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Summary

This thesis describes novel approaches for synthesizing speech with prosodic

variability and naturalness. There are a variety of applications of speech

synthesis and there have been increasing demands for such applications. Al-

though the variability and naturalness of synthetic speech have been im-

proved, the ability of generating natural sounding speech is still insuffi-

cient. This thesis focuses on spontaneous conversational speech that has

much prosodic variability. The purpose of this study is to improve the vari-

ability using spontaneous speech data by realizing the framework that can

synthesizes natural-sounding spontaneous conversational speech.

First, extended context is introduced to synthesize natural-sounding

spontaneous conversational speech with prosodic variability in the hidden-

Markov-model-based speech synthesis framework. Several context sets that

can be obtained from the Corpus of Spontaneous Japanese are introduced and

the effectiveness of the context sets are evaluated. The results of objective

evaluation show that the phone prolongation and tone labels are effective

for improving generated F0 and duration. It has been confirmed that the

synthetic speech using extended context offers more natural-sounding speech

than conventional contexts from the subjective evaluation.

Next, prosodic-event-based HMM (prosodic-unit HMM) is proposed to

improve the naturalness of prosody of spontaneous conversational speech.

The modeling unit proposed prosodic-event-based HMM is the segment be-

tween two tone labels that represents prosodic events such as pitch falling

by accent or pitch rising of boundary pitch movement (BPM). The proposed

HMM is expected to reduce the model parameters of F0 because there are less

prosodic events derived from F0 features than phones that strongly depends

on spectral features. The results show that the proposed technique gives a
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more compact model and more variation in generated F0 than phone-unit

HMM.

The prosodic variability and naturalness of synthetic speech is improved

by extended context and prosodic-event-based HMM. However the natural-

ness of spectral features is still insufficient. Then, a speech synthesis frame-

work based on Gaussian process regression is proposed to improve the nat-

uralness of spectral features. Block-based sparse GP approximations such

as local GPs and PIC are used for trajectory modeling of utterances with

feasible computation. Moreover, for the generation of smooth parameter tra-

jectory, frame context including nearby phone information and its kernel is

defined. From the objective and subjective evaluation, the proposed method

using the PIC approximation and the extended context achieved better per-

formance than the HMM-based methods.
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Chapter 1

Introduction

1.1 General background

Voice is one of the most important tools of communicating with human be-

ings. The sound wave of voice can convey not only linguistic information but

also emotions and dialog acts, called para-linguistic information, and charac-

teristics of speakers. Speech synthesis is a technique of generating the voice

artificially using computers, and this enables computers to speak to humans.

Nowadays, speech synthesis has been used in a variety of fields.

One of the most important features of speech synthesis is to convey arbi-

trary text information to people without visual texts or images. Historically,

text-to-speech (TTS) has been used for a screen reader for people with visual

impairments. Speech synthesis embedded in automobile navigation systems

offers road information with voice to drivers who are required to look around.

Another application of speech synthesis is a tool that supports human-

human communication. In a medical field, speech synthesis techniques are

employed as alternative voice output communication aids (VOCAs) for pa-

tients whose speech become disordered. For example, it revealed that a

speech synthesis technique enables personalized VOCAs that have patients’

original voice characteristics in [1].

A recent interesting field is an application for audio and video contents

creation. Singing voice synthesis, closely related to speech synthesis, has

been widely used in musical creation [2] along with the popularization of
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2 CHAPTER 1. INTRODUCTION

video sites such as YouTube. In addition, the state-of-the-art application

of speech synthesis is the synthesis of audiobooks [3], [4]. The advantages of

using synthesis may include the low cost without sound recording and the

flexibility of editing synthetic voices.

With a spread of domains, the requirements for speech synthesis sys-

tem have increased. One of the requirements is the realization of prosodic

variability. Prosody of spontaneous speech that appears in human-human

conversation could enrich VOCA system. Prosody included in actors’ per-

formance could enhance the quality of audio contents. Also, naturalness is

required for intelligibility and pleasantness of synthetic speech. In general,

if we collect huge training data, we can synthesize natural-sounding speech.

However, it is not easy to prepare huge data of specific domains. Therefore,

it is preferable to synthesize speech with a small amount of training data.

Statistical parametric speech synthesis [5], including hidden-Markov-

model-based (HMM-based) speech synthesis [6], has been developed as a tech-

nique that is expected to achieve the naturalness and variability of synthetic

speech using a relatively small amount of data. In statistical parametric

speech synthesis, speech signals are converted to low-dimensional speech pa-

rameters like mel-cepstrum and fundamental frequency (F0), which we refer

to as acoustic features. We statistically model the relationship between the

acoustic features and phonetic and prosodic variable factors, called contexts,

such as phonemes, syllables, accents and other factors that mainly derives

from transcriptions or input texts. And, we generate acoustic features from

input contexts.

The statistical parametric model can provide a compact and flexible rep-

resentation of speech. This characteristic has been utilized to change speakers

characteristics and speaking styles by changing their parameters. For exam-

ple, speaker adaptation with average voice model based on HMM enabled

training using only a small amount of target speaker’s data by changing the

mean and variance parameters of output probability distribution functions

(pdfs) of HMMs [7]. For the expressive speech synthesis, parametric repre-

sentation makes it easy to model multiple emotions and speaking styles by

the style-mixed model with the global context of style types [8]. Although

the variability and naturalness have been improved, the ability of generating
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human-like clear speech is still insufficient.

1.2 Scope of thesis

This thesis describes a novel approaches to improving the variability and

naturalness of synthetic speech in the statistical speech synthesis.

In chapter 3, first, we focus on the improvement of variability using spon-

taneous conversational speech data. Since the spontaneous conversational

speech has diverse prosodic variability including boundary pitch movements

(BPMs) and filled pauses. However, it is difficult to model these factors

in conventional contexts used for reading-style speech. We extend the con-

texts based on the annotated data of the Corpus of Spontaneous Japanese

(CSJ) [9]. The categories of extended context include phone prolongation,

utterance style, tone label, disfluency, complementary phoneme, word, and

clause. By adding the contextual factors of these categories to conventional

context set, we evaluate which category is important to express the prosodic

variability. Since adding too many contexts often causes a over-fitting prob-

lem, we attempt to choose an effective context subset. Also, in order to

alleviate over-fitting problem on training using many contextual factors, we

intdroduce a new criterion for context clustering, the minimum number of

observations.

Next, in chapter 4, we attempt to improve the prosody model of spon-

taneous speech. We propose a new modeling unit of HMM-based speech

synthesis based on prosodic events which correspond to folding points of F0

movements. The proposed prosodic-event-based unit is the segment between

the tone labels of X-JToBI [10]. We incorporate the proposed unit to the

HMMs for F0, and use mora-normalzed position for the timing prediction of

the labels

The prosodic variability and naturalness of synthetic speech have been

improved by extended context and prosodic-event-based HMM. However the

naturalness of spectral features is still insufficient. In chapter 5, we propose

a novel framework of statistical speech synthesis based on Gaussian process

regression [11]. The model of GPR is designed for directly predicting frame-

level acoustic features from corresponding information on frame context that
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is obtained from linguistic information. GPR-based speech synthesis can

overcome some problems of HMM-based speech synthesis, e.g., the limited

number of model parameters and the mismatch between discrete HMM-state

space and continuously changing acoustic features.



Chapter 2

Statistical Parametric Speech

Synthesis

This chapter describes parametric speech synthesis system using statistical

models. Firstly, the overview of the system is provided. Then, HMM-based

speech synthesis is introduced, which is one of the most widely-used tech-

niques.

2.1 Overview of statistical parametric speech

synthesis

Statistical parametric speech synthesis has grown in popularity in over the

last years [6], [12]–[14]. Figure 2.1 outlines the system of statistical paramet-

ric speech synthesis. In the training stage, phonetic and prosodic contexts

are extracted from the texts with annotation information. Also, frame-level

acoustic features are extracted from speech samples using speech analysis.

Acoustic features include spectral feature, fundamental frequency (F0), and

duration information. Mel-cepstrum is often used as the spectral feature. Af-

ter that, a statistical model that represents the relationship between acoustic

features and corresponding contexts is trained. In the synthesis stage, the

contexts of input text are extracted and an acoustic feature sequence is gen-

erated using the contexts and the trained model. Finally, output speech

waveform is synthesized from the generated acoustic feature sequence. The

5
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Acoustic features

Mel-cepstrum F0 Duration

Acoustic features

Mel-cepstrum F0 Duration

Training

Synthesis

Training data 

Input text

Phonetic and prosodic contexts

Phonetic and prosodic contexts

Statistical model

Synthetic speech

Speech waveformAnnotated text

Figure 2.1: Outline of statistical parametric speech synthesis.

term “parametric” means that speech waveform is parametrized into acoustic

features and the term “statistical” implies that the features are statistically

modeled.

2.2 HMM-based speech synthesis

In HMM-based speech synthesis [6], HMM and decision trees is used as a sta-

tistical model. The contexts are defined for each phone and have phoneme,

accent, part of speech, breath group, and utterance length information. As

acoustic features, we use mel-cepstrum, log F0, and band aperiodicity [13],

which include not only static features but also dynamic ones. In the train-

ing stage, context-dependent HMMs are trained. Since the combination of

the context sets is huge, decision-tree-based context clustering is performed

to predict the HMM parameters of unseen contexts. In the synthesis stage,

HMMs are chosen using the decision tree and a parameter sequence are gen-

erated by maximum likelihood parameter generation (MLPG). The following

subsections describe the details of HMM-based speech synthesis.
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2.2.1 Model topologies for HMM-based speech synthe-

sis

Hidden Markov model (HMM) is known to be an effective model to express

time series observation. An HMM λ consists of state transition probabil-

ity parameters {aij} and observation probability functions bi(ot). Here, aij

denotes the transition probability from the state i to the state j. bi(ot) rep-

resents the probability of observation of time t, ot, if the state if i. The

likelihood of observation sequence O = (o1, . . . , oT ) is given by

P (O|λ) =
∑
q

P (q|λ)P (O|q, λ)

=
∑
q

T∏
t=1

aqt−1qt

T∏
t=1

bqt(ot)

=
∑
q

T∏
t=1

aqt−1qtbqt(ot) (2.1)

where q = (q1, . . . ,qT ) is a hidden state sequence. The likelihood is com-

puted effectively using forward-backward algorithm and the parameters are

trained using Baum-Weltch algorithm, which is EM algorithm for HMM.

A left-to-right and no-skip HMM is commonly used for the model of

speech parameter sequences because it can appropriately model the variabil-

ity of acoustic features. A hidden semi-Markov model (HSMM) [15] has been

proposed as a model that includes explicit state duration representation by

Gaussian distributions, whereas the HMM implicitly expresses state duration

by the transition probabilities.

Gaussian distribution is commonly used for the pdf of the observation.

