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TOKYO INSTITUTE OF TECHNOLOGY

Abstract

Department of Mathematical and Computing Sciences

Graduated School of Information Science and Engineering

Doctor of Philosophy

Design and Implementation for Optimal Checkpoint and Restart

by Kento Sato

The computational power of High Performance Computing (HPC) systems is growing

exponentially, which enables finer grained scientific simulations. However, as the capa-

bility and component count of the systems increase, the overall failure rate increases

accordingly. To make progress despite of system failures, applications periodically write

checkpoints to a reliable parallel file system (PFS) so that the applications can restart

from the last checkpoint even on a failure. While simple, this straightforward can impose

huge overhead on application run times for both checkpoint and restart operations. Al-

though several techniques have been proposed to reduce the overhead, these techniques

are not sufficient, had several limitation for extreme scale computing.

The first approach, multi-level asynchronous checkpointing, solves the checkpointing

overhead to PFS. The multi-level asynchronous checkpointing writes checkpionts through

agents running on additional nodes that asynchronously transfer checkpoints from the

compute nodes to the PFS. Our approach has two key advantages. It lowers application

checkpoint overhead by overlapping computation and writing checkpoints to the PFS.

Also, it reduces PFS load by using fewer concurrent writers and moderating the rate

of PFS I/O operations. Our experiments show that the asynchronous checkpointing

system can improve efficiency by 1.1 to 2.0 times on future machines. Additionally, ap-

plications using the asynchronous checkpointing system can achieve high efficiency even

when using a PFS with lower bandwidth.

The second approach, a user-level infiniband-based file system and checkpoint strategy

for burst buffers, consider using burst buffers to improve system resiliency. Burst buffers

are a new tier in the storage hierarchy to fill the performance gap between node-local

storage and the PFS. They absorb the bursty I/O requests from applications and thus

reduce the effective load on the PFS With burst buffers, an application can quickly



store checkpoints with increased reliability. We explore how burst buffers can improve

efficiency compared to using only compute-node storage, and we develop and apply

models to investigate the best checkpoint strategy with burst buffers for a wide range

of checkpoint/restart strategies.

The third approach, a fault tolerant messaging interface (FMI) for fast and transpar-

ent recovery, is a survivable messaging interface that uses fast, transparent in-memory

checkpoint/restart and dynamic node allocation. With FMI, a developer writes an ap-

plication using semantics similar to Message Passing Interface (MPI). The FMI runtime

ensures that the application runs through failures by handling the activities needed for

fault tolerance, and achieve quick recovery and restart. Our experiments show that FMI

runs with similar failure-free performance as MPI, but FMI incurs only a 28% overhead

with a very high mean time to failure of 1 minute.

As a whole, these approaches enable fast, scalable and transparent checkpoint and restart

for extreme scale systems.
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Chapter 1

Introduction

1.1 Motivations

The growing computational power of high performance computing (HPC) systems en-

ables increasingly larger scientific simulations. However, as the number of system com-

ponents increase, the overall failure rate of systems increases. Further, the mean time

between failures (MTBF) of future systems is projected to be on the order of tens of

minutes or hours [1, 2, 3]. In fact, an earlier failure analysis on Hera, Atlas and Coastal

clusters at Lawrence Livermore National Laboratory (LLNL) [4] showed that a produc-

tion application, the pF3D laser-plasma interaction code [5], experienced 191 failures out

of 5-million node-hours. If we simply scale out the system while keeping the failure rate

constant, the estimated MTBF is about 1.2 days for a 1,000-node cluster, 2.9 hours for

a 10,000-node cluster, and 17 minutes for a 100,000-node cluster. Without fault tolerant

techniques and more reliable hardware, applications will be unable to run continuously

for even one day on such a larger system. Therefore, as we look towards extreme scale

systems, fault tolerance is becoming more important [6].

Checkpointing is one of indispensable fault tolerance techniques, commonly used by

HPC applications that run continuously for hours or days at a time. A checkpoint

is a snapshot of application state that can be used to restart execution if a failure

occurs. However, when checkpointing large-scale systems, tens of thousands of compute

nodes write checkpoints to a parallel file system (PFS) concurrently, and the low I/O

throughput becomes a bottleneck. Although simple, this straightforward checkpointing

scheme can impose huge overheads on application run times.

