mechanism of mating plate deformation

Fig. 3.6 Stress - strain curve of low steel [17]

3・3 吸収エネルギーとクラッチ温度計算

前節で、摩擦材の摩耗、相手板の変形ともにクラッチ表面温度 T で評価できると推定したことから、温度を決定するクラッチの吸収エネルギーと温度の過度変化を計算できるプログラムを 開発した.

3・3・1 吸収エネルギー計算

(1) 慣性エネルギー吸収時

トランスミッション駆動系をクラッチ換算として図 3.7 のようにモデル化し,以下の運動方程 式を立てた. 守田らのモデル⁽¹⁷⁾を参考にした[18].

$$\mathbf{I}_{E} \,\omega_{0}(t) = \tau_{0}(t) - \tau_{c}(t) \tag{3.3}$$

 $I_{W} \omega_{w}(t) = \tau_{c}(t) - \tau_{w}$ (3.4)

Fig. 3.7 Transmission power train model

トルクコンバータの出力特性は図 3.8 のように線形に近似し、次式で表した.

$$\omega_0(t) = \omega_0(0)(1 - \frac{\tau_0(t)}{\tau_s})$$
(3.5)

クラッチトルクはクラッチ作動油圧のモジュレーション波形またはインチング波形から図 3.9 のように近似し,次式で表した.

$$\tau_{c}(t) = kt \tag{3.6}$$

$$k = \frac{\tau_{c2}}{t_m} \tag{3.7}$$

 $\tau_C(t) = \mu Z r_m(P(t)A_p - F_s)$ (3.8)

エンジンとクラッチの間にトルクコンバータが介していることから $I_E=0$ とし,式(3.3)に式(3.6) を代入すると次式になる.

$$\tau_0(t) = \tau_C(t) = kt \tag{3.9}$$

式 (3.9) を式 (3.4) に代入し、微分方程式を解くと次式になる.

$$\omega_{w}(t) = \frac{\frac{1}{2}kt^{2} - \tau_{w}t}{I_{w}} + \omega_{w}(0)$$
(3.10)

クラッチのすべり速度 ωs は式 (3.5),式 (3.10) より次式となる.

$$\omega_{s}(t) = \omega_{0}(t) - \omega_{W}(t) = -\frac{k}{2I_{W}}t^{2} + \left(\frac{\tau_{W}}{I_{W}} - \frac{k\omega_{0}(0)}{\tau_{s}}\right)t + \omega_{0}(0) - \omega_{W}(0)$$
(3.11)

単位時間当りの吸収エネルギー $\dot{q}(t)$ は式 (3.9),式 (3.11)より次式となる.

•
$$q(t) = \tau_{c}(t)\omega_{s}(t) = kt \left\{ -\frac{k}{2I_{w}}t^{2} + \left(\frac{\tau_{w}}{I_{w}} - \frac{k\omega_{0}(0)}{\tau_{s}}\right)t + \omega_{0}(0) - \omega_{w}(0) \right\}$$
 (3.12)

吸収エネルギーq(t)は次式となる.

$$q(t) = \int_0^t \dot{q}(t)dt = kt^2 \left\{ -\frac{k}{8I_w} t^2 + \frac{1}{3} \left(\frac{\tau_w}{I_w} - \frac{k\omega_0(0)}{\tau_s} \right) t + \frac{1}{2} \left(\omega_0(0) - \omega_w(0) \right) \right\}$$
(3.13)

クラッチ係合時間 t_e は $\omega s(t) = 0$ より次式となる.

$$t_{e} = \frac{I_{W}}{k} \left\{ \frac{\tau_{W}}{I_{W}} - \frac{k\omega_{0}(0)}{\tau_{S}} + \sqrt{\left(\frac{\tau_{W}}{I_{W}} - \frac{k\omega_{0}(0)}{\tau_{S}}\right)^{2} + \frac{2k}{I_{W}} \left(\omega_{0}(0) - \omega_{W}(0)\right)} \right\}$$
(3.14)

全吸収エネルギーQは次式で求められる.

$$Q = q(t_e) \tag{3.15}$$

*t_m*までに係合が完了しない場合には,*t_m*での油圧立ち上がりで係合は完了し,その後はトルク コンバータがエネルギーを吸収すると仮定した.

(2) 連続すべり時

単位時間当りの吸収エネルギー \hat{Q} はクラッチ板の面圧 Pcと相対速度 ΔV から次式で表せる.

$$\dot{Q} = \mu P_c \Delta V A_c \tag{3.16}$$

ここで

$$P_C = \frac{PA_p - F_s}{A_C} \tag{3.17}$$

$$\Delta V = r_m \frac{2\pi\Delta N}{60} \tag{3.18}$$

連続すべり時間 t 中の全吸収エネルギーQ は次式で求められる.

$$Q = \dot{Q}t \tag{3.19}$$

3・3・2 クラッチ板表面温度計算

クラッチ板と相手板を図 3.10 のようにモデル化した.クラッチ板の摩擦材の表面温度は相手板の温度と同等であると考え,相手板を半径方向に分割し,各要素をヒートマスと捉え,入熱(吸収エネルギー)と放熱の差から温度を算出するモデルとした[19][27].

Fig. 3.10 Model for temperature analysis

(1) クラッチすべり時

要素 j の時刻 i+1 の温度 $T_{j,i+1}$ は、時刻 i の温度 $T_{j,i}$ に、時刻 i に吸収するエネルギー $Q_{j,i}$ 、要素 j-1 から要素 j への熱伝導量 $H_{j,i\rightarrow J,i}$ 、要素 j から要素 j+1 への熱伝導量 $H_{j\rightarrow j+1,i}$ の加減から決まる温度を加えるという考えから次式で表せる.

$$T_{j,i+1} = T_{j,i} + \frac{Q_{j,i} + (H_{j-1 \to j,i} - H_{j \to j+1,i})\Delta t}{C_{p,j}}$$
(3.20)

ここで,時刻*i*の要素*j-1*から要素*j*への熱伝導量 *H*_{*j*-*i*-*j*,*i*}は,要素*j-1*の温度 *T*_{*j*-*l*,*i*}と要素*j*の温 度 *T*_{*j*,*i*}との差から式 (3.21) で,時刻*i*の要素*j*から要素*j+1*への熱伝導量 *H*_{*j*-*j*+*l*,*i*}も同様に考えて 式 (3.22) で求められる.

$$H_{j-1 \to j,i} = \lambda_m \frac{T_{j-1,i} - T_{j,i}}{L_{j-1 \to j}} A_{j-1 \to j}$$
(3.21)

$$H_{j \to j+1,i} = \lambda_m \frac{T_{j,i} - T_{j+1,i}}{L_{j \to j+1}} A_{j \to j+1}$$
(3.22)

(2) クラッチ解放時

クラッチ解放時の要素 j の時刻 i+1 の温度 T_{j,i+1} も同様に考えて次式で表せる.

$$T_{j,i+1} = T_{j,i} + \frac{\left(-H_{j \to oil,i} + H_{j-1 \to j,i} - H_{j \to j+1,i}\right) \Delta t}{C_{p,j}}$$
(3.23)

$$H_{j \to oil,i} = h_{j \to oil,i} \left(T_{j,i} - T_{oil,i} \right) A_{j \to oil}$$
(3.24)

3・4 負荷形態別の吸収エネルギーとクラッチ温度上昇の違い

慣性エネルギー吸収型操作の代表例としてのインチングフルリバース操作と連続すべり型の代表例としての連続インチング操作のそれぞれの一例について吸収エネルギー,クラッチ表面 温度を計算した結果を表 3.1, 3.2 に示す.
Table 3.1 Calculation result of absorbed energy and clutch surface temperature for a type of inertia energy absorbing operation

		Engine	Speed	Clutch	Modu.	Absorbed	Cluto	ch tem	perature	M.plate	proof	
B.O	Load	Ne	V	P2	tm	energy Q	Tin	Tout	Tin-Tout	σ_{θ}	σy	deformed
		[mm]	[km/h]	[MPa]	[sec]	[J]	[°C]	[°C]	[°C]	[MPa]	[MPa]	
FRS	with	2200	-4	0.4	0.74	20502	255	82	173	213	283.5	not
IFRS	with	2200	-4	0.3	1.50	31166	322	87	235	289	263.4	deformed

Table 3.2 Calculation result of absorbed energy and clutch surface temperature for a type offorced continuous inching operation

		Engine Speed		Clutch	Steady	Steady Absorbed			perature	M.plate	proof	
B.O	Load	Ne	V	P3	ts	energy Q	Tin	Tout	Tin-Tout	σθ	σy	deformed
		[mm]	[km/h]	[Mpa]	[sec]	[J]	[°C]	[°C]	[°C]	[MPa]	[MPa]	
CI	without	1700	0	0.25	10	22736	314	202	112	138	265.8	not
CI	without	1700	0	0.25	20	45472	468	344	124	153	219.6	not

この結果から、以下のことがわかった.

- (1) 慣性エネルギー吸収型のインチングフルリバース操作では、短時間でエネルギーを吸収するため、内周側の温度 *T_{in}*は急上昇するが、外周側はそれに追従できず、その結果、内外周間の温度差 *T_{in}-T_{out}*が大きくなる.
- (2) 連続すべり型の連続インチング操作では、長時間をかけてエネルギーを吸収するため、 内周側の温度 T_{in}は、連続インチング操作を続ける限り上昇を続けるが、外周側も相 手板内の熱伝導によって内周側温度に追従して上昇し、その結果、内外周間の温度差 T_{in}-T_{out}は大きくはならない。

3・5 本章のまとめ

本章では、以下のことを明らかにした.