For modeling F0s, which is unobserved in the unvoiced region, by continuous

pdfs, a multi-space probability distribution HMM (MSD-HMM) has been

proposed [16]. In the MSD-HMM, the pdf is changed dependently on whether

the frame is voiced or unvoiced, that is, a Gaussian distribution is used for

a voiced region and a fixed value is used for an unvoiced region.
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2.2.2 Context clustering

Context clustering means collecting similar phonetic and prosodic contexts

[17]. There are two aims in context clustering. The first aim is to define

the context-dependent HMM whose context is not included in training data

(called unseen context) by using the model parameters of similar contexts.

The second is to improve the reliability of model parameters. If the model

parameters of a HMM are estimated by a single segment, the reliability of the

parameters tends to be low. The context clustering enables reliable model

parameter estimation using multiple segments included in the same cluster.

A decision tree is used for context clustering. Each leaf node is split using

the question, e.g. whether the current phone is /i/ or not, that most increases

the likelihood. As the stopping criterion of the node splitting, the minimum

description length (MDL) determined by the number of model parameters

and the amount of training data has been shown to be effective [18].

2.2.3 Maximum likelihood parameter generation from

HMM

Maximum likelihood parameter generation (MLPG) [19] is a simple but an

effective way of generating parameter sequence from HMMs. First, the op-

timal state sequence q∗ is generated using the state duration means. After

that, the most likely parameter sequence C∗ is calculated as follows

C∗ = argmax
C

P (O|q∗, λ)

= argmax
C

P (WC|q∗, λ) (2.2)

where W is a window matrix that converts parameter sequence C to the

acoustic feature vector sequence including dynamic feature, O.

2.3 Statistical parametric speech synthesis in

this thesis

In this thesis, we explore novel methods based on the framework of Fig. 2.1.

In chapter 3, the phonetic and prosodic contexts are extended for sponta-



2.4. CONCLUSION 9

neous speech synthesis in the framework of the HMM-based speech synthesis.

In chapter 4, we examine the HMM in the statistical model for modeling of

F0 of spontaneous speech. Specifically, the unit of HMM is changed into a

prosodic-event-based unit. In chapter 5, we change the statistical model from

HMM and decision tree to Gaussian process regression. For the initial ex-

amination of the method based Gaussian process regression, we use phonetic

information for the contexts and mel-cepstrum for the acoustic feature.

2.4 Conclusion

In this chapter, the basic overview of statistical speech synthesis system and

HMM-based speech synthesis system is introduced. The basic components

of HMM-based speech synthesis, HMM, context clustering, and MLPG, are

described.





Chapter 3

Spontaneous Speech Synthesis

using Extended Context

This chapter proposes an extended context set for generating the prosodic

variability of spontaneous conversational speech in HMM-based speech syn-

thesis. Since the conventional context set used for HMM-based reading-style

speech synthesis is insufficient for conversational speech synthesis, we intro-

duce extended contexts derived from the Corpus of Spontaneous Japanese.

Using the stopping criteria for decision-tree clustering to alleviate over-fitting

by increasing contexts, we compare conventional contexts and extended con-

texts, and show that the contexts about phone prolongation and X-JToBI

tone tier label are effective. Furthermore, we examine the automatic predic-

tion of a part of contexts for practical applications, and confirm the compa-

rable naturalness by predicted contexts to that using true contexts.

3.1 Introduction

Although the quality of the synthetic speech of neutral reading-style has

been improved and become closer to that of the natural speech, the quality

is generally unsatisfactory when the conventional techniques are applied to

the spontaneous and/or conversational speech synthesis. When a very large

corpus of conversational speech is available, concatenative speech synthesis

based on unit selection has been shown to be able to produce natural sound-

11
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ing speech like a human [20]. Recently, there have been alternative attempts

for spontaneous and/or conversational speech synthesis [21]–[24] using HMM-

based synthesis which has shown its advantage in a relatively small amount

of training data. In [21], fundamental frequency (F0) contours and phone

durations were modeled based on the quantification theory type I. Another

prosody modeling technique was proposed in [22], where state-based voice

transformation from read speech was used. In [23], a technique based on the

multi-space distribution HMM (MSD-HMM) [25], which is widely used for

the F0 modeling in the HMM-based speech synthesis, was also evaluated. To

reduce the required amount of spontaneous speech, an average-voice-based

technique was shown to be effective [24].

Although the naturalness of the synthetic speech could be improved by

using the above techniques, there is still a large acoustic difference between

real and synthetic speech. One of the critical problems is degradation of

prosodic variability. This is inevitable when we use the conventional con-

text that was designed for the HMM-based speech synthesis of reading-style

speech.

In this chapter, we incorporate additional context sets into the HMM-

based speech synthesis framework to improve the prosodic variability of the

generated spontaneous conversational speech. Newly introduced contexts

are derived from the annotation data included in the Corpus of Spontaneous

Japanese (CSJ) [9], which is a large-scale database designed for the study

of the spontaneous speech. Several kinds of context sets are evaluated to

examine the effectiveness of each context category. Furthermore, to avoid an

over-fitting problem that occurs in the model training, we propose two types

of stopping criteria for tree-based context clustering.

3.2 Extended context for spontaneous con-

versational speech

In this study, we examine 12 context categories shown in Table 3.1. These

contexts can be determined automatically by the labels annotated in the

CSJ core. In the conventional HMM-based speech synthesis, the information
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Table 3.1: Context categories.

BASELINE ADDITIONAL

A Phoneme F Phone prolongation

B Mora G Utterance style

C Accent H Tone label

D Breath group I Disfluency

E Utterance length J Complementary phoneme

K Word

L Clause

about phoneme, mora, accent phrase, breath group, and utterance length

has been used as the full context. We refer to this context set as BASELINE.

The details of respective additional context categories are as follows.

Phone prolongation: Phone prolongation is the phenomenon that vowel

or consonant is uttered for a longer period than the ordinary and it of-

ten occurs in the utterances with thinking, surprising, or emphasizing.

This is distinct from the lexical long vowels appearing in Japanese dic-

tionaries. In CSJ, this phenomenon is labeled like “sugo<H>i (very)”

or “kai<Q>seki (analysis),” where <H> and <Q> represent vowel

and consonant prolongation, namely, “o” and “s” are prolonged, re-

spectively.

Utterance style: In CSJ, some utterance styles are also added on the tran-

scription texts when a certain mora is uttered with a particular style.

We adopt three styles as the contexts related to mora information,

namely, laughing, whisper, and uncertainly pronounced sound.

Tone label: Japanese is a pitch-accent language and one accent phrase is

composed of several words. An accent phrase has one accent type that

determines the relative pitch movement over the accent phrase. The

relative pitch movement of Japanese reading-style speech can be well

represented by the accent type. However, the pitch movements of spon-

taneous conversational speech are much more complicated than those
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Time

F0

%L

H- A

L%

pH

HL%

Figure 3.1: Schematic example of the relationship between X-JToBI tone tier

labels and the F0 contour of an accent phrase which ends with rise-fall. Each

inflection point is labeled.

Table 3.2: List of tone tier labels.

Label Usage

%L Phrase-initial boundary

H− Phrase tone, the peak of phrase-initial rise

A Accent, beginning of accentual fall

L% End of accentual fall or phrase-final boundary of fall pattern

H% Phrase-final boundary of rise pattern

LH% Phrase-final boundary of fall-rise pattern

HL% Phrase-final boundary of rise-fall pattern

HLH% Phrase-final boundary of rise-fall-rise pattern

pL Low tone pointer accompanying LH% and HLH%

pH High tone pointer accompanying HL% and HLH%

FL Filler-high

FH Filler-low

of reading-style speech, and it is difficult to represent such a movement

by the accent type only. One of the essential information for con-

versational speech is boundary pitch movements (BPMs) such as rise,

fall, rise-fall, and fall-rise which occur in question, confirmation, and

other speech acts. To take the complicated pitch movements includ-

ing the BPM into account, CSJ uses the intonation labeling scheme of

X-JToBI [10], the extension of ToBI. For instance, a tone tier defined
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by X-JToBI has labels on the folding points of F0 contour as shown

in Fig. 3.1. In this study, we use the type of pitch movement of accent

phrase and the difference of positions between tone label and current

mora.

Disfluency: Conversational speech has many disfluent utterances that in-

terrupt the flow of speech and express affective content. There are

three types of disfluency annotated in CSJ: filler, word fragment, and

restatement. These disfluency of the phrases are used as the contexts.

Complementary phoneme: Precise phonetic information is also labeled

in CSJ, that is, some kind of utterance parts which is hard to be cate-

gorized into general phoneme sets. In this study, tags <sv> and <cl>

defined in CSJ are adopted as the contexts. <sv> means the vocal

cord vibration after vowel, and <cl> denotes the burst which appears

with explosion.

Word: Spontaneous conversational speech has peculiar phenomena about

the morpheme information such as fusion, omission, and euphony of

words because of the informality of spontaneous speech. The word

information including such phenomena as well as part of speech is em-

bedded to two types of word. “Short-unit word” approximately cor-

responds to a vocabulary entry of ordinary Japanese dictionary, and

“long-unit word” is composed of a few of short-unit words.

Clause: The clause is a grammatical unit that consists of a subject and

a predicate, and the clause boundaries are automatically determined

by transcription data in CSJ. We use the clause type and the mora

position in the clause as the contexts.

3.3 Stopping criteria for context clustering

In general, the minimum description length (MDL) has been shown to be ef-

fective [18] for the context clustering in HMM-based speech synthesis. How-

ever, when the extended context described in Sect. 3.2 is incorporated into

the spontaneous conversational speech synthesis, the MDL criterion does not
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Figure 3.2: Histogram of the number of observations contained in one leaf

node.

always work well. This is because the prosodic variation of such speech is

much larger than that of the reading-style speech, as a result, over-fitting

often occurs when the amount of training data is limited. Figure 3.2 shows a

histogram of the number of observations contained in one leaf node of a de-

cision tree. The decision tree was constructed using about 22.5 minutes data

of a female speaker (ID=19) included in the CSJ database. From the figure,

we can see that there are many leaf nodes that have only a few observations.

To alleviate the over-fitting problem, we attempt to use the minimum

occupation count or the minimum number of observations. The minimum

occupation count is a parameter that restricts the total number of observation

frames in each leaf node as the stopping criteria. However, this criterion

might not work well since spontaneous conversational speech includes a lot

of phone prolongations and the number of frames of an observation segment

sometimes becomes much larger. In such a case, the criterion based on

the minimum number of observations which restricts the total number of

observation speech samples in each leaf node would be more suitable.

3.4 Objective evaluation

3.4.1 Experimental conditions

We conducted evaluation experiments using conversational speech data of

two female speakers (ID=19 and 514) included in the CSJ database. Each
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speaker was non-professional speaker and uttered three sets of conversational

speech—two interviews and a task-oriented dialog. The total length of speech

samples of each speaker was approximately 25 minutes. Speech signals were

sampled at a rate of 16kHz. The STRAIGHT analysis [26] was used for

extracting the spectral envelope and F0. The feature vector consisted of

40 mel-cepstral coefficients including the zeroth coefficient and log F0, and

their delta and delta-delta coefficients. We used hidden semi-Markov model

(HSMM) [15] which has explicit duration distributions. The model topology

was 5-state left-to-right context-dependent HSMM without skip paths. Each

state had a single Gaussian distribution with a diagonal covariance matrix.

