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Abstract

We consider stabilization of uncertain control systems over communication channels.

Due to the existence of the channels, communication between the plant and the con-

troller is constrained. In particular, the data rate — the number of bits transmitted

through a channel at a time — is limited and transmitted packets may be randomly

lost. Hence, the controller cannot utilize complete information of the plant states.

These constraints reflect bandwidth limitations and unreliability due to congestion,

collision, or effects of noises, which are often observed in practical communications.

In addition to the incompleteness in state observation, we explicitly take account

of the uncertainty of the plant model. Uncertainties have been an important subject

in control theory. However, in the context of networked control, it has been commonly

assumed that exact plant models are available.

The objective of the thesis is to clarify how large the amount of information

communicated through the channel should be, especially in the presence of system

uncertainties. We derive necessary conditions and sufficient conditions on the com-

munication constraints for stability.

The necessity results provide limitations on the data rate, the packet loss proba-

bility, and the magnitude of the plant uncertainty. The limitations are characterized

by the product of the eigenvalues of the plant similarly to the well-known data rate

theorems for the known plants case. We also derive the optimal quantizer to achieve

stability under the minimum data rate. It is shown that the quantizer takes a nonuni-

form structure due to the uncertainty.

The sufficient conditions provide stabilizing controllers, which can be less conser-

vative compared with those given in existing results. The relationship between the

convergence rate and the communication constraints is also given.

The thesis studies problems formulated in four setups. We first establish our

results under the fundamental setup and then consider more general cases: One of

them is for further data rate suppression. The other two setups are dedicated to deal

with more practical classes of uncertain plants and packet loss behaviors, respectively.
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Notation

R set of real numbers

Z+ set of nonnegative integers

N set of natural numbers

log(·) log2(·)

µ(·) Lebesgue measure on R

c(·) midpoint of an interval on R

X supremum of an interval X on R

X infimum of an interval X on R

⌈·⌉ ceiling function (the smallest integer greater than or equal to a number)

⌊·⌋ floor function (the largest integer less than or equal to a number)

| · | absolute value

∥ · ∥ Euclidean norm

[·]n residue modulo n

⊗ Kronecker product

•T transpose of a matrix

diag(·) block diagonal matrix

λi(·) eigenvalue of a matrix

λ• product of the eigenvalues of a matrix

ρ(·) spectral radius of a matrix

In identity matrix of size n
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Chapter 1

Introduction

1.1 Control systems containing communications

Due to the recent growth in communication technology and development of small

and low-price computing devices, employing communication components in control

systems is becoming more common. Fig. 1.1 illustrates an example of such control

systems. Use of communication devices provides many benefits such as flexibility

in spacial deployments and cost reduction in maintenance. Such control systems —

systems whose components are connected through communication channels — are

called as networked control systems and have attracted research interests during the

last decade [1, 3].

The main difficulty in networked control systems is the constraints in the com-

munication between the plant and the controller due to the existence of channels:

Plant

Network Interface

Controller

Network Interface

Network

Figure 1.1: Control system containing communication

1



2 Chapter 1. Introduction

Recent communication links are often digital and hence transmitted data should be

encoded to digital signals. These signals may contain errors to the original analog

signals. It is possible to make the errors small if we were allowed to consume large

data to represent the signals. However, the bit-length of the data is restricted by

the bandwidth of the channel. In addition to the errors, transmitted signals may be

delayed or even be lost because of congestion, collision, or effects of noises.

It is known that these constraints may be harmful for control. Though the capacity

and reliability of recent communication channels are high, the number of components

which communicate through the channel is also increasing. Thus, a component can

only use a small portion of the channel resources. We also note that in some ap-

plications it is difficult to establish rich communication links due to environmental

factors or battery capacities. For example, in [55], control of a group of autonomous

underwater vehicles has been studied and it has been pointed out that bandwidth

is severely limited underwater. In networked control systems, it is required to deal

with these communication constraints explicitly and to establish communication rich

enough to achieve given control objectives.

In this thesis, we study a stabilization problem of a system over a communication

channel, where quantization is employed and transmitted packets may be lost. Our

objective is to clarify how large the amount of information communicated through the

channel should be to stabilize the system. This has been a central question in the field

of networked control. The main feature of this research is that we explicitly consider

uncertainty in plant models, which has commonly been ignored in the literature.

1.2 Related research

1.2.1 Limitations on communication constraints

As we have seen, in networked control systems, control-related information is incom-

plete to some degree due to the constraints induced by channels. The effects of such

constraints on control performance have been actively studied.

We now provide an overview of the works in the area. Specifically, we review the
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references relevant to the topic of this thesis: control under the effects of quantization

and packet losses.

Quantization

Control over quantized signals has been one of the central problems in networked

control [27, 41]. The effects of quantization were traditionally modeled as additive

white noise. An early work that considered quantization in a explicit form is [11].

In the work, it has been shown that quantization may cause chaotic behavior, which

is quite different from what in the white noise model. Afterwards, the seminal work

[62] has first provided the minimum quantization levels for stabilization. Stimulated

by these pioneering works, control systems containing quantizers have been actively

studied during the last decade. In the following, we introduce two approaches in this

area.

Data rate: One approach to formulate control with quantized information is

motivated by control based on finite data rate signals. The data rate is the number

of bits transmitted through a channel at a time and is restricted by the bandwidth

of the channel. This has been first attempted in [62] as a stabilization problem of

a linear system. The work has succeeded to show the celebrated data rate theorem:

There exists a critical value in the data rate to stabilize a feedback system, and

the value depends only on the product of the unstable eigenvalues of the open-loop

system. In [62], containability – existence of a control which remains any trajectory

in a certain set – has been employed as the stability concept. On the other hand, [6]

considers asymptotic stability and proposes quantizers with the variable input range,

which is called a zoom-in/zoom-out function. In [57], the theorem has been extended

to a general framework of stabilization of linear deterministic systems. Moreover,

stabilization under stochastic disturbances and noises has been studied in [40]. This

problem of limited data rate control has been solved in a wide variety of setups:

control over unreliable channels [64], control of nonlinear systems [28, 32] and those

with delays [10], and designing controllers for the case where available data rate may

vary over time [37].
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Coarseness: In [15], another approach based on the notion of coarseness has

been introduced to capture the effects of quantization. In the work, the quantizer

has infinite output symbols and coarseness is defined as the number of symbols per

input interval. It has been shown that the structure of the coarsest quantizer is a

logarithmic type, and moreover its coarseness is characterized by the product of the

unstable eigenvalues of the plant. This result has been extended to the unreliable

channel case [60]. Furthermore, the logarithmic quantizer has been employed in [18],

where quantized control problem has been studied along the line of robust control [66].

In most of the works, the logarithmic quantizer is memoryless and static while the

literature concerning the data rate theorem commonly considers dynamic quantizers

with memories. We note that another memoryless quantizer can be found in [17].

The work provides a stabilization technique utilizing chaotic behavior induced by

quantization.

Packet losses

The behavior of packet losses due to unreliability in communication is often treated as

a random process. The limitations on packet loss probability have been studied both

in stochastic stabilization problems [14, 25, 26] and in state estimation problems [24,

52,53] (see also [23,50] and the references therein). It is remarkable that similar to the

minimum data rates, the maximum packet loss probability for achieving stabilization

is characterized solely by the product of the unstable eigenvalues of the plant.

Though most of the literature has assumed that the packet losses occur inde-

pendently for analytical convenience, several works have considered more advanced

random processes. In particular, it is well known that Markov chains can be a useful

model to express practical communication failures [16, 20]. In [53], the state esti-

mation problem over Markovian losses is studied. The stabilization problem is also

tackled both in infinite [21] and finite [65] data rate cases.



1.2. Related research 5

Other related works

In addition to the above two, there are several types of communication constraints.

Recent works have dealt with multiple types of communication constraints simul-

taneously: In [42], quantization and scheduling of signal transmissions have been

considered, and the work [7] studies control under packet losses and time-varying

sampling intervals or delays.

It is interesting to note that several works dealing with limited data control prob-

lems have pointed out that notions and tools in information theory are useful in the

analysis: In [58], rate distortion theory is employed to deal with the linear quadratic

Gaussian problem over a channel. The work of [51] has studied performance limita-

tions by entropy-based analysis. Further discussion can be found in [35].

1.2.2 Uncertain networked control systems

Uncertainties in the model of the system to be controlled is one of the important

subjects studied in control theory, as we have seen the success of robust control

theory [2, 4, 66]. However, in the field of networked control, the number of results

involving uncertainty is fairly small considering the volume of this research area.

Here we introduce some works concerning stabilization problems below.

In [48], linear time-invariant systems with norm bounded uncertainties are con-

sidered. An encoder-controller pair to robustly stabilize the system is proposed. In

the work, the worst case in the state evolution is evaluated based on the norm of the

uncertainty, and the coder-controller is designed in a somewhat conservative way to

take care of all possible evolutions. In [34], scalar nonlinear systems with stochas-

tic uncertainties and disturbances are dealt with. In the setup, the channel state is

also stochastic; the available data rate may randomly vary. It has given sufficient

data rates which are enough to achieve the mth moment stability. The work of [19]

has employed the logarithmic quantizer and has studied using the techniques of ro-

bust control. On the other hand, [22] considers the problem from adaptive control

viewpoints. Finally, in [61] control of uncertain systems by multiple controllers with
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supervisors has been studied.

In the existing results listed above, only sufficient conditions on data rates have

been obtained, that is, these results have not been concerned with characterizing

the minimum data rate. We also note that the above works consider the cases with

lossless channels.

1.3 Contributions of the thesis

The focus of our study is to derive limitations on the data rates necessary for sta-

bilization of uncertain systems over lossy channels. In particular, the limitation is

characterized by the level of plant instability as in the data rate theorems mentioned

above and is expressed in terms of data rates, packet loss probabilities, and the uncer-

tainty bounds on plant parameters. Under the presence of uncertainties, in general,

this is a difficult problem. The reason is that the combination of plant uncertainties

and the nonlinearity in the system due to quantization complicates the analysis of

state evolutions.

In the thesis, to overcome such difficulties, we formulate the problem based on two

ideas as follows. First, we assume that the plant is a single-input and single-output

system, and its uncertainties are parametric. In the analysis of such a system, the

key parameter representing the product of eigenvalues in the plant can be expressed

as a single parameter, which corresponds to the constant term in the denominator

polynomial of the transfer function; for the case of known plants, this viewpoint has

been proposed in [64]. The parameter can vary over time within a known bound,

and in this sense the plant is parametrically uncertain. In the context of robust

control, parametrically uncertain systems have been extensively studied (see, e.g., [2,

4]). The celebrated Kharitonov’s theorem [30] provides an exact condition for robust

stability for continuous-time systems, though its extensions to discrete-time systems

are somewhat limited. Other developments include pole placement algorithms using

linear programming in [54], stability tests based on µ-analysis [12, 13], linear matrix

inequalities [5], and integral-quadratic-constraint approaches [36].



1.4. Overview of the thesis 7

The second idea to address the uncertain systems case is the introduction of

some structure into the controller by imposing restriction on the state estimation

scheme. It is important to note that this controller class includes those that have

appeared in minimum data rate results for known plants for derivation of sufficient

conditions [56,57,64]. Therefore, when specialized to the case without uncertainties,

our results coincide with those in such previous works and particularly [64]. An

interesting aspect in the uncertain case is that the quantizer used in the encoder

should not be restricted to the conventional uniform quantizers as in [34, 48]. We

propose a new quantizer, which is in fact designed to compensate plant uncertainties

and is capable of reducing the required data rate. Indeed, for scalar plants, this

quantizer becomes optimal. This quantizer is a piecewise constant function whose

step width shrinks as the input becomes larger in magnitude. In the special case

of known plants, it becomes uniform, which supports the use of uniform quantizers

in [64].

1.4 Overview of the thesis

This thesis is organized as follows. In Chapter 2, we show the first part of our results

in the most fundamental setup. In the chapter, the data rate is assumed static, i.e.,

the bit-length of transmitted data is the same for every time step. Also, a part of the

exact plant model is assumed to be known. In particular, we suppose that the input

parameters are available. Furthermore, the packet losses are modeled as independent

and identically distributed (i.i.d.) random processes.

In Chapter 3, we progress to a more general framework, where the data rate can

be time varying. We show that the necessary bounds given in Chapter 2 are valid

in this case also, but in the sufficiency result we can achieve stability with a smaller

data rate by employing a communication protocol with a time-varying data rate.

In Chapter 4, we move on to deal with a more realistic class of uncertain plants.

We consider the plant where not only state parameters but also input parameters are

uncertain. That is, in the setup, the model of the actuator in the plant may include
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uncertainty. We generalize the results in Chapter 2, where the input parameters are

assumed to be known. We show a necessary condition for stability, which clarify the

effect of uncertain inputs on the data rate and the loss probability limitations. Also,

a sufficient condition for this case is given.

Chapter 5 is devoted to another extension of the results in Chapter 2: The packet

loss process model is extended from i.i.d. to Markov chain. Markovian packet losses

can represent more practical situations including bursty communication failures. We

provide a necessary condition and a sufficient condition for stability. Similar to the

fundamental results, the necessary condition is given in the form of limitations on the

data rate, the transition probability of the channel states, and the magnitude of the

uncertainty.

Finally, we conclude in Chapter 6, where a summary of the thesis and open prob-

lems left for future research are stated.



Chapter 2

Control of uncertain systems over

networks

In this chapter, we study limitations on communication for control of uncertain sys-

tems in the most fundamental setup. The stabilization problem of an uncertain

system over a lossy and data rate limited channel is considered. The encoder and

the decoder use a static data rate, i.e., the bit-length of transmitted data is static for

every time step. The packet loss process is assumed to be independent and identically

distributed (i.i.d.). Under the setup, a necessary condition and a sufficient condition

for stabilization are presented. In particular, the necessity result provides limitations

on the data rate, the loss probability, and the magnitude of uncertainties. The result

can be considered as a generalization of the limitations which have been shown for

the known plants case [57,64].

This chapter is organized as follows. In Section 2.1, we formulate the stabilization

problem. In Sections 2.2 and 2.3, we present the necessity result and the sufficiency

result, respectively.

The results in this chapter have been partially presented in our works [43–45].

9
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Plant Encoder

DecoderController

yk sk

γksk, γk

γk−1uk

Yk

Lossy

channel
ditigal

Figure 2.1: Networked control system

2.1 Problem formulation

We consider the networked system depicted in Fig. 2.1, where the plant connects

with the controller by the communication channel. At time k ∈ Z+, the encoder

observes the plant output yk ∈ R and quantizes it to a discrete value. The quantized

signal sk ∈ ΣN is transmitted to the decoder through the channel. Here, the set ΣN

represents all possible outputs of the encoder and contains N symbols. Thus, the

required data rate is expressed as R := logN [bits/sample]. The decoder receives the

symbol sk and decode it into the interval Yk ⊂ R, which is an estimate of yk. Finally,

using the past and current estimates, the controller provides the control input uk ∈ R.

We now describe the details of each component in the system.

The plant is an n-dimensional autoregressive system which has uncertain param-

eters:

yk+1 = a1,kyk + a2,kyk−1 + · · ·+ an,kyk−n+1 + uk. (2.1)

Each parameter ai,k may be time varying and may vary within a known width. We

denote the width of perturbation of the ith parameter by 2ϵi, where ϵi ≥ 0, and let

a∗i be its center, i.e.,

ai,k ∈ Ai := [a∗i − ϵi, a
∗
i + ϵi] for i = 1, 2, . . . , n. (2.2)

These parameters are deterministic, and we do not make any assumption on the
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distribution within the above interval. The initial values yk, k = −n + 1, . . . ,−1, 0,

are bounded by known upper bounds as |yk| ≤ Yk, where Yk > 0.

Remark 2.1. In (2.1), the parameter of the input uk is scalar and is assumed to be

known. However, the results in this chapter can easily be extended to the case where

the plant has multiple b-parameters such as yk+1 =
∑ny

i=1 ai,kyk−i+1 +
∑nu

i=1 biuk−i+1,

where b1, . . . , bnu are known parameters and b1 ̸= 0. In [39], a related class of plants

is studied for limited data rate control. In Chapter 4, we consider the case that both

parameters of the state and the input are uncertain.

The plant (2.1) can be written in the controllable canonical form:

xk+1 = Akxk +Buk, yk = Cxk, (2.3)

where the state xk := [yk−n+1 yk−n+2 · · · yk]T and the system matrices are given by

Ak :=


0 1 · · · 0

...
. . . . . .

...

0 0 · · · 1

an,k an−1,k · · · a1,k


∈ Rn×n, B :=

[
0 · · · 0 1

]T
∈ Rn,

C := BT ∈ R1×n. (2.4)

Let A∗ represent the nominal matrix of Ak, and let λA∗ be the product of the eigen-

values of A∗:

A∗ :=


0 1 · · · 0

...
. . . . . .

...

0 0 · · · 1

a∗n a∗n−1 · · · a∗1


, λA∗ :=

n∏
i=1

λi(A
∗) = a∗n,

where λi(·) represents an eigenvalue of a matrix.