- (1) 摩擦材,相手板ともにその損傷を決める要因は表面温度 T であり,摩擦材の摩耗,寿命は, 表面温度で,相手板の変形は表面温度の内外周間の温度差 T_{in}-T_{out} で評価できる.
- (2) 表面温度を計算で求めるための吸収エネルギー計算と表面温度計算のプログラムを開発した.
- (3) これらのプログラムを用いて、代表的な作業を例にして、作業の違いによる温度上昇 の仕方の違いを比較してみた結果、以下のことを明らかにした.
 - a) 慣性エネルギー吸収型のインチングフルリバース操作では,短時間でエネルギーを吸 収するため,内周側の温度 *T_{in}*は急上昇するが,外周側はそれに追従できず,その 結果,内外周間の温度差 *T_{in}-T_{out}*が大きくなる.
 - b) 連続すべり型の連続インチング操作では,長時間をかけてエネルギーを吸収するため, 内周側の温度 *T_{in}*は,連続インチング操作を続ける限り上昇を続けるが,外周側も相手

板内の熱伝導によって内周側温度に追従して上昇し、その結果、内外周間の温度差 T_{in} - T_{out} は大きくはならない.

第4章

摩擦材の寿命評価

- 4・1 本章の位置付け
- 4・2 寿命評価法(理論)
 - 4・2・1 摩擦材の構成と特性
 - 4・2・2 寿命評価式
- 4・3 実験による検証(実験)
 - 4・3・1 クラッチ単体試験による T-N 線図の作成
 - 4・3・2 トランスミッション台上耐久試験
 - 4・3・3 フィールド実車試験
- 4・4 本章のまとめ

4・1 本章の位置付け

本章では、クラッチを構成する一方の部品である摩擦板の摩擦材の寿命評価法について論じる. 前半で提案する手法の理論について述べ、後半で実際の実機での試験結果と提案する手法で求めた計算値とを比較して、提案する手法の正当性、実用性を明らかにする.

4・2 寿命評価法(理論)

4・2・1 摩擦材の構成と特性

3・2・1項において湿式多板クラッチの特性・耐久性に影響する因子が多数あり、それらがお 互いに複雑に相互作用し合うこと、また、湿式多板クラッチが解放の状態から係合を完全に完了 するまでのプロセスは、流体潤滑と境界潤滑が混在する複雑な系となり、系統だった理論解析、 定量化が困難であること、を述べた.

そこで、これらの因子すべてを包含し代表する因子として表面温度 T に着目し、温度 T と限 界係合回数 N との関係を示す T-N 線図による寿命予測法を提案した.

本項では,摩擦材の構成と特性の関係についてより詳しく概説し,提案する *T-N* 線図とマイナー則を用いた摩擦材の寿命評価法を式によって表す.

摩擦材は図 4.1, 4.2 に示すような構成成分(天然パルプ繊維, 充てん材, 摩擦調整剤など) を配合し, 抄紙薬品(増強剤, 結合剤など)を添加して湿式抄造した特殊なペーパを製品形状に 打ち抜き, 熱硬化性樹脂を含浸して乾燥・硬化させる.一方, 鋼板を同じく製品形状に打ち抜き 接着剤を塗布した芯金に, このレジン含浸ペーパを加熱・加圧することにより接着して得られる. 図 4.3 にこれらの工程の概略を示す[3].

Fig. 4.3 Manufactuering process of paper friction material [3]

ペーパ摩擦材に使用されるペーパは、繊維が互いに絡み合い内部に無数の微小孔をもった網状 構造をしており、繊維、充てん材、摩擦調整剤により構成されている.これらを機能的に分類す ると以下のようになる.[3]

第一に,気孔性,気孔形態そして互いの結合から生じるペーパ強度を支配するのが繊維であり, その形状,比重,長さ,太さ,毛羽立ち状態などの違いにより多種多様なペーパを設計できるこ とからペーパ摩擦材の中枢を担っている.使用する繊維によって,得られるペーパの通気性や強 度は変化し,ペーパ強度の高いものほど通気性が悪くなる傾向を示す.

第二に、粒子形状、柔軟性、そして独自に有する摺動特性から主として摩擦特性を左右するの が、充てん材および摩擦調整剤である. これらの違いによって最も強く影響を受けるのが摩擦 係数で、充てん材、摩擦調整剤の選定により最大 5/100 程度の静摩擦係数(以下:μs)の違い が認められる.

すなわち、ペーパ摩擦材の母体をなす成分は繊維であり、ここに充てん材と摩擦調整剤が加え られることによって摩擦特性が決定されることとなる.

次に、これら構成成分である繊維状物質と充てん物質との配合比によって変動するペーパ摩擦 材の物理的物性と摩擦特性を示す. 図 4.4 に配合パターン, 図 4.5 にこれらをペーパ摩擦材に 加工した際の物性, そして図 4.6 にこれらの摩擦特性の比較を示す.

繊維の比率が大きい場合(配合パターン①),その弾性と摩擦材表面の充てん物質の不足によ りペーパ摩擦材がつぶされ摩擦特性は低い値を示すが,逆に繊維間結合力が高まり機械的強度を 向上させ、また、気孔性の向上に伴って自己冷却効果が増して耐熱耐久性が向上する.一方、充 てん物質の比率が大きい場合(配合パターン③),ペーパ摩擦材がつぶされず高い摩擦係数を示 すが気孔性の低下に伴ってトルク形状にフラット性を欠き,機械的強度および耐熱耐久性が低下 する傾向を示す.以上のように、成分配合比は気孔性と弾性と強度のバランスを支配しているた め、ペーパ摩擦を設計する場合、ニーズに合った最適な配合比を検討することが必要である.[3]

Fig. 4.4 Combination patern of fiber and filler [3]

Fig. 4.5 Comparison of properties of each patern [3]

Fig. 4.6 Comparison of friction characteristics of each patern [3]

4・2・2 寿命評価式

摩擦材をTG分析にかけた場合,不純物の次に早く(低温で)燃えるのは有機繊維である.摩擦材が熱負荷を受けて炭化するにしたがって有機繊維の量は減少し,その炭化度Dは次式で定

義される[16].

$$D = \frac{W_i - W_e}{W_i} \tag{4.1}$$

W,:初期有機繊維含有量

W_a:繰り返し係合後の有機繊維含有量

炭化度がある値(D_c)を超えると動摩擦係数が急激に低下し,SAE#2 試験機で吸収エネルギー レベルを変えてクラッチ板表面温度を変化させることによって各温度での炭化の進捗をプロッ トすると図 4.7 に示すようになる.

Fig. 4.7 Time change of carbonization D [16]

ここで注目すべきことは、300℃以下であると係合回数に対する炭化度の進行はほぼ線形に変化しているが 300℃以上の高負荷になると対数関数的に変化していることである.炭化度の臨界値 *D*_cを耐久限度とみなして、温度 *T* に対するその耐久限度に達するまでの係合回数 *N* を片対数 グラフにプロットすることによって摩擦材の劣化特性を表す *T-N* 線図を得ることができると考えた.この *T-N* 線図の高低と傾きは、前項で述べた有機繊維と充てん材との配合比から決まる初 期有機繊維含有量とその有機繊維の種類の違いによって決定する.

一般的にフォークリフトは自動車に比べて負荷が厳しく,クラッチ表面温度は高くなる.そこで T-N線図は,図4.7で300℃を超えた高温においてNに対するTの変化が対数的に変化する(T に対してNは指数関数的に変化する)ことに着目した.300℃以上の高負荷での複数のTでのNを対数軸としたグラフにプロットし,それを結んだ直線を300℃以下の軽負荷時まで延ばすことにした.これは,金属のS-N線図と同様に線図がフラットになる疲労限に相当する温度が存在している(自動車用の摩擦材では150℃くらいであると経験的に知られている)が,フィールド負荷のように時々刻々と変化する変動負荷下の寿命算出では,斜めのまま直線を延ばす修正マイナ

ー則に基づくことが一般的であり、その考え方、経験則に従った.ここで若干安全側への設計に なってしまうが、低温の負荷が寿命時間に及ぼす影響は小さく、その影響は無視できると判断し た.以上を数式で表すと以下になる.

 T_0 ℃ の時, N_0 回

 T_l °C の時, N_l 回

とすると

 $N = \exp\left(\frac{T - T_0}{C} + \ln N_0\right) \tag{4.2}$

$$C = \frac{T_1 - T_0}{\ln N_1 - \ln N_0}$$
(4.3)

Cは負の値になる. Noと Cは主に有機繊維の種類と配合比から決定される.

摩擦材の製造方法について述べた通り,摩擦材の特性・耐久性は有機繊維と充てん材との配合 比から決まる.材料設計において決定された配合比に従って,製造工程で湿式抄造してペーパに 製造される.当然,この製造工程において配合比等にばらつき要因が介在し,完成した製品の特 性・耐久性もばらつくことになる.摩擦材を貼付した完成品であるクラッチ摩擦板の図面におい ては,このばらつきの範囲を1・3・1項で説明したμ-V線図に上限,下限の範囲を設定して規 定するなどしている.一般的にペーパ摩擦材のμ-V特性は±5%には入ることが経験的に知られ ている.また,一般的に、製造工程でのばらつきの分布は,機械加工の寸法の誤差の分布同様, 正規分布に従うことが知られている.そこで,ペーパ摩擦材の耐久性はμ-V特性同様に,配合 比から決まった初期有機繊維含有量に大きく依存し,その量のばらつきはμ-V特性のばらつき と同次数での影響度であると考え,Nのばらつきを次式で表した.

$$f(N) = \frac{1}{\sqrt{2\pi}S} e_{X} \left\{ p - \frac{(N - N_{i})^{2}}{2S^{2}} \right\}$$
(4.4)

N_i: 平均, すなわち T_iの時の破壊確率 50%の回数

 S^2 :分散(S:標準偏差)

ここで, 例えば

$$3S = 0.05N_i$$

とすれば

$$f(N) = \frac{1}{60\sqrt{2\pi}N_i} \exp\left\{-\frac{(N-N_i)^2}{7200N_i^2}\right\}$$
(4.5)

となる.