For training and testing, the phonetic and prosodic context labels were au-

tomatically converted from the labels given in CSJ. Ten-fold cross-validation

tests was performed in the evaluations.

3.4.2 Extended context

To evaluate the effectiveness of the extended context, the average distortions

of generated spectrum, F0, and mora duration of synthetic speech were cal-

culated against those of the original speech. Figure 3.5 shows the average

mel-cepstral distance, root mean square (RMS) errors of log F0 and mora

duration, respectively. In this case the minimum occupation counts were

fixed to 5.0 but the minimum number of observations was not limited. In

the figure, BASELINE represents the conventional context. ALL is the con-

text set where all of the context categories described in Sect 3.2 are included

in addition to BASELINE. It is seen that RMS errors of log F0 and mora

duration were decreased significantly by using the extended context along

with the conventional context set. On the contrary, there was no significant

difference of the mel-cepstral distance between BASELINE and ALL.

To examine the effect of respective context categories, different context

sets were evaluated where one context category was chosen from categories

F to L of Table 3.1 and was added to BASELINE. The results in Fig. 3.5

indicate that the use of tone label (H) decreased the most. This means that

the tone information such as inflection point of F0 curve and boundary pitch

movement was important for the generation of a natural sounding log F0
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Figure 3.3: Spectral distortions with different context sets.
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Figure 3.5: Duration distortions with different context sets.

pattern. Utterance style (G) and Disfluency (I) decreased the RMS errors

slightly. In contrast, the F0 distortion increased when the context categories

of word(K) or clause(L) were used. A possible reason is that an over-fitting

occurred in the model training because of the insufficient training data. As for

the mora duration, phone prolongation (F) worked well whereas the others
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were not effective for the distortion reduction. In consideration of above

results, another context set was also evaluated where the categories F and

H were added to BASELINE. The results are shown as F+H in Fig. 3.5.

We can see that the distortions of mel-cepstrum and duration of F+H were

comparable to ALL. Moreover, the F0 distortion of F+H was slightly lower

than that of ALL.

3.4.3 Stopping criteria

The effectiveness of the use of stopping criteria based on the minimum oc-

cupation count and the minimum number of observations was objectively

assessed. The distortions of the acoustic features of synthetic speech were

calculated against those of the original speech. We changed the thresholds of

criteria for mel-cepstrum and log F0 features. Figures 3.6, 3.7, and 3.8 show

average mel-cepstral distances and RMS errors of log F0 and phone dura-

tions. The minimum number of observations is not limited in Fig. 3.6, and

the minimum occupation count is fixed to 5.0 in Fig. 3.7. The relationship

between the leaf node size and the stopping criteria are shown in Figs. 3.9 to

3.11.

As for the mel-cepstral distance, it was not sensitive to the stopping

criteria when the minimum number of observations was less than 100 or

the minimum occupation count was less than 200. From these results, the

stopping criteria appears to be not necessary for the mel-cepstrum. On the

other hand, the F0 distortion decreased when the minimum occupation count

or minimum number of observations were taken into account. This implies

that the over-fitting problem was alleviated by introducing these stopping

criteria into the clustering.

To examine the effect of the combinational use of two stopping criteria,

the log F0 distortions for the speaker (ID=19) with the context set F+H

were calculated when both of the criteria were used in the clustering. The

result is shown in Fig. 3.12. From the figure, we see that the use of either one

of the two criteria seems to be enough to suppress the over-fitting. When

the results of the F0 distortion with two criteria are compared in Figs. 3.6

and 3.7, the criterion based on the minimum number of observations was less
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Figure 3.6: Spectral and F0 distortions as a function of the minimum occu-

pation count.

sensitive to distortion variation than that based on the minimum occupation

count.
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Figure 3.7: Spectral and F0 distortions as a function of the minimum number

of observations.

3.5 Position prediction of tone labels

As described in Sect. 3.4.2, incorporation of the extended contexts reduced

the distortions of acoustic features. However, it is unrealistic that users input

all the extended contexts in the synthesis step. Even though it is ideal to

determine all the extended contextual factors automatically, this is substan-
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Figure 3.8: Mora duration distortions as a function of the minimum number

of observations.
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Figure 3.9: Relationship between tree size for mel-cepstrum and stopping

criteria.

tially impossible because some contextual factors are not dependent on input

text but other factors such as situations and dialog acts. Here we consider

a practical framework where users modify some extended contexts manually
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based on the context set F+H, whose RMS errors of F0 and duration were

comparable with that using all contexts. The context set includes the phone

prolongation, the relative mora position of X-JToBI tone tier labels, and the

type of pitch movement of accent phrase. It might not be complicated that
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they modify the contexts of the phone prolongation and the type of pitch

movement of accent phrase, because they have only to add symbols that rep-

resent prolonged phones, boundary tones, prosodic fillers, and prosodic word

fragments. On the other hand, in order to use the relative position as contex-

tual factors, it is necessary to prepare the existence and position information

of tone labels, which is difficult to give manually. Hence, we examine the

method of determining the label position information automatically. In this

section, we examined two types of determining methods: rule-based method

and prediction using a decision tree.

3.5.1 Determination of label position by rule

The positions of X-JToBI tone tier labels can be determined roughly without

using real F0 contours. For example, a phrase tone “H−” is generally located

around the second or third mora of the accent phrase. The labels “L%” and

“H%” in a rise tone phrase are usually positioned around the beginning and

end of the last mora, respectively. Therefore, the rule listed in Table 3.3 is

introduced to determine the label positions. The existence of the labels is

determined by the following rule based on the fundamental meanings of the

labels. If the accent type is 1, “H−” is nonexistent. If the accent type is 0,

“A” is existent. The accuracy of the positions by the rule is also shown in
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Table 3.3: Rule and accuracy of label positions [%]

Label Position Accuracy[%]

Phrase-initial boundary (%L) Initial mora 88.51

End of phrase-initial rise (H−) Second mora 63.96

Beginning of accentual fall (A) Accent mora 86.80

End of accentual fall (L%) Final mora 83.96

Phrase-final boundary (*%) Final mora 89.71

Low tone pointer (pL) Final mora 99.98

High tone pointer (pH) Final mora 99.76

Filler (FL or FH) Central mora 97.84

Table 3.3.

3.5.2 Determination of label position by decision tree

In this chapter, we examine a decision-tree-based method, C4.5, for predic-

tion. C4.5 was implemented by WEKA [27]. The input variables consisted

of the type of pitch movement and the conventional context set of accent

phrase, including the length of phrase and the accent type. The output vari-

able were defined by the relative position like +1, +2, −1, −2 of each label

to each three kind of basic position—phrase initial, perceived accent mora,

and phrase final. Ten-fold cross-validation was performed in the same way

as the previous section.

Table 3.4 shows the accuracy of position information for each label and

each basic position. The highest accuracy (indicated in bold) varies depend-

ing on the labels. From the table, it can be seen that the accuracy of “%L”

and “H−” located around phrase initial was highest when the basic position

was phrase initial, and that the accuracy of “*%” and high/low pointers lo-

cated around phrase final was highest when the basic position was phrase

final. Compared with the case using the rule, the accuracy of “H−” was

improved largely. This could be explained by insufficient rule for “H−”.
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Table 3.4: Accuracy of predicted label positions [%]

Label / Reference position Itinial Accent Final

Phrase-initial boundary (%L) 90.45 90.19 89.80

End of phrase-initial rise (H−) 77.58 77.58 76.72

Beginning of accentual fall (A) 88.59 88.64 87.77

End of accentual fall (L%) 82.84 80.89 83.97

Phrase-final boundary (*%) 89.28 86.71 89.74

Low tone pointer (pL) 99.52 99.45 99.93

High tone pointer (pH) 99.62 98.86 99.73

Filler (FL or FH) 97.80 97.80 97.68

3.5.3 Synthesis using prediction

Based on above results, we synthesized utterances using the extended con-

text obtained by the rule and decision-tree-based prediction for the label

position. The total length of speech samples of each speaker was approxi-

mately 25 minutes and 10-fold cross-validation was performed in the same

way as Sect. 3.4. Based on the results of Sect. 3.4.3, the minimum number of

observations for each leaf node in acoustic modeling was set to 50.

Tables 3.5 and 3.6 show acoustic distortions of F0 and mora duration

between original and synthetic speech. The context set “F+H CORRECT”

represents the case using annotated labels for synthesis, namely, it is identical

to “F+H” in Sect. 3.4. “F+H W/O POSITION” does not use the label

position information. “F+H RULE” and “F+H CORRECT” correspond to

the methods where the label position information is determined by the rule

and the prediction model, respectively.

When comparing “F+H CORRECT” with “F+H W/O POSITION,” we

can find that the label information is effective for decreasing distortions of

F0 and mora duration. Moreover, “F+H RULE” and “F+H PREDICTED,”

which automatically determines the label position information, gave simi-

lar mora duration distortion to “F+H CORRECT” in speaker #19, and

decreased RMSE of F0 by approximately 5 cents from “F+H W/O PO-
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Table 3.5: F0 distortions using predicted positions of tone labels

RMS error of F0 [cent]

Context set Speaker #19 Speaker #514

F+H CORRECT 293.4 386.8

F+H RULE 298.4 390.9

F+H PREDICTED 299.3 391.3

F+H W/O POSITION 300.9 396.0

BASELINE 300.9 398.4

Table 3.6: Mora duration distortions using predicted positions of tone labels.

RMS error of mora duration [ms]

Context set Speaker #19 Speaker #514

F+H CORRECT 63.1 58.6

F+H RULE 62.9 58.6

F+H PREDICTED 62.9 58.8

F+H W/O POSITION 65.9 58.7

BASELINE 74.0 64.0

SITION.” There were slight differences between “F+H RULE” and “F+H

PREDICTED.” From the results, we can find it important to

3.6 Evaluation of naturalness

The naturalness of the synthetic speech was evaluated for the four context

sets: BASELINE, ALL, F+H CORRECT, and F+H PREDICTED by a

MOS test. The minimum number of observations was set to 50 in ALL,

F+H CORRECT, and F+H PREDICTED based on the above results. Ten

Japanese participants listened to synthetic speech samples and rated the

speech naturalness in a five point scale, i.e., 5: excellent, 4: good, 3: fair,

2: poor, and 1: bad. Each participant evaluated 20 utterances for each con-

text set, randomly chosen from synthetic speech samples which were used for

objective evaluation and were the utterances consisted of 10 or more moras.
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Figure 3.13: Results of a MOS test on naturalness of synthetic speech.

The average scores are shown in Fig. 3.13. ALL, F+H CORRECT, and F+H

PREDICTED gave higher performance than BASELINE, and the difference

is statistically significant at the 5% level. F+H CORRECT was comparable

to ALL, and this indicates that the information of tone and phone prolon-

gation is critical for the extended context in terms of the naturalness of the

synthetic speech. Furthermore, F+H PREDICTED, which determines label

position information automatically, gave comparable score to F+H COR-

RECT.