The encoder quantizes the plant output yk into the N -alphabet signal sk ∈ ΣN ,

where ΣN := {1, 2, . . . , N}. The input range of the encoder is centered at the origin
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and the width is defined by a scaling parameter σk > 0. In particular, the output sk

of the encoder is given as

sk = qN

(
yk
σk

)
, (2.5)

where qN(·) is an N -level quantizer whose input range is [−1/2, 1/2]. In the quantizer

qN , it is assumed that boundaries of the quantization cells are symmetric about the

origin. By its symmetry, the quantizer qN can be expressed by the set of boundary

points

hl ∈ R, l ∈ {0, 1, . . . , ⌈N/2⌉} ,

of nonnegative quantization cells. Here, ⌈·⌉ is the ceiling function. These points must

satisfy

h0 = 0, h⌈N/2⌉ =
1

2
, hl < hl+1. (2.6)

In the above, the first and the second equations follow since the nonnegative quanti-

zation cells must fill the interval [0, 1/2]. The last inequality means that the domain

of each cell must not be empty. The origin h0 is a boundary only when the number

N of quantization cells is even. However, for simplicity, we use the same notation

above even if N is odd. Denote the quantization cells determined by {hl}l, from the

left to the right, by Ci, i = 1, 2, · · · , N :

(i) If N is odd, then

Ci :=



[−h⌈N/2⌉−i+1,−h⌈N/2⌉−i) if i ∈ {1, 2, · · · , ⌈N
2
⌉ − 1},

[−h1, h1) if i = ⌈N/2⌉,

[hi−⌈N/2⌉, hi+1−⌈N/2⌉) if i ∈ {⌈N
2
⌉+ 1, ⌈N

2
⌉+ 2, · · · , N − 1},

[h⌈N/2⌉−1, h⌈N/2⌉] if i = N.

(2.7)
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(ii) If N is even, then

Ci :=


[−hN/2−i+1,−hN/2−i) if i ∈ {1, 2, · · · , N/2},

[hi−1−N/2, hi−N/2) if i ∈ {N
2
+ 1, N

2
+ 2, · · · , N − 1},

[hN/2−1, hN/2] if i = N.

(2.8)

Then, for a given set of boundaries {hl}l of the quantizer qN and consequently the

quantization cells (2.7) or (2.8), we define the outputs of the quantizer as follows:

qN(y) := i if y ∈ Ci for i = 1, 2, · · · , N. (2.9)

For simplicity of notation, both qN and {hl}l are used to refer to quantizers.

Due to unreliability in the channel, the transmitted signal sk is randomly lost.

We represent the state of the packet reception/loss at time k by the random variable

γk ∈ {0, 1}. If γk = 0 then the packet is lost; otherwise, it arrives at the actuator

side successfully. We assume that the process {γk}∞k=0 is independent and identically

distributed (i.i.d.) with the loss probability p ∈ [0, 1), i.e., Prob({γk = 0}) = p for

all k ∈ Z+. Furthermore, the encoder knows the previous loss state γk−1 through the

acknowledge (ACK) signal from the decoder.

The decoder converts the received signal γksk to the interval Yk ⊂ R. The interval

Yk provides an estimate of the set in which the plant output yk should be contained.

If the packet arrives (γk = 1), then Yk corresponds to the quantization cell that yk

falls in. Otherwise Yk is equal to the entire input range of the encoder [−σk/2, σk/2],

which is available at the decoder. Accordingly, the estimation set Yk is given by

Yk :=


[−σk/2, σk/2] if γk = 0,

σkCsk if γk = 1,

(2.10)

where σkCsk := {σky : y ∈ Csk} and sk is the transmitted signal defined in (2.5).

Here, we focus on the data rate expressing the state values. In practical situations,

the encoder may include other data into transmitted signals such as headers and error
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detection/correction codes. However, we do not consider the bit-lengths of such data.

The controller provides the control input uk based on the past and current esti-

mates Yk−n+1, . . . ,Yk as

uk =
n∑

i=1

fi,k (Yk−i+1) , (2.11)

where fi,k(·) is an arbitrary map from an interval on R to a real number.

We remark that the scaling parameter σk should be large enough to cover all

possible inputs to the encoder. Otherwise, the quantizer may be saturated, in which

case we lose track of the plant output yk. On the other hand, if we take σk large,

the quantization error also becomes large. Moreover, to achieve stabilization of the

system, σk should decay to zero gradually.

We determine the scaling parameter σk as follows. At time k, the encoder and the

decoder predict the next plant output yk+1 based on the estimates Yk−n+1, . . . ,Yk.

Let Y−
k+1 ⊂ R be the set of all possible outputs yk+1 of the uncertain system (2.1).

Then the scaling parameter σk+1 is chosen such that

σk+1 ≥ µ(Y−
k+1), (2.12)

where µ(·) denotes the Lebesgue measure on R.

The prediction set of the plant output yk+1 constructed at time k is defined as

follows:

Y−
k+1 := {a′1y′k + · · ·+ a′ny

′
k−n+1 : a

′
1 ∈ A1, . . . , a

′
n ∈ An,

y′k ∈ Yk, . . . , y
′
k−n+1 ∈ Yk−n+1}. (2.13)

Under this definition, our prediction strategy is to use the information regarding

yk, . . . , yk−n+1 independently such that yk−i+1 ∈ Yk−i+1 for each i = 1, 2, . . . , n, where

Yk−i+1 is the interval received on the decoder side at time k − i + 1. Then, clearly,

µ(Y−
k+1) is large enough to include yk+1, and it is computable on both sides of the

channel because of the ACK signal regarding γk−1 from the decoder to the encoder.
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We now introduce the definition of stability in the system.

Definition 2.1. The system depicted in Fig. 2.1 is mean square stable (MSS) if the

plant output yk asymptotically goes to zero in the mean square sense for all possible

uncertainties within the bounds in (2.2). That is, for all (deterministic) parametric

perturbations a1,k ∈ A1, a2,k ∈ A2, . . . , an,k ∈ An, it holds that limk→∞ E[|yk|2] = 0,

where the expectation is with respect to the packet losses.

The problem of the chapter is to give conditions on the data rate R and the packet

loss probability p for the overall system in Fig. 2.1 to be MSS.

The problem setup given above is particularly affected by the consideration of

uncertain plants. To overcome the difficulties, we have introduced some structures in

the plant as well as the controller. In the plant (2.1), the product of the eigenvalues

is represented as a single parameter an,k. It has been known that the product of the

eigenvalues plays an important role to describe the bounds on the data rate and the

loss probability [14, 40, 56, 57, 64]. Since our objective is to characterize the bounds

by the product of the eigenvalues, the simple expression of the key parameter helps

to reduce the complexity in the analysis.

Similarly, the classes of controllers (2.11) and prediction sets (2.13) are employed

to pursue an analytical approach. Here, we use the information regarding yk−n+1, . . . ,

yk independently. This may make the state estimation somewhat conservative. If we

use a more general controller or a prediction method that allows us to look at the

correlations among them, then the estimation sets Yk−n+1, . . . ,Yk−1 from times before

the current time k may be updated so that they shrink in size. As a result, the system

can be stabilized under a smaller data rate compared with the case employing (2.11)

and (2.13). We note that it may be possible to minimize the state estimation sets

numerically [49]; however, in the case of uncertain plants, it is difficult to do this

analytically.

When we know the exact plant model, i.e., ϵi = 0 for i = 1, 2, . . . , n, the following

result given in [64] provides a necessary and sufficient condition for stability.

Proposition 2.1. Consider the system depicted in Fig. 2.1 where the exact plant
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model is known. Then the system is MSS if and only if the following inequalities are

satisfied:

R > R∗ := log |λuA∗|+ log

√
1− p

1− p|λuA∗|2
, (2.14)

p < p∗ :=
1

|λuA∗ |2
. (2.15)

Here, λuA∗ denotes the product of the unstable eigenvalues of the nominal matrix A∗:

λuA∗ :=
∏

i : |λi(A∗)|≥1

λi(A
∗).

We will later see that our necessary conditions coincide with the above inequalities

when the plant is known and all eigenvalues are unstable.

Here, regarding the set Y−
k+1, we introduce a useful lemma, which will be referred

to in the following sections.

Lemma 2.1. The prediction set Y−
k+1 defined in (2.13) satisfies the following equality:

µ(Y−
k+1) =

n∑
i=1

µ (AiYk−i+1) , (2.16)

where

AiYk−i+1 := {a′y′ : a′ ∈ Ai, y
′ ∈ Yk−i+1} (2.17)

for i = 1, 2, . . . , n.

Proof. By applying the Brunn-Minkowski inequality [9] to (2.13), we have µ(Y−
k+1) ≥∑n

i=1 µ (AiYk−i+1). Furthermore, the equality holds since AiYk−i+1, i = 1, · · · , n, are

connected intervals in R by the definitions in (2.2) and (2.10). ■
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2.2 Limitations on data rate and loss probability

In this section, we present a necessary condition for the system to be MSS. The

condition will be given in the form of a lower bound on the data rate R and an upper

bound on the loss probability p expressed by the instability and uncertainty in the

plant. The result provides an insight into the question that, to stabilize the uncertain

system, at least how large the data rate should be. It is important to note that

the existing works [19, 34, 48] dealing with uncertainties have studied only sufficient

bounds, which have contained conservativeness. Moreover, we derive a quantizer

which may reduce the necessary data rate. In particular, as we will see in Section

2.3, for scalar plants, the quantizer is optimal in the sense that we can stabilize the

system under the lowest data rate.

Before providing the main result, we introduce an assumption regarding the in-

stability of the plant (2.1) or (2.3).

Assumption 2.1. For every time k ∈ Z+, the matrix Ak has at least one unstable

eigenvalue and the absolute value of the product of the eigenvalues is greater than 1.

That is, we assume that the following inequality holds:

|a∗n| − ϵn > 1. (2.18)

This assumption is required throughout the section since the objective here is to

describe the limitations for stability by the product of eigenvalues λA∗. In the case of

stable plants, the limitations are trivial since there is no need to control.

Remark 2.2. When the plant has both stable and unstable eigenvalues, we have to

take account of the stable parts. In most of the literature which assumes exact plant

models, stable eigenvalues have been omitted by applying transformation of the state

coordinate [40, 56, 57, 64]. However, if the plant parameters contain uncertainties,

we can not make such a coordinate transformation and thus, can not follow the

technique. Hence, the plant considered here may have stable eigenvalues. If the plant

has any stable modes, the limitations on the data rate and the loss probability given
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below necessarily become loose. The limitations are expressed by the product of the

eigenvalues λA∗ = a∗n. Under the assumption (2.18), the product of the eigenvalues of

the plant is always unstable. Hence, the limitations are not trivial, i.e., the bounds

on the data rate and the loss probability take positive values. For a plant that does

not satisfy (2.18), if we know its stable eigenvalues exactly, it may be possible to

introduce a stable system to cancel those eigenvalues so that the resulting system has

a larger |a∗n| for which (2.18) might hold.

2.2.1 Necessary condition for stability

We now introduce the following notations to represent the necessary bound:

ν :=

√
1− p

1− p(|λA∗|+ ϵn)2
, r :=

|λA∗| − ϵn
|λA∗|+ ϵn

. (2.19)

The following theorem is the necessity result.

Theorem 2.1. For the system in Fig. 2.1 satisfying Assumption 2.1, if the system is

MSS with the static quantizer (2.9), then it holds that

R > Rnec :=


log log(1−ϵnν)2

log r
if ϵn > 0,

log |λA∗|+ log ν if ϵn = 0,

(2.20)

0 ≤ p < pnec :=
1− ϵ2n

(|λA∗|+ ϵn)2 − ϵ2n
, (2.21)

0 ≤ ϵn < 1. (2.22)

One can easily confirm that the lower bound Rnec on data rate is monotonically

increasing with respect to |λA∗|, p, and ϵn, and similarly pnec is monotonically de-

creasing. Thus, more unstable dynamics or more uncertainty in the plant will result

in higher requirement in communication with a larger data rate and a smaller loss

probability. We remark that there is no gap between the two expressions in (2.20)

since Rnec is right continuous with respect to ϵn at ϵn = 0.

A special case of this result is when there is no plant uncertainty, i.e., ϵi = 0, ∀i.
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In such a case, the bounds in the theorem coincide with those in Proposition 2.1:

Rnec → R∗, pnec → p∗ as ϵn → 0. (2.23)

Moreover, for an uncertain plant with ϵn = 0 and Rnec > 1, comparing the conditions

in Theorem 2.1 with those in Proposition 2.1, we have that

Rnec > max
|λA|∈[|λA∗|−ϵn,|λA∗|+ϵn]

R∗, pnec < min
|λA|∈[|λA∗|−ϵn,|λA∗|+ϵn]

p∗.

Therefore, for uncertain systems, even if we assume the most conservative plant dy-

namics within the uncertainty of (2.2), the limitation given by Proposition 2.1 may

not satisfy the necessary conditions (2.20) and (2.21). We note that even if ϵn = 0

holds, the plant may be uncertain since other parameters a1,k, . . . , an−1,k could be

uncertain.

Now, we compare the necessary limitations in Theorem 2.1 with the result for

known plants by Proposition 2.1 in a numerical example.

Example 2.1. Consider a plant with ϵn = 0.2, and a lossy channel with the loss

probability p = 0.05. Fig. 2.2 shows the necessary bounds on the data rate versus

the product of the eigenvalues |λA∗| of the nominal plant. Note that the bounds do

not depend on the plant parameters except the product of the eigenvalues and its

uncertainty. The solid line represents the necessary data rate Rnec in Theorem 2.1,

and the dotted lines are those for known plants R∗ given by Proposition 2.1. Due to

the uncertainty on λA, the bound R∗ varies within the shaded area. However, there

exists a gap between the solid line and the dotted line representing the upper bound

of the shaded area. Hence, the limitations for known plants are insufficient in the

presence of uncertainties. We remark that the lines in the figure are not illustrated

when the product of the eigenvalues does not satisfy the assumption (2.18).

Remark 2.3. The necessary data rate Rnec is not always greater than the bound R∗

given in Proposition 2.1 even if the plant has a uncertain parameter. In particular,

when the system satisfies that Rnec < 1, then Rnec is lower than R
∗. Thus, in such a



20 Chapter 2. Control of uncertain systems over networks

1 2 3 4 5
0

1

2

3

4

5

6

7

8

Product of the eigenvalues of the plant

N
ec

es
sa

ry
 b

o
u

n
d

s 
o

n
 t

h
e 

d
at

a 
ra

te

Figure 2.2: Comparison of necessary bounds on the data rate between those given by
Theorem 2.1 (solid line) and by Proposition 2.1 (dotted lines and shaded area)

case, Proposition 2.1 provides a less conservative bound on the data rate compared

with Theorem 2.1. We note that Rnec < 1 is equivalent to |λA∗| < 2/
√
1 + 3p−ϵn, and

hence by the assumption (2.18), such systems are characterized as those satisfying

|λA∗| ∈ (1 + ϵn, 2/
√
1 + 3p − ϵn); this interval may be empty for systems of a large

magnitude of the uncertainty ϵn or loss probability p.

The work of [44] shows another special case of Theorem 2.1. A necessary condition

for stabilization of uncertain systems is given for the case when the quantizer is

uniform; the uniform quantizer is the simplest quantizer, which divides the input

range into quantization cells of same lengths. If the plant is uncertain with ϵn > 0,

then the necessary data rate bound in [44] is higher than that in (2.20). Therefore,

we may stabilize the system with a lower data rate by using a quantizer that is not

uniform but more general.
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2.2.2 Proof of Theorem 2.1

The proof of Theorem 2.1 consists of three steps. Throughout the proof, the central

question is as follows: Under the situation where the estimation set of the plant state

becomes large due to instability, at least how precise is the quantization required to

be for making the estimation set gradually small? To answer this question, we focus

on the effect of an,k on the expansion of the estimation set, since an,k is equal to the

product of the eigenvalues of the plant; note that the product of the eigenvalues is

the key factor to describe the bounds on the data rate [40, 57, 64]. Since we have

considered a plant in the controllable canonical form, at time k+ 1, the effect of an,k

on the plant output appears as the coefficient of yk−n+1 (see (2.1)). Hence, the first

step is to analyze this aspect.

Expansion rate of the estimation sets

Now we start the first step of the proof. We introduce the sequence wl, l = 0, 1, . . . ,

⌈N/2⌉ − 1, and the random variable η for a given quantizer whose boundary points

are {hl}l as

wl :=


2(|a∗n|+ ϵn)hl+1 if N is odd and l = 0,

(|a∗n|+ ϵn)hl+1 − (|a∗n| − ϵn)hl else,

(2.24)

η :=


|a∗n|+ ϵn with prob. p,

maxl∈{0,1,...,⌈N/2⌉−1}wl with prob. 1− p.

(2.25)

Then, the next lemma holds as a necessary condition for a given quantizer with {hl}l.

Lemma 2.2. If the system depicted in Fig. 2.1 is MSS, then it holds that

E[η2] < 1. (2.26)

Proof. First, we show that the mean square stability of the plant output yk implies

that the scaling parameter σk is also MSS. For the estimation set Yk ⊂ R at time k,
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it is obvious that maxy′k∈Yk
|y′k| ≥ µ(Yk)/2. Letting δ be the smallest width of the

quantization cells, we have that µ(Yk) ≥ δσk. Hence, if limk→∞ E[|yk|2] = 0, then

limk→∞ E[σ2
k] = 0 holds.

In the rest of the proof, we show that (2.26) is a necessary condition for σk to be

MSS. Notice from (2.12) that σk+1 is bounded from below by µ(Y−
k+1). Substitution

of (2.16) from Lemma 2.1 into (2.12) yields

σk+1 ≥
n∑

i=1

µ (AiYk−i+1) ≥ µ (AnYk−n+1) . (2.27)

We next evaluate the far right-hand side of the above inequality. The setAnYk−n+1

depends on the boundaries ofAn and Yk−n+1. By (2.2), we haveAn = [a∗n−ϵn, a∗n+ϵn].

The boundaries of Yk−n+1 may vary depending on whether the packet is lost or not

at time k − n + 1. If it is lost (γk−n+1 = 0), then Yk−n+1 = [−σk−n+1/2, σk−n+1/2];

otherwise (γk−n+1 = 1), we can define the index lk−n+1 of Yk−n+1. The index repre-

sents which quantization cell is selected at the encoder at the time and is defined as

follows: Consider the case when γk = 1. For given Yk and σk, let lk be the index of

Yk such that infy′k∈Yk
|y′k/σk| = hlk .