Multilevel checkpointing [4, 7] is a promising approach for addressing these problems.

This approach uses multiple storage levels, such as RAM, local disk, and the PFS,

1



2Chapter 1: Introduction

according to the different degrees of resiliency and the checkpoint/restart time in those

storage levels. Multilevel checkpointing systems typically rely on node-local storage

levels for restarting from more common failures, such as single-node failures or failures

of a few nodes (level-1/L1 failure), and the PFS for more catastrophic failures (level-2/L2

failure). By taking frequent, inexpensive node-local checkpoints (level-1/L1 checkpoint),

and less frequent, high-cost checkpoints to the PFS (level-2/L2 or PFS checkpoint),

applications can reduce PFS checkpointing counts, and achieve both high resilience and

better efficiency.

However, if we apply the multi-level checkpoint/restart technique to extreme scale sys-

tems, where failure rate is expected to increase much higher than one of current existing

systems, there are several difficulties:

≤Checkpointing overhead/workload to PFS: Computational capabilities are

increasing faster than PFS bandwidths. This imbalance in performance means

applications can be blocked for order of hours for a single PFS checkpoint [4]. Thus,

the overhead of checkpointing to the PFS can dominate overall application run

time even with infrequent PFS checkpoint by multilevel checkpointing. Further,

the huge numbers of concurrent I/O operations from large-scale jobs burden the

PFS and are themselves a major source of failures. Therefore, we must reduce the

PFS load in order to achieve high reliability and efficiency.

≤Unreliable storage architecture: In multi-level checkpoint/restart, applica-

tions generally cache checkpoints in in-system storage such as RAM or other node-

local storage on compute nodes because aggregate bandwidth of in-system storage

scales with the increasing number of compute nodes. However the most common

failures affect the compute nodes. Storing checkpoints in the in-system storage on

compute nodes is not reliable solution because an application can not restart its

execution if one of checkpoints stored across compute nodes is lost due to a failed

compute node.

≤ Inefficient recovery: As mentioned above, most failures only affect a small

portion of the compute nodes so the vast majority of processes and connections

are still valid after a failure [4]. It is inefficient for the runtime to tear all of

these down only to immediately relaunch and reconnect it all. Launching large

sets of processes, loading executables and libraries from shared file systems, and

bootstrapping connections between those processes takes non-trivial amounts of

time.

At extreme scale, where the failure rate is expected to be much higher, solving the above

problems is critical for future extreme scale systems.
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1.2 Approaches and Contributions

To solve the problems, we develop asynchronous checkpointing system for light-weight

checkpointing to PFS, explore multi-tier storage design with burst buffer for reliable

checkpointing, and propose fault tolerant messaging interface (FMI) for fast and trans-

parent recovery.

1.2.1 Asynchronous Checkpointing System

First, we develop an asynchronous checkpointing system to minimize level-2 checkpoint-

ing overhead/workload to PFS. The asynchronous checkpointing system solves the prob-

lem through agents running on additional nodes that asynchronously transfer check-

points from the compute nodes to the PFS. Our approach has two key advantages. It

lowers application checkpoint overhead by overlapping computation and writing check-

points to the PFS. Also, it reduces PFS load by using fewer concurrent writers and

moderating the rate of PFS I/O operations. In particular, our asynchronous check-

pointing system coupled with a multi-level checkpoint/restart technique maintains a

given application efficiency with significantly lower PFS requirements than simple syn-

chronous checkpointing, which write checkpoints such that all processes write their own

checkpoints concurrently, and are blocked until the checkpoint operation completes.

With the multi-level asynchronous checkpointing, we make the following major contri-

butions:

≤ the design of an asynchronous checkpointing system minimizing checkpointing

overhead down to only a few percent;
≤modeling of asynchronous checkpointing giving optimal checkpoint intervals, re-

quired file system throughput and the degree of the efficiency for execution of

real-applications; and
≤ a comprehensive exploration of asynchronous checkpointing on current and future

systems.

Especially, our results show that combining asynchronous and multi-level checkpointing

results in highly efficient application runs with low PFS bandwidth requirements.

1.2.2 Exploration of Multi-tier Storage Design with Burst Buffer

Second, we explore multi-tier storage design for resilient architecture using burst buffers.