3.7 Conclusion

To synthesize spontaneous conversational speech with more prosodic vari-

ability, we have investigated the effectiveness of several context categories

based on annotations of CSJ. We have also examined the stopping criteria

of decision-tree context clustering to alleviate the over-fitting problem which

comes from increasing contexts and conversational variability. The objective

and subjective experiments showed that the reproducibility and naturalness

of synthetic speech is improved by adding the contexts of phone prolonga-

tion and X-JToBI tone tier labels and by introducing the minimum number

of observations for each leaf node of the decision tree. For the future work,

it is important to generate the extended contexts automatically from the

concept, speech act of speech, and other utterance information for practical

conversational speech synthesis system.



Chapter 4

Prosodic-event-based HMM

In this chapter, we propose prosodic-event-based HMM for effectively mod-

eling F0 pattern of spontaneous conversational speech in HMM-based speech

synthesis. The prosodic-event-based HMM uses the segment such as pitch

falling by accent or pitch rising of boundary pitch movement (BPM) as a

modeling unit of HMM. The proposed HMM is expected to reduce the model

parameters of F0 because there are less prosodic events derived from F0 fea-

tures than phones that strongly depends on spectral features. We performed

the objective and subjective experiments using spontaneous conversational

speech data, and the results show that the prosodic-event-based HMM can

significantly reduce the number of model parameters while keeping the qual-

ity of the synthetic speech.

4.1 Introduction

In the previous chapter, the naturalness of the synthetic speech of sponta-

neous conversation with much prosodic variability was improved by incorpo-

rating a set of extended prosodic contexts, such as phone prolongation and

tone information, to HMM-based speech synthesis. However, the prosody

generation of multiple speaking styles included in spontaneous speech is still

insufficient. Here we focus on the modeling unit of HMM-based speech syn-

thesis. In the HMM-based speech synthesis, fundamental frequency (F0) is

usually modeled using phone-unit-based HMMs and trained synchronously

29
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with spectral features. To model both voiced and unvoiced regions of the

F0 pattern consistently, multi-space distribution HMM (MSD-HMM) [25] is

utilized. Although this HMM is good at modeling of prosodic features of

phone unit, it is not always suited for the F0 pattern of spontaneous speech

well. This is because the positions of prosodic events such as accent and

boundary pitch movement (BPM) do not always match those of phonetic

movements. For instance, in a segment outside of prosodic events called con-

nection in rise/fall/connection model [28], F0 features do not change so much

as prosodic events even if the segment contains several phones. On the other

hand, in a segment at the rise-fall pitch movement, F0 moves largely even if

the segment has only one phone.

To alleviate this problem, there have been proposed different approaches

to the F0 modeling, e.g., the use of hierarchical structures [29] and the use of

longer units [30]. In this study, we propose an alternative approach to mod-

eling F0 contour efficiently using prosodic-event-based HMM units. More

specifically, we use components of prosodic events, such as the segment

of pitch falling by accent and pitch rising by BPM, as the modeling unit.

Since the prosodic events of one phrase are less frequent than the changes of

phonemes, the proposed unit is expected to reduce the number of model pa-

rameters of F0, which leads to robust parameter estimation. We examine the

effectiveness of the proposed F0 modeling technique through both objective

and subjective evaluation experiments.

4.2 F0 modeling based on prosodic events

4.2.1 Prosodic labels

In the proposed technique, we define a speech synthesis unit using prosodic

label information related to F0 contours. In this chapter, we employ the

X-JToBI labeling scheme [10] for the proodic labels. As described in the

previous chapter, X-JToBI is an extension of J-ToBI [31] that is the Japanese

version of ToBI [32]. Table 4.1 shows the labels used in X-JToBI. These labels

include the timing information of the folding points of F0 contours. The

type of label depends on the function in prosodic events. Phrasal tone and
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Table 4.1: X-JToBI tone tier labels

label function abbr.

%L beginning of phrase s

H− end of pitch rise m

A beginning of pitch fall by accent a

%LA joint label of %L & A b

L%(LTBPM) low tone before BPM t

L%(FBT) end of phrase with fall tone l

H% end of phrase with rise tone h

HL% end of phrase with rise-fall tone i

LH% end of phrase with fall-rise tone j

HLH% end of phrase with rise-fall-rise tone k

pH high pointer in BPM p

pL low pointer in BPM q

FL filler with low pitch FL

FH filler with high pitch FH

accent consist of “H−” and “A,” respectively. Boundary pitch movements

consist of “*%,” “pH,” and “pL.” “L% (FBT: final boundary tone)” and “L%

(LTBPM: low tone of BPM)” are distinguished by the function; the former

expresses the end of the accent phrase with falling tone, and the latter is

the start of BPM. Ordinary accent phrases can be expressed by the label

sequence which starts with %L followed by other labels according with the

label network shown in Fig. 4.1 and ends with the final boundary tone, “*%.”

Other phrases are prosodic fillers and prosodic word fragments. A prosodic

filler is a filled pause which does not have neither a pitch rise nor a local

pitch fall anywhere. If a speaker stops in or starts from the middle of accent

phrase, the phrase is treated as a prosodic word fragment. This phenomenon

is caused by disfluency of spontaneous speech.
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L%(t)

LH%(i)H%(h)

H–(m)

A(a)

accent phrase start

%LA(b)

accent phrase end

pL(q) pH(p)

HL%(j) HLH%(k)

pL(q)

%L(s)

L%(l)

BPM

Figure 4.1: Network of prosodic labels

4.2.2 Prosodic-event-based HMM

The segment between X-JToBI tone tier labels can be regarded as the basic

unit of a prosodic event. Hence, we adopt this segment as a unit of HMM

for F0 modeling. We refer to the proposed prosodic-unit-based HMM as

prosodic-unit HMM, whereas we refer to the conventional phone-unit-based

HMM as phone-unit HMM. One prosodic unit is distinguished from others

by the combination of the labels. For example, the segment between “%L”

and “A” is labeled as “%L-A.” To simplify the notation of prosodic unit,

we use the combination of the single characters corresponding to the labels,

which are shown in Table 4.1. The prosodic units are listed in Table 4.2.

Here, “y” and “z” represent the beginning and end of the prosodic word

fragments, respectively. The segment of filler is labeled as the label name,

“FH” and “FL.” “SP” means the prosodic space between accent phrases (e.g.

the segment from “L%” to “%L,”) and “PZ” and “SL” denote the pause and
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Table 4.2: Prosodic units

type unit names

normal segment sm, sa, sl, st, ma, ml, mt

al, at, bl, bt

BPM th, tp, tq, pi, pq, qj, qk

prosodic filler FH, FL

prosodic word fragment yh, yl, az, bz, mz, yz

pause & silence PZ, SL, SP

silence, respectively.

The training procedure of the prosodic-unit HMM is similar to that of

the conventional phone-unit HMM. The value of log F0, its delta, and delta-

delta coefficients are used as the features of HMM. To model voiced/unvoiced

regions, we use MSD in a similar manner to phone-unit HMM. An HMM of

each prosodic unit is initialized by the segmental K-means algorithm, and

the parameters are refined by Baum-Weltch re-estimation. Then HMMs are

clustered by their prosodic contexts. The context set for prosodic unit con-

sists of quin-prosodic-unit and the information of the units of accent phrase,

breath group, and utterance. By using the prosodic-unit HMM as the speech

synthesis unit, we can model F0 patterns more efficiently with the prosodic

label information compared to the case when using the conventional phone-

unit HMM. Moreover the prosodic-unit HMM enables us to control the F0

contour more flexibly than phone-unit HMM because it is easy to manipulate

the timing of the prosodic events.

4.3 Speech synthesis using prosodic-event-

based HMM

In this study, F0 is generated from the prosodic-unit HMM, whereas the other

information such as spectral features is generated from phone-unit HMM.

However, the positions of phones and prosodic events do not match when

the speech parameters are generated independently. Accordingly, the time



34 CHAPTER 4. PROSODIC-EVENT-BASED HMM

timing
prediction

input context

– label existance
– label timing

input context with timing context

– spectral feature
– voiced/unvoiced
– mora duration

context for prosodic unit with duration

F0

o-n+a/A:1_0/C:8^5^0-3_1_2+8=3=0/D:x-11_1+12/...

o-n+a/A:1_0/.../U:x^0^x_-2_-7=x=x_-7/

20095370 21622940 PZ^FL-sm+ma=at/C:...
21622940 25922740 FL^sm-ma+at=th/C:...
25922740 30052800 sm^ma-at+th=PZ/C:...

phone-unit
HMM

synthetic
speechtime

alignment

prosodic-unit
HMM

Figure 4.2: An outline of speech synthesis using prosodic-unit HMM.

y o r o sh I k U

%L H- L%

0 1 2 3

mora-normalized position

4

Figure 4.3: An example of mora-normalized position. In this example, the

accent phrase consists of 4 moras: “yo”, “ro”, “shi”, and “ku”. The mora-

normalized positions of labels, “%L”, “H−”, and “L%” are defined as about

0.1, 1.8, and 3.9, respectively.

alignment between the phone-unit HMM and the prosodic-unit HMM is nec-

essary to apply it to speech synthesis system. Especially, the position of

pitch falling by accent is important for Japanese speech synthesis because

some words with the same pronunciation are distinguished by it. For this

purpose, we use timing prediction of prosodic label and apply it to the align-

ment between the HMMs. Figure 4.2 shows the procedure of the speech

synthesis with the alignment.

In the training step, F0 is modeled by the prosodic-unit HMM. Spectral

features, voiced/unvoiced feature, and duration are modeled by the phone-

unit HMMs. Here the phone-unit HMMs are trained using the extended

contexts proposed in the previous chapter which include the mora positions
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of X-JToBI tone tier labels and the tone types, e.g., BPMs, prosodic fillers,

and prosodic word fragments. In the timing prediction, the existence of “H−”

and “A” and the timing information of each label in the accent phrase are

predicted. In this study, we use a mora-normalized position shown in Fig. 4.3

as the label timing information. Mora-normalized position is a measure where

the length of each mora is normalized into unity. In Fig. 4.3, the mora-

normalized positions of the labels “%L”, “H−”, and “L%” are defined as

about 0.1, 1.8, and 3.9, respectively. As explanatory variables for timing

prediction, we use the information of accent phrase.

When synthesizing speech, we firstly construct the input context sequence

from the word sequence with automatically or manually annotated prosodic

event information such as accent and BPM, and then predict the label timing.

Next, the contexts for the phone-unit HMM are constructed using predicted

mora-normalized positions, and the spectral, voiced/unvoiced, and duration

features are generated from the phone-unit HMMs. Then, the duration in-

formation of prosodic units are calculated from the generated mora durations

and label timing by the time alignment, and the F0 contour is generated by

the prosodic-unit HMMs with their durations. Here, to generate continuous

F0 contour, we set a small value as the threshold of the voiced space weight

of MSD-HMM. Finally, speech is synthesized using the generated spectral

and F0 features.