We claim that the width µ(AnYk−n+1) can be written as

µ(AnYk−n+1) = ηk−n+1σk−n+1, (2.28)

where ηk is a random variable defined as

ηk :=


|a∗n|+ ϵn if γk = 0,

wlk if γk = 1,

with wl from (2.24). Here, for simplicity, we assume that a∗n > 0. Notice that from

(2.18), An does not contain the origin. By replacing a∗n with |a∗n| in the discussion,

we can obtain the relations for the case a∗n < 0.

Denote the infimum and the supremum of Yk−n+1 by Yk−n+1 and Yk−n+1, respec-

tively. To derive (2.28), we consider the following three cases (i)–(iii).
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(i) 0 ≤ Yk−n+1: In this case, it is necessary that γk−n+1 = 1. Using basic results

of interval arithmetics [38], from (2.17) and (2.18), we obtain

µ(AnYk−n+1) = (a∗n + ϵn)Yk−n+1 − (a∗n − ϵn)Yk−n+1

=
{
(a∗n + ϵn)hlk−n+1+1 − (a∗n − ϵn)hlk−n+1

}
σk−n+1.

Hence, by (2.24) we have (2.28).

(ii) Yk−n+1 < 0 < Yk−n+1: In this case, we have

µ(AnYk−n+1) = (a∗n + ϵn)(Yk−n+1 − Yk−n+1). (2.29)

Consider the following two cases:

(ii-1) If γk−n+1 = 0, then Yk−n+1 = [−σk−n+1/2, σk−n+1/2]. Hence, we have that

µ(AnYk−n+1)=(a∗n+ϵn)σk−n+1. Thus, (2.28) follows.

(ii-2) Otherwise, N must be odd and lk−n+1 = 1 from the condition (ii). In this

case, (2.29) can be written as µ(AnYk−n+1) = 2(a∗n + ϵn)h1σk−n+1 since Yk−n+1 =

[−h1σk−n+1, h1σk−n+1). Hence, (2.28) holds for this case also.

(iii) Yk−n+1 ≤ 0: This case can be reduced to (i).

By (2.27) and (2.28), it holds that σk+1 ≥ ηk−n+1σk−n+1 and hence

E[σ2
k+1] ≥ E[η2k−n+1]E[σ

2
k−n+1]. (2.30)

Here, we used the fact that γk−n+1 and σk−n+1 are independent; this is because σk−n+1

depends only on γ0, . . . , γk−n. The expectation E[η2k−n+1] may vary with Yk−n+1. By

(2.25), it is clear that η is the maximum value of ηk.

Since σk is MSS for all possible parameters in (2.2) and initial values, by (2.30),

we have that (2.26) is necessary. ■

Optimal quantizer

As the second step, we find the quantizer that minimizes η for a fixed N . To state

such an optimal quantizer, we introduce the quantizer q∗N represented by the boundary
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−1/2 −1/4 0 1/4 1/2
Input values of the quantizer

Figure 2.3: Boundaries of the quantizer q∗N when |λA∗| = 3.0, ϵn = 0.5, and N = 8

points {h∗l }l as follows:

(i) If ϵn > 0, then

h∗l =


1
2

1−trl

1−tr⌈N/2⌉ if N is odd,

1
2

1−rl

1−r⌈N/2⌉ if N is even,

(2.31)

where t := |λA∗|/(|λA∗| − ϵn).

(ii) If ϵn = 0, then

h∗l =


1
N

(
l − 1

2

)
if N is odd,

1
N
l if N is even.

(2.32)

The following lemma holds.

Lemma 2.3. The quantizer q∗N minimizes E[η2].

Fig. 2.3 illustrates the quantization boundaries {h∗l }l of the optimal q∗N when

|λA∗| = 3.0, ϵn = 0.5, and N = 8. We observe that the quantizer takes its quantization

cells smaller towards the boundaries ±1/2 of the input range. We should note that

this non-uniformity is an outcome of the minimization of maxwl. More intuitively,

this characteristic can be explained as follows. For simplicity, consider the case of a

scalar plant where the parameter is given as ak ∈ A = [a∗ − ϵ, a∗ + ϵ]. Under the

control scheme, the plant output is quantized and only the cell, or the interval Yk, to

which it belongs is known to the controller. After one time step, because of the plant

instability, the interval in which the output should be included, will expand in width.

When the plant model is known, the expansion ratio is constant and is equal to |a∗|

for any cell. However, with plant uncertainties, the ratio depends on the location of
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Figure 2.4: Expansion of the intervals in which the output should be included by the
plant instability ak ∈ A = [a∗ − ϵ, a∗ + ϵ] when a∗ > 0

the cell. In particular, cells further away from the origin expands more. This fact

is illustrated in Fig. 2.4(a) when the quantization is uniform. In contrast, when the

proposed quantizer q∗N is used, the intervals after one step have the same width (see

Fig. 2.4(b)).

Furthermore, the quantizer q∗N becomes more nonuniform in the presence of more

uncertainties in the plant, expressed with a larger ϵ. This can be seen in the defi-

nition of the boundary points {h∗l }l, where the relative uncertainty r given in (2.19)

determines the widths of the cells. Note that when ϵ = 0, q∗N becomes a uniform one

as we have seen in (2.32).

For the general order plants case, the parameter ak in the above explanation

should be replaced with the nth parameter an,k, which is equal to the product of the

eigenvalues of the plant and takes the nominal value as |λA∗|. Thus, the proposed

quantizer q∗N minimizes the maximum width of the intervals expanded by an,k and

other parameters do not affect the structure of q∗N . This is because we have focused on

the effect of an,k in the stability analysis in the proof of Lemma 2.2. As a consequence,

q∗N is expressed in a simple form by |λA∗| and its uncertainty ϵn.
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Figure 2.5: Comparison of necessary bounds on the data rate under the optimal
quantizer q∗N and the uniform one

It is interesting to note that as we see in Fig. 2.3, the quantizer q∗N has a prop-

erty in contrast with the logarithmic quantizer studied in [15, 18, 22, 29, 60]; in such

quantizers, the quantization cells become small for inputs around the origin and grow

exponentially as the input size increases. We note that the quantizer q∗N and the

logarithmic quantizer should not directly be compared since the problem setups are

different: The logarithmic quantizer has infinite quantization cells and hence the data

rate is not suitable to evaluate coarseness of the quantizer. There, the density of the

cells has been proposed as a measure of coarseness.

Finally, we also note that the similar structure of the optimal quantizer q∗N is

found in [59], where a system identification problem based on quantized observations

has been studied.

We confirm that the optimal quantizer q∗N can suppress the required data rate

compared with the case of the uniform one through a numerical example.

Example 2.2. Consider a plant with a∗n = 3.0 and set the loss probability as p = 0.05.
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In Fig. 2.5, we plot the necessary bounds on the data rate versus the magnitude of

the uncertainty ϵn for both cases of the optimal quantizer and the uniform quantizer.

These bounds are computed by substituting (2.31) and (2.32) into η in (2.26). In

fact, as we will see in the last step of the proof of the theorem, the bound under

the optimal quantizer coincides with Rnec defined in (2.20). Fig. 2.5 shows that if

ϵn > 0 then the optimal quantizer requires fewer data rates than the uniform one.

It is interesting to note that there is no uncertainty, i.e., ϵn = 0, the bounds are the

same since q∗N is equal to the uniform one.

Proof of Lemma 2.3. From (2.25), the realization of η corresponding to the case

when a packet loss occurs (with probability p) does not depend on the quantizer.

Hence, we focus on the minimization of maxl wl. After some calculation, we have

that wl is constant, i.e.,

wl = wl′ for any l, l
′ ∈ {0, 1, . . . , ⌈N/2⌉ − 1} (2.33)

if and only if the quantizer is {h∗l }l. Therefore, it is enough to show that a quantizer

which does not satisfy (2.33) yields a larger maxl wl compared with the case {h∗l }l.

We prove this by contradiction.

Let wl(h) denote the wl when the quantizer is {hl}l. Assume that there exists

a quantizer {gl}l such that (2.33) is not satisfied and it holds that maxl wl(g) <

maxl wl(h
∗). From the above, we have

wl(g) ≤ max
l′

wl′(g) < max
l′

wl′(h
∗) = wl(h

∗) (2.34)

for l ∈ {0, 1, . . . , ⌈N/2⌉ − 1}.

We now look at the relation between gl and h∗l for each l. From (2.6), we have
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g0 = h∗0 = 0. Substituting these equations into (2.24), we obtain

w0(g) =


2(|a∗n|+ ϵn)g1 if N is odd,

(|a∗n|+ ϵn)g1 else,

w0(h
∗) =


2(|a∗n|+ ϵn)h

∗
1 if N is odd,

(|a∗n|+ ϵn)h
∗
1 else.

For the case l = 0 in (2.34), we have w0(g) < w0(h
∗). Thus, from the above equations,

we have that

g1 < h∗1. (2.35)

Furthermore, by (2.24), it follows that

wl(g) = (|a∗n|+ ϵn)gl+1 − (|a∗n| − ϵn)gl,

wl(h
∗) = (|a∗n|+ ϵn)h

∗
l+1 − (|a∗n| − ϵn)h

∗
l

for l ∈ {1, 2, . . . , ⌈N/2⌉ − 1}. Substitution of these equations into (2.34) gives

gl+1 ≤ rgl +
maxl′ wl′(g)

|a∗n|+ ϵn
, h∗l+1 = rh∗l +

maxl′ wl′(h
∗)

|a∗n|+ ϵn
.

By introducing the relation (2.35) to the above, we recursively obtain gl < h∗l for

all l ∈ {1, 2, . . . , ⌈N/2⌉}. This contradicts g⌈N/2⌉ = h∗⌈N/2⌉ = 1/2 given in (2.6).

Therefore, it follows that {h∗l }l is the optimal quantizer. ■

Limitations under the use of the optimal quantizer

Since we found the optimal quantizer minimizing E[η2], the lower bound on N sat-

isfying E[η2] < 1 or (2.26) is the necessary condition on the data rate R (= logN).

This is to be proved as the third step.

Proof of Theorem 2.1. In this proof, we derive the bounds (2.20)–(2.22) from
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(2.26) by using {h∗l }l as the quantizer. First, suppose that ϵn > 0. We consider

the following two cases.

(i) N is odd: In this case, by the definition of {h∗l }l, we have that h∗l = (1 −

trl)/(1 − tr⌈N/2⌉). Thus, it holds that maxl wl = ϵn/(1 − tr⌈N/2⌉). Consequently, the

necessary condition (2.26) is equivalent to

E[η2] = p(|a∗n|+ ϵn)
2 + (1− p)

(
ϵn

1− tr⌈N/2⌉

)2

< 1

⇔ N > N (o)
nec :=

log{(1− ϵnν)/t}2

log r
− 1, p < pnec.

(ii) N is even: Similarly, we have that the inequalities

N > N (e)
nec :=

log(1− ϵnν)
2

log r
, p < pnec

are necessary.

Comparing N
(o)
nec with N

(e)
nec, by (2.18), we have N

(o)
nec > N

(e)
nec. Hence, N > N

(e)
nec and

p < pnec are necessary for both cases (i) and (ii). Using the relation R = logN , we

obtain the condition (2.20). Finally, since pnec must be larger than zero, we arrive at

ϵn < 1 as in (2.22).

We next proceed to the case ϵn = 0. It follows that maxl wl = |a∗n|/N . Thus,

(2.26) is equivalent to

E[η2] = p|a∗n|2 + (1− p)
|a∗n|2

N2
< 1.

Solving the above inequality with respect to N , we have the condition in (2.20) for

the case ϵn = 0. ■

2.3 Construction of stabilizing controllers

In this section, we present a sufficient condition for the existence of a stabilizing

feedback control scheme. We will first present the proposed control law and then

provide a result to analyze the stability based on the approach of Markov jump
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systems. In particular, the result shows that in the scalar system case, the data rate

bound from Theorem 2.1 is sufficient for robust stabilization.

2.3.1 Sufficient condition for stability

Given a certain data rate R, or N , and a quantizer whose boundaries are {hl}l, we

employ the control law as follows: In the encoder (2.5), the scaling parameter is

determined by

σk =µ(Y−
k ), (2.36)

and in the controller (2.11), the control is given as

uk := −c(Y−
k+1). (2.37)

Here, we denote the midpoint of the interval Y−
k+1 as c(Y−

k+1).

Remark 2.4. The control low (2.37) brings the midpoint of the prediction set Y−
k+1 to

the origin. We note that, for uncertain plants, this control low may be different from

the dead-beat control based on the nominal parameters; for any interval AiYk−i+1

consists of Y−
k+1, the midpoint of AiYk−i+1 does not coincide with that of a∗iYk−i+1 in

general (see the basic results about products of intervals [38]).

Next, we introduce some notations required for the analysis of the resulting system.

For i = 1, 2, . . . , n, let the random variables θi,k be given by

θi,k :=


|a∗i |+ ϵi if γk−i+1 = 0,

wi if γk−i+1 = 1.

(2.38)
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Here, wi is defined as follows for the given quantizer boundaries {hl}l:

wi :=



max
{
w

(0)
i , w

(1)
i

}
if N is odd and Ai ̸∋ 0,

max
{
ϵi, w

(0)
i

}
if N is odd and Ai ∋ 0,

w
(1)
i if N is even and Ai ̸∋ 0,

ϵi if N is even and Ai ∋ 0,

where

w
(0)
i := 2(|a∗i |+ ϵi)h1, (2.39)

w
(1)
i := max

l∈{0,...,⌈N/2⌉−1}
{(|a∗i |+ ϵi)hl+1 − (|a∗i | − ϵi)hl} . (2.40)

As we will see in the proof later, these are useful to bound the interval AiYk−i+1 in

(2.17) as µ(AiYk−i+1) ≤ θi,kσk−i+1. Moreover, define the random variable matrix HΓk

containing θ1,k, . . . , θn,k by

HΓk
:=


0 1 · · · 0

...
. . . . . .

...

0 0 · · · 1

θn,k θn−1,k · · · θ1,k


, where Γk := [γk−n+1 γk−n+2 · · · γk]. (2.41)

Here, this process Γk is a Markov chain, which has 2n states given by Γ(1) := [0 · · · 0 0],

Γ(2) := [0 · · · 0 1], . . . , Γ(2n) := [1 · · · 1 1] and the transition probability matrix P ∈

R2n×2n is given by

P :=



P ′ 0
. . .

0 P ′

P ′ 0
. . .

0 P ′


∈ R2n×2n , P ′ :=

[
p 1− p

]
∈ R1×2, (2.42)
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where the (i, j) element of P is equal to the transition probability from Γ(i) to Γ(j).

Note that HΓk
takes a controllable canonical form similar to Ak in (2.3). In fact, this

matrix HΓk
corresponds to the A-matrix of a certain approximation of the overall

uncertain system with the packet loss process. It is noted that this approximate

system can be viewed as a Markov jump linear system. Though the only random

process in the original system in Fig. 2.1 is that of the losses, which is i.i.d., the

Markov property arises because the control input in (2.37) depends on the information

received in the last n steps, as we can see in the prediction set Y−
k+1 of the output in

(2.13). Finally, we define the matrix F using HΓk
and P by

F := F1F2, (2.43)

where

F1 := P T ⊗ In2 , (2.44)

F2 := diag (HΓ(1) ⊗HΓ(1) , . . . , HΓ(2n) ⊗HΓ(2n)) .

Here, diag(·) denotes a block diagonal matrix and ⊗ is the Kronecker product. Also,

let ρ(·) be the spectral radius of a matrix.

We are now ready to present the main theorem of this section. It employs results

from the theory of Markov jump linear systems [8].

Theorem 2.2. Given the data rate R = logN , the loss probability p ∈ [0, 1), and

the quantizer {hl}l, if the matrix F in (2.43) satisfies

ρ(F ) < 1, (2.45)

then under the control law using (2.36) and (2.37), the system depicted in Fig. 2.1 is

MSS.

This theorem shows that the problem of seeking a sufficient data rate can be

reduced to the stability test problem of the matrix F . The matrix F is of the size
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2nn2 × 2nn2 and appears in basic theorems to check stability of Markov jump linear

systems.

2.3.2 Tightness in the scalar systems case

It is important to note that for the special case of scalar plants (n = 1), Theorem 2.1

provides a necessary and a sufficient condition. This fact is stated as a corollary

below.

Corollary 2.1. In the system depicted in Fig. 2.1, if the plant is a scalar system and

satisfying Assumption 2.1, then the following hold:

(i) If the data rate R satisfies R > ⌈Rnec⌉, and (2.21) and (2.22) hold, then the

system is MSS.

(ii) The quantizer q∗N minimizes the required data rate for stability.

Proof. (i): From the proof of Theorem 2.1, if the inequalities R > ⌈Rnec⌉, (2.21),

and (2.22) hold, then under the quantizer q∗N given in (2.31), we have that E[η2] < 1,

i.e., (2.26) in Lemma 2.2 holds. On the other hand, since n = 1, it follows that

HΓ(1) = |a∗n|+ ϵn, HΓ(2) = max
l
wl, P =

 p 1− p

p 1− p

 ,
where wl is defined in (2.24). Using the above matrices, we obtain that the inequality

(2.26) is equivalent to the sufficient condition (2.45).

(ii): This is obvious from the fact that (2.45) is equivalent to (2.26), and that the

quantizer q∗N minimizes E[η2] by Lemma 2.3. ■

We now compare our result with those in the literature. In [48] and [34], sufficient

conditions for stabilization of uncertain plants via lossless channels (p = 0) are given.