負荷 T_i の時のその頻度が n_i であった場合, T_i 時の寿命限界 N_i は式(4.2), (4.3), (4.4), (4.5)からばらつきを考慮して求めることができ,この時の寿命時間は式(3.2)によってばらつきを含んで算出できることになる.

4・3 実験による検証(実験)

4・3・1 クラッチ単体試験による T-N 線図の作成

(i) 試験装置

図 1.2 示した SAE#2 試験機によって行った. モータでフライホイールと湿式多板クラッチを 回転させ,その後モータを遮断し,フライホイールの回転慣性エネルギーを湿式多板クラッチで 吸収して,フライホイールを停止させ,その間のクラッチ油圧,回転数,トルクの変化を計測す る試験機である.この試験機内の湿式多板クラッチの相手板に熱電対を埋め込み,クラッチ板表 面温度*T*を計測した.フライホイールの大きさとその回転速度を変えることによって吸収エネ ルギーレベルを変え,クラッチ板表面温度*T*のレベルを変えることができる.

(ii) 試験条件

(1) パラメータと水準

- パラメータ: 摩擦材, クラッチ表面温度T
- 水準: 摩擦材:3水準(3種類の材料)

クラッチ表面温度T:2水準(300℃以上の条件で2条件)

n 数:

1

クラッチ表面温度Tの水準数と n 数はもっと多く取りたかったが、①経験的に片対数グラフ 上で直線にのること、またこれは物質の熱による劣化の進展を示すアレニウスプロットと同じ傾 向であること、②クラッチ板単体の耐久性評価をする試験であるため 1 水準の試験に長時間を 要すること、③金属鋼材の P-S-N 線図(確率疲労特性)の把握に見られるように各水準でのNのばらつきを特定するだけでも 1 つの論文を作成できるほどの作業量であること、④そこには 本論文の主目的を置かないこと、⑤クラッチ摩擦材でのそれは μ -V 特性のばらつきを±5%で規 定しその範囲内に正規分布で収まることが経験的に知られていること、⑥n=1 の結果のプロッ トは破壊確率 50%、平均の値である確率は高いこと、⑦4・2・2 項の寿命評価式にはばらつき も含めて一般化してあること、から n=1 とした.

(ⅲ) 試験方法

フライホールの大きさと回転数を変えることによってクラッチ表面温度*T*の水準を決め、その条件でクラッチの係合と解放を繰り返す.サイクルタイムは係合時の*T*が解放後初期の油温 に戻る時間から決めた.

(iv) 試験結果

試験結果を図 4.8 に示す.

Fig. 4.8 T-N curve

4・3・2 トランスミッション台上耐久試験

(i) 試験装置

試験装置の概要を図 4.9 に,試験対象のトランスミッションの断面図を図 4.10 に,計測部の 詳細を図 4.11 に示す.

(1) 装置仕様

エンジン	:		三菱	6D-16 7	ディー	ーゼノ	レエ	ン	ジン	93k	W(1	25	HP))/2	2200	0 rpm	
				<i>.</i>													

- トランスミッション: 10 ton 級フォークリフト用前進3速/後進3速,および前進2速
 /後進2速オートマチックトランスミッション
- フライホイール: トランスミッション出力換算車体等価慣性モーメント相当の円筒円 板

(2) クラッチ板表面温度T の計測方法

ドラム側に支持されている相手板の半径方向中央部に熱電対を埋め込み,配線はドラム外 側からドラム間ギヤとドラム間に加工した溝を通してシャフトに導き,シャフト中心に空け た穴を通して外部に取り出し,テレメータでデータレコーダーに送信した.

Fig. 4.9 Transmission durability test bench

Fig. 4.10 Section drawing of automatic transmission for 10 ton class forklift truck [20]

Fig.4.11 Test equipment for T measurement [20]

(ⅲ) 試験方法

エンジン回転数と、R1→F1(後進1速から前進1速への変速)、F1→F2、R2→F2、F2→F1等の変速を組み合せて耐久試験パターンを決め、その時のクラッチ板表面温度Tを計測した

- (1) 計測項目
 - エンジン回転数
 フライホイール回転数
 クラッチ油圧
 クラッチ板表面温度
 油温
- (2) 試験条件

潤滑油量:図4.11 に示した潤滑穴径をΦ8.8とΦ6.8に変えて実施

- (iv) 試験結果
 - (1) 温度計測結果

耐久試験パターンでの計測データから求めたクラッチ板表面温度*T*の1時間当りの頻度, の計測結果(抜粋)を表 4.1 に示す[20].

T	8	е	En la la	Temp [deg C]			
Item	$[Nm/cm^2 \cdot s]$	[Nm/cm ²]	Freq./nour	ϕ 8.8	ϕ 6.8		
R1-F1	37.86	18.25	103	120	125		
F1-F2	32.07	16.66	103	110	115		
R2-F2	78.55	40.74	103	135	150		
F2-F1	28.99	13.12	103	125	130		
F1-F2	26.63	13.80	103	120	125		

Table 4.1 Results of bench test (excerpt)

表 4.1 に示した台上耐久パターンでのクラッチ板表面温度 *T*の頻度と図 4.8 の *T-N* 線図から 3・ 2・1 項で述べたマイナー則を用いて寿命計算を行った.結果を表 4.2 に示す[20]. 摩擦材は *T-N* 線図の Material A と Material B のそれぞれについて計算を行い,表中の A, B はそれを表す.

	rature [deg C]	q./hour]	$\frac{ii}{Ni}$		$\sum \frac{ni}{Ni}$			Life [hour]		
В	mpe [Free		А	В	Α	В	A B		Δ	R
Iteı	Teı	mi	x10 ⁴	x10 ⁶	x10 ⁻³	x10 ⁻⁵	x10 ⁻²	x10 ⁻⁴	Λ	Ъ
R1-F1	120	102.9	2.2	3.6	4.7	2.9				
F1-F2	110	102.9	2.6	7.2	4.0	1.4				
R2-F2	135	102.9	1.9	1.8	5.4	5.7	2.34	1.58	43	6,329
F2-F1	125	102.9	2.1	3.0	4.9	3.4				
F1-F2	115	102.9	2.3	4.4	4.5	2.3				

Table 4.2 Clutch life calculation on bench test (excerpt)

計算結果と実際のトランスミッション台上耐久試験での耐久性の結果との比較を表 4.3 に示す [19].

Material A の時,実際の台上耐久試験では,2速仕様で115時間,3速仕様で30時間でクラ ッチが損傷したが,計算結果では,2速仕様で84時間,3速仕様で43時間となった.

Material B に変更し、参考文献[19]公開時には、実際の台上耐久試験で、2 速仕様では 420 時間問題なし(試験継続中)、3 速仕様では 480 時間問題なし(試験継続中)であったのに対し、 計算結果は、2 速仕様で 7,299 時間、3 速仕様で 6,329 時間となった. その後、実際の台上耐久 試験では目標の 2,000 時間を達成できた. この耐久目標時間の根拠は、おおよそ台上耐久パター ンの負荷頻度がフィールドの負荷頻度の 5 倍以上はあると考えて、加速倍率 5、よってフィール ド実寿命目標 10,000 時間相当として従来から決められていた. 2,000 時間の耐久完了後分解し、 クラッチの損傷はなく、継続使用が可能な状態であった. 耐久試験は継続したかったが、時間的、 費用的な制約から従来通り、ここで終了せざるを得なかった.これに対してこの台上耐久パター ンでの寿命時間の計算結果は2速仕様で7,299時間、3速仕様で6,329時間であった.このこと から、2,000時間耐久試験後継続使用可能であるという事実を計算でも再現できたということが できる.

Table 4.3 Comparison between actual life and prediction life on bench test

10tonフォークリフト用	摩捞	【材A	摩擦材B			
台上耐久試験	試験結果	計算寿命	試験結果	計算寿命		
2速仕様トランスミッション	115Hr でクラッチ損傷	84Hr	420Hr 問題なし	7,299Hr		
3速仕様トランスミッション	30Hr でクラッチ損傷	43Hr	480Hr 問題なし	6,329Hr		

4・3・3 フィールド実車試験

- a) 10 トンフォークリフトの場合
- (i) 計測項目
- エンジン回転数
- クラッチ油圧
- 油温
- 車速

アクスルシャフトトルク

- (ⅲ) 試験方法
 - (1) 10ton 級の大型フォークリフトの国内ユーザーで最も稼働が過酷であるといわれている鉄 道貨物駅構内にて計測を行った.
 - (2) 作業内容は、図 4.12 に示すとおり、貨車から貨物を取ってトラック積込エリアまで運搬 する走行が主体のサイクル(運搬サイクル)と、運搬した貨物をトラックへ積込む、前進 / 後進切換え頻度の多いサイクル(積込サイクル)の2種類があり、1台のフォークリフ トが両方の作業を行っていた。
- (iv) 試験結果

計測データ(抜粋)を図 4.13 に, クラッチ板表面温度Tの頻度を表 4.4 に示す[20].

Fig. 4.12 Operation patern on field

Fig. 4.13 Measured data on field (excerpt)

Item	T/M [rpm]	E/G [rpm]	^٤ [Nm/cm ² •s]	e [Nm/cm ²]	Freq. /hour	Temp [deg C]
F2-F1	-360	1,000	20.19	18.13	2.8	145
R1-F1	-120	1,400	24.09	10.27	2.8	145
F1-F2	720	1,800	15.19	7.40	2.8	140
F2-F3	1,440	1,850	15.54	7.89	2.8	140
5	5	5	5	5	5	5
F1	0	1,000	7.22	2.99	2.8	120
F3-F2	840	1,300	2.13	0.37	2.8	120
F2-F3	1,440	1,800	14.55	7.33	2.8	125

Table 4.4 Load frequency of 3 speed lift truck(excerpt)

同様の方法で表 4.4 に示したフィールドでのクラッチ板表面温度 *T* の頻度から寿命を算出した. 結果を表 4.5 に示す[20].