4.4 Experiments

4.4.1 Experimental conditions

Spontaneous conversational speech data was used for the evaluation experi-

ments. We chose speech data of two female speakers (#19, #514) included

in CSJ. Each speaker was non-professional speaker and uttered three sets of

conversational speech—two interviews and a task-oriented dialog. The to-

tal length of speech samples of each speaker was approximately 25 minutes.

Speech signals were sampled at a rate of 16 kHz. The spectral feature and

F0 were extracted by STRAIGHT [26] with 5 ms frame shift. The feature

vector of prosodic-unit HMM consisted of log F0, and their delta and delta-
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delta coefficients. The feature vector of phone-unit HMM consisted of 0-39th

mel-cepstral coefficients, 5-band aperiodicity, their delta and delta-delta co-

efficients, and a voiced/unvoiced flag. We used hidden semi-Markov model

(HSMM) [15] which has explicit duration distributions for both prosodic-unit

and phone-unit HMM. The model topology was 5-state left-to-right context-

dependent HSMM without skip paths. Each state had a single Gaussian

distribution with a diagonal covariance matrix. MDL was used for the stop-

ping criterion. In the case of F0, minimum number of observations was also

used to alleviate over-fitting. We set the minimum number of observations

to 50 on the basis of a preliminary experimental result. We compared the

proposed technique with the conventional HMM-based conversational speech

synthesis technique of the previous chapter. In this technique, the phone-unit

HMM was used to model both of the spectral and prosodic features.

C4.5 was used for the prediction of the existence of the labels, and linear

regression was used for the prediction of mora-normalized position. We chose

these classifiers through preliminary experiments. For training and testing,

the phonetic and prosodic contexts were automatically converted from the

labels given in CSJ. Ten-fold cross-validation tests were performed in the

evaluations.

4.4.2 Evaluation of F0 modeling

Performance of the proposed technique was evaluated both objectively and

subjectively. To focus on the F0 modeling with the prosodic-unit HMM, F0

patterns were generated using the label timings annotated in the database.

Tables 4.3 and 4.5 show the average F0 distortions, correlation coefficients,

and tree sizes of log F0 of the proposed and conventional techniques. The

average F0 distortion was calculated by RMS error between generated and

original log F0s. Table 4.4 shows the result of subjective evaluation of re-

producibility. In this test, to focus on the evaluation of F0 reproducibility,

we used the acoustic features extracted from the original speech except F0.

This test was performed by an XAB test. Six participants chose the sample

more similar to the reference X. The reference sample was vocoded speech.

When the participants could not determine the preference, “no preference”
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Table 4.3: F0 distortion using annotated timing in database.

RMSE of log F0[cent]

Speaker Prosodic-event-based HMM Phone HMM

#19 288.9 282.9

#514 383.3 381.8

Table 4.4: Subjective evaluation of reproducibility of F0.

Speaker Prosodic-event-based HMM No preference Phone HMM

#19 36.7% 30.0% 33.3%

#514 36.7% 31.7% 31.7%

Table 4.5: The number of leaf nodes of the F0 models.

Speaker Prosodic-event-based HMM Phone HMM

#19 262 679

#514 277 762

was chosen. Each participant evaluated 20 utterances randomly chosen from

generated speech samples which were used for objective evaluation. We used

speech samples having 10 or more moras. It is found from the results that,

although average F0 distortions of the proposed technique were larger than

those of the conventional technique, the scores of subjective evaluation were

comparable. There was no significant difference between the subjective scores

of the proposed and conventional techniques. The correlation coefficients

were also comparable. It is noted that the number of leaf nodes of the pro-

posed technique, which represents model complexity, was about 36% or 39%

as many as the conventional technique. We will give a further discussion

about the results in Section 4.5.

4.4.3 Evaluation of synthetic speech

The performance of overall speech synthesis which uses the prosodic-unit

HMM and timing prediction was evaluated objectively and subjectively. In
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Table 4.6: F0 distortion using predicted timing.

RMSE of log F0[cent]

Speaker Prosodic-event-based HMM Phone HMM

#19 302.0 288.4

#514 398.2 386.2

Table 4.7: Subjective evaluation of reproducibility of synthetic speech.

Speaker Prosodic-event-based HMM No preference Phone HMM

#19 35.0% 38.3% 26.7%

#514 25.0% 46.7% 28.3%

this experiment, the F0 contour was generated using the technique explained

in Section 4.3, i.e., the label timing was predicted and the time alignment

between phone-unit and prosodic-unit HMMs was performed. Tables 4.6 and

4.7 show the F0 distortions, correlation coefficients, and the scores of sub-

jective evaluation of reproducibility, respectively. Since the trained HMMs

are the same as those of previous subsection, the actual leaf node size is also

the same. The conditions of subjective evaluation were the same as the the

experiment of Section 4.4.2. It can be found that the results were similar to

those of the evaluation of F0 modeling. The scores of reproducibility were

comparable between the proposed and conventional techniques and have no

significant differences.

4.5 Discussions

As seen in the above results, although the F0 distortions of the proposed

technique were larger than those of the conventional technique, the repro-

ducibility by subjective evaluation was comparable. A possible reason is the

difference of the characteristics of generated F0, whose example is illustrated

in Fig. 4.4. The example includes a Japanese utterance “あのー，う，ア
ンケートを配る時に，大学の先生にたのんだんですよね (anoo, u, aNkeetoo
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Figure 4.4: Examples of generated F0 contours of the utterance of #514.

kubaru tokini, daigakuno, snseeni, tanoNdaNdesuyone)”, which means “So,

uh, when distributing the questionnaires, I asked a college teacher.” This

utterance begins with two fillers “あのー” and “う” followed by two breath

groups. The first breath group has a rise-fall BPM “L%–pH–HL%” in the

end, and a rise BPM “L%–H%” is observed in the end of the second breath

group. Figure 4.4(a) and (b) show the F0 contours generated using the pro-

posed prosodic-unit HMM and the conventional phone-unit HMM, respec-

tively. In the figure, “annotated” and “predicted” in the figure correspond

to the cases of Section 4.4.2 and 4.4.3, respectively.

When comparing prosodic-unit HMM with phone-unit HMM, it can be

seen in the first breath group that the F0 variation of prosodic-unit HMM is

more similar to original one than the flat F0 variation of phone-unit HMM.

Such a large F0 variation can be observed in many utterances. As a result,

the use of prosodic-unit HMM increased the variance of generated F0 as

shown in Table 4.8. This can be attributed to the explicit modeling of the

prosodic-unit HMM. However, such variation does not always match with an

actual F0 variation. For example, the F0 variation was larger than original
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Table 4.8: Standard deviations of generated log F0.

Speaker Prosodic-unit HMM Phone-unit HMM Original

#19 0.119 0.097 0.203

#514 0.142 0.137 0.268

one in “tanoNdaNdesuyone” in Fig. 4.4. This could be a reason why F0

distortion was larger than the conventional method.

The errors of timing prediction would be acceptably small. Indeed, timing

prediction enables us to generate similar F0 contours to annotated timing,

and it can be found in the figure that the majority of F0 contours were

overlapped. Although the mismatches of labels were observed in “senseeni”

and “desuyone,” the generated F0 contours were similar. This is because the

context clustering identifies the contexts that have similar characteristics.

In addition, it can be seen that both prosodic-unit HMM and phone-unit

HMM fail to generate a similar F0 contour to original one in the fillers of

the begging of the utterance. Since the context of fillers is only a choice

of “FL” and “FH”, it may be insufficient to model a large variety of fillers.

To overcome this problem, it is necessary to incorporate more paralinguistic

information, e.g., the function of fillers and intentions. Also, additional in-

formation like emphasis is needed for expressing the higher original F0s than

the generated ones in “daigakuno senseeni”.

4.6 Conclusion

In this chapter, we proposed an F0 modeling technique based on the prosodic-

unit HMM. The component of prosodic events was used as a unit of HMM

in order to model F0 contour efficiently. The evaluation experiments were

performed for both F0 modeling and speech synthesis. The results showed

that the subjective reproducibility of the proposed technique was comparable

to that of the conventional technique while reducing the leaf node size of F0

model to about 40%.



Chapter 5

Speech Synthesis Based on

Gaussian Process Regression

This chapter proposes a statistical speech synthesis technique based on Gaus-

sian process regression (GPR). The model of GPR is designed for directly

predicting frame-level acoustic features from corresponding information on

frame context that is obtained from linguistic information. The frame context

includes the relative position of the current frame and articulatory informa-

tion and is used as the explanatory variable in GPR. Here, we introduce

cluster-based sparse Gaussian processes (GPs), i.e., local GPs and partially

independent conditional (PIC) approximation to reduce the computational

cost. The experimental results for both isolated phone synthesis and full-

sentence continuous speech synthesis revealed that the proposed GPR-based

technique without dynamic features significantly outperformed the conven-

tional hidden Markov model (HMM)-based speech synthesis using minimum

generation error training with dynamic features.

5.1 Introduction

In corpus-based statistical speech synthesis, parametric speech synthesis

based on hidden Markov models (HMMs) [6] has been widely studied [5].

An observation vector sequence consisting of acoustic features is modeled in

HMM-based speech synthesis using a hidden state sequence as a generative

41
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model. Although HMM states are discrete-time information, we can gen-

erate a smooth and stable speech parameter trajectory by taking dynamic

features into account in the model training and speech parameter genera-

tion processes [19]. Furthermore, the acoustic characteristics of each speech

synthesis unit are represented at the segmental and supra-segmental levels

by using context-dependent models where phonetic and prosodic contextual

factors are taken into account.

While HMM-based speech synthesis can reflect the acoustic characteris-

tics of training data to synthetic speech using a limited amount of training

data, HMM is not always an appropriate model for acoustic features to be

synthesized. There are specifically two major problems. First, there is a

mismatch where the hidden-state space is discrete despite the continuously

changing characteristics of acoustic features. Even though dynamic features

enable us to generate a smoothly changing feature trajectory from the dis-

crete states, the parametric representation of acoustic features is limited.

In fact, a fixed number of state-dependent dynamic features fail to gener-

ate some short-time variations. The second problem is generalization in the

model training using decision-tree-based context clustering in which all pa-

rameters in each leaf node are tied. Although this improves the estimation

accuracy of model parameters and enables model parameters to be predicted

for unseen contexts, the resulting number of model parameters is very limited

and contextual diversity greatly decreases.

Several techniques have been proposed [33]–[37] to alleviate the qual-

ity degradation caused by the above two problems. Rich context model-

ing [36], [37] is a technique of reducing the over-smoothing effect with the

parameter-tying process. The optimum untied HMM sequence for input con-

text labels are searched in this approach by using conventional tied HMMs

as guiding models. The subjective quality is expected to be improved when

there is a sufficient amount of training data and the contexts of training data

adequately cover those of the input texts. In contrast, there are some discon-

tinuities in synthetic speech, which degrade naturalness, when the amount

of training data is relatively small because the model parameters are not

generalized in model training. Another approach is variance compensation

for spectral features using post-filtering [33], [34] or global variance (GV) [35],
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and this approach has also been demonstrated to be effective in reducing the

buzzy and muffled sounds of synthetic speech. However, spectral distortion

between original and synthetic speech generally increases and this occasion-

ally degrades the similarity of synthetic speech.