For the case n = 1, the sufficient bound in [48] is

Rsuf := log2
|λA∗| − ϵ1(|λA∗|+ ϵ1)

1− ϵ1(2|λA∗|+ 2ϵ1 + 1)
, (2.46)



34 Chapter 2. Control of uncertain systems over networks

and the one from [34] becomes

R′
suf := log2

|λA∗|
1− ϵ1

. (2.47)

On the other hand, from Corollary 2.1, we have that Rnec is a sufficient data rate

bound for the case n = 1. It is easy to verify that Rnec < Rsuf, R
′
suf. Thus, our result

shows that the known bounds (2.46) and (2.47) contain conservatism. However,

for general order plants, it is difficult to compare Theorem 2.2 with the bounds

in [48] and [34] since the types of uncertainties are different: In [48], unstructured

uncertainties have been considered, and it is hard to describe the data rate limitation

in an explicit form; while in [34], multi-dimensional plants have not been studied.

The work of [44] gives another sufficient condition for stabilization via lossy channels,

but the quantizer is constrained to be uniform; Theorem 2.2 is an extension to a more

general quantizer case.

The following example is provided to illustrate the gap between the theoretical

bounds on the data rate given in Theorems 2.1 and 2.2.

Example 2.3. Consider a second-order plant, where the plant parameter a∗1 is fixed

as a∗1 = 1.0 and the uncertainty bounds are taken as ϵ1 = 0.1, ϵ2 = 0.2, and a lossy

channel with the loss probability p = 0.05. In Fig. 2.6, we plot the bounds on the data

rate versus the product of the eigenvalues |λA∗| of the nominal plant, which is equal

to |a∗2|. The vertical dash-dot line represents the supremum of |λA∗| such that p < pnec

holds. Hence, the necessary condition (2.21) is not satisfied on the right-hand side

of this line. Here, we consider two different quantizers: the optimal one q∗N and the

uniform one. In the figure, the solid lines illustrate the bounds given by Theorems

2.1 and 2.2 when the quantizer is optimal, and the dotted lines are those for the case

of the uniform quantizer studied in [44]. The figure shows that by using the optimal

quantizer, we can stabilize the system under a lower data rate compared with the

case using the uniform one. Here, the sufficient bounds take discrete values since the

rates are rounded to integers. In Chapter 3, we will show that the increments due to

rounding can be suppressed by employing time-varying data rate.



2.3. Construction of stabilizing controllers 35

1 2 3 4 5
0

1

2

3

4

5

6

7

8

Product of the eigenvalues of the plant

D
at

a 
ra

te
 l

im
it

at
io

n
s Suf. data rate

(uniform q.)

Suf. data rate
(proposed q.)

Nec. data rate
(proposed q.)

Nec. data rate
(uniform q.)

Loss prob. limit

Figure 2.6: Bounds on the data rate (n = 2, a∗1 = 1.0, ϵ1 = 0.1, ϵ2 = 0.2, p = 0.05):
The solid lines are the sufficient bound and the necessary bound when the quantizer
is optimal q∗N , while the dotted lines are those for the case of the uniform one
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2.3.3 Proof of Theorem 2.2

Theorem 2.2 is directly obtained after the proof of the key lemma, which shall be soon

given below. The lemma states that mean square stability of the feedback system can

be reduced to stability of the following Markov jump linear system:

zk+1 = HΓk
zk, z0 := [σ−n+1 σ−n · · · σ0]T . (2.48)

Lemma 2.4. If the Markov jump linear system (2.48) is stable in the sense that

E[zkz
T
k ] converges to the zero matrix, then the system in Fig. 2.1 can be MSS under

the control law using (2.36) and (2.37).

Proof. First, we show that if E[σ2
k] → 0 then E[|yk|2] → 0 as k → ∞ under the

control law. This is easy to establish because by substituting (2.37) to (2.1) and by

referring to the definition (2.13) of Y−
k+1, we have that

|yk+1|=
∣∣a1,kyk + · · ·+ an,kyk−n+1 − c(Y−

k+1)
∣∣

≤
µ(Y−

k+1)

2
=
σk+1

2
. (2.49)

Next, to establish that the stability of (2.48) implies that σk is MSS, we prove the

following relation

σk ≤ (zk)n for k = 0, 1, . . . , (2.50)

where (·)n is the nth element of a vector.

By (2.36) and the equality in (2.16) from Lemma 2.1, we have

σk+1 =
n∑

i=1

µ (AiYk−i+1) . (2.51)
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For the ith term µ (AiYk−i+1), it holds that

µ (AiYk−i+1) =


(|a∗i |+ ϵi)µ(Yk−i+1) if Yk−i+1 ∋ 0,

|a∗i |µ(Yk−i+1) + ϵ|Yk−i+1 + Yk−i+1| if Yk−i+1 ̸∋ 0 and Ai ̸∋ 0,

2ϵi max
{
|Yk−i+1|, |Yk−i+1|

}
if Yk−i+1 ̸∋ 0 and Ai ∋ 0,

(2.52)

by using basic results in interval arithmetics [38] for i = 1, 2, . . . , n. By taking the

maximum of µ (AiYk−i+1) over all possible Yk−i+1, we can establish

µ (AiYk−i+1) ≤ θi,kσk−i+1, (2.53)

where θi,k is given in (2.38). To show (2.53), consider the following three cases.

(i) γk−i+1 = 0: By the definition (2.10), we have that Yk−i+1 =

[−σk−i+1/2, σk−i+1/2] ∋ 0. Thus, by (2.52), it follows that µ (AiYk−i+1) = (|a∗i | +

ϵi)σk−i+1. From the definition (2.38) of θi,k, in this case we have θi,k = |a∗i | + ϵi and

hence, (2.53) holds.

(ii) γk−i+1 = 1 and N is odd: To evaluate µ (AiYk−i+1), we consider the following

two cases.

(ii-1) Yk−i+1 ∋ 0: By (2.7), it must hold Yk−i+1 = [−h1σk−i+1, h1σk−i+1). Thus,

from (2.52), we have

µ (AiYk−i+1) = (|a∗i |+ ϵi)(h1σk−i+1 + h1σk−i+1) = w
(0)
i σk−i+1, (2.54)

where w
(0)
i is defined in (2.39).

(ii-2) Yk−i+1 ̸∋ 0: In this case, we have Yk−i+1 = [hlσk−i+1, hl+1σk−i+1) or

[−hl+1σk−i+1,−hlσk−i+1), where l ∈ {1, 2, . . . , ⌈N/2⌉−1}. Thus, by (2.52), we obtain

µ (AiYk−i+1) =


{(|a∗i |+ ϵi)hl+1 − (|a∗i | − ϵi)hl}σk−i+1 if Ak−i+1 ̸∋ 0,

2ϵihl+1σk−i+1 if Ak−i+1 ∋ 0.
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Taking the maximum of the right-hand side of the above equality over l ∈

{1, 2, . . . , ⌈N/2⌉ − 1}, we have

max
l
µ (AiYk−i+1) =


w

(1)
i σk−i+1 if Ak−i+1 ̸∋ 0,

ϵiσk−i+1 if Ak−i+1 ∋ 0,

(2.55)

where w
(1)
i is defined in (2.40).

Combing (2.54) and (2.55), we conclude that (2.53) holds in the case (ii) also.

(iii) γk−i+1 = 1 and N is even: In this case, it holds that Yk−i+1 ̸∋ 0. Hence, this

case can be reduced to (ii-2).

From (2.51) and (2.53), it follows that

σk+1 ≤
n∑

i=1

θi,kσk−i+1. (2.56)

Notice that the right-hand side of (2.56) is equal to the nth low of HΓk
[σk σk−1 · · ·

σk−n+1]
T . Thus, from the definition of the Markov jump system (2.48), we obtain

(2.50).

Finally, it is straight forward to show that if E[zkz
T
k ] goes to the zero matrix, then

E[σ2
k] → 0. ■

From [8, Theorem 3.9], it follows that the inequality (2.45) implies that (2.48) is

stable. Hence, we conclude that Theorem 2.2 holds.

2.3.4 Convergence speed

The condition (2.45) in Theorem 2.2 provides us a criterion on the data rate or the

loss probability for achieving the stability of the system. However, the condition

does not say anything about performance of systems satisfying (2.45). It may be

natural to expect that a system satisfies the condition by a certain margin, i.e., a

system of smaller ρ(F ) will be more stable with rapid convergence. Here we show as

a proposition that this is in fact true.
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Proposition 2.2. Consider the system in Fig. 2.1 governed by the control law using

(2.36) and (2.37), and suppose that (2.45) is satisfied. Given β ∈ (ρ(F ), 1), there

exists a constant α > 0 such that E[y2k] ≤ αβk.

In other words, the spectrum radius ρ(F ) is a lower bound on the convergence

rate of the mean square of the output. Hence, we can evaluate the stability and the

performance of a system by computing ρ(F ).

Proof. From the inequalities (2.49) and (2.50) in the proof of Lemma 2.4, we have

E[y2k] ≤ E[∥zk∥2], (2.57)

where zk is the state of (2.48) and ∥ · ∥ represents the Euclidean norm.

In what follows, we evaluate the convergence speed of the Markov jump system

(2.48). From [8, Proposition 3.25], if ρ(F ) < 1 then the state zk is bounded as

E[∥zk∥2] ≤ αβk∥z0∥2

for some constants α ≥ 1, 0 < β < 1. By [31, Lemma 1], the constants are determined

as follows: β is an arbitrary value in (ρ(F ), 1) and α is a constant depending on β and

HΓ(1) , . . . , HΓ(2n) . Therefore, by introducing α := α∥z0∥2, we have E[∥zk∥2] ≤ αβk.

Finally, from this inequality and (2.57), we conclude that the theorem holds. ■

Now we give a numerical example to see how the convergence rate varies with

respect to the communication constraints on the channel.

Example 2.4. Consider a second-order plant, where a∗1 = 1.0, ϵ1 = 0.1, a∗2 = 2.0,

ϵ2 = 0.1. We plot lower bounds on the convergence rate, i.e., the spectrum radius of

F versus the data rate and the packet loss probability in Fig. 2.7. In the figure, the

horizontal plane represents the level at ρ(F ) = 1. Hence, the feedback system can

be MSS when the data rate and the loss probability lie under the plane. We see that

rich communication with a high data rate and a small packet loss probability results

in a good performance of rapid convergence.
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Figure 2.7: Lower bound on the convergence rate versus the data rate and the packet
loss probability (n = 2, a∗1 = 1.0, ϵ1 = 0.1, a∗2 = 2.0, ϵ2 = 0.1)

In Figs. 2.8 and 2.9, we show the convergence rate bounds under the fixed packet

loss probabilities (p = 0.00, 0.05, 0.10) and the fixed data rates (R = 2, 4, 6), respec-

tively. Note that in Fig. 2.8 data rates must be taken as integers, where we plot the

markers. In Fig. 2.8, the convergence rate bounds decay with respect to the data rate

but the decreasing speeds are saturated when the data rate is large. By contrast,

Fig. 2.9 shows that such saturation does not appear in the relation with the conver-

gence rate and the loss probability. This difference between the effects of the data

rate and that of the loss probability on the convergence rate can be explained by the

limitations given in Theorem 2.1: The limitation (2.20) on the data rate decreases

when the loss probability becomes smaller since ν depends on p. However, the lim-

itation (2.21) on the loss probability does not depend on the data rate. Thus, even

if we employ a large data rate, we cannot improve the margin on p from pnec. On
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Figure 2.8: Lower bounds on the convergence rate versus data rate for cases of the
loss probability p = 0.00 (circle marks), p = 0.05 (triangle marks), and p = 0.10
(square marks)

the contrary, if the loss probability becomes smaller, then both margins on R and p

become larger from the limitations.
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Figure 2.9: Lower bounds on the convergence rate versus packet loss probability for
cases of the data rate R = 2 (solid line), R = 4 (dashed line), and R = 6 (dotted line)



Chapter 3

Control with time-varying data

rate

In the previous chapter, we have studied limitations under the setup that the data

rate is static, i.e., the bit-length of a packet is the same for every time step. In this

section, we introduce a time-varying data rate and study limitations on the data rate

for stability in the sense of average.

The motivation for introducing time-varying data rates is summarized as follows.

When we consider a practical quantization and communication scheme, we cannot

choose the data size of each transmission to be a noninteger. Hence, for a number R

satisfying the sufficient condition in Theorem 2.2, the actual data rate required for

stabilization is ⌈R⌉, which may be larger than R. The sufficient bounds illustrated in

Fig. 2.6 take discrete values due to this rounding and are greater than the minimum

R satisfying (2.45) except the case that the minimum becomes an integer.

In various data rate results such as those in [40,57,64], it is known that when we

know the exact plant model and employ time-varying data rates, then this gap on

the data rate can be made arbitrarily small. That is, for any R ∈ R greater than the

bound in Theorem 2.1 (with ϵn = 0), there exists a feasible controller to stabilize the

system. In this chapter, we follow such an approach for the case of uncertain plants

and develop a control scheme with a time-varying data rate.

The results in this chapter have been partially presented in our works [43–45].

43



44 Chapter 3. Control with time-varying data rate

3.1 Problem formulation

We follow the setup in Chapter 2 where the main difference is that the encoder and the

decoder can use time-varying data rates. At time k, the encoder quantizes the plant

output yk using a quantizer qk,Nk
, where qk,Nk

is a piece wise constant function which

divides its input range [−1/2, 1/2] into Nk cells. For each time step, the quantizer

has the same structure of that introduced in Chapter 2: The quantization cells are

symmetric about the origin, and the boundaries of the cells satisfy (2.6). We assume

that the encoder and the decoder share the schedule of quantizers {qk,Nk
}k so that

transmitted data can be successfully decoded.

Instead of the static data rate R, we study limitations on the average data rate

defined as follows

R := lim
k→∞

1

k

k−1∑
i=0

logNi.

In the following, we show a necessary condition and a sufficient condition for making

the system in Fig. 2.1 MSS.

3.2 Limitations on average data rate

3.2.1 Necessary condition for stability

The following theorem provides necessary bounds on the average data rate, the loss

probability, and the magnitude of the uncertainty.

Theorem 3.1. For the system in Fig. 2.1 satisfying Assumption 2.1, if the system is

MSS with the time-varying data rate, then it holds that

R > Rnec, (3.1)

0 ≤ p < pnec, (3.2)

0 ≤ ϵn < 1, (3.3)
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where the bounds Rnec and pnec are defined in (2.20) and (2.21), respectively.

The above theorem implies that the necessary bounds given in Theorem 2.1 are

valid even if we extend the class of communication schemes from static ones to time-

varying ones. We note that in the literature there are two types of communication

schemes employing time-varying data rates. The first type is the one considered here

and also in [57]. Under the scheme, for every time step, the observation of the plant

output is done and the plant is driven by the control input. On the other hand,

another communication scheme has been developed in [40, 44, 64]. The idea is as

follows: Divide the time into cycles of the same duration. At the initial step of each

cycle, the encoder observes the plant output and then sends it slowly during the cycle.

At the end of the cycle, the controller estimates the plant state and generates the

input using the received information regarding the state data of the state from the

initial time of the cycle. Except the last steps of the cycles, the control input is kept

as zero.

An interesting point is that when the plant is known, these two schemes provide

the same bound on the data rate, but for uncertain plants, the bounds are different.

This is because in the latter scheme, the plant uncertainty causes accumulation of

error in the state estimation, which affects the accuracy in the control input, since

only the information at the beginning of the cycle is used.

3.2.2 Proof of Theorem 3.1

When the plant has no uncertainty, the proof of Theorem 3.1 follows in a straight-

forward manner from Theorem 2.1 or [64]. However, in the case of uncertain plants,

we need a few additional steps. As in the the static data rate case, the nonuniform

quantizer q∗N in (2.31) will be shown to be optimal in the derivation, but its complex

definition brings some analytical difficulties.

We will prove Theorem 3.1 in two steps in the following. We also have to consider

the cases of ϵn > 0 and ϵn = 0 separately, since the definition of the optimal quantizer,

which we employ in the following step, is different depending on ϵn. During the proof,
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we assume ϵn > 0. For the case of ϵn = 0, we can prove by following the same steps

using the uniform quantizer, which is the optimal one in this case.

As the first step, we give another form of the necessary condition as a lemma. To

state the lemma, we define the following random variable ηk for the number Nk of

the quantization cells at time k:

ηk :=


|a∗n|+ ϵn if γk = 0,

vk if γk = 1,

(3.4)

where vk corresponds to the maximum wl in (2.24) when the quantizer is q∗Nk
, and is

defined as follows:

vk :=


ϵn

1−tr(Nk+1)/2 if ϵn > 0 and Nk is odd,

ϵn
1−rNk/2 if ϵn > 0 and Nk is even,

|a∗n|
Nk

if ϵn = 0.

(3.5)

Then the following lemma holds.

Lemma 3.1. If the system depicted in Fig. 2.1 is MSS with time-varying data rates,

then for each α ∈ {0, 1, . . . , n− 1}, there exists a sequence of integers {m(α)
i }∞i=0 such

that

m
(α)
i −1∏
j=0

E[η2
n(

∑i−1
l=0 m

(α)
l +j)+α

] < 1, i = 0, 1, . . . , (3.6)

where
∑−1

l=0m
(α)
l := 0 for all α.

This lemma is a modified version of Lemma 2.2 as the data rate is time varying

and the quantizer is optimal, i.e., q∗Nk
. As we have seen in the proof of Theorem 2.1,

we focus on the effect of the nth parameter an,k on the expansion of the prediction

set Y−
k+1. If the quantizer is static, then the mean square of the expansion rate ηk−n+1

of Y−
k+1 must be smaller than 1 for every time step. On the other hand, when we

employ a time-varying one, the expansion rate may be greater than 1 at a certain
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time. However, there must exist a time interval such that the expansion rate from a

certain time k to the last step of the interval becomes smaller than 1 in expectation.