誤差を仮に±20%とすると、国内でもっとも過酷であるされているこの鉄道貨物ユーザーでの クラッチ寿命は11,687×0.8=9,350時間から11,687×1.2=14,024時間の間であると予測できる. 本ユーザーは3交代フル稼働であり、1日稼働率および年間実働日数中の稼働率を80%とする と

24Hr/1日×0.8×25日/1月×12か月×0.8=4,608Hr/1年 の高稼働レベルのユーザーであり、実際2年(4,608×2=9,216時間)から3年(4,608×3= 13,824時間)の範囲内でクラッチの交換が必要であった事実とほぼ符合しているといえる.

Table 4.5 Prediction of clutch life on field

	Material A	Material B
Prediction life	$123 \mathrm{hr}$	11,687 hr

b) 3 トンフォークリフトの場合

試験対象のトランスミッションの断面図を図 4.14 に示す.

クラッチ不具合が発生している北米のユーザーで負荷頻度データ計測を実施した.計測項目, 計測方法は4・3・3項で述べたことと同等である.

Fig. 4.14 Section drawing of transmission for 3 ton forklift truck [21]

3時間に及ぶデータを以下の手順で整理しまとめた.

(1) 0.01 秒毎に計測したデータの全項目を同一時間軸上で並べた. 一部を図 4.15 に示す[21][26].

Fig. 4.15 Measuring curve (excerpt)

- (2)3時間の間に典型的な作業を部分的に現地でビデオ撮影し、各映像と計測データを対応できるようにした.
- (3) 映像と計測データとを比較することによって、計測データの波形から映像のない部分の作業 状態、操作状態を推定した.
- (4) そして、3時間のデータの中から、代表的な、典型的な作業と、その作業を代表する計測データを抽出した. その結果を表 4.6 に示す. 六つの作業パターンに分けることができた.
- (5) さらに、各作業パターンについて、3時間での頻度から、1日当りの頻度、1時間当りの頻 度に展開した.結果を同じ表 4.6 に示す[21][26].

Work pattern	Frequency N						
	/3h	/1day	/1h				
①Carriage of small block	3	8.38	1.16				
②Pushing of copper plate	3	8.38	1.16				
③Lifting of copper plate	2	5.59	0.77				
④Loading of large block	11	30.73	4.26				
⑤Loading of wheel	12	33.52	4.65				
6 Cleaning of floor	2	5.59	0.77				

Table 4.6 Work pattern & frequency

抽出した 6 パターンについて,吸収エネルギー計算とクラッチ板シミュレーション計算を実施し,クラッチ油圧 P_c,クラッチ換算相対周速 V,クラッチ吸収エネルギーQ,クラッチ板内周部温度 T_{in},中央部温度 T_{center},外周部温度 T_{out}の時間変化を図 4.16 のようにグラフ化した[21][26].

Fig. 4.16 Calculated curve for absorbed energy and temperature (excerpt)

図 4.16 のようにまとめたグラフからクラッチ板表面温度 *T* のピーク値を読み取り,全作業での温度の頻度を表 4.7 の通りまとめた[21].

図 4.8 に示した *T-N* 線図よりマイナー則を用いて寿命時間を算出した. 今回の対象トランス ミッションには Material C を使用している. 結果は以下となった.

F(前進) クラッチ: 22,033 時間

R(後進) クラッチ: 470,945 時間

time	Movement	T	n _i	N_i	n_i/N_i
			[/hr]	[cycle]	[/ hr]
1906	Inching	113.1	1.16	3.26E+08	3.56E-09
1921	Full reverce	114.4	1.16	3.07E+08	3.78E-09
1931	Take off	124.0	1.16	1.95E+08	5.94E-09
1938	Inching	190.4	1.16	8.66E+06	1.34E-07
S	S	S	S	S	S
5904	Inching	239.4	0.77	8.69E+05	8.91E-07
5909	Inching	200.9	0.77	5.29E+06	1.46E-07
5919	Full reverce	187.5	0.77	9.93E+06	7.80E-08
5922	Inching	192.5	0.77	7.85E+06	9.86E-08
	4.54E-05				
				Life [hr]	22,033

 Table 4.7 Frequency of clutch surface temperature

一方,フィールドにおいては約 1,000 時間でクラッチが引き摺るクレームがあって,回収した不具合品には,摩擦材に関しては全く炭化,劣化の兆候が無く,相手板のみが変形していたことから,以下のことがいえる.

①本ユーザーの稼働条件では、クラッチ板摩擦材に関しては十分な耐久性を有し、フィ ールド要求寿命を満足できる.

②このことを寿命計算の結果は裏付けている.

(3) その理由は4・2・2項で述べたとおり、摩擦材炭化進行の速度が指数関数的に上昇するその 臨界温度は 300℃近傍にあり、この温度を超えて、さらにその温度が繰り返されるような熱 負荷は、表 4.7 に一例を示した温度計算結果からわかるとおり、加わっていないからである.

4・4 本章のまとめ

本章では以下のことを明らかにした.

- (1) 摩擦材の構成と特性を説明し、その劣化は表面温度 T で評価できることを提案した.
- (2) 表面温度 T とその条件での限界係合回数 N との関係を示す T-N 線図を提案し,実機の負荷に よる T の頻度がわかればマイナー則を用いて寿命を算出できることを提案し,式によって表 した.
- (3) 以上の手法の正当性,実用性を台上トランスミッション耐久試験,およびフィールド実機(10 トンフォークリフトと3トンフォークリフト)試験によって実証した.

第5章

相手板の変形の評価

- 5・1 本章の位置付け
- 5・2 変形の評価法(理論)
 - 5・2・1 熱応力計算
 - 5・2・2 変形の閾値
 - 5・2・3 変形有無判別計算
- 5・3 実験による検証(実験)
 - 5・3・1 連続インチング試験
 - 5・3・2 インチングフルリバース試験
- 5・4 本章のまとめ

5・1 本章の位置付け

本章では、クラッチを構成するもう一方の部品である相手板変形有無の評価法について論じる. 前半で、提案する手法の理論について述べ、後半で、実機試験によってその手法の正当性、実用 性を検証する.

5・2 変形の評価法

3・2・2 項において、相手板の変形の主要因は、クラッチ係合時の熱による内外径の温度差 $T_{in}-T_{out}$ によるとの推定、考察について述べた、本節では、熱応力の計算モデルと、その応力値 から変形に到るか、否か、を判別する変形の閾値について提案する.

5・2・1 熱応力計算

モデルの立案,選択には、相手板が変形に到る内外周それぞれの温度とその温度差を求めるこ とに力点を置いた.そこで、相手板半径方向の温度分布は直線形分布であると単純化し、その場 合に厚さ一様な円板に発生する熱応力の式を採用することにした.

厚さ一様な円板で、半径方向の温度分布が直線形の場合、熱応力は次式で表される[22].

$$\sigma_{\theta} = \frac{1}{3} \alpha E (T_2 - T_1) \{ k^2 + k + 1 \} - 2(k+1)(r/a) + (b/r)^2 \} / (k^2 - 1)$$
(5.1)

a:円板の内周半径

- b:円板の外周半径
- k = b/a: 内外径比

 σ_{θ} : 円周方向応力

α:線膨張係数

- E:縦弾性係数
- *V*:ポアソン比
- T_1 :内周温度
- T_2 :外周温度

5・2・2 変形の閾値

図 5.1 に一般的なオイラーの座屈応力の図を示す[24].弾性域内においては、応力はオイラーの座屈応力の式にのるが、弾性域を超えると本式から逸脱し(このエリアの応力の式はモデルによって様々な実験式が報告されている)、さらに負荷荷重が増して降伏点を超えると永久変形することを示している.これより、相手板変形のクライテリアは材料の 0.2%耐力とした.(独)物

質・材料研究機構データベースの 0.3C 鋼 0.2%耐力の温度依存性データ[25] からクラッチ相手 板材料の硬さ比を乗じて,その耐力の温度依存性を図 5.2 の通り求めた[23].

Fig. 5.1 Euler's buckling stress [24]

Fig. 5.2 Proof stress of clutch mating plate [23]

外周側よりも温度が高くなる内周側温度 T_{in} を基準として、その温度での 0.2%耐力を図 5.2 から求め、その応力となる時の内外周の温度差 $T_{in} - T_{out}$ を式(5.1)から逆算した。その結果を表 5.1 に示す.

 $T_{in} = 500^{\circ}$ Cでは、 $T_{in} - T_{out} = 157^{\circ}$ C以上で変形 $T_{in} = 450^{\circ}$ Cでは、 $T_{in} - T_{out} = 164^{\circ}$ C以上で変形 $T_{in} = 400^{\circ}$ Cでは、 $T_{in} - T_{out} = 179^{\circ}$ C以上で変形 $T_{in} = 350^{\circ}$ Cでは、 $T_{in} - T_{out} = 187^{\circ}$ C以上で変形 $T_{in} = 300^{\circ}$ Cでは、 $T_{in} - T_{out} = 202^{\circ}$ C以上で変形 することがわかった。

Internal	Outer	Difference	Stress	0.2% proof stress
$T_1[^{\circ}C]$	$T_2[^{\circ}C]$	$T_1 - T_2[^{\circ}C]$	σ_{θ} [MPa]	at T_1 [MPa]
309	218	91	122	270
500	can not	100	134	210
500	380	120	161	210
500	360	140	188	210
500	350	150	201	210
500	345	155	208	210
500	344	156	209	210
500	343	157	210	210
450	290	160	214	220
450	286	164	220	220
400	230	170	228	240
400	221	179	240	240
350	170	180	241	250
350	165	185	248	250
350	164	186	249	250
350	163	187	251	250
300	110	190	255	270
300	100	200	268	270
300	99	201	269	270
300	98	202	271	270

Table 5.1 Temperature of mating plate at deformation

5・2・3 変形有無判別計算

以上の熱応力計算と変形の閾値を用いて、2・3節で整理した基本操作に対して3・3節で提案 したクラッチ温度計算を用いて求めた相手板表面温度から変形の有無を判別する計算を行った. 特徴的な3例を表 5.2, 5.3, 5.4 に示す[19]. 特徴は以下となった.