In recent years, novel approaches using Gaussian processes (GPs) have

been proposed to speech processing, such as speech enhancement [38], voice

conversion [39], and speech representation [40]. Henter et al. [40] challenged

the problem of state discreteness and they extended discrete states to contin-

uous variables of a latent space where GP was used for a frame-level function

that transformed the latent space variables into acoustic features. The Gaus-

sian process dynamical model (GPDM) was specifically used to express latent

space. However, it is not easy to apply GPDM to text-to-speech directly be-

cause of the difficulty of correlating latent space variables with the linguistic

information of a given input sentence to be synthesized.

In this chapter, we propose a technique of speech synthesis based on

the Gaussian process regression (GPR) [11] to overcome the limitations with

parametric models. GPs are known to be nonparametric Bayesian models

where “nonparametric” means that model complexity, i.e., the number of

parameters, expands with the increase in data size. This implies that GPs

are flexible in terms of the complexity of the model. GPs are also robust

against over-fitting due to Bayesian inference. In addition, since GPs involve

a kernel method, various kinds of data can be used as input variables by

defining the kernel function of respective samples [41]. The main advantage

of introducing GPR is that we can eliminate parameter tying from model

training by directly representing the relation between linguistic and acoustic

features using a covariance function of GP. Another advantage is that the

acoustic features of each frame can be directly estimated from the frame

context that is defined by linguistic information.

Although the proposed technique assumes GP on a frame-level function

in the same way as that by Henter et al. [40], there is a difference in that the

function transforms frame-level information obtained from linguistic infor-

mation instead of latent space variables. Here, we define a combined kernel

including the kernels for position contexts and for phone contexts for the ker-

nel function of GPs. In addition, we incorporate approximation techniques
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into GPs to achieve feasible computation of GP training.

5.2 Speech synthesis based on Gaussian pro-

cess regression for isolated phones

This section briefly describes the basic theory of general GPR [11] and then

presents the framework of GPR-based speech synthesis for a small amount of

speech data, i.e., isolated phone segments. A frame context kernel is designed

as an input variable of the GPR to represent frame-level acoustic features.

This framework is then extended to full-sentence continuous speech synthesis,

which is discussed in Section 5.4.

5.2.1 Gaussian process for regression

Suppose that we have a training data set, D = {(xn, yn)|n = 1, . . . , N},
and a test data set, DT = {(xt, yt)|t = 1, . . . , T}, where xn is a column

vector consisting of explanatory (input) variables, and yn is an output scalar

variable. We assume that yn is given by

yn = f(xn) + ε (5.1)

where f(xn) is a noise-free latent function value and ε represents the Gaus-

sian noise of N (0, σ2). Let X = [x1, . . . ,xN ]� and y = [y1, . . . , yN ]�

be matrix forms of all input and output variables of training data and

f = [f(x1), . . . , f(xN)]� be the latent function values of the training data.

We define XT , yT , and fT as matrix forms for test data in the same way as

the training data.

When f(xi) is a Gaussian process, the GP prior is given by

p(y|X) = N (0,KN + σ2I) (5.2)

where KN is a Gram (or covariance) matrix of the training data whose ele-

ment is given by

Kmn = k(xm,xn) m = 1 . . . N, n = 1 . . . N (5.3)
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and k(xm,xn) is a kernel (or covariance) function.

The main goal of GPR is to infer the continuous distributions of output

variables of test data, yT , given new input vectors XT . The joint distribution

on the function values, f and fT , of the training and test data is given by

p(f , fT |X,XT ) = N (0,KN+T ), (5.4)

KN+T =

⎡
⎣ KN KNT

KTN KT

⎤
⎦ (5.5)

where KT is a Gram matrix of test frames, and Gram matrix KNT = K�
TN

consists of covariances between the training and test frames.

The joint distribution of y and yT is given by

p(y,yT |X,XT ) = N (0,KN+T + σ2I). (5.6)

Given a training data set, the predictive distribution of output variables of

a test data set is obtained by

p(yT |y,X,XT ) = N (μT ,ΣT ) (5.7)

μT = KTN [KN + σ2I]−1y (5.8)

ΣT = KT − KTN [KN + σ2I]−1KNT . (5.9)

The inversion of (KN + σ2I)−1 requires O(N3) computations. For practical

implementation, the parameter vector

α = [KN + σ2I]−1y (5.10)

that only depends on the training data set is calculated in the training step.

The number of parameters in α is N , which corresponds to the number of

frames of the training data. From (5.8), a set of new output means is given

by an inner product

μT = KTNα (5.11)

which requires O(N) computational cost.

We need to design the kernel function to use GP for regression. The nec-

essary conditions for the kernel function are that the Gram matrix be positive
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semi-definite and symmetric. We used two typical kernels, i.e., square expo-

nential (SE) kernel and linear kernel in this research. The SE kernel is the

most widely used stationary kernel as the measure of “similarity” between

two input vectors. The SE kernel is defined by

k(xm,xn) = exp

(
−‖xm − xn‖2

l2

)
(5.12)

where l denotes a length-scale hyper-parameter. The linear kernel is given

by

k(xm,xn) = x�
mxn. (5.13)

This kernel assumes linearity between output and input features. It should

also be noted that it is possible to construct a new kernel by combining

multiple arbitrary kernel functions by means of some operations such as sum,

product, and convolution [41].

5.2.2 Frame context with kernel design

We use frame-level features obtained from the linguistic information of tran-

scriptions for the explanatory variables of the regression model. We define

frame context that includes the relative position and phonetic information of

the current frame as

xn = (pn, cn). (5.14)

Fig. 5.1 has an example of the frame context. A normalized relative position

in the current phone is employed for position context pn, where the beginning

of the phone is set to zero and its end is set to one. We use a set of preceding,

current, and succeeding phonetic features for phone context cn. We introduce

binary variables ({positive = +1, negative = −1}) for each phonetic feature

listed in Table 5.1 based on a balanced distinctive phonetic feature set [42].

Let P be the number of phonetic features; then, a 3P -dimensional binary-

valued vector is constructed.

The proposed frame context kernel is defined as a product of two kernels.

k(xm,xn) = kp(pm, pn)kc(cm, cn) (5.15)
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– Position context:

0 10.5
/a/

/n//k/Preceding Current Succeeding/a/

/k/Preceding Current /a/

(–1,+1,–1,–1,+1, ..., +1,–1,+1,–1,+1 ...,  –1,–1,–1,+1, ...)

Vocalic
High

Low
Anterior

Back

–
+

–
–
+

+
–

+
–
+

–
–

–
+
–

Phonetic feature table

0.3 (relative position in this segment)

Frame context of the   -th frame:

– Phone context:

/n/Succeeding

-th frame (current frame)

Preceding /k/ Current segment /a/ Succeeding /n/

– Frames of feature vector:

Figure 5.1: Example of frame context, i.e., frame-level input variable set for

GP regression. This example has frame context for frame positioned in phone

/a/, which is between preceding phone /k/ and succeeding phone /n/.

Table 5.1: Binary phonetic features used for phone context kernel.

Phonetic features

vocalic, high, low, anterior, back, coronal, plosive,

affricative, continuant, voiced, nasal, semi-vowel, silent

where kp(pm, pn) and kc(cm, cn) correspond to the position kernel and the

phone context kernel. The position kernel represents the similarity of position

contexts in phones whereas the phone context kernel represents that of phone
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contexts.

5.2.2.1 Position kernel

The SE kernel is used for the position kernel and is given by

kp(pm, pn) = exp

(
−(pm − pn)2

l2p

)
, (5.16)

where pm is the relative position of the m-th frame.

5.2.2.2 Phone context kernel

We examine two different phone context kernels in this chapter. The first is

the sum of SE kernels and the second is a linear kernel. The former one is

defined by

kc(cm, cn) =

3P∑
k=1

θ2
ck exp

(
−(cmk − cnk)

2

l2ck

)
(5.17)

where lck is a scale hyper-parameter, and θck is a hyper-parameter that rep-

resents the relevance of the k-th phonetic feature. The kernel value becomes

maximum when the input phone contexts are the same.

The linear kernel is given by

kc(cm, cn) =

3P∑
k=1

θ2
ckcmkcnk. (5.18)

The use of this kernel assumes that acoustic features in the same position

are on a hyperplane in the 3P -dimensional phonetic feature space.

5.2.3 GPR-based speech synthesis

Fig. 5.2 outlines a basic GPR-based speech synthesis system. While an acous-

tic feature is generally a multi-dimensional vector, here we have assumed that

all dimensions are independent and each dimension can be modeled sepa-

rately. When synthesizing speech, we generate a single feature sequence from

the predictive distribution with a certain method, such as using the mean

sequence for synthetic parameters or generating random sequences from the
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Figure 5.2: Outline of speech synthesis process in proposed approach.

distribution. We adopt the mean sequence, μT , of the distribution in this

study.

Consequently, the training and synthesis procedures are summarized as:

Training step

1. Frame-level acoustic features such as mel-cepstral coefficients and fun-

damental frequency are extracted from the training data.

2. The frame contexts are created from the annotation data including the

phone boundaries of the training data.

3. Gram matrix KN between the frames of the training data is determined

using the frame contexts.

4. Parameter vector α in (5.10) is calculated using KN .
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Synthesis step

1. The frame contexts are created from the input sentence.

2. Gram matrix KTN between the frames of the training and new input

data is calculated.

3. The mean sequence μT of the predictive distribution is calculated by

multiplying Gram matrix KTN and α and is used as a generated spec-

tral feature trajectory.

4. The output waveform is synthesized using the spectral and excitation

features.

5.3 Experiments on isolated phone synthesis

5.3.1 Experimental conditions

The speech database used in the experiments consisted of 503 ATR pho-

netically balanced Japanese sentences recorded by one female speaker. The

speech signals were sampled at a rate of 16 kHz. The spectral features were

extracted with STRAIGHT [26]. The 0-39th mel-cepstral coefficients were

used as output variables. Each dimension of the mel-cepstral coefficients was

modeled separately.

We chose five vowels (/a/, /i/, /u/, /e/, and /o/) and five consonants

(/k/, /s/, /t/, /n/, and /m/), which are primary phonemes in Japanese, to

examine the potential of GPR. Each phone was segmented using manually

annotated phone boundaries. The phone segments of the training set were

randomly chosen up to 10,000 frames from 450 sentences for each phoneme.

The 50 test phone segments were randomly chosen from the remaining 53

sentences. The manually annotated boundaries of the original utterances

were given when the test segments were synthesized.

The following experiments were performed separately for each phoneme.