In Fig. 3.1, we illustrate such an interval starting from k = 0. We denote the last

step of the interval by nm
(0)
0 , where m

(0)
0 ∈ N. If we take nm(0)

0 as the initial time, we

have another interval. Let the length of the interval be nm
(0)
1 . Repeating the process

we can divide the time into the intervals, where the ith interval starts at n
∑i−1

l=0m
(α)
l

and its length is nm
(0)
i . Furthermore, since the index of the expansion rate ηk is taken

to be n periodic, there exist n series of such intervals depending on the initial time

α ∈ {0, 1, . . . , n− 1} of the first interval of i = 0 (see Fig. 3.2).

Proof of Lemma 3.1. By the proofs of Lemmas 2.2 and 2.3, we have that

σk+1 ≥ ηk−nσk−n ≥ · · · ≥
⌊k/n⌋∏
j=0

ηnj+[k]nσ[k]n ,

where [·]n is the residue modulo n and ⌊·⌋ is the floor function. Since the random
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variable ηk depends only on γk, by taking mean square of the above, we obtain

E[σ2
k+1] ≥

⌊k/n⌋∏
j=0

E[η2nj+[k]n ]E[σ
2
[k]n ].

Note that E[σ2
k+1] → 0 as k → ∞ because of the stability of the system, but E[σ2

[k]n
]

remains positive since σk satisfies (2.12) and the lengths of the initial state estimation

sets are positive (see Section 2.1). Taking the limits of both sides as k → ∞, we have

lim
k→∞

⌊k/n⌋∏
j=0

E[η2nj+[k]n ] = 0.

Hence, for each [k]n = α ∈ {0, 1, . . . , n− 1}, there exists an integer m
(α)
0 such that

m
(α)
0 −1∏
j=0

E[η2nj+α] < 1.

Now, taking m
(α)
0 as the initial time and applying the same procedure, we have that

(3.6) holds. ■

We can show the bounds (3.2) and (3.3) on p and ϵn by Lemma 3.1 and the

following discussion: Taking the limit of E[η2j ] as Nj → ∞, we obtain

lim
Nj→∞

E[η2j ] ≥ p(|a∗n|+ ϵn)
2 + lim

Nj→∞
(1− p)

(
ϵn

1− rNj/2

)2

= p
(
(|a∗n|+ ϵn)

2 − ϵ2n
)
+ ϵ2n. (3.7)

The first inequality is due to (3.4) and the fact that when ϵn > 0, the variable vk is

greater than or equal to ϵn/(1−rNj/2) for each Nj. From (3.7), we see that if p ≥ pnec,

then we must have E[η2j ] ≥ 1 for any large Nj. However this cannot hold under the

assumption that the system is MSS. This is because (3.6) must hold for any {Nj}.

Hence, we have p < pnec. Moreover, to make pnec positive, (3.3) must be satisfied.

Now, we proceed to the second step to show the bound (3.1) on R. In this step,

based on (3.6), we evaluate the minimum of R. In particular, we focus on each interval
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introduced in Fig. 3.2

{
n

(
i−1∑
l=0

m
(α)
l + j

)
+ α : j = 0, 1, . . . ,m

(α)
i − 1

}
(3.8)

indexed by α and i and derive a lower bound on the average data rate used during

the interval, that is, 1/m
(α)
i

∑m
(α)
i −1

j=0 logN
n(

∑i−1
l=0 m

(α)
l +j)+α

. Here, the lower bound will

be obtained by solving a certain minimization problem.

For simplicity of notation, let m be the number m
(α)
i of elements in the interval

(3.8) and let Ňj be the number of quantization cells N
n(

∑i−1
l=0 m

(α)
l +j)+α

. Then, we

consider the following minimization problem:

minimize ϕ(Ň) :=
m−1∏
j=0

Ň
1/m
j , (3.9a)

subject to ψ(Ň) :=
m−1∏
j=0

E[η̌2j ]− 1 ≤ 0. (3.9b)

Here, we introduced the vector Ň := [Ň0 Ň1 · · · Ňm−1]
T and

η̌j :=


|a∗n|+ ϵn with prob. p,

ϵn

1−rŇj/2
with prob. 1− p.

(3.10)

As a constraint, we employ (3.9b) with η̂j instead of (3.6) with ηj. This is because

ηj is difficult to treat since it depends on whether Nj is even or odd. One can easily

verify that the constraint (3.9b) is looser than (3.6) because ηj ≥ η̌j holds in general.

Thus, the solution Ň∗ = [Ň∗
0 Ň∗

1 · · · Ň∗
m−1]

T of the minimization problem (3.9a)

gives a lower bound on the average data rate.

We now show that the solution Ň∗ is represented by using 2Rnec .

Lemma 3.2. When p satisfies (3.2), the solution of the minimization problem (3.9a),

(3.9b) is Ň∗
j = 2Rnec for all j ∈ {0, 1, . . . ,m− 1}.

Proof. It can be verified that ϕ(Ň) and ψ(Ň) are convex functions. Let L(z, λ) be
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the Lagrangian of the minimization problem as

L(Ň, λ) := ϕ(Ň) + λψ(Ň)

and let

Ň ′ :=
[
2Rnec 2Rnec · · · 2Rnec

]T
, λ′ :=

−ϵnν
m(1− ϵnν)(1− p(|a∗n|+ ϵn)2) log r

.

Then we have that

∂

∂Ňi

L(Ň, λ) =
ϕ(Ň)

mŇi

+ λ
ϵ2n(1− p)(log r)rŇi/2

(1− rŇi/2)3

m−1∏
j=0
j ̸=i

E[η̌2j ]

and hence ∇ŇL(Ň
′, λ′) = 0. Furthermore, because the loss probability p satisfies

(3.2), it holds that λ′ > 0. Thus, the pair (Ň ′, λ′) satisfies the KKT condition [33]

and hence, Ň ′ is the optimal solution. ■

By Lemma 3.2, we have that log(
∏m−1

j=0 Ň
∗
j )

1/m = Rnec is a lower bound on the

average data rate of the interval of length m. Applying this result to all intervals of

lengths m
(α)
i , we obtain (3.1). This completes the proof of Theorem 3.1.

3.3 Sufficient condition

In this section, we present a sufficient condition for the case of time-varying quantiza-

tion. Here, we follow the protocol proposed in [57], which is based on an m-periodic

quantizer {qj,Nj
}m−1
j=0 ; at time k, the quantizer is q[k]m,N[k]m

, where [·]m is the residue

modulo m. Denote the set of boundary points of qj,Nj
as {hl,j}l. As the scaling pa-

rameter and the control input, we employ the ones given in (2.36) and (2.37) from

the static quantization case. The sufficient condition can be proved in a way similar

to that for the static data rate case studied in Section 2.3. Again the argument is

based on representing the overall system by a Markov jump linear system. Thus, in

what follows, we have to introduce slightly different notations.
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For i = 1, 2, . . . , n, we introduce the following random variables θ̃i,k:

θ̃i,k :=


|a∗i |+ ϵi if γk−i+1 = 0,

wi,[k]m if γk−i+1 = 1,

where wi,j is defined as

wi,j :=



max
{
w

(0)
i,j , w

(1)
i,j

}
if Nj is odd and Ai ̸∋ 0,

max
{
ϵi, w

(0)
i,j

}
if Nj is odd and Ai ∋ 0,

w
(1)
i,j if Nj is even and Ai ̸∋ 0,

ϵi if Nj is even and Ai ∋ 0,

w
(0)
i,j := 2(|a∗i |+ ϵi)h1,j,

w
(1)
i,j := max

l∈{0,...,⌈Nj/2⌉−1}
{(|a∗i |+ ϵi)hl+1,j − (|a∗i | − ϵi)hl,j} .

Moreover, define the random variable matrix H̃Γ̃k
containing θ̃1,k, . . . , θ̃n,k by

H̃Γ̃k
:=


0 1 · · · 0

...
. . . . . .

...

0 0 · · · 1

θ̃n,k θ̃n−1,k · · · θ̃1,k


,

where Γ̃k := [[k]m γk−n+1 γk−n+2 · · · γk]. Here, the process Γ̃k is a Markov chain

which has m2n states given by

Γ̃(1) := [0 0 · · · 0 0], Γ̃(2) := [0 0 · · · 0 1], . . . , Γ̃(2n) := [0 1 · · · 1 1],

Γ̃(2n+1) := [1 0 · · · 0 0], . . . , Γ̃(m2n) := [m− 1 1 · · · 1 1].

Furthermore, the transition probability matrix P̃ ∈ Rm2n×m2n of the Markov chain is
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given by

P̃ :=


0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

1 0 · · · 0


⊗ P,

where P is the matrix defined in (2.42). Using H̃Γ̃k
and P̃ , we now introduce the

matrix F̃ as follows:

F̃ := F̃1F̃2, (3.11)

where

F̃1 := P̃ T ⊗ In2 ,

F̃2 := diag
(
H̃Γ̃(1) ⊗ H̃Γ̃(1) , . . . , H̃Γ̃(m2n) ⊗ H̃Γ̃(m2n)

)
.

We can now derive a sufficient condition for stabilization based on the time-varying

quantization. It can be obtained by applying [8] as in Theorem 2.2.

Theorem 3.2. Given the duration m ∈ N, the set of quantizers {qj,Nj
}m−1
j=0 and loss

probability p ∈ [0, 1), if

ρ(F̃ ) < 1, (3.12)

then under the control law using (2.36) and (2.37), the system depicted in Fig. 2.1 is

MSS.

We now show a numerical example and confirm that the time-varying protocol

reduces the required data rate compared with the case of the static one. In partic-

ular, the sufficient bound given in Theorem 3.2 is strictly lower than that given in

Theorem 2.2 except at the points where the bounds become integers.

Example 3.1. Consider a scalar uncertain plant, where ϵ1 = 0.2, and p = 0.05. In
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Figure 3.3: Limitations on the average data rate (n = 1, ϵ1 = 0.2, p = 0.05): The
sufficient bound with the time-varying data rate (solid) is closer to the necessary
bound (dashed) than that with static data rate (dash-dot)

Fig. 3.3, we plot the sufficient bound on the average data rate (by the solid line)

versus the eigenvalue |λA∗| = |a∗1| of the nominal plant; we illustrate an achievable

average data rate which is the minimum over the duration m ≤ 1016 and quantizers

{q∗Nj
}j. The dash-dot and the dashed lines represent the sufficient bound for the case

of static protocol and the necessary bound Rnec, respectively. The figure shows that

the sufficient average data rate (solid line) is smaller than that for static protocols.

Moreover, it is close to the necessary bound (dashed line). Note that currently we

consider the case of n = 1, and hence the sufficient bound is equal to ⌈Rnec⌉ (see

Corollary 2.1) but otherwise there exists a gap between them. When the plant has

no uncertainty, the gap can be arbitrarily small. To reveal this gap in the uncertain

case by an analytical approach is left for future research.





Chapter 4

Further results under uncertain

control inputs

In this chapter, we study a more realistic class of uncertain plants in contrast with

the fundamental class employed in Chapters 2 and 3. In the previous chapters, we

have considered the uncertain plant defined in (2.1) and (2.2), where the uncertainty

lies only on the coefficients ai,k, i = 1, . . . , n, of the past and the current plant states.

We now investigate the case where the coefficient of the input may also be uncertain

and may vary within a known interval. The setup change allows us to deal with

uncertainties on the model of the actuator in the plant. Similar to the previous

chapters, our objective is to study limitations on the data rate, the loss probability,

and the uncertainties for stability. We derive a necessary condition and a sufficient

condition for the mean square stability, which are generalized versions of those shown

in Chapter 2.

We note that the existing work [48] has dealt with uncertainties on inputs: In [48],

a norm bounded uncertain matrix has been given as the coefficient of the input.

However, as we have seen in Chapter 2, [48] has focused only on deriving sufficient

conditions and has not studied necessary ones.

The main difficulty in the setup can be described roughly as follows. As we have

seen, the state estimation error, or the width of Yk, is the key in control under limited

data rate. The error grows over time due to plant instability and is shrunk by state

55
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observations. So far we have assumed that the exact model of the actuator is available.

Thus, the error has been invariant with respect to the control inputs. That is, we

have been able to bring the state anywhere we want with no penalty. However, in

the setup, the control inputs affect on the estimation error. In particular, we will see

that large input will result in further growth in the estimation error. Evaluating such

growth due to inputs is a new challenge in this chapter.

4.1 Problem formulation

Consider again the feedback system depicted in Fig. 2.1. We extend the classes of

plants (2.1) and uncertainties (2.2) from those in Chapter 2. In this chapter, the

plant may include an uncertain input parameter bk:

yk+1 = a1,kyk + a2,kyk−1 + · · ·+ an,kyk−n+1 + bkuk, (4.1)

ai,k ∈ Ai := [a∗i − ϵi, a
∗
i + ϵi] for i = 1, 2, . . . , n, bk ∈ B := [b∗ − δ, b∗ + δ] , (4.2)

where ϵi ≥ 0 and δ ≥ 0. We again assume that the plant is single input and single

output.

To make the plant controllable for all time steps, we introduce the following as-

sumption.

Assumption 4.1. For every time k ∈ Z+, the input parameter bk is nonzero. That

is, the following inequality hods:

|b∗| − δ > 0. (4.3)

Remark 4.1. In (4.1), the order of the input is restricted to one. For plants of two

or more input parameters, it is difficult to characterize the limitations due to the

analytical difficulties caused by the uncertainty. To derive a necessary condition, we

have to study the optimal input for reducing state estimation errors and estimate the

lower bound. When the order of the input is more than one, the analysis becomes a

multi-parameter minimization problem with interval coefficients. It may be possible
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to solve the problem numerically but it is difficult to do so analytically. Since our main

concern is to characterize limitations for stability in an explicit way, we introduced

the restriction on the plant.

Regarding the quantizer, we employ the static one (2.9) and consider a static data

rate R or a number N of the quantization cells.

In the following, we show a necessary condition and a sufficient condition for

making the system in Fig. 2.1 MSS and see how the input uncertainty affects on the

limitations for stability.

4.2 Limitations on data rate and loss probability

under uncertain inputs

4.2.1 Necessary condition for stability

We now introduce the following notations to represent the necessary bound:

ra :=
|λA∗| − ϵn
|λA∗|+ ϵn

, rb :=
|b∗| − δ

|b∗|+ δ
.

These notations represent relative uncertainties on λA∗ (or an,k) and bk. We note that

ra is equal to r defined in (2.19).

The following theorem is the necessity result for the uncertain input parameter

case. Note that ν in theorem has been given in (2.19).

Theorem 4.1. For the system in Fig. 2.1 satisfying Assumptions 2.1 and 4.1, if the

system is MSS with the static quantizer (2.9), then it holds that

R > R̂nec :=


log log{1−(ϵn+δ|λA∗|/|b∗|)ν}2

log(rarb)
if ϵn > 0 or δ > 0,

log |λA∗|+ log ν if ϵn = δ = 0,

(4.4)

0 ≤ p < p̂nec :=
1− (ϵn + δ|λA∗|/|b∗|)2

(|λA∗|+ ϵn)2 − (ϵn + δ|λA∗|/|b∗|)2
, (4.5)

0 ≤ ϵn + δ
|λA∗|
|b∗|

< 1. (4.6)
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The theorem shows how the input uncertainty δ affects on the limitations on the

communication constraints for stability. The minimum data rate R̂nec is monotoni-

cally increasing with respect to δ, and similarly, the maximum loss probability p̂nec

is decreasing. Hence, more uncertainty on bk results in higher requirements in the

communication, higher data rate and less packet loss probability.

It is interesting to note that there is no explicit limitation on δ, but the sum

ϵn + δ|λA∗|/|b∗| of the uncertainties must be smaller than 1. Here, the product δ|λA∗|

implies that the effect of δ on the limitations becomes greater when plant instability

is large. Intuitively, this is because once a control input is applied to the plant state,

then at the next time the state is amplified due to plant instability.

We confirm the limitations in the following example.

Example 4.1. Consider a plant with a∗n = 2.0 and b∗ = 2.0, and set the lossy

probability as p = 0.08. Fig. 4.1 shows the necessary bound R̂nec on the data rate

given in Theorem 4.1 versus the uncertainties ϵn on an,k and δ on bk. For a large ϵn

and δ such that ϵn + δ|λA∗|/|b∗| takes a value close to 1, we need infinitely large data

rate to stabilize the system.

4.2.2 Proof of Theorem 4.1

The main idea to prove Theorem 4.1 is the same as that for Theorem 2.1. The

proof consists of the following three steps. First, we show an inequality regarding the

expansion rate of the state estimation sets. Next, we derive the optimal structure in

the quantization cells for data rate reduction. Finally, by substituting the structure

of the optimal quantizer into the first inequality, the limitations are obtained.

The main difficulty in the case is that we have to take account of the expansion

of the state estimation sets by control inputs. In Chapter 2, since we know the exact

control input and can track the state, the width of the prediction set Y−
k+1 does not

change by the control input applied to the plant. However, in the current setup,

the prediction set will be expanded by the control input due to the existence of the

uncertainty δ. Hence, the scaling parameter σk+1 in the quantizer must be selected
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Figure 4.1: Necessary bound on the data rate versus the magnitudes of the uncer-
tainties ϵn and δ (a∗n = 2.0, b∗ = 2.0, p = 0.08)

to cover the expansion due to the input in addition to the constraint (2.12). For a

given control input uk, the scaling parameter σk+1 at the next time must satisfy the

following inequality:

σk+1 ≥ 2 max
y−∈Y−

k+1, b∈B
|y− + buk|. (4.7)

The above inequality will be referred to in the first step of the proof.