- (1)通常発進(NS)では、操作前のエンジン回転数が高いほど、また空荷よりも積荷の方が、吸収エネルギーQは高くなり、クラッチ表面温度 T_{in}、 T_{out}も高くなる. T_{in}>T_{out}となる理由は、ショック緩衝用としてクラッチ部に挿入した皿ばねによって内側の面圧が外側よりも高くなり、この影響が周速の影響よりも大きいためである[21].
- (2) インチング発進(IS)では、通常発進よりも吸収エネルギーQ は大きくなり、クラッチ 表面温度 T_{in}, T_{out}も高くなる.また、インチング時間が長くなるほど、さらに同じ傾向 が進む.同じ操作前条件において、通常発進とインチング発進とを比較すると、インチ ング発進の方がクラッチ表面温度 T_{in}, T_{out}が高くなると同時に T_{in}の上昇率が T_{out}の上昇 率よりも大きく、T_{in}-T_{out}も大きくなる.例えば表 5.2 に示す通り、積荷、エンジン回転 数 2200rpm での通常発進では T_{in}=190℃, T_{out}=81℃, T_{in}-T_{out}=106℃になるのに対し、同じ 積荷、エンジン回転数 2200rpm でのインチング時間 2.5sec のインチング発進では T_{in}=328℃, T_{out}=97℃, T_{in}-T_{out}=231℃となる.このインチング発進では、相手板の内外周 間の温度差による円周方向応力が温度を考慮した材料の降伏応力を超えて変形する.

		Engine Speed		Speed Clutch Modu.Ab		Absorbed	Clutch temperature			M.plate	proof	
B.O	Load	Ne	V	P2	tm	energy Q	Tin	Tout	Tin-Tout	σ_{θ}	σу	deformed
		[rpm]	[km/h]	[MPa]	[sec]	[J]	[°C]	[°C]	[°C]	[MPa]	[MPa]	
NS	with	2200	0	0.4	0.74	12913	190	81	109	134	303	not
IS	with	2200	0	0.3	2.50	35525	328	97	231	285	261.6	deformed

Table 5.2 Calculation result of mating plate deformation (extraction 1)

- (3) フルリバース発進(FRS)では、当然のことながら、動作前のエンジン回転数、車速が 高いほど、また、空荷よりも積荷の方が、吸収エネルギーQ は大きくなり、クラッチ表 面温度 T_{in}, T_{out} も高くなる.
- (4) インチングフルリバース発進(IFRS)では、フルリバース発進よりも吸収エネルギーQ は大きくなり、クラッチ表面温度 T_{in}、T_{out}も高くなる.また、インチング時間が長くな るほど、さらに同じ傾向が進む.同じ動作前条件において、フルリバース発進とインチ ングフルリバース発進とを比較すると、インチングフルリバース発進の方がクラッチ表 面温度 T_{in}、T_{out}が高くなると同時に T_{in}の上昇率が T_{out}の上昇率よりも大きく、T_{in}-T_{out}も 大きくなる.例えば表 5 に示す通り、積荷、エンジン回転数 2200rpm、車速-4km/h での フルリバース発進では T_{in}=255℃、T_{out}=82℃、T_{in}-T_{out}=173℃となる.このフルリバース発 進では、相手板の内外周間の温度差による円周方向応力が温度を考慮した材料の降伏応 力を超えず、変形しない.これに対し、同じ積荷、エンジン回転数 2200rpm、車速-4km/h でのモジュレーション時間 1.5sec のインチングフルリバース発進では T_{in}=322℃、 T_{out}=87℃、T_{in}-T_{out}=235℃となる.このインチングフルリバース発進では、相手板の内外 周間の温度差による円周方向応力が温度を考慮した材料の降伏応力を超えて変形する.

B.O	Load	Engine	Speed	Clutch	Modu.	Absorbed	Cluto	ch tem	perature	M.plate	proof	
		Ne	V	P2	tm	energy Q	Tin	Tout	Tin-Tout	σ_{θ}	σу	deformed
		[rpm]	[km/h]	[MPa]	[sec]	[J]	[°C]	[°C]	[°C]	[MPa]	[MPa]	
FRS	with	2200	-4	0.4	0.74	20502	255	82	173	213	283.5	not
IFRS	with	2200	-4	0.3	1.50	31166	322	87	235	289	263.4	deformed

Table 5.3Calculation result of mating plate deformation (extraction 2)

(5) 連続インチング (CI) では、当然のことながら、エンジン回転数が高く、インチング時間が長いほど、吸収エネルギーQは大きくなり、クラッチ表面温度 T_{in} 、 T_{out} も高くなる. ここで、上述の慣性エネルギー吸収型の動作と傾向が異なるところは、インチング時間が長くなるほどクラッチ表面温度は高くなるが、内外周間の温度差 T_{in} - T_{out} は慣性エネルギー吸収型動作ほどには大きくならないところである。例えば、エンジン回転数 1700rpm、車速 0km/h(ストール状態)での 10sec の連続インチングでは T_{in} =314℃、 T_{out} =202℃、 T_{in} - T_{out} =112℃、同条件での 20sec の連続インチングでは T_{in} =468℃、 T_{out} =344℃、 T_{in} - T_{out} =124℃となる。これらの時、内周側温度 T_{in} は慣性エネルギー吸収型での温度レベ ル以上に達するが、内外周間の温度差が大きくならないため、相手板の内外周間の温度 差による円周方向応力は温度を考慮した材料の降伏応力を超えず、変形はしない.

B.O	Load	Engine	Speed	Clutch	Steady	Absorbed	Cluto	ch tem	perature	M.plate	proof	
		Ne	V	P3	ts	energy Q	Tin	Tout	Tin-Tout	σ_{θ}	σу	deformed
		[rpm]	[km/h]	[Mpa]	[sec]	[J]	[°C]	[°C]	[°C]	[MPa]	[MPa]	
CI	without	1700	0	0.25	10	22736	314	202	112	138	265.8	not
CI	without	1700	0	0.25	20	45472	468	344	124	153	219.6	not

Table 5.4Calculation result of mating plate deformation (extraction 3)

5・3実験による検証(実験)

前節の計算の結果,以下のことがわかった.

- (1) 長時間でエネルギーを吸収する,例えば表 5.4 示した条件下での連続インチング操作では相 手板は変形しない.
- (2) 短時間で慣性エネルギーを吸収する,例えば表 5.3 示した条件下でのインチングフルリバー ス発進では相手板は変形する.

これらの結果を実機の試験によって検証した.

5・3・1 連続インチング試験

(i) **試験目的**

- (1) トランスミッション台上試験装置で連続インチング操作を再現し、クラッチ板表面温度*T* を強制的に上昇させることによって、その時の内径側、中央部、外径側、それぞれの温度上 昇の違いを計測し、把握する.
- (2) 同時に試験後,トランスミッションを分解し,湿式多板クラッチの損傷の有無を観察する.

(ii) **試験装置**

試験装置の概要を図 5.3 に示す[21].

ダイナモでトランスミッションを駆動し, 出力軸は固定とし, トランスミッション上のインチン グバルブを機械的に操作してクラッチ油圧をコントロールした.

Fig. 5.3 Test equipment for continuous inching test

(iii) 試験条件と計測項目

- 1) トランスミッション入力回転数:1700 rpm
- 2) トランスミッション出力回転数:0(固定)
- 3) トランスミッション油温:80 ℃
- 4) クラッチ油温: 0.25 MPa (定格の 1/4)
- 5) 連続インチング時間:10 sec, 30 sec
- 6) クラッチ板表面温度T:内径側、中央部、外径側の3ヶ所で計測(図 5.4 に図示). 半径方向に3等分し、それぞれ、その中央に熱電対を埋め込んだ.

Fig. 5.4 Measuring points for clutch surface temperature

(iv)**試験結果**

計測結果を図 5.5 に示す[21].

Fig. 5.5 Test results of 10 sec continuous inching test

1回の10秒間連続インチングでは相手板変形の兆候は見られなかった.相手板が変形すれば つれ回りトルクが発生し、ダイナモの駆動トルクから検知できる.

前節の計算結果より,強制的な連続インチング操作を 20 秒間続けても相手板は変形しないこ とが予測できた.また,図 4.8 に示した Material C の T-N 線図のよりが T=307 C の時, N=3×10⁴ であるから摩擦材も損傷しないと予測できた.これらの計算による予測値と試験結果は一致した. そこで,セット済みの連続インチング用トランスミッション台上試験装置で,熱電対がいつ断 線してしまうかを懸念しながら,まず 10 秒間連続インチングを 10 回実施した.各インチング操 作の間隔は,相手板の温度が十分に油温レベルまで下がることを確認して 30 秒以上あけた.終 了後,クラッチを完全に解放にした状態 (ニュートラル状態) にしてダイナモの駆動トルクを確 認したが,試験前と変化が無く,相手板変形や摩擦材焼付きによるつれ回りの兆候はなかった.

次に,30秒間の連続インチングを試みた.相手板温度の実測波形を図 5.6 に示す[23].中央部 と外径側の熱電対は断線してしまい内径側のみ計測ができた.相手板内径側の温度は 500℃まで 達したが,クラッチにつれ回りの兆候はなかった.トランスミッションを分解して確認したとこ ろ,計算による予測の通り,クラッチには,相手板の変形も摩擦材の損傷の兆候もなかった

Fig. 5.6 Test result of 30sec continuous inching test

5・3・2 インチングフルリバース試験

(i) 試験装置

試験装置の概要を図 5.7 に示す.車体慣性モーメント相当のフライホイールをトランスミッションの前進/後進クラッチの一方を係合した状態で回転させ、ここでインチングバルブを操作することによってクラッチの油圧を低下させ、そこで前進/後進クラッチを切り換えた.