The HMM-based speech synthesis was used as a conventional technique. Tri-

phones were used for the context set for HMM training. The model topology

was a five-state, left-to-right, no-skip hidden semi-Markov model (HSMM).
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Table 5.2: Average spectral distortions of generated parameter sequences

using position context for primary phonemes. Values represent mel-cepstral

distances [dB].

monophone monophone

Phoneme HMM GPR Phoneme HMM GPR

a 6.02 6.08 k 6.02 5.98

i 7.11 7.09 t 4.35 4.41

u 7.18 7.16 n 6.27 6.28

e 6.04 6.07 s 5.18 5.03

o 6.48 6.48 m 5.92 5.94

Each state had a single Gaussian distribution with a diagonal covariance ma-

trix and the feature vector included delta and delta-delta dynamic features.

5.3.2 Evaluation of position kernel

An objective evaluation was done under the condition where only the position

context was given as the input to assess the performance of GPR in generating

continuously changing acoustic features. The kernel for GPR corresponds to

that given in (5.16). All acoustic features were normalized by their means and

variances. The hyper-parameter lp was set to 0.289, which was the standard

deviation of frame contexts in the training data, and noise parameter σ was

set to 1.0 according to preliminary results of the experiments.

The spectral distortions of the generated parameter sequences from both

techniques are summarized in Table 5.2. In the table, GPR in the table

represents the proposed GP regression. The average mel-cepstral distance

was used as the measure of spectral distortion. From the table, It can be

seen from the table that GPR perform es comparably to HMM. This means

that GPR generated continuously changing acoustic features even though

dynamic features were not used for this regression.
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Table 5.3: Average spectral distortions of generated parameter sequences

using frame context. Values represent mel-cepstrum distances [dB].

Phoneme triphone HMM GPR-SE GPR-linear

a 5.67 5.51 5.52

i 6.01 5.64 5.63

u 6.10 5.94 5.94

e 5.33 5.17 5.16

o 5.90 5.63 5.64

k 5.09 5.05 5.05

t 4.13 4.17 4.17

n 5.73 5.81 5.81

s 4.74 4.57 4.57

m 5.48 5.50 5.50

5.3.3 Evaluation of frame context kernel

We then evaluated the proposed frame context kernels described in Sec-

tion 5.2.2. We compared the sum of SE kernels and the linear kernel as the

phone context kernel. All output variables were normalized and the hyper-

parameters were given by lp = lck = 0.289 (k = 1, . . . , 3P ), σ = 1.0, and

θck = 1.0/3P (k = 1, . . . , 3P ) on the basis of the preliminary experimental

results. Triphone HMM was used for HMM and decision-tree-based context

clustering was carried out with an MDL criterion [18].

Table 5.3 lists the mel-cepstral distances between the generated and orig-

inal sequences.

GPR-SE and GPR-linear employed the sum of SE kernels for the former

and the linear kernel for the latter for the phone context kernel. It could

be confirmed that phone context reduced the distortions with all techniques

compared to the results in Table 5.2 where the phonetic context was not

used. Even though there were only small differences for consonants except

/s/ in comparing GPR with HMM, the mel-cepstral distances for the vowels

using GPR-SE and GPR-linear significantly decreased. We also found that

the distances for GPR-SE and GPR-linear were comparable. One possible

reason is that the characteristics of kernel values were similar between the
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Figure 5.3: Correlation coefficients between generated and original mel-

cepstral coefficients for phoneme /i/.

sum of SE kernels and the linear kernel under the condition that the binary-

valued vectors were used as input variables.

The correlation coefficients between generated and original acoustic fea-

tures for each mel-cepstral dimension are plotted in Fig. 5.3 to enable a more

detailed look. The 0-20th dimensions are given in the figure, because the cor-

relation coefficients of higher dimensions were too low to discuss. The results

for GPR-SE and GPR-linear are very similar and they almost overlap. We

can see that the correlations for GPR-SE and GPR-linear are higher than

those for HMM in most dimensions.

5.4 Continuous speech synthesis based on

sparse Gaussian processes

The matrix inversion needs O(N3) calculations in the training procedure to

obtain parameter α in (5.10). The value of N is generally at least hundreds of

thousands1. Therefore the computational complexity of GPR for continuous

1If we have 10 min of speech data with 5-ms shift, N is 120,000.
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speech synthesis is not realistic. We examine two methods of approximation

to reduce the computational cost, i.e., local GPs [43], [44] and partially inde-

pendent conditional (PIC) approximation [44]. These methods enable feasible

computation by approximating matrices to be sparse. While there are vari-

ous kinds of approximation methods, e.g., subset of data (SoD) [11], [45] and

fully independent training conditional (FITC) approximation [45], we chose

the local GPs and PIC because they are effective methods of modeling local

characteristics within phone segments.

5.4.1 Local GPs

The use of Local GPs involves a method of reducing the amount of compu-

tation by simply dividing all the data into local blocks and modeling each

block separately. That is, covariance matrix KN+T is approximated by block

diagonal one:

KN+T ≈ KLOCAL
N+T = diag [KB1,KB2 , . . . ,KBS

] . (5.19)

When all training frames are divided into S blocks and each block has at most

B training frames, the computational cost results in O(SB3). By fixing B,

the computational complexity increases linearly with the number of training

data N .

In order to use the local GPs, it is necessary not only to determine the

block of the training frames but also that of the synthesis frames from their

linguistic features. We utilize decision-tree-based context clustering in this

study, which is effectively used in HMM-based speech modeling. We stop

splitting nodes if a node has less than B frames when constructing the deci-

sion tree. We conduct phone-level clustering instead of state-level or stream-

level clustering because the state and stream information is unknown in the

synthesis step.

The local GPs and the HMM-based speech synthesis both use the decision

tree clustering of context dependent HMMs. In the HMM-based technique,

the observation samples of each cluster are collected and converted into a

limited number of distributions. In contrast, in GPR with local GPs, the

covariances of the samples in the sames cluster are calculated and training

each cluster with GPR yields at most B parameters.
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Figure 5.4: Overview of training and synthesis stages in GPR-based speech

synthesis using PIC approximation.

5.4.2 Partially independent conditional (PIC) approx-

imation

Although the local GPs can model internally changing features effectively

within the blocks, the covariances between different blocks are completely ig-

nored. On the other hand, a partially independent conditional (PIC) approx-

imation estimates the covariances between different blocks using a pseudo-

data set. Pseudo-data set D̄ = {(x̄m, ȳm)|m = 1, . . . , M} is a small amount

of data set with a size of M � N , and the pseudo-data are expected to be

distributed similarly to the training data. PIC is a kind of the approximation

methods called the sparse pseudo-input Gaussian process (SPGP) [46]. The

joint distribution of the function values, f and fT , is given by a marginal

distribution for pseudo-data variables f̄ = [f(x̄1), . . . , f(x̄N)]� as

p(f , fT ) =

∫
p(f , fT |f̄)p(f̄)df̄ (5.20)
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where both p(f , fT |f̄) and p(f̄) follow Gaussian distributions and are given by

p(f , fT |f̄) = N (μ̄, Σ̄) (5.21)

μ̄ = K(N+T )MK−1
M f̄ (5.22)

Σ̄ = KN+T −K(N+T )MK−1
M KM(N+T ) (5.23)

p(f̄) = N (0,KM) (5.24)

where K(N+T )M is a Gram matrix between the frames of all data (X,XT ) and

the pseudo-data, and KM is a self covariance matrix of the pseudo-data set.

SPGP is a method of avoiding the direct calculation of matrix inversion in

(5.11) by approximating p(f , fT |f̄). The Σ̄ is approximated in PIC by using

a block diagonal matrix as

Σ̄ ≈ Σ̄PIC = diag [ΣB1 ,ΣB2 , . . . ,ΣBS
] . (5.25)

The Gram matrix of training data is approximated by

KN ≈ KPIC
N =

⎡
⎢⎢⎢⎢⎢⎢⎣

KB1 QB1B2 · · · QB1BS

QB2B1 KB2 QB2BS

...
. . .

...

QBSB1 QBSB2 · · · KBS

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.26)

where QBiBj
is a matrix given by

QBiBj
= KBiMK−1

M KMBj
. (5.27)

The KBiM and KMBj
are Gram matrices whose elements are kernel values be-

tween the samples of the clustered block and the pseudo-data set. Specifically,

the approximation avoids direct calculations of inter-block Gram matrices by

means of the pseudo-data set.

When a new input value, x∗, for a certain frame is assigned to cluster Bs,

the corresponding mean for x∗ is given by

μ∗ = K∗M(w − wBs) + K∗BspBs (5.28)

where K∗M is a Gram matrix between the frames of x∗ and the pseudo-data

set, and K∗Bs is a Gram matrix between the frames of x∗ and the s-th block
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Figure 5.5: Example of covariance matrices of Japanese phrase segment “a r

a y u r u” using (a) local GPs and simple frame context, (b) PIC and simple

frame context, and (c) PIC and extended frame contexts.

data. The first and second terms on the right-hand side of (5.28) correspond

to global and local acoustic characteristics. The w, wBs and pBs are PIC

model parameters calculated by

w =

S∑
s=1

wBs (5.29)

wBs = K−1
M KMBspBs (5.30)

[p�
B1

· · ·p�
BS

]� = [KPIC
N + σ2I]−1y. (5.31)

When the maximum block size is B, the number of blocks is S, and the

number of frames of the pseudo-data set is M , the computational cost results

in O(S(B3 + M3)). Methods of determining the blocks and the pseudo-data

set are needed to use PIC. The blocks of frames are determined in the same

way as the local GPs. We adopt random selection from the training data to

select the pseudo-data set.

There is an overview of speech synthesis using PIC approximation in

Fig. 5.4. In the training procedure, first, the decision tree of contexts is

constructed using context-dependent HMMs. Then the pseudo-data set is

chosen from the training data, and the cluster for each training data frame is

assigned by the decision tree. Gram matrices are computed after that. PIC

parameters {pi}S
i=1, {wi}S

i=1, and w in (5.29) to (5.31) are calculated at the

end of the training procedure. When speech is synthesized, the cluster for

each frame context extracted from an input text is also determined by the
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decision tree. Next, Gram matrices between synthesis and training frames

are computed and the acoustic features of the frames are generated from the

Gram matrices and trained PIC parameters. Finally, a speech utterance is

synthesized by using the spectral feature trajectory that is generated.

5.4.3 Extension of frame context using adjacent

phones

Even though PIC can express the covariances between different blocks, the

simple frame context proposed in Section 5.2.2 is insufficient for synthesizing

natural-sounding speech. A problem occurs when the simple frame context

is used where covariances at the boundary of adjacent phones become dis-

continuous. For example, the context of the first frame of a current phone

and that of the last frame of the preceding phone are entirely different. The

discontinuity in covariance causes synthetic speech to be rough.