Expansion rate of the estimation sets

The first step is to estimate the expansion rate of the prediction set. We first introduce

the expansion rates ŵl, l = 0, 1, . . . , ⌈N/2⌉− 1, for a given quantizer whose boundary
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points are {hl}l, and the maximum expansion rate η̂:

ŵl :=


2(|a∗n|+ ϵn)hl+1 if N is odd and l = 0,

(|a∗n|+ ϵn)(1 + δ/|b∗|)hl+1 − (|a∗n| − ϵn)(1− δ/|b∗|)hl else,

(4.8)

η̂ :=


|a∗n|+ ϵn with prob. p,

maxl∈{0,1,...,⌈N/2⌉−1} ŵl with prob. 1− p.

(4.9)

Then, the following lemma holds.

Lemma 4.1. If the system depicted in Fig. 2.1 is MSS, then it holds that

E[(η̂)2] < 1. (4.10)

Proof. From the first part of the proof of Lemma 2.2, we have that if the feedback

system is MSS, then the scaling parameter σk is also MSS. In the following, we will

show that

E[σ2
k+1] ≥ E[(η̂)2]E[σ2

k−n+1] (4.11)

and hence (4.10) must hold because of the stability of σk.

To show (4.11), we analyze the lower bound of σk+1 given in (4.7). We claim that

the right-hand side of (4.7) is bounded from below as follows:

2 max
y−∈Y−

k+1, b∈B
|y− + buk| ≥ 2 max

y−∈Y−
k+1, b∈B

|y− + bu∗(Y−
k+1)|

= µ(Y−
k+1) +

2δ

|b∗|
|c(Y−

k+1)|. (4.12)

Here, the control input u∗ is defined as

u∗(Y) := −c(Y)

b∗
(4.13)

for an interval Y on R, and c(·) is the midpoint of an interval. The input u∗(Y−
k+1)
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brings the midpoint of Y−
k+1 into the origin when the parameter bk is equal to b∗.

To show (4.12), we first consider the case that c(Y−
k+1) > 0 and b∗ − δ > 0. For

any input uk, it can be written as uk = u∗(Y−
k+1) ±∆k, where ∆k ≥ 0. Substituting

this into the left-hand side of (4.12), we have

2 max
y−∈Y−

k+1, b∈B
|y− + b(u∗(Y−

k+1)±∆k)|

= 2max
[
Y−

k+1 + (b∗ − δ)
(
u∗(Y−

k+1)±∆k

)
,

−
{
Y−

k+1 + (b∗ + δ)
(
u∗(Y−

k+1)±∆k

)}]
= 2max

[Y−
k+1 − Y−

k+1

2
+
δ

b∗
Y−

k+1 + Y−
k+1

2
± (b∗ − δ)∆k,

Y−
k+1 − Y−

k+1

2
+
δ

b∗
Y−

k+1 + Y−
k+1

2
∓ (b∗ + δ)∆k

]
= max

[
µ(Y−

k+1) +
2δ

b∗
c(Y−

k+1)± 2(b∗ − δ)∆k, µ(Y−
k+1) +

2δ

b∗
c(Y−

k+1)∓ 2(b∗ + δ)∆k

]
.

(4.14)

Here, the first equality follows from the conditions c(Y−
k+1) > 0 and b∗−δ > 0 for this

case. The far right-hand side of (4.14) takes its minimum when ∆k = 0, and hence

we have (4.12).

For the case of c(Y−
k+1) ≤ 0 or b∗ − δ < 0, it can be reduced to the above case by

changing signs of Yk+1, Yk+1, and b
∗ appropriately.

We next evaluate the far right-hand side of (4.12) by focusing on the effect of an,k

on the prediction set Y−
k+1. In particular, we show that

µ(Y−
k+1) +

2δ

|b∗|
|c(Y−

k+1)| ≥ µ(AnYk−n+1) +
2δ

|b∗|
|c(AnYk−n+1)|. (4.15)

The interval AnYk−n+1 is a subset of the prediction set Y−
k+1 defined in (2.13). Thus,

the above inequality implies that if we restrict the space for possible y− from Y−
k+1 to

AnYk−n+1, then the furthest point max |y− + bu∗| from the origin, which should be

covered by σk+1, becomes closer to the origin. To show (4.15), consider the following

claim: For any connected interval AnYk−n+1 on R, there exists a possible Yk−n+2 such
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that

µ(An−1Yk−n+2 +AnYk−n+1) +
2δ

|b∗|
|c(An−1Yk−n+2 +AnYk−n+1)|

≥ µ(AnYk−n+1) +
2δ

|b∗|
|c(AnYk−n+1)|. (4.16)

Here, the interval An−1Yk−n+2 is defined in (2.17) and also the sum of intervals is

defined as:

An−1Yk−n+2 +AnYk−n+1 := {x1 + x2 : x1 ∈ An−1Yk−n+2, x2 ∈ AnYk−n+1} .

It is clear that µ(An−1Yk−n+2 +AnYk−n+1) ≥ µ(AnYk−n+1) by the Brunn-Minkowski

inequality (2.16). Hence, what we have to show is there exists a possible quantiza-

tion cell such that the corresponding estimation set Yk−n+2 satisfies |c(An−1Yk−n+2+

AnYk−n+1)| ≥ |c(AnYk−n+1)|. Consider the following two cases (i) and (ii).

(i) c(AnYk−n+1) ≥ 0: First, suppose that c(An−1) ≥ 0. Then, there exists a

quantization cell such that c(Yk−n+2) ≥ 0 since the cells are symmetric about the

origin (see (2.7) and (2.8)). For such a cell, we have c(An−1Yk−n+2) ≥ 0.

For the case of c(An−1) < 0, we also have c(An−1Yk−n+2) ≥ 0 for a cell such that

c(YYk−n+2
) ≤ 0. Hence, there exists a possible Yk−n+2 and the inequality (4.16) holds.

(ii) c(AnYk−n+1) < 0: This case can be reduced to (i).

Applying the same process to each product AiYk−i+1 of intervals, which are by

(2.13) part of Y−
k+1, for i = n− 1, n− 2, . . . , 1, we have (4.15).

The last step of the proof is calculating the right-hand side of (4.15) and obtain

the following equality:

µ(AnYk−n+1) +
2δ

|b∗|
|c(AnYk−n+1)| = η̂k−n+1σk−n+1, (4.17)
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where η̂k is a random variable defined as

η̂k :=


|a∗n|+ ϵn if γk = 0,

ŵlk if γk = 1.

Here, ŵl is defined in (4.8) and lk represents the index of Yk, the quantization cell

which yk falls into at time k.

To derive (4.17), we consider the following three cases (i)–(iii). For simplicity, we

assume that a∗ > 0 and b∗ > 0 in what follows.

(i) 0 ≤ Yk−n+1: In this case, it must hold that γk−n+1 = 1. From the basic results

for products of intervals [38], (2.17), and (2.18), the upper edge AnYk−n+1 and the

lower edge AnYk−n+1 of the interval AnYk−n+1 are as follows:

AnYk−n+1 = (a∗n + ϵn)Yk−n+1, AnYk−n+1 = (a∗n − ϵn)Yk−n+1.

Substituting these equations into µ(AnYk−n+1) and c(AnYk−n+1), we have

µ(AnYk−n+1) +
2δ

|b∗|
|c(AnYk−n+1)|

= (a∗ + ϵn)Yk−n+1 − (a∗ − ϵ)Yk−n+1 +
2δ

b∗
(a∗ + ϵn)Yk−n+1 + (a∗ − ϵ)Yk−n+1

2

=

{
(a∗ + ϵn)

(
1 +

δ

b∗

)
hlk−n+1+1 − (a∗ − ϵn)

(
1− δ

b∗

)
hlk−n+1

}
σk−n+1,

where we used the relations Yk−n+1 = hll−n+1+1σk−n+1 and Yk−n+1 = hll−n+1
σk−n+1 to

obtain the second equality. Hence, (4.17) holds in this case.

(ii) Yk−n+1 < 0 < Yk−n+1: In this case, we have

AnYk−n+1 = (a∗n + ϵn)Yk−n+1, AnYk−n+1 = (a∗n + ϵn)Yk−n+1. (4.18)

Because of the symmetry of the quantization cells, it holds that c(AnYk−n+1) = 0 and

hence u∗(AnYk−n+1) = 0. Thus, the left-hand side of (4.17) is equal to µ(AnYk−n+1),

which has been analyzed in the proof of Lemma 2.2.
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Consider the following two cases:

(ii-1) If γk−n+1 = 0, then Yk−n+1 = [−σk−n+1/2, σk−n+1/2]. Hence, from (4.18),

we have

µ(AnYk−n+1) +
2δ

|b∗|
|c(AnYk−n+1)| = (a∗ + ϵn)σk−n+1.

(ii-2) Otherwise, N must be odd and lk−n+1 = 1 from (2.7), (2.8), and the condition

(ii). In this case,

µ(AnYk−n+1) +
2δ

|b∗|
|c(AnYk−n+1)| = 2(a∗ + ϵn)h1σk−n+1. (4.19)

since Yk−n+1 = [−h1σk−n+1, h1σk−n+1). Hence, (4.17) holds for this case also.

(iii) Yk−n+1 ≤ 0: This case can be reduced to (i).

From the constraint (4.7) on σk+1 and the inequalities (4.12), (4.15), and (4.17),

it follows that σk+1 ≥ η̂k−n+1σk−n+1. Noticing that {γk}k is i.i.d., then we have

E[σ2
k+1] ≥ E[η̂2k−n+1]E[σ

2
k−n+1]. The expectation E[η̂2k−n+1] may vary with Yk−n+1. By

(4.9), it is clear that η̂ is the maximum of η̂k. Thus, we have (4.11).

Finally, since σk is MSS for all possible parameters and initial values, from (4.11),

the inequality (4.10) must hold. ■

Optimal quantizer

Next, we find the quantizer that minimizes η̂ for a given number N of quantization

cells. We first introduce the following quantizer q̂∗N represented by the boundary

points {h∗l }l as follows:

(i) If ϵn > 0 or δ = 0, then

ĥ∗l =


1
2

1−t̂(rarb)
l

1−t̂(rarb)⌈N/2⌉ if N is odd,

1
2

1−(rarb)
l

1−(rarb)⌈N/2⌉ if N is even,

(4.20)

where t̂ := (1 + δ/|b∗|) / (1− ϵn/|λA∗|).
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(ii) If ϵn = δ = 0, then

ĥ∗l =


1
N

(
l − 1

2

)
if N is odd,

1
N
l if N is even.

(4.21)

The following lemma holds.

Lemma 4.2. The quantizer q̂∗N minimizes E[(η̂)2].

The quantization cells of the optimal quantizer q̂∗N are nonuniform when the plant

is uncertain with ϵn > 0 or δ > 0. The structure of the cells are similar to q∗N ,

which has been introduced in Chapter 2 and is illustrated in Fig. 2.3. The difference

between q∗N and q̂∗N is the ratio of the cells’ width; in q∗N , it depends only on the

relative uncertainty r on an,k but in q̂∗N the ratio is rarb, which is the product of the

relative uncertainties on an,k and bk. When there is no uncertainty in the plant, i.e.,

ϵn = δ = 0, then q̂∗N becomes the well-known uniform quantizer. This is a common

feature of q∗N and q̂∗N .

Proof of Lemma 4.2. We follow the approach in the proof of Lemma 2.3 and con-

sider the minimization of maxl ŵl. One can easily confirm that ŵl are the same for

all l, i.e.,

ŵl = ŵl′ for any l, l
′ ∈ {0, 1, . . . , ⌈N/2⌉ − 1} (4.22)

if and only if the quantizer boundaries are {ĥ∗l }l. Therefore, we show that a quantizer

which does not satisfy (4.22) will result in a larger maxl ŵl compared with the case

that {ĥ∗l }l is employed. We prove this by contradiction.

Let ŵl(h) denote the ŵl when the quantizer is {hl}l. Assume that there exists

a quantizer {gl}l such that (4.22) is not satisfied and it holds that maxl ŵl(g) <

maxl ŵl(h
∗). Then, we have

ŵl(g) ≤ max
l′

ŵl′(g) < max
l′

ŵl′(ĥ
∗) = ŵl(ĥ

∗) (4.23)
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for any l ∈ {0, 1, . . . , ⌈N/2⌉ − 1}.

We now look at the relation between gl and ĥ
∗
l for each l = 0, 1, . . . , ⌈N/2⌉ − 1.

From (2.6), we have g0 = ĥ∗0 = 0. Substituting these equations into (4.8), we obtain

ŵ0(g) =


2(|a∗n|+ ϵn)g1 if N is odd,

(|a∗n|+ ϵn)(1 + δ/|b∗|)g1 else,

(4.24)

ŵ0(ĥ
∗) =


2(|a∗n|+ ϵn)ĥ

∗
1 if N is odd,

(|a∗n|+ ϵn)(1 + δ/|b∗|)ĥ∗1 else.

(4.25)

On the other hand, we have ŵ0(g) < ŵ0(ĥ
∗) by considering the case l = 0 in (4.23).

Thus, from (4.24), (4.25), and this inequality, the following relation holds:

g1 < ĥ∗1. (4.26)

Furthermore, ŵl(g) and ŵl(ĥ
∗) for l ∈ {1, 2, . . . , ⌈N/2⌉ − 1} are defined in (4.8) as

ŵl(g) = (|a∗n|+ ϵn)

(
1 +

δ

|b∗|

)
gl+1 − (|a∗n| − ϵn)

(
1− δ

|b∗|

)
gl,

ŵl(ĥ
∗) = (|a∗n|+ ϵn)

(
1 +

δ

|b∗|

)
ĥ∗l+1 − (|a∗n| − ϵn)

(
1− δ

|b∗|

)
ĥ∗l .

By substituting these equations into (4.23), we have

gl+1 ≤ rarbgl +
maxl′ ŵl′(g)

(|a∗n|+ ϵn)(1 + δ/|b∗|)
, ĥ∗l+1 = rarbĥ

∗
l +

maxl′ ŵl′(ĥ
∗)

(|a∗n|+ ϵn)(1 + δ/|b∗|)
.

From (4.26) and the above, we recursively obtain gl < ĥ∗l for all l = 1, 2, . . . , ⌈N/2⌉.

This contradicts g⌈N/2⌉ = ĥ∗⌈N/2⌉ = 1/2 given in (2.6). Therefore, it follows that {ĥ∗l }l

is the optimal quantizer. ■

Limitations under the use of the optimal quantizer

The last step of the proof of Theorem 4.1 is deriving (4.4)–(4.6) from Lemmas 4.1

and 4.2.
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Proof of Theorem 4.1. It is sufficient to consider the case when δ > 0. Other cases

are from Theorem 2.1.

Consider the following two cases (i) and (ii).

(i) N is even: Substituting (4.20) to the definition (4.8) of ŵl, we have

max
l
ŵl =

ϵn + δ|a∗n|/|b∗|
1− (rarb)⌈N/2⌉ .

Consequently, the inequality (4.10) is equivalent to

E[(η̂)2] = p(|a∗n|+ ϵn)
2 + (1− p)

(
ϵn + δ|a∗n|/|b∗|
1− (rarb)⌈N/2⌉

)2

< 1.

Solving this inequality with respect to N , we have

N > N̂ (e)
nec := 2

log {1− (ϵn + δ|a∗n|/|b∗|)ν}
log(rarb)

and 1−
(
ϵn + δ

|a∗n|
|b∗|

)
ν > 0.

(ii) N is odd: Similarly it follows that (4.10) is equivalent to

N > N̂ (o)
nec := 2

log {1− (ϵn + δ|a∗n|/|b∗|)ν} − log t̂

log(rarb)
− 1

and 1−
(
ϵn + δ

|a∗n|
|b∗|

)
ν > 0.

Comparing the lower bounds N̂
(e)
nec and N̂

(o)
nec, by (2.18) and (4.3), we have N̂

(o)
nec >

N̂
(e)
nec. Therefore, N > N̂

(e)
nec must hold for both cases (i-1) and (i-2). This proves the

inequality (4.4). Furthermore, from the inequality 1− (ϵn + δ|a∗n|/|b∗|) ν > 0, we have

(4.5) and (4.6). ■

4.3 Construction of stabilizing controllers

In this section, we present a sufficient condition for the existence of a control scheme

for the feedback system to be MSS. We follow the approach in Section 2.3 and extend

the control scheme provided in the section to the case of uncertain input parameters.
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4.3.1 Sufficient condition for stability

Given a data rate R and a quantizer with its boundaries {hl}l, we employ the control

law as follows: In the encoder (2.5), the scaling parameter is determined by

σk = µ(Y−
k ) +

2δ

|b∗|
|c(Y−

k )| (4.27)

at each time k. Furthermore, in the controller (2.11), the control input is given as

uk =−
c(Y−

k+1)

b∗
. (4.28)

We note that, as we have seen in the proof of Lemma 4.1, the input (4.28) minimizes

the lower bound shown in (4.7) on σk. Since the minimum is equal to the right-hand

side of (4.27), equality holds in (4.7) under the control law.

Next, we introduce notations required to express the sufficient condition. For

i = 1, 2, . . . , n, let the random variables θ̂i,k be given by

θ̂i,k :=


|a∗i |+ ϵi if γk−i+1 = 0,

ŵi if γk−i+1 = 1.

(4.29)

Here, ŵi is defined as follows for the given quantizer boundaries {hl}l:

ŵi :=



max
{
w

(0)
i , ŵ

(1)
i

}
if N is odd and Ai ̸∋ 0,

max
{
ϵi + δ|a∗i |/|b∗|, w

(0)
i

}
if N is odd and Ai ∋ 0,

ŵ
(1)
i if N is even and Ai ̸∋ 0,

ϵi + δ|a∗i |/|b∗| if N is even and Ai ∋ 0,

where w0
i is defined in (2.39) and ŵ

(1)
i is defined as

ŵ
(1)
i := max

l∈{0,...,⌈N/2⌉−1}

{
(|a∗i |+ ϵi)

(
1 + δ

|a∗i |
|b∗|

)
hl+1 − (|a∗i | − ϵi)

(
1− δ

|a∗i |
|b∗|

)
hl

}
.