(ii) 計測項目

5・3・1項の連続インチング試験に同じ.

Fig. 5.7 Test bench for full-reversing during inching

(iii) 試験条件と試験結果

試験結果を表 5.5 に示す.

まず,定格荷重積載の車両重量でエンジン回転数 1800rpm,車速 13.7km/h 相当の回転速度で フライホイールを回転させ、クラッチ油圧を 0.3MPa(係合時の定格油圧は 1.0MPa)に保持し たままで、クラッチを後進から前進に切り換えた.この時、内径側温度は 289℃、内外径温度差 は 183℃であった.分解し、クラッチを確認すると、相手板の変形はなかった.

次に,エンジン回転数 2000rpm,車速 15.2km/h 相当の回転速度でフライホイールを回転させ て試験した.この時,内径側温度は 348℃,内外径温度差は 251℃であった.分解し,クラッチ を確認すると,相手板は軸方向へ 0.2mm 変形していた.摩擦材側の損傷はなかった.

エンジン回転数 2200rpm, 車速 17.0km/h では 7mm 変形していた.

以上の結果は、5・2・2 項で得た「 T_{in} =350°Cでは、 T_{in} - T_{out} =187°C以上で変形、 T_{in} =300°Cでは、 T_{in} - T_{out} =202°C以上で変形する」という予測を実験によって確認できたことを表している.よって、5・2節で提案した相手板変形の評価法の正当性、実用性は確認できたと言うことができた.

エンジン回転数	クラッチ油圧		相手板温	変形		
Ne rpm	Pc MPa	Tin ℃	Tout ℃	Tin-Tout ℃	有無	量 mm
1800	0.3	289	106	183	無	_
2000	0.3	348	97	251	有	0.21
2200	0.3	未計測	未計測	未計測	有	7.19

Table 5.5 Results of inching full-reverse test

5・4 本章のまとめ

提案した熱応力計算と変形の閾値を用いて,2・3節で整理した基本操作に対して変形の有無 の有無を判別する計算を行った結果,以下のことがわかった.

- (1) 長時間でエネルギーを吸収する, 例えば表 5.3 に示した条件下での連続インチング操作では 相手板は変形しない.
- (2) 短時間で慣性エネルギーを吸収する,例えば表 5.2 に示した条件下でのインチングフルリバース発進では相手板は変形する.

これらの結果を実機の試験によって検証でき、提案の方法の実用性を確認できた.

第6章

クラッチの損傷要因と負荷形態別寿命予測に基づく強度設計法

- 6・1 本章の位置付け
- 6・2 クラッチ損傷の支配要因の特定
- 6・3 負荷形態別寿命予測に基づく強度設計法
- 6・4 本章のまとめ

6・1 本章の位置付け

本章では、第4章で提案し、実用性を検証した摩擦材の寿命評価法と、第5章で提案し、実用 性を検証した相手板の変形有無の評価法とを、クラッチ表面温度Tによって同じ指標上に並べ、 第2章で整理した負荷パターンの違いをそこにあてはめることによって、負荷形態の違いによる クラッチ損傷の支配要因を特定する.それを踏まえた上で、負荷形態を考慮した摩擦材と相手板 との強度設計法を示す.

6・2 クラッチ損傷の支配要因の特定

5・2・3 項の相手板変形有無判別計算の結果をまとめると以下になる[19].

- (1) 慣性エネルギー吸収型の操作で誤操作に当るインチング発進やインチングフルリバース 発進では、クラッチ内径側温度 T_{in}が短時間で上昇し、かつより高温になるため摩擦材の 寿命時間は短くなる.この時、短時間内でのエネルギー吸収であるため、外径側温度 T_{out} は内径側の温度上昇に追従できず、内外径間の温度差 T_{in}-T_{out}は拡大する.例えば、積荷、 エンジン回転数 2200rpm、車速-4km/h でのインチング時間 1.5sec のインチングフルリバ ース発進では T_{in}=322℃、T_{out}=87℃、T_{in}-T_{out}=235℃となり、相手板の円周方向の応力が材 料の温度を考慮した降伏応力を超えて、この1回の操作で相手板は変形する.
- (2) 車体をストールに近い状態にしての強制的な連続インチング作業では、インチング時間 を長くするほどクラッチ内径側温度 T_{in}は上昇する. インチング時間が長くなると相手板 内での内径側から外径側への熱伝導によって外径側温度 T_{out} も追従して上昇する. 例え ば、エンジン回転数 1700rpm、車速 0km/h (ストール状態) での 20sec の連続インチング では T_{in} =468℃, T_{out} =344℃, T_{in}-T_{out} =124℃となる. この作業では、インチング時間が長 くなるほど摩擦材の寿命時間は著しく低下する. しかし、内外径間の温度差 T_{in}-T_{out} は短 時間のエネルギー吸収である慣性エネルギー吸収型操作ほどには拡大せず、相手板は変 形しない.

以上の結果を、もう一方の部品である摩擦板摩擦材の耐久性の指標となる T-N 線図上で考察した. T-N線図は、図 4.8 で示した T-N線図から材料 C の線図を抽出した図 6.1 を用いた.

上の,相手板が1回の操作で変形する一例の条件である,積荷,エンジン回転数2200rpm,車 速-4km/h でのモジュレーション時間 1.5sec のインチングフルリバース発進で,クラッチ板表面 温度の最大値は Tin=322℃となった.この温度では図 6.1 に示すように,摩擦材は20,000 回まで 損傷にはいたらない.このような作業形態では,相手板の変形が湿式多板クラッチ損傷の支配要 因となる.

一方,相手板は変形しない強制的な連続インチングの一例の条件であるエンジン回転数 1700rpm,車速 0km/h(ストール状態)での 20sec の連続インチングではクラッチ板表面温度の 最大値は Tin=468℃となった.この温度では図 6.1 に示すように,摩擦材はわずか 20 回足らずで 損傷にいたる.このような作業形態では,摩擦材の寿命が湿式多板クラッチ損傷の支配要因とな る.

Fig. 6.1 T-N curve for explanation of wet multiple clutches damages

本研究はフォークリフト用トランスミッションの湿式多板クラッチのフィールドでの損傷に, ①摩擦材のみが摩耗している場合,②相手板のみが変形している場合,③両者が発生している場 合の3つの兆候があることの原因を負荷形態の違いと関係づけて解明することを目的の一つと した.そのために,第2章では,負荷形態を整理し,その結果とユーザーから返却されてくる不 具合品をその情報とつき合せて観察することによって,表2.6のように負荷形態と損傷形態の関 係を整理した.第2章で整理した負荷形態に対して,第3章で提案したクラッチ温度計算,第4 章で提案した摩擦材の寿命計算,第5章で提案した相手板変形有無判別計算を用いて本節で得た 上の支配要因の特定は,表2.6で整理した関係と一致していることが明らかになった.

その結果として,以下の結論を得た.その結論となる負荷形態と損傷形態との関係を表 6.1 に 示す.

- (1) インチング発進やインチングフルリバース発進が含まれる慣性エネルギー吸収型の負荷 形態では、クラッチは短時間にエネルギーを吸収し、この時は、相手板の内外周温度差 の拡大による相手板の変形が湿式多板クラッチ損傷の支配要因となる.業種の例として、 狭い倉庫内や船内での物流会社が挙げられる.
- (2)強制的な連続インチングのような連続すべり型の負荷形態では、クラッチは長時間でエネルギーを吸収し、この時、摩擦材の表面温度はすべり時間が長くなるほど上昇するが、内外周間温度差は拡大しないので、摩擦材の寿命が湿式多板クラッチ損傷の支配要因となる.業種の例として、鋳物製造会社が挙げられる.
- (3) 慣性吸収型と連続すべり型が混合する負荷形態,または,相手板変形発生後稼働が継続 された場合には,両者の損傷が発生する.業種の例として,古紙や鉄のリサイクル会社 が挙げられる.

3 types of damages	Work application	Example			
1. Only the friction material	The type of forced continuous slip	Cast iron manufactures			
2. Only the mating plate	The type of inertia enegy	Logistics companies in warehouse or ship			
3. Both	Both types are mixed	Old paper or iron recycling companies			

Table 6.1 Result of calculation for life of friction material

6・3 負荷形態を考慮した強度設計法~その手順と意義

前節では,第4章で述べた摩擦材の損傷メカニズム・寿命評価手法と,第5章で述べた相手板 変形のメカニズム・有無判別評価法とを統合し,車両の操作状況の違いによって湿式多板クラッ チの損傷の形態が異なる理由を明らかにした.

本節では、その手順をフォークリフト用湿式多板クラッチの負荷形態別寿命予測に基づく強度 設計法としてまとめて示す.

図 6.2 に設計手順の概要を示す.フォークリフト用湿式多板クラッチに関する手順であるが, 他の機械要素に置き換えても,大筋の考え方は同じであると考える.

(i)まず,限界寿命設計を実現するためには,設計対象である機械,装置の使われ方を正確に 把握する必要がある.4・3・3項で10トンフォークリフトによる鉄道貨物駅構内,および3ト ンフォークリフトによる北米フォークリフト市場での負荷頻度調査について述べたが,こうした 調査によって,実際の稼働条件をデータとして把握し,データベース化する.さらに,データと して客観的に把握するだけではなく,設計者自ら稼働現場を訪れ,自分の目でじっくりと観察す る必要がある.そして同時に,計測データを設計者が熟読し,自身で観察した実車の動きと照合 する,この作業の繰り返しから,データを見るだけで,その時の実車の動きをイメージできるよ うになれば設計者として一人前であるといえる.