We extend the frame context to include smoothly changing values in

order to overcome the discontinuity in covariance. Since a certain frame not

only has information on the current phone but also that on nearby phones,

extended frame context xn is defined as a set of position and phone contexts

of adjacent phones.

xn = (wn,pn,Cn) (5.32)

where w, p, and C are sets of weights, position contexts, and phone contexts

expressed as

wn = {w(−1)
n , w(0)

n , w(+1)
n } (5.33)

pn = {p(−1)
n , p(0)

n , p(+1)
n } (5.34)

Cn = {c(−1)
n , c(0)

n , c(+1)
n }. (5.35)

The superscripts −1, 0, and +1 of the variables correspond to the preceding,

current, and succeeding phones. Note that p
(0)
n and c

(0)
n correspond to pn

and cn in Section 5.2.2. The p
(−1)
n , p

(0)
n , and p

(+1)
n respectively represent the

normalized relative positions of the current frame in the preceding, current,

and succeeding phones. The p
(−1)
n equals p

(0)
n +1 and p

(+1)
n equals p

(0)
n −1. The
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c
(−1)
n , c

(0)
n , and c

(+1)
n correspond to the phone context of preceding, current,

and succeeding phones. The w
(i)
n represents the weight used to emphasize the

effect of closer phones. The following sine window function is used in this

study as a weight to limit the effect of position and phone kernels to that of

nearby phones with smoothly changing weight values.

w(i)
n =

⎧⎨
⎩

sin
(
π(p

(i)
n + 0.5)/2

)
−0.5 ≤ p

(i)
n ≤ 1.5

0 otherwise.
(5.36)

We use a convolution kernel [47], which computes the sum of all combinations

between the adjacent phones of two input variables. The kernel function for

the extended contexts is given by

k(xm,xn) =∑
i∈{−1,0,+1}

∑
j∈{−1,0,+1}

[
w(i)

m w(j)
n kp(p

(i)
m , p(j)

n )kc(c
(i)
m , c(j)

n )
]
. (5.37)

Fig. 5.5 shows examples of covariance matrices. Since the local GPs are

used in Fig. 5.5 (a), many of the elements are zero because only intra-cluster

covariances are defined. Inter-cluster covariances are estimated by using PIC

in Fig. 5.5 (b) and (c). Moreover, the extended context in Fig. 5.5 (c) yields

smooth covariances around the boundary of adjacent phones.

5.5 Experiments on continuous speech syn-

thesis

5.5.1 Experimental conditions

The speech database used in the experiments for continuous speech synthesis

was the same as that used in Section 5.3. Speech signals were sampled at a

rate of 16 kHz, and the frame shift was 5 ms. Spectral envelope, F0, and

aperiodicity features were extracted by using STRAIGHT [26]. The 0-39th

mel-cepstral coefficients were used as output variables, and each dimension

of the mel-cepstral coefficients was modeled separately, which was also the

same condition as that in Section 5.3. Speech samples were synthesized using

generated spectral features and original F0 and phone durations.
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The maximum number of frames, B, of the cluster described in Sec-

tion 5.4.2 was set to 1000 for the local GPs and PIC, and the size of

pseudo-data set M was set to 200. The linear kernel was used for the po-

sition kernel. The hyper-parameters were set to lp = 0.289, σ = 1.0, and

θci = 1.0/3P (i = 1, . . . , 3P ), which were the same settings as those in Sec-

tion 5.2.2. The KM must be positive definite to calculate the K−1
M of (5.30) in

PIC, and hence the value of θδδmn was added to the kernel function k(xm,xn)

where δmn was the Kronecker delta. The θδ was set to unity on the basis of

preliminary experimental results.

We also evaluated HMM-based speech synthesis with and without mini-

mum generation error (MGE) training [48] for comparison. The model topol-

ogy and feature vector including dynamic features were the same as those in

Section 5.3. Triphones were used for the context set for HMM training and

the MDL criterion was used for context clustering.

5.5.2 Objective evaluation

First, we objectively compared the performance of the conventional and pro-

posed techniques. The mel-cepstral distance between synthetic and original

speech were used as an objective distortion measure. We used 150, 250,

350, and 450 sentences as the training data, and 53 sentences were used as

the test data. The test data were not included in the training data. We

compared two kinds of HMM-based techniques and three kinds of proposed

GPR-based techniques. The results are plotted in Fig. 5.6. The “HMM” in

the figure represents the HMM-based technique where the model parameters

were optimized by the maximum likelihood (ML) criterion. The “HMM-

MGE” used MGE training to optimize the model parameters. In the pro-

posed GPR-based techniques, L and P corresponded to local GPs and PIC

for approximation, and S and E denote the simple frame context and the

extended frame context. We can see that both HMM-MGE and GPR-based

techniques yielded smaller distortions than HMM. Moreover, the GPR-based

techniques derived significantly smaller distortions than HMM-MGE, which

means that frame-level regression performed well. We could see that distor-

tions decreased slightly for all the training sets by comparing GPR-LS and
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Figure 5.6: Average spectral distortions between original and synthetic

speech as function of the number of training sentences.

GPR-PS. In addition, GPR-PE had consistently higher reproducibility than

GPR-PS.

Next, we compared the HMM-MGE and proposed GPR-PE techniques

in terms of the correlation between the original and generated mel-cepstral

coefficients. There were 450 training sentences, and correlation coefficients

were calculated for each dimension. Fig. 5.7 plots the results. We can see

that the correlation coefficients of the proposed GPR-based technique were

higher than those of the HMM-based technique in the most dimensions when

we compare them. One reason for this improvement is that the GPR-based

technique can directly infer the features of respective frames whereas the

HMM-based technique cannot.

5.5.3 Subjective evaluation

5.5.3.1 Naturalness

We evaluated HMM-MGE, GPR-LS, and GPR-PE by using a mean opinion

score (MOS) test to subjectively examine the naturalness of the synthetic

speech samples. There were 450 training sentences. Five participants lis-
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Figure 5.7: Correlation coefficients between original and generated mel-

cepstral coefficients.

tened to the synthetic speech samples and rated the naturalness of synthetic

speech on a five-point scale, i.e., 5: excellent, 4: good, 3: fair, 2: poor,

and 1: bad. Ten sentences were randomly chosen from the 53 sentences for

each participant. Fig. 5.8 has the mean opinion score (MOS). The error bars

indicate 95% confidence intervals. We can see that the scores were compa-

rable when comparing GPR-LS and HMM-MGE, whereas GPR-LS derived

smaller mel-cepstral distances in the objective evaluation. This is because

the generated acoustic features were not smooth at the phone boundaries

and this discontinuity degraded naturalness. In contrast, GPR-PE, which

provided continuity on covariance matrices, yielded the highest score for the

three techniques.

5.5.3.2 Similarity

We conducted an XAB test on speech similarity between vocoded and syn-

thetic speech samples to compare the reproducibility of synthetic speech sam-

ples with the conventional and proposed techniques. We compared HMM-

MGE, GPR-LS, and GPR-PE that were evaluated in Section 5.5.3.1. The
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Figure 5.8: MOS on naturalness of synthetic speech.

participants were five Japanese native speakers, and ten sentences were ran-

domly chosen from the 53 test sentences for each of the participants. After

being given a vocoded speech sample (X) as a reference, the participants lis-

tened to two synthetic speech samples (A and B) in random order and were

asked whether A or B was closer to X. We used synthetic speech samples

with all three combinations of the three techniques for the pairs of A and B.

Fig. 5.9 has the average preference scores for each technique with confidence

intervals of 95%. There are no significant differences in the scores of the

three techniques in the figure. However, the average scores for GPR-PE and

GPR-LS are about 0.1 point higher than the score for HMM-MGE, which

indicates that the proposed GPR-based speech synthesis is comparable or

slightly better than the conventional HMM-based speech synthesis in terms

of reproducibility.

5.6 Conclusion

This chapter proposed a novel approach to speech synthesis using Gaussian

process regression (GPR). We first described the basic framework of GPR-

based speech synthesis and evaluated it using a small data set of isolated

phones. We then achieved continuous speech synthesis with feasible com-

putational cost using partially independent conditional (PIC) approxima-

tion and context extension. The evaluation results revealed that introducing



64 CHAPTER 5. SPEECH SYNTHESIS BASED ON GPR

0.4 0.6 0.8 1.00.20.0

HMM-MGE

GPR-LS

GPR-PE

Score

95% confidence intervalPreference score

Figure 5.9: Preference score on similarity of synthetic speech to original

speech.

PIC and context extension into the proposed technique effectively reduced

spectral distortion, and the proposed GPR-based technique significantly im-

proved the naturalness of synthetic speech compared to the conventional

HMM-based technique without degrading reproducibility. However, most of

the hyper-parameters in this study were manually tuned on the basis of pre-

liminary experimental results. The advantage of GP is that the parameters

of kernel functions can be automatically optimized. Therefore, we intend

to refine kernel function structures and their parameters in future work to

express real data more appropriately and this should leads to improvements

in quality.



Chapter 6

Conclusions and Future Work

6.1 Summary of the thesis

This thesis described novel approaches for synthesizing speech with prosodic

variability and naturalness.

Chapter 1 described basic background of speech synthesis. There are a

variety of applications of speech synthesis and there have been increasing

demands for such applications. Although the variability and naturalness

of synthetic speech have been improved, the ability of generating natural

sounding speech is still insufficient. Then, the scope of thesis and the basic

idea of proposed techniques were provided. Chapter 2, described general

statistical parametric speech synthesis. This chapter explained HMM-based

speech synthesis and how this study explored the framework of statistical

parametric speech synthesis.

In chapter 3, extended context was introduced to synthesize natural-

sounding spontaneous conversational speech with prosodic variability in

HMM-based speech synthesis. Several context sets that can be obtained

from the CSJ are introduced and the effectiveness of the context sets are

evaluated. The results of objective evaluation show that the phone prolonga-

tion and tone labels are effective for improving generated F0 and duration. It

was confirmed that the synthetic speech using extended context offers more

natural-sounding speech than conventional contexts from the subjective eval-

uation.

65
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In chapter 4, prosodic-event-based HMM (prosodic-unit HMM) was pro-

posed to improve the naturalness of prosody of spontaneous conversational

speech. The modeling unit proposed prosodic-event-based HMM is the seg-

ment between two tone labels that represents prosodic events. The results

show that the proposed technique gives a more compact model and more

variation in generated F0 than phone-unit HMM.

The prosodic variability and naturalness of synthetic speech were im-

proved by extended context and prosodic-event-based HMM. However the

naturalness of spectral features is still insufficient. In chapter 5, Therefore,

a speech synthesis framework based on Gaussian process regression was pro-

posed to improve the naturalness of spectral features. Block-based sparse GP

approximations such as local GPs and PIC were used for trajectory model-

ing of utterances with feasible computation. Moreover, for the generation of

smooth parameter trajectory, frame context including nearby phone informa-

tion and its kernel is defined. From the objective and subjective evaluation,

the proposed method using the PIC approximation and the extended context

achieved better performance than the HMM-based methods.

6.2 Future work

Future work will focus on mixing the proposed extended context and

prosodic-event-based unit into the speech synthesis of Gaussian process re-

gression. Since Gaussian process regression is a flexible model, it could be

expected that the extended context will have more impact on the synthetic

conversational speech effectively. In addition, prosodic-event-based unit can

be applied to the frame context.

Furthermore, future work should investigate the various kinds of speech

like dialog in audiobooks and singing voices. and examine universal modeling

techniques that can be applicable for such various kinds of speech.
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