(4.30)
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We will see in the proof later that these are used to express an upper bound on

the scaling parameter (4.27) as σk+1 ≤
∑n

i=1 θ̂i,kσk−i+1 Moreover, define the random

variable matrix ĤΓk
containing θ̂1,k, . . . , θ̂n,k by

ĤΓk
:=


0 1 · · · 0

...
. . . . . .

...

0 0 · · · 1

θ̂n,k θ̂n−1,k · · · θ̂1,k


. (4.31)

Here, Γk is the vector of random variables defined in (2.41). The transition probability

matrix P for the process Γk is given in (2.42).

Finally, we define the matrix F̂ using ĤΓk
and P by

F̂ := F1F̂2, (4.32)

where F1 is given in (2.44) and

F̂2 := diag
(
ĤΓ(1) ⊗ ĤΓ(1) , . . . , ĤΓ(2n) ⊗ ĤΓ(2n)

)
.

Here, diag(·) denotes a block diagonal matrix and ⊗ is the Kronecker product. Also,

let ρ(·) be the spectral radius of a matrix.

We are now ready to present the main theorem of this section.

Theorem 4.2. Given the data rate R = logN , the loss probability p ∈ [0, 1), and

the quantizer {hl}l, if the matrix F̂ in (4.32) satisfies

ρ(F̂ ) < 1, (4.33)

then under the control law using (4.27) and (4.28), the system depicted in Fig. 2.1 is

MSS.
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4.3.2 Proof of Theorem 4.2

Following the approach for the proof of Theorem 2.2, we consider the Markov jump

system

ẑk+1 = ĤΓk
ẑk, ẑ0 := [σ−n+1 σ−n · · · σ0]T . (4.34)

We show that the stability of the feedback system can be reduced to stability of (4.34)

in the lemma below.

Lemma 4.3. If the Markov jump linear system (4.34) is stable in the sense that

E[ẑkẑ
T
k ] converges to the zero matrix, then the system in Fig. 2.1 can be MSS under

the control law using (4.27) and (4.28).

Proof. We first show that if E[σ2
k] → 0 then E[|yk|2] → 0 as k → ∞ under the control

law (4.27) and (4.28). Substituting (4.28) into (4.1), and by referring to the definition

(2.13) of Yk+1, we have

|yk+1| =
∣∣∣∣a1,kyk + · · ·+ an,kyk−n+1 − bk

c(Y−
k+1)

b∗

∣∣∣∣
≤ 1

2

(
µ(Y−

k+1) +
2δ

|b∗|
|c(Y−

k+1)|
)

=
σk+1

2
.

Next, to establish that the stability of (4.34) implies that σk is MSS, we prove the

following relation

σk ≤ (ẑk)n for k = 0, 1, . . . , (4.35)

where (·)n is the nth element of a vector.

The scaling parameter (4.27) can be decomposed as follows

σk+1 =
n∑

i=1

µ(AiYk−i+1) +
2δ

|b∗|
|c(Y−

k+1)|

≤
n∑

i=1

{
µ(AiYk−i+1) +

2δ

|b∗|
|c(AiYk−i+1)|

}
. (4.36)
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Here, the equality follows from (2.16) and the inequality holds by applying the triangle

inequality to the second term. For the term µ(AiYk−i+1), we have seen that

µ (AiYk−i+1) =


(|a∗i |+ ϵi)µ(Yk−i+1) if Yk−i+1 ∋ 0,

|a∗i |µ(Yk−i+1) + ϵ|Yk−i+1 + Yk−i+1| if Yk−i+1 ̸∋ 0 and Ai ̸∋ 0,

2ϵi max
{
|Yk−i+1|, |Yk−i+1|

}
if Yk−i+1 ̸∋ 0 and Ai ∋ 0,

(4.37)

for i = 1, 2, . . . , n, in the proof of Lemma 2.4. Similarly, for the second term

2δ|c(AiYk−i+1)|/|b∗| in (4.36), we have

|c(AiYk−i+1)|

=



0 if Yk−i+1 ∋ 0,[
(|a∗i |+ ϵi)max

{
|Yk−i+1|, |Yk−i+1|

}
+(|a∗i | − ϵi)min

{
|Yk−i+1|, |Yk−i+1|

}]
/2 if Yk−i+1 ̸∋ 0 and Ai ̸∋ 0,

|a∗i |max
{
|Yk−i+1|, |Yk−i+1|

}
if Yk−i+1 ̸∋ 0 and Ai ∋ 0,

(4.38)

by using basic results in interval arithmetics [38] for i = 1, 2, . . . , n.

The equations (4.37) and (4.38) are used to obtain the maximum of ith term in

(4.36) over all possible Yk−i+1, i.e., the following inequality:

µ(AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)| ≤ θ̂i,kσk−i+1. (4.39)

To show (4.39), consider the following three cases.

(i) γk−n+1 = 0: In this case, we have Yk−i+1 = [−σk−i+1/2, σk−i+1/2] ∋ 0. Thus,

by (4.37) and (4.38), it follows that

µ (AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)| = (|a∗i |+ ϵi)σk−i+1.

From the definition (4.29) of θ̂i,k, in this case we have θ̂i,k = |a∗i |+ ϵi and hence, (4.39)
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holds.

(ii) γk−i+1 = 1 and N is odd: Consider the following two cases.

(ii-1) Yk−i+1 ∋ 0: By (2.7), it must hold Yk−i+1 = [−h1σk−i+1, h1σk−i+1). Thus,

from (4.37) and (4.38), we have

µ (AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)| = 2(|a∗i |+ ϵi)h1σk−i+1 = w

(0)
i σk−i+1, (4.40)

where w
(0)
i is defined in (2.39).

(ii-2) Yk−i+1 ̸∋ 0: In this case, we have Yk−i+1 = [hlσk−i+1, hl+1σk−i+1) or

[−hl+1σk−i+1,−hlσk−i+1), where l ∈ {1, 2, . . . , ⌈N/2⌉−1}. Thus, by (4.37) and (4.38),

we obtain

µ(AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)|

=


{
(|a∗i |+ ϵi)

(
1 + δ

|b∗|

)
hl+1 − (|a∗i | − ϵi)

(
1 + δ

|b∗|

)
hl

}
σk−i+1 if Ak−i+1 ̸∋ 0,

2 (ϵi + δ|a∗i |/|b∗|)hl+1σk−i+1 if Ak−i+1 ∋ 0.

Taking the maximum of the right-hand side of the above equality over l ∈

{1, 2, . . . , ⌈N/2⌉ − 1}, we have

max
l
µ (AiYk−i+1) +

2δ

|b∗|
|c(AiYk−i+1)| =


ŵ

(1)
i σk−i+1 if Ak−i+1 ̸∋ 0,

(ϵi + δ|a∗i |/|b∗|)σk−i+1 if Ak−i+1 ∋ 0,

(4.41)

where ŵ
(1)
i is defined in (4.30).

Combing (4.40) and (4.41), we conclude that (4.39) holds in the case (ii) also.

(iii) γk−i+1 = 1 and N is even: In this case, we have Yk−i+1 ̸∋ 0. Hence, this case

can be reduced to (ii-2).

From (4.36) and (4.39), it follows that

σk+1 ≤
n∑

i=1

θ̂i,kσk−i+1. (4.42)
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Notice that the right-hand side of (4.42) is equal to the nth low of ĤΓk
[σk σk−1 · · ·

σk−n+1]
T . Thus, from the definition of the Markov jump system (4.34), we obtain

(4.35).

Finally, it is straight forward to show that if E[ẑk(ẑk)
T ] goes to the zero matrix,

then E[σ2
k] → 0. ■

From [8, Theorem 3.9], it follows that the inequality (4.33) implies that (4.34) is

stable. Hence, we conclude that Theorem 4.2 holds.





Chapter 5

Extensions for Markovian packet

losses

So far, we have studied the limitations on the data rate and the packet loss proba-

bilities under the assumption that packet loss process is independent and identically

distributed (i.i.d.). This assumption is commonly employed to simplify the problem,

but is restricting for modeling real communication channels.

In this chapter, we explore a more practical situation where the packet losses are

governed by Markov chains, which are more general channel models. It has been

known that Markov chains can express practical communication failures including

bursty losses [16, 20]. The model has been employed in several researches in the

field of networked control: In [53], the state estimation problem is studied, and the

stabilization problem is tackled both in infinite [21] and finite [65] data rate cases.

Under the presence of the data rate constraint and the Markovian packet losses,

we derive a necessary condition and a sufficient condition for the system to be mean

square stable (MSS). The derived necessary limitations are expressed by the product

of the eigenvalues and the uncertainty bounds of the plant. Moreover, for the case

of scalar plants, the conditions are exact. These are considered as a generalization of

the results in [65] to the uncertain plants case and also those in Chapter 2 to a more

practical channel case.

This chapter is organized as follows. In Section 5.1, we state the problem setup

75
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ReceivedLost

1− pR

pR

pL

1− pL

Figure 5.1: State transition probabilities of a Markov channel

especially regarding the channel model. In Section 5.2, the basic idea is proposed for

the system with a scalar plant. In general, Markovian losses cause difficulties in the

stability analysis since the channel states are no longer independent over time. To

deal with this, we follow the approach of [65] and consider time intervals between

successful transmissions, which become an i.i.d. process. The presented result will be

extended to the general order plants case in Section 5.3.

The preliminary version of the results in this chapter can be found in [46].

5.1 Problem formulation

We consider the system in Fig. 2.1 described in Section 2.1; in this chapter, we

consider the data rate R, or the number of the quantization cells N , is taken to be

static.

Now, we introduce the Markovian packet loss model. It includes the i.i.d. losses

given in Section 2.1 as a special case. We follow the representation used so far

and denote the state of the packet reception/loss at time k by the random variable

γk ∈ {0, 1}: If γk = 0 then the packet is lost; otherwise, it arrives successfully. The

channel state process {γk}k is governed by a Markov chain which has two states:

received and lost. Fig. 5.1 shows the states and the transition probabilities. In

the figure, pL is the loss probability when the previous packet has arrived, and pR
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represents the recovery probability from the loss state:

Prob(γk = 0 | γk−1 = 0) = 1− pR,

Prob(γk = 1 | γk−1 = 0) = pR,

Prob(γk = 0 | γk−1 = 1) = pL,

Prob(γk = 1 | γk−1 = 1) = 1− pL.

To make the process {γk}k ergodic, we consider the case of pL, pR ∈ (0, 1). Moreover,

without loss of generality, we assume that the transmitted signal at the initial time

is successfully received, i.e., γ0 = 1. In the case of loss, redefine the initial time as

the the first step of succeeded communication. There exists such a finite time with

probability 1 since {γk}k is ergodic.

The problem of this chapter is to find limitations on the data rate R and the

channel state transition probabilities pL, pR for the overall system to be MSS.

5.2 Scalar plant case

In this section, we consider the simple case where the plant is a scalar system as

follows:

yk+1 = akyk, ak ∈ A = [a∗ − ϵ, a∗ + ϵ], ϵ ≥ 0. (5.1)

We derive a necessary and sufficient condition for the system to be MSS. The condition

is characterized by the data rate R, the transition probabilities pL, pR, the uncertain

bound ϵ, and the plant instability |a∗|.

To describe the limitations, we introduce the following notation:

ν̃ :=

√
1− pL + (pR + pL − 1)(|a∗|+ ϵ)2

1− (1− pR)(|a∗|+ ϵ)2
.

The parameter ν̃ corresponds to ν defined in (2.19) in Chapter 2. We also use r in

(2.19) to represent the limitations; note that, in this section, r = (|a∗| − ϵ)/(|a∗|+ ϵ)
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since the plant is scalar system.

The following theorem holds for the scalar plants.

Theorem 5.1. Consider the system depicted in Fig. 2.1 where the plant is a scalar

system (5.1) and satisfying Assumption 2.1. If the system is MSS, then the following

inequalities hold:

R > R̃nec :=


log log(1−ϵν̃)2

log r
if ϵ > 0,

log |a∗|+ log ν̃ if ϵ = 0,

(5.2)

pR > pR,nec := 1− 1

(|a∗|+ ϵ)2

(
1− ϵ2pL ((|a∗|+ ϵ)2 − 1)

1− ϵ2

)
, (5.3)

0 ≤ ϵ < 1. (5.4)

Conversely, if these inequalities are satisfied for the data rate R = logN where N is

an even number and the transition probabilities pL, pR ∈ (0, 1), then there exists a

control law such that the system is MSS.

For the case of ϵ = 0, the above limitations R̃nec and pR,nec are equal to those

presented in [65], where the plant is assumed to be known. In addition, if R → ∞

then the condition (5.3) on the recovery probability coincides with that in [24]. Thus,

this theorem generalizes these existing results to the uncertain plants case. Since the

bounds R̃nec and pR,nec are increasing with respect to ϵ, as expected, plant uncertainty

will result in higher requirements in communication with a large data rate and a high

recovery probability. Furthermore, when the channel state process {γk}k is i.i.d.,

we have that pR = 1 − pL. In such a case, our problem can be reduced to that of

Chapter 2, and the conditions (5.2)–(5.4) coincide with those given in Theorem 2.1.

To show this theorem, the approach developed in the analysis for the i.i.d. case is

not enough to deal with the Markov channel. It is because in the present case, the

channel states are not independent of those at the previous or next step, and conse-

quently, it is difficult to evaluate the mean square of the state estimation error. To

overcome this difficulty, we consider the packet receptions as random measurements.

Then, it has been shown that the process of the sampling intervals becomes i.i.d. [63].
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We formally state this fact as a lemma below. Let tj, j ∈ Z+, be the sampling

times, i.e., the times satisfying γtj = 1. From the assumption in the previous section,

we have that γ0 = 1. Thus, it follows that 0 = t0 < t1 < · · · < tj < · · · . In addition,

let τj denote the sampling interval defined as follows:

τj := tj − tj−1, j ≥ 1. (5.5)

The following lemma holds [63].

Lemma 5.1. The process {τj}j is i.i.d. and it holds that

Prob(τj = i) =


1− pL if i = 1,

pLpR(1− pR)
i−2 if i > 1,

(5.6)

for all j ≥ 1.

The proof of Theorem 5.1 consists of three steps. We first provide a condition

for stability under a given quantizer whose boundaries are {hl}l. To derive the

condition, we will analyze how the plant state estimation error grows by the in-

stability of the plant and how precise the quantization should be to achieve stability.

The rate of expansion of a quantization cell over time can be represented by wl,

l = 0, 1, . . . , ⌈N/2⌉ − 1, defined in (2.24) in Chapter 2. Then, the following lemma

holds.

Lemma 5.2. The system depicted in Fig. 2.1 is MSS if and only if

max
0≤l≤⌈N/2⌉−1

wl ν̃ < 1. (5.7)

Proof. Necessity: First, we claim that the mean square stability of the plant output

yk implies that the scaling parameter σk is also MSS. For the estimation set Yk ⊂ R

at time k, it is obvious that maxy′k∈Yk
|y′k| ≥ µ(Yk)/2. Letting δ be the smallest width

of the quantization cells, we have that µ(Yk) ≥ δσk. Hence, if limk→∞ E[|yk|2] = 0,

then limk→∞ E[σ2
k] = 0 holds.
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Next, we show that if σk is MSS then the inequality (5.7) holds. By (2.12) and

(2.13), we have that

σk+1 ≥ µ(AYk), (5.8)

where AYk := {a′y′ : a′ ∈ A, y′ ∈ Yk}. The interval Yk depends on the channel state

γk: If the packet is lost, i.e., γk = 0, then Yk = [−σk/2, σk/2]; otherwise, Yk is the

quantization cell which yk fell into. Let lk ∈ {0, 1, . . . , ⌈N/2⌉ − 1} be the index of

the cell corresponding to Yk such that infy′∈Yk
|y′/σk| = hlk . Then, referring to basic

results in interval arithmetic [38], for the case of γk = 1, we have that µ(AYk) = wlkσk.

Thus, the right-hand side of (5.8) is expressed as follows:

µ(AYk) = ηkσk, where ηk :=


|a∗|+ ϵ if γk = 0,

wlk if γk = 1.

(5.9)

By (5.8) and (5.9), we have that σk+1 ≥ ηkσk. We will use this inequality and

the stability of σk to show the condition (5.7). However, it is difficult to directly

calculate the mean square of both sides of the inequality. Thus, we next derive the

inequality described by σtj+1
and σtj ; note that they are independent of each other

by Lemma 5.1. Since γtj = 1, referring to (5.9), we have

µ(AYtj) = wltj
σtj . (5.10)

On the other hand, for all time t′ ∈ [tj + 1, tj+1), it follows that γt′ = 0, and hence

µ(AYt′) = (|a∗|+ ϵ)σt′ . (5.11)

By (5.8), (5.10), and (5.11), we have

σtj+1
≥ (|a∗|+ ϵ)τj+1−1wltj

σtj , (5.12)

where τj+1 is the sampling interval defined in (5.5). Taking mean squares of both
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sides in (5.12), we obtain

E[σ2
tj+1

] ≥ E[(|a∗|+ ϵ)2(τj+1−1)w2
ltj
]E[σ2

tj
].