(ii) 設計対象の寿命限界の状態, すなわち損傷まで到った部品, 不具合品をよく観察する. 設計者自ら損傷部品を手に取ってよく見ることである. この時, 自身の設計業務経験, 学校で学んできた基本的な物理定理, 物理現象に照らして最大限のイマジネーションを働かす. どこが一番最初に壊れたのか, 原因は機械的な破壊か, 疲労破壊か, 熱による劣化か, 熱はどういう方向に伝わっているか, 等々を, ああでもない, こうでもない, そうだ, こうだ, と熟考する. そして設計者自身の仮説を立てる. 次は, その仮説を計算, 試験で実証する.

今回の湿式多板クラッチの場合には,損傷のメカニズムはクラッチ摩擦板の摩擦材は熱負荷を 繰り返し受けたことによる疲労損傷であり,クラッチ相手板は急激な温度上昇による一発変形で あることがわかった.

(iii) 疲労損傷である場合には,損傷に直接影響するパラメータを抽出し,そのパラメータのレベルをふって,限界回数 N との関係を把握する.今回の摩擦材の場合には,表面温度 T が損傷 に直接影響するパラメータであり,T-N 線図を台上単体試験によって作成した.

(iv) 一発損傷の場合には、同様に損傷に直接影響するパラメータを抽出し、その損傷に到る閾値を把握する.今回の相手板の場合には、摩擦材同様に表面温度 T が損傷に直接影響するパラメータであり、それと内外周間の温度差による内部応力を、温度を考慮した材料の耐力を閾値として比較することによって損傷の限界点を把握することができた.

Fig. 6.2 Procedure of field life design method for multiple plate clutches

(v) (i)の負荷頻度調査によって直接,損傷に影響するパラメータを計測できることが望ましいが,そうでない場合には,フィールドで計測できたデータからそれを求めることが必要になる. 今回の場合には,既報[20]でのべたT予測線図がそれであり,また,第4章で述べた表面温度T シミュレーション計算がそれである.こうした実験や計算によって計測データを揉むことは, (i)で述べた設計者による実車の動きのイマジネーション力,(ii)で述べた設計者による損傷メ カニズムの仮説立案のためのイマジネーション力を養う上でも大きな助けにもなる.

(vi)損傷に直接影響するパラメータのレベルと頻度が把握できたら、疲労損傷の場合には、T-N 線図とマイナー則によって寿命時間を算出できる.また、一発損傷の場合には、損傷の閾値との 比較によって、強度の余裕度を把握できる.

(vii) 最後に,湿式多板クラッチの構成要素であるクラッチ板摩擦材とクラッチ相手板の,損傷のメカニズム,損傷のクライテリアの違いを明らかにし,それらを実車の稼働状況とつき合わせすることによって,湿式多板クラッチの損傷形態の違いとその支配要因を明らかにする.

以上,限界寿命設計の手順について述べた.その意義は、1・2・1項で述べたことの繰り返し になるが,使用条件にマッチした無駄のないスリムでシンプルな構造の実現,達成にあり、これ は小型・軽量化による資源の保全,効率,燃費向上による CO2 削減という現代社会の第1義的 な問題である環境問題に設計者の立場として貢献できる手法であるといえる.

負荷形態を考慮した強度設計の概念図を図 6.3 に示す.

Fig. 6.3 Blance design for a wet clutch

- (1)まず、今回、クラッチの不具合が発生したユーザーは、例えば、インチングフルリバースのような誤操作が多く、運転が乱暴なユーザーである。こうした過酷なユーザーの負荷形態を想定して標準仕様の設計をしてしまったら、一般的な使い方をするユーザー向けの製品としては過剰な設計となってしまい、コストアップにつながる。
- (2) そこで、標準仕様の設計は一般的な使い方をするユーザーでの負荷形態を想定して行う.
- (3) 次に,表 6.1 に示した狭いエリアでの前後進切換え頻度の高い過酷なユーザーでは,標 準仕様に対して,相手板の厚さをアップする等のオプション,向先仕様を設定する.
- (4) また,連続インチング作業が多い,特殊なユーザーでは耐熱性をアップした摩擦材をオ プション,向先仕様として設定する.
- (5) 古紙, くず鉄リサイクル会社のように, 摩擦材, 相手板両方のの損傷が多発する超過酷ユー ザーでは, 相手板の厚さアップ, 摩擦材の耐熱性アップは勿論, さらに両者の耐久性アップ に効果のある, 潤滑油量アップ, クラッチのサイズ, 枚数アップをオプション, 向先仕様と して設定する.
6・4 本章のまとめ

本章では,第4章で提案し,実用性を検証した摩擦材の寿命評価法と,第5章で提案し,実用 性を検証した相手板の変形有無の評価法とを,クラッチ表面温度*T*によって同じ指標上に並べ, 第2章で整理した負荷形態の違いをそこにあてはめることによって,負荷形態の違いによるクラ ッチ損傷の支配要因を特定した.

その結果,負荷形態を考慮した摩擦材と相手板との強度バランス設計が必要であることが明らかとなり,そのプロセスを強度設計法としてまとめた.

第7章

結論

- 7・1 本研究のまとめ
- 7・2 今後の展開

7・1 本研究のまとめ

本研究は、フォークリフトという自動車に比べて負荷変動の厳しい特殊な車両に使用されるオ ートマチックトランスミッションで多発していた湿式多板クラッチの損傷メカニズムを工学的 に解明することを目的とした.また、環境、安全という現代第1義の社会的責任と収益向上と の両立を実現するために、設計という立場で取り組むのに不可欠な究極の限界設計である、フィ ールドでの負荷形態を考慮した寿命予測設計法を、金属部品ではなく、トライボロジー部品であ る湿式多板クラッチを取り上げて、提案し、以下を得た.

- (1) 負荷形態と損傷形態の関係を整理した
- (2) 負荷形態の違いによって吸収エネルギーと温度上昇に違いがあることを明らかにした
- (3) 摩擦材の寿命時間算出法を提案し、実用性を検証した
- (4) 相手板変形有無判別計算を提案し,実用性を検証した
- (5) 負荷形態別クラッチ損傷の支配要因を特定した(3つの兆候の原因解明)
- (6) 負荷形態を考慮したクラッチの摩擦材と相手板との強度バランス設計の必要性を明らかに し、その設計法を導いた

7・2 今後の展開 ~クラッチ警報・残存寿命表示装置の提案

本研究で対象としたフォークリフトや自動車の場合,操作するオペレータは不特定多数の人間 であり,その操作方法は人によって様々に異なる.また使用される場所も,倉庫内の狭いエリア での荷物の積み下ろしだったり,港湾や空港での長距離の荷物の運搬であったり様々である.そ のため一つの負荷形態だけを想定して設計をすることはできない.そこで,ある負荷を想定して 設計し製品化された機械,装置に対して,フィールドでの稼働中に,コンピュータを搭載したコ ントローラなどで負荷のレベルと頻度を認識できれば,本研究で提案した寿命評価手法を用いて, その機械の寿命時間を把握できる,と考えた.これが実現できれば,クラッチ交換のメンテナン ス時期の事前把握や故障発生前の予知が可能になる.また,極めて乱暴な操作するオペレータが いた場合,現在の操作を続けているとクラッチが損傷してしまう,ということを知らせ,その運 転の改善を促すことも可能になる.

仮にこの装置をクラッチ警報・残存寿命表示装置と命名し、本研究の今後の展開として提案したい. ハード構成を図 7.1 に示す. ソフトは本論文をそのままなぞることになるので簡単に説明する.

- 1) クラッチ前後の回転数とクラッチ油圧を検出し、式(3.3)から式(3.19)によってクラッチでの吸 収エネルギーを把握する.
- 2) 4.3 節のシミュレーション計算によってクラッチ板表面温度 T を算出する.
- 3) 表面温度 Tをメモリーに記憶させる.ある単位時間,例えば1日や3日や1週間で切って, この間の Tの頻度を把握し,そこから1時間当たりの頻度を算出する.
- 4) クラッチ摩擦材料毎の T-N線図はコンピュータへ外部から入力する.
- 5)1時間当たりのTの頻度とT-N線図からマイナー則を用いて寿命時間を算出する.

- 6) 摩擦材の寿命時間を表示する.表示方法にはいろいろな方法がある.現在の操作を続けていたら、寿命時間は何時間である、と直接表示する手もあれば、新車から稼働時間をカウントしておいて、その時間との差を求めて残存寿命として表示することもできる.
- 7) 相手板は、上述のシミュレーションで求めた内周温度 T_{in}と外周温度 T_{out} を 6 章で得た変形に 到る閾値とたえず比較し、ある安全率を設けて警報を表示する.

Fig. 7.1 Components of clutch alarm and remaining life indicator

最後に今後の課題として以下を挙げる

- 1)金属材料の確率疲労曲線(P-S-N曲線)に相当するばらつきを考慮した T-N線図の作成
- 2) 摩擦材の耐久性のばらつきに影響するパラメータの製造工程に踏み込んだ細分化しての抽 出とそれらの関数化
- 3) 潤滑油の劣化,不純物が摩擦材の耐久性に及ぼす影響の定量的な把握

7・3 おわりに

本論文では、使用条件が過酷なフォークリフトのオートマチックトランスミッションにおいて 不具合の多かった湿式多板クラッチの損傷メカニズム解明に端を発して、その寿命評価手法の確 立を目標にした.それは、環境、安全という現代の最も緊急で重要な社会的な課題に、一動力伝 達装置の設計者の立場で貢献するという目標にもつながった.その方法は、究極の限界設計とい えるフィールドでの負荷形態を考慮した寿命設計によって無駄のない小型・軽量化設計が実現で き,材料資源の保全と効率・燃費向上による CO₂ 削減に貢献できると考えた.オートマチック トランスミッションの湿式多板クラッチはこれまでこの限界寿命設計にまで踏み込まれておら ず,しかし業界で多く望まれていた.ここで提案した手法は,単なる理論にとどめず,台上試験 およびフィールドでの実測調査によって実用に耐えうることを実証できた.本手法を用いれば, 稼働中の実車においても少ないセンサーによる簡単な運転状態の把握から,クラッチの残存寿命 表示や故障の予知が可能になる.こうした装置の提案は,もう一つの重要な社会的課題である安 全に大きく貢献できるものと考える.