Note that σtj depends only on τ1, . . . , τj and thus, is independent of τj+1. Since σk is

MSS, the coefficient of the right-hand side should satisfy

E[(|a∗|+ ϵ)2(τj+1−1)w2
ltj
] = E[(|a∗|+ ϵ)2(τ1−1)]w2

ltj

= ν̃2w2
ltj
< 1,

where the second equality holds by Lemma 5.1. In the above inequality, wltj
depends

on the quantization cell where the output ytj fell into; however, the inequality must

hold for all possible ytj . Thus, we arrive at the condition (5.7).

Sufficiency: By the necessity part, it is enough to prove that there exists a triple

of an encoder, a decoder, and a controller such that the following holds: If σk is MSS

then (i) yk is also MSS, and (ii) the equality holds in (5.8).

The part (i) holds when we choose the control law as

uk = −c(Y−
k+1), (5.13)

where c(Y−
k+1) represents the midpoint of Y−

k+1. This can be confirmed by substituting

the above control law into (5.1), in which case we have

|yk+1| = |akyk + uk| ≤
µ(Y−

k+1)

2
≤ σk+1

2
,

where the last inequality holds from (2.12).

Furthermore, in the encoder and the decoder, we select the scaling parameter as

σk+1 = µ(Y−
k+1). Then, the (ii) holds. ■

Lemma 5.2 provides a condition for stability for a given quantizer.

The next step is to find the optimal quantizer, which minimizes the left-hand side

of the inequality (5.7) under a fixed number N of quantization cells. Since ν̃ does
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not depend on the structure of the quantizer, the problem is to find the quantizer

minimizing maxl wl. We introduce the quantizer q∗N whose boundaries {h∗l }l are given

as follows:

(i) If ϵ > 0, then

h∗l =


1
2

1−trl

1−tr⌈N/2⌉ if N is odd,

1
2

1−rl

1−r⌈N/2⌉ if N is even,

(5.14)

where t := |a∗|/(|a∗| − ϵ).

(ii) If ϵ = 0, then

h∗l =


1
N

(
l − 1

2

)
if N is odd,

1
N
l if N is even.

(5.15)

These are exactly the same as the optimal quantizer q∗N given in (2.31) and (2.32).

The following lemma provides the optimal quantizer.

Lemma 5.3. The quantizer q∗N minimizes maxl wl.

The optimal quantizer q∗N has a nonuniform structure when the plant is uncertain,

i.e., ϵ > 0. In particular, it takes the width of the quantization cells smaller as its

input becomes larger in magnitude. This structure helps to compensate the effect

of the uncertainty in the expansion of estimation errors by plant instability; we note

that in taking the product of intervals, the width of the resulting interval becomes

large not only when the initial intervals are wide but also when they contain large

values in magnitude. When there is no uncertainty in the plant, q∗N is the uniform

quantizer, which is commonly employed in the literature.

It is remarkable that the structure of q∗N depends only on the level of instability

|a∗| and the uncertainty bound ϵ; the channel properties pL and pR do not affect it.

Therefore, q∗N is equal to the optimal quantizer for the case of i.i.d. channels, which

has been studied in Chapter 2.

Proof of Lemma 5.3. See the proof of Lemma 2.3 in Chapter 2. ■
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The last step is deriving (5.2)–(5.4) from Lemmas 5.2 and 5.3.

Proof of Theorem 5.1. We consider the following two cases separately since the

forms of q∗N are different: ϵ > 0 and ϵ = 0.

First, assume that ϵ > 0. Consider the two cases.

(i) N is even: Substituting (5.14) into the definition (2.24) of wl, we have that

max
0≤l≤⌈N/2⌉−1

wl =
ϵ

1− r⌈N/2⌉ .

Thus, (5.7) is equivalent to

N > N (e)
nec :=

log(1− ϵν̃)2

log r
and 1− ϵν̃ > 0.

(ii) N is odd: By taking similar procedures, it follows that (5.7) is equivalent to

N > N (o)
nec :=

log{(1− ϵν̃)/t}2

log r
− 1 and 1− ϵν̃ > 0.

Noting that N
(o)
nec > N

(e)
nec and R = logN , we obtain the inequality (5.2). Further-

more, the inequality 1− ϵν̃ > 0 implies (5.3) and (5.4).

The above analysis can be directly applied to the case of ϵ = 0, and consequently,

we have (5.2)–(5.4) for this case also. ■

We now illustrate the limitations on the data rate R̃nec and the recovery probability

pR,nec by a numerical example.

Example 5.1. Consider a scalar plant of a∗ = 5 and ϵ = 0.2, and a channel where the

loss probability is set as pL = 0.1. In Fig. 5.2, the solid line shows the limitation R̃nec

versus the recovery probability pR, and the vertical dash-dot line represents pR,nec.

The figure shows that larger data rate is required as the recovery probability becomes

small toward pR,nec, and if pR ≤ pR,nec then we can not stabilize the system for any

data rate. The vertical dotted line corresponds to the probability when the channel

state process is i.i.d., i.e., pR = 1− pL = 0.9. From the figure, we observe that even if
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Figure 5.2: Data rate limitation versus the recovery probability pR

the recovery probability is less than 0.9, in which case more bursty packet losses may

occur, we can make the system stable by selecting the data rate large enough.

5.3 General order plant case

In this section, we develop a necessary condition and a sufficient condition for sta-

bilization of multi-dimensional plants in (2.1). The necessary condition is derived

by generalizing the result shown in the previous section. The sufficient condition is

derived in the similar manner to that in Chapters 2 and 3, where the stability analysis

of Markov jump linear systems is employed.
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5.3.1 Necessary condition

To describe the necessary condition, we introduce the following notation correspond-

ing to ν̃ in the previous section:

ν̌ :=

√
1− p̌L + (p̌R + p̌L − 1)(|a∗|+ ϵ)2

1− (1− p̌R)(|a∗|+ ϵ)2
, (5.16)

where p̌L and p̌R are defined as

p̌L :=
1− (1− pL − pR)

n

pL + pR

pL, p̌R :=
1− (1− pL − pR)

n

pL + pR

pR.

The following theorem provides the necessity result.

Theorem 5.2. For the system in Fig. 2.1 satisfying Assumption 2.1, if the system is

MSS, then the following inequalities hold:

R > Řnec :=


log log(1−ϵnν̌)2

log r
if ϵn > 0,

log |λA∗|+ log ν̌ if ϵn = 0,

(5.17)

p̌R > p̌R,nec := 1− 1

(|λA∗|+ ϵn)2

(
1− ϵ2np̌L ((|λA∗|+ ϵn)

2 − 1)

1− ϵ2n

)
, (5.18)

0 ≤ ϵn < 1. (5.19)

This theorem provides the limitations characterized by the product λA∗ of the

eigenvalues of the nominal plant. For the class of systems considered, it can be

viewed as an extension of the results in [65], where the known plants case has been

studied. Let us compare the limitations Řnec and p̌R,nec with those in [65] in the case of

ϵn = 0. For scalar plants case, i.e., n = 1, the inequalities (5.17)–(5.19) are equivalent

to (5.2)–(5.4) in Theorem 5.1. Thus, Řnec and p̌R,nec coincide with those in [65] as

we mentioned in the previous section. However, when n ≥ 2 and the channel state

process is not i.i.d., i.e., pL + pR ̸= 1, even if we assume that ϵn = 0, the limitations

Řnec, p̌R,nec may become larger than the bounds in [65]. In such a sense, Theorem 5.2

contains conservativeness. We would like to address this point in future research. On
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the other hand, when the channel state process is constrained to be i.i.d., the theorem

is equivalent to Theorem 2.1.

Proof. In this proof, similarly to the scalar plants case, we analyze the expansion

rate of the estimation set due to the plant instability. In particular, we focus on

the effect of the nth plant parameter an,k since it corresponds to the product of the

eigenvalues of the plant, which is the key parameter to describe the limitations.

From the discussion in the beginning of the proof on Lemma 5.2, we have that if

yk is MSS then σk is also MSS. Hence, in the following, we show that if σk is MSS

then the inequalities (5.17)–(5.19) hold.

We first establish that the scaling parameter σk+1 is bounded from below by

the width of the estimation set amplified by an,k. Applying the Brunn-Minkowski

inequality (2.16) to the definition (2.13) of Y−
k+1, we have

µ(Y−
k+1) ≥

n∑
i=1

µ (AiYk−i+1) , (5.20)

Substituting (5.20) into (2.12), we have

σk+1 ≥
n∑

i=1

µ (AiYk−i+1) ≥ µ (AnYk−n+1) . (5.21)

The far right-hand side corresponds to the effect of the expansion of the estimation

set due to an,k. This term can be expressed in the form of the product of an random

variable and σk−n+1. Let wn,l, l = 0, 1, . . . , ⌈N/2⌉ − 1, be given as

wn,l :=


2(|a∗n|+ ϵn)hl+1 if N is odd and l = 0,

(|a∗n|+ ϵn)hl+1 − (|a∗n| − ϵn)hl else.

This corresponds to wl defined in (2.24) for the scalar plant case. Moreover, we
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introduce the random variable ηn,k as

ηn,k :=


|a∗n|+ ϵn if γk = 0,

wn,lk if γk = 1,

(5.22)

where lk is the index of the quantization cell which yk fell into: The index is defined

as the integer such that infy′∈Yk
|y′/σk| = hlk . Then, by using the result regarding

products of intervals [38], we have that

µ(AnYk−n+1) = ηn,k−n+1σk−n+1. (5.23)

Thus, by (5.21) and (5.23), it holds that

σk+1 ≥ ηn,k−n+1σk−n+1. (5.24)

From the inequality (5.24) and the stability of σk, the n-down-sampled scalar

system

σ′
n(k+1) = ηn,nkσ

′
nk, σ

′
0 = σ0 (5.25)

is MSS. Here, the process {ηn,nk}k is governed by the Markov chain {γkn}k. Its

transition probabilities are computed using the Chapman-Kolmogorov equation [47]

as follows:

Prob(γkn = 0 | γ(k−1)n = 0) = 1− p̌R,

Prob(γkn = 1 | γ(k−1)n = 0) = p̌R,

Prob(γkn = 0 | γ(k−1)n = 1) = p̌L,

Prob(γkn = 1 | γ(k−1)n = 1) = 1− p̌L.

Now, we can apply Theorem 5.1 in the previous section to the system (5.25) and

consequently, we have the inequalities in the theorem. ■
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5.3.2 Sufficient condition

We next present a sufficient condition for the existence of a stabilizing tuple of an

encoder, a decoder, and a controller. First, the update law of the scaling parameter

and the control law are proposed. Furthermore, the stability analysis is carried out

based on the theory of Markov jump linear systems.

Given a certain data rate R, or N , and a quantizer expressed by the bound-

aries {hl}l, we determine the scaling parameter and the controller as those in (2.36)

and (2.37), respectively. Moreover, we now introduce notations, which are partially

extended from those in Section 2.3. Define the matrix G as

G := G1G2, (5.26)

where

G1 := QT ⊗ In2 ,

G2 := diag (HΓ(1) ⊗HΓ(1) , . . . , HΓ(2n) ⊗HΓ(2n)) .

The matrices HΓ(1) , . . . , HΓ(2n) are realizations of the random matrix HΓk
defined in

(2.41). Here, the transition matrix Q of the Markov chain Γk is given by

Q :=



Q′ 0
. . .

0 Q′

Q′ 0
. . .

0 Q′


∈ R2n×2n , Q′ :=

 1− pR pR 0 0

0 0 pL 1− pL

 ∈ R2×4.

The following theorem provides the sufficient condition.

Theorem 5.3. Given the data rate R = logN and the quantizer whose boundaries
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Figure 5.3: Data rate limitations versus the product of the eigenvalues of the nominal
plant |λA∗|: n = 2, a∗1 = 1.0, ϵ1 = 0.10, ϵ2 = 0.20, pL = 0.050, pR = 0.98

are {hl}l, if the matrix G in (5.26) satisfies

ρ(G) < 1, (5.27)

then under the control law using (2.36) and (2.37), the system depicted in Fig. 2.1 is

MSS.

The proof of this theorem follows similarly to the sufficient result for the i.i.d. case

in Section 2.3. In both cases, the Markov chain Γk represents packet reception/loss

states for past n steps. Here, since the loss process is Markovian, we have taken

different transition matrix Q from that in Section 2.3.

Now, we illustrate the bounds on the data rate shown in Theorems 5.2 and 5.3 by

a numerical example.

Example 5.2. Consider a second-order plant with the parameters a∗1 = 1.0, ϵ1 = 0.10,

and ϵ2 = 0.20. The transition probabilities are fixed as pL = 0.050, pR = 0.98. In
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Fig. 5.3, we plot the bounds on the data rate versus the product of the eigenvalues

|λA∗| of the nominal plant, which is equal to |a∗2|. The solid line is the sufficient bound

where the quantizer is the optimal one q∗N defined in (5.14). Furthermore, the dashed

line represents the necessary bound. Note that by assumption, |a∗2| − ϵ2 > 1. The

figure shows that for sufficiently small |λA∗|, the gap between the sufficient bound

and the necessary bound is one or two bits and is hence small. The vertical dash-dot

line is the |λA∗| such that the recovery probability pR reaches p̌R,nec. Thus, for plants

whose level of instability |λA∗| are over the dash-dot line, we can not stabilize the

system even if we use infinitely large data rate.



Chapter 6

Conclusion

6.1 Summary

This thesis explores the stabilization problem of uncertain systems over channels

under communication constraints; in particular, finite data rate and lossy channels

are considered. Throughout the thesis, our main interest lies in clarifying limitations

on communication constraints for stability and how the plant uncertainty affects

them.

The problem has been formulated in four different setups. First, we have started

our analysis in the basic setup in Chapter 2, where the data rate is fixed as a constant

value for all time steps, and the packet losses are drawn according to an i.i.d. pro-

cess. Moreover, the plant uncertainty lies only on the state parameters and the input

parameters are known. Under the setup, we have proposed a necessary condition

(Theorem 2.1), which provides limitations on the data rate, the loss probability, and

the magnitude of the plant uncertainty. These limitations are characterized by plant

instability, in particular, the product of the eigenvalues of the plant. From the condi-

tion, we have found an interesting property of uncertain networked control systems:

The limitations induced by the results for known plants cases are no longer valid and

strictly larger amount of information should be conveyed through the channel. It is

also interesting that for the uncertain plants case, we can reduce the required data

rate by employing a nonuniform quantizer, which has been proposed in Lemma 2.3.

91
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In addition to the necessary condition, we have given a sufficient condition in

Theorem 2.2. In general, the sufficient data rate and the loss probability suggested by

the condition are not equal to the necessary ones. However, for the special case of one-

dimensional plants, they coincide with each other. The derivation of the sufficiency

result is based on Markov jump linear systems theory and the convergence speed

analysis of the system has been also shown by employing the results from theory.

In Chapter 3, we have addressed the problem induced by the constraint that the

data rate should be taken as an integer. To achieve further data rate suppression, the

control scheme has been generalized to employ time-varying data rate. We have pre-

sented a necessary condition (Theorem 3.1) and a sufficient condition (Theorem 3.2)

concerning the average data rate. The conditions show that we can not overcome the

limitations given in the static case even if we use the time-varying data rate though

the sufficient data rate can be reduced. It is worth noting that there are two types

of communication schemes and achievable data rates are different according to the

schemes though the same limitation can be achieved when the plant is known.

Chapter 4 has been devoted to deal with plants with uncertain input parameters.

In this setup, in contrast to Chapter 2, the exact control inputs are no longer available

at the controller side. We have shown a necessary condition for stability in Theo-

rem 4.1, which generalizes that for the case of known inputs. In the derivation of the

condition, we have analyzed the effect of the input uncertainty on expansion of state

estimation sets and have derived the optimal quantizer to minimize the expansion.

Also, a sufficient condition (Theorem 4.2) has been shown for this case by following

the approach based on Markov jump linear systems theory in Chapter 2.

In Chapter 5, we have relaxed the assumption on the packet loss process from i.i.d.

to Markovian so that we can deal with practical situations like bursty losses. In the

chapter, two Markov states determined by the previous channel state are considered,

and a necessary condition and a sufficient condition for stability have been shown in

Theorems 5.2 and 5.3, respectively. We have seen that if the transition probability

from the lost state to the received state, or so-called the recovery probability, is

sufficiently large, we can stabilize the system even if the data rate does not satisfy
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the limitation given in Chapter 2.

6.2 Future research

We list a few topics for future research inspired by this thesis.

Performance analysis: In the thesis, our main control objective has been set to

stability of the closed-loop system. It would be interesting to study relationships be-

tween performance of control and communication constraints. We have discussed the

effect of the data rate and the loss probability on the convergence speed in Chapter 2.

Further analysis may be devoted to obtain the relation in a more explicit form.

Generalization of the plant class: We have considered single-input single-

output autoregressive systems as the class of the plants. One way to extend the

results could be to generalize the class to linear systems with multi inputs and multi

output. On the other hand, the class of uncertainties may also be extended from the

current parametric ones to, e.g., norm bounded or stochastic ones.

Generalization of the communication constraints types: As we have seen

in Chapter 1, a wide variety of the types of communication constraints have been

proposed. Though we have focused on the data rate and the packet losses, dealing

with other constraints such as delays, perturbation of sampling intervals, and bit

flipping might be a future research topic.

Control robust to cyber-attacks: There is an increasing demand for devel-

oping solutions to cyber-attacks against control systems employing networks. The

attacks can be treated as communication constraints. Hence, constructing controllers

robust to these attacks, and characterizing tolerance of the systems against attacks

would be a possible future research.

Extension to multi-agent systems: In the thesis, the target system consists of

a pair of the plant and the controller. Recently, multi-agent systems, where multiple

autonomous agents are interconnected through channels, have been actively studied.

In cooperative control of such systems, there exists a research interest common with

that studied in the thesis: How does the communication constraints affect behavior
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of these networked systems? Applying the approach and the results presented in the

thesis would be an interesting problem.
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