単なる変速機の一部品であるクラッチの研究から、環境、安全という現代の最重要課題に貢献 できるということは、一動力伝達系技術者として誉であるし、月並みだが技術屋冥利に尽きると いうことだ.寿命予測に基づく限界設計、負荷形態を考慮した設計、強度バランス設計という切 り口から工学、技術の世界を俯瞰してみると、様々なアイデアや装置が浮かんでくる.クラッチ 警報・残存寿命表示装置はそのほんの一例に過ぎない.やりたいこと、実現してみたいことが山 ほどある.この論文は終わりではなく、始まりであることをここに宣言して本論文を終了する.

文 献

- (1) http://www.grendia.com/forklift/
- (2) http://www.automax.co.jp/pdf/sae.pdf
- (3) 北原志暈, 松本堯之, "湿式摩擦材の現状と将来", トライボロジスト, Vol. 39, No. 12 (1994), pp. 1020-1025.
- (4) 伊藤博信,山本隆司,山岸信夫,"湿式クラッチ用フェーシング材の摩擦特性に及ぼす潤滑 油粘度の影響",トライボロジスト, Vol. 34, No. 9 (1989), pp. 662-668.
- (5) 江口正夫,武居正彦,山本隆司,"湿式クラッチ用摩擦材の摩擦特性",トライボロジスト, Vol. 36, No. 7 (1991), pp. 535-542.
- (6) 江口正夫,桑原康雄,山本隆司,"湿式クラッチ用ペーパ系摩擦材の定常摩擦特性に及ぼす 摩擦面温度の影響",トライボロジスト, Vol. 38, No. 7 (1993), pp. 649-655.
- (7) 三好達朗, "フリクションプレートの気孔性と摩擦特性", NSK Technical Journal, No. 655 (1993), pp. 25-31.
- (8) 棗田伸一, "フリクションの係合メカニズム", NSK Technical Journal, No. 655 (1993), pp. 32-38.
- (9) 太斎正志, "湿式クラッチおよび湿式ブレーキにおける音響・振動", トライボロジスト, Vol. 35, No. 5 (1990), pp. 326-330.
- (10) 加藤芳章,赤坂量康,山崎努,森泰志,"自動変速機用湿式クラッチとバンドブレーキの温 度測定",トライボロジスト, Vol. 41, No. 4 (1996), pp. 340-347.
- (11) 三浦達人, 関根登, 畔上敏明, 村上康則, "セグメント接着方式における自動車用湿式クラ ッチの摩擦特性について", Honda R & D Technical Review, Vol. 10 (1998), pp. 142-149.
- (12) 三好達朗, "湿式クラッチ", トライボロジスト, Vol. 47, No. 9 (2002), pp. 699-704.
- (13) 顧暁明,三好達朗, "湿式クラッチ摩擦材における熱的問題とその対策",トライボロジスト, Vol. 50, No. 1 (2005), pp. 33-38.
- (14) 齋藤俊博, 古手川保, 松浦吉輝, 田中征一, 大槻王一, "湿式多板クラッチの摩擦特性を考慮した耐久性予測技術の研究", Honda R & D Technical Review, Vol. 18, No. 2 (2006), pp. 155-162.
- (15) 三菱重工業株式会社 汎用機・特車事業本部 紹介カタログ
- (16) 小山内弘, 大沼元, 加藤康司, "湿式ペーパ摩擦材の摩擦面温度計測と耐久性", トライボロ ジスト, Vol. 39, No. 12 (1994), pp. 1032-1036.
- (17) 奥村敦史, 材料力学(増補版), (1980), pp. 32., コロナ社
- (18) 守田友義, 薩摩林和美, 実用機械シリーズブルドーザ, (1994), pp. 163-167., 産業図書株式 会社
- (19) 岡部一成,北條春夫,"フォークリフト用湿式多板クラッチの業態別損傷支配要因の特定", 日本機械学会論文集 C 編, Vol. 79, No. 802 (2013), pp. 2190-2206.
- (20) 岡部一成,藤本明彦,向一仁,"湿式多板クラッチ寿命設計法の提案(第1報)",自動車技術会論文集, Vol. 38, No. 6 (2007), pp. 145-150.

- (21) 岡部一成,原澤壯,藤本明彦,"湿式多板クラッチ寿命設計法の提案(第2報)",自動車技術会論文集, Vol. 39, No. 2 (2008), pp. 305-310.
- (22) 竹内洋一郎, 熱応力, (1971), pp. 78-112., 日新出版
- (23) 岡部一成,藤本明彦,原澤壯,"湿式多板クラッチ寿命設計法の提案(第3報)",自動車技術会論文集, Vol. 40, No. 4 (2009), pp. 1071-1075.
- (24) 奥村敦史, 材料力学(増補版), (1980), pp. 302., コロナ社
- (25) 独立行政法人物質・材料研究機構, "NIMS 物質・材料データベース金属材料技術研究所ク リープデータシート No. 17B", (1994)
- (26) Okabe, K., Fujimoto, A., and Harasawa, T., "Proposal of Field Life Design Method for Wet Multiple Plate Clutches of Automatic Transmission on Forklift-trucks", SAE Technical Paper 2009-01-2934, 2009, doi:<u>10.4271/2009-01-2934</u>.
- (27) Kazunari Okabe, Haruo Houjoh: A Design Guide for Wet Multiple Plate Clutches on Forklift Truck Transmissions Considering Strength Balance between Friction Material and Mating Plate, SAE paper 2013-01-0231, 2013 (doi:10.4271/2013-01-0231)

謝 辞

本研究をまとめるにあたり、ご指導をいただきました東京工業大学大学院総合理工学研究科メカノマイクロ工学専攻の北條春夫教授(第21代東京工業大学精密工学研究所所長)に深く感謝申し上げます. 僭越ながら,端的で効率的なご指導には大変助けられました.

論文の審査をしていただきました東京工業大学大学院総合理工学研究科メカノマイクロ工学 専攻の横田眞一教授(第19代東京工業大学精密工学研究所所長),初澤毅教授,佐藤千明准教授, 松村茂樹准教授に深く感謝申し上げます.論文下読み会,公聴会等では,筆者の会社での経験に 対しまして,学術の知見で応じてご指導くださり,大変勉強になりました.適切ではございませ んが,楽しい時間でした.

上の先生方と共に社会人博士課程への入学審査をしていただきました東京工業大学大学院総 合理工学研究科メカノマイクロ工学専攻の香川利春教授(現日本フルードパワーシステム学会会 長),川嶋健嗣客員教授に深く感謝申し上げます.香川先生には,筆者の恩師,早稲田大学理工 学部機械工学科の故土屋喜一教授とかつて同じ会社の同僚であったことなど,気さくにお声をか けていただき,硬い印象の強い学問の府におきまして,ほっとすることができました.

本研究をまとめるにあたり、ご指導をいただきました早稲田大学大学院理工学研究科生命理工 学専攻の梅津光生教授に深く感謝申し上げます.人工心臓という本論文の分野とは違うご専門で ありながら、筆者卒論のご指導を賜りましたご縁を頼りに 2007 年 9 月 29 日に研究室の門を叩き ました時からご丁寧なご指導をいただきました.ご体調不良等もございまして、母校での目的成 就はなりませんでしたが、叱咤激励をありがとうございました.

母校での進行が難しくなりました時,筆者のつたない自己流の論文を携えて,東京大学のご専 門の先生にそのレベルのご判断を仰いでくださいました東京大学工学部の酒井宏名誉教授に深 く感謝申し上げます.

本研究をまとめるに当り,筆者の会社入社当時の2年間,および,その後交流は途絶えました が,四半世紀後に再会することのできました現在,ご指導,ご助言をいただきました元三菱重工 業株式会社の川津隆生氏に深く感謝申し上げます.入社後の配属先で川津氏から最初に渡された 参考書が中田孝(第3代,第5代東京工業大学精密工学研究所所長)著「転位歯車」であり,歯 車の計算の次に,「微分積分は会社に入ってからこそ使うのだよ」と言って申しつかった計算が, 湿式多板クラッチの吸収エネルギー計算でした.

著者の30年近くになる会社生活で、一時、技術、設計の本流の業務から離れる時期がありま した.技術に対する勉強のブランクを已む無くしましたが、その間、ご自身のご経験と最新の広 く、深い技術に対するご知見を気長に筆者に語りかけてくれました元三菱重工業株式会社の八木 清氏に深く感謝申し上げます.

2011年2月23日に東京工業大学精密工学研究所所長室を初めて訪問しました.所長の北條先 生からは、その後、何度もご親身なるご指導をいただきましたが、その間に、中田孝著「想い出 の画帖」という本をいただきました.その本は、中田先生がそのご半生をお写真とご自身で描か れた水彩画を添えて綴られた本でした.そこには、不思議なことに、いや、不思議なことではな いのですが,恩師の土屋先生が,中田先生とご一緒にバイオリンとフルートを演奏されているお 写真や,「舶用タービン歯車の研究でよく行った長崎飽の浦」と題された三菱重工業の長崎造船 所の風景画などが載っていました.筆者は今も,三菱重工業歯車研究会の委員としまして年に数 回は飽の浦を訪れます.大好きな地の一つです.この本を眺めておりますと,大げさですが不思 議な因縁を感じます.しかし,一呼吸おくと,不思議なことはなく,必然であったと思えてきま す.それは筆者が紆余曲折はあろうとも,入社以来,歯車,クラッチといった動力伝達装置の技 術を手放さずにきたことによる必然であったのだとの思いに落ち着きます.

> 2013 年 8 月 15 日, 猛暑 窓外の勇猛な雑草たちを眺めて