Burst buffers have been proposed to alleviate the problems of I/O operations to a shared

PFS [8, 9]. A Burst buffer is a new tier in the storage hierarchy to fill the performance
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gap between node-local storage and the PFS, and is shared by a subset of compute

nodes. The new tire can absorb the bursty I/O requests from applications and thus

can reduce the effective load on the PFS. We consider using burst buffers from different

viewpoint, and try to improve system resiliency with burst buffer storage design. With

burst buffers, an application can store checkpoints on a smaller number of dedicated

burst buffer nodes, so the probability of lost checkpoints is decreased. We explore how

burst buffers can improve efficiency and resiliency compared to using node-local storage

instead of burst buffers based on a performance model combined with our multi-level

asynchronous checkpoint/restart model.

The key contributions include:

≤ an Infiniband-based file system (IBIO) that exploits the bandwidth of burst buffers;
≤ a model to evaluate system resiliency given checkpoint/restart and storage config-

urations;
≤ simulation results showing how system resiliency improves from the use of burst

buffers;
≤ an analysis of which tiers in the storage hierarchy impact system reliability and

efficiency; and
≤ an exploration of burst buffer configurations to discover the best for future large-

scale systems.

Especially, these contributions can benefit system designers in making the trade-offs in

performance of components so that they can create efficient and cost-effective machines

for future extreme scale systems.

1.2.3 FMI: Fault Tolerant Messaging Interface

Third, we propose FMI for fast and transparent recovery. FMI is a survivable mes-

saging interface that uses fast, transparent in-memory checkpoint/restart and dynamic

node allocation. With FMI, a developer writes an application using semantics similar to

Message Passing Interface (MPI). The FMI runtime ensures that the application runs

through failures by handling the activities needed for fault tolerance, such as checkpoint-

ing, failure detections, and recoveries. All of this motivates the need for a survivable

messaging runtime system. Such a system should be able to maintain processes and con-

nections that are unaffected by the failure while starting and integrating replacement

processes as needed.

The key contributions are:

≤ a simplified programming model to enable fast, transparent fault tolerance based

on checkpoint/restart;
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≤ implementation of a runtime that withstands process failures and allocates spare

resources;
≤ a new overlay network structure called log-ring for scalable failure detection and

notification; and
≤ and demonstration of the fault tolerance and scalability of FMI even with a MTBF

of 1 minute.

Especially, our implementation of FMI has failure-free performance that is comparable

with MPI, and our experiments with a Poisson equation solver show that running with

FMI incurs only a 28% overhead with a very high mean time to failure of 1 minute.

1.3 Outline

The dissertation is divided into seven chapters, and is organized as follows:

Chapter 2: Fault Tolerance on HPC Systems and the Challenges To clear

our target failure models, we first introduce types of faults, errors, and failures. Then

we present characteristics of failures on current supercomputers, such as the failure rate,

and the localities. We also review prior fault tolerant techniques on supercomputers

mainly in checkpoint/restart techniques. Then we list the existing challenges of the

current approaches, minimizing checkpoint overhead ; efficient recovery ; reliable storage

architecture.

Chapter 3: Asynchronous Checkpointing System We present the first approach,

asynchronous checkpointing system, for minimizing checkpoint overhead. This chapter

explains the asynchronous checkpointing system by using RDMA (Remote Direct Mem-

ory Access), and shows experimental results on current and simulated future supercom-

puters.

Chapter 4: A User-level Infiniband-based File System and Checkpoint Strat-

egy for Burst Buffer We deliver the second approach, a burst buffer system with

an infiniband-based file system, to explore reliable storage architectures. This chapter

introduces burst buffer systems and infiniband-based file system for burst buffers, and

explore the optimal checkpoint/restart strategies on burst buffers for future extreme

scale supercomputers.
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Chapter 5: FMI: Fault Tolerant Messaging Interface We propose the third

approach, fault tolerant messaging interface (FMI), to achieve efficient recovery. This

chapter explains the fast, scalable and transparent recovery algorithm on in FMI and

delivers experimental results showing the scalability of FMI.

Chapter 6: Conclusions and Future Work Finally, we summarize the contribu-

tions made by our works and discuss possible directions for future research.



Chapter 2

Fault Tolerance on HPC Systems

and the Challenges

To clear our target failure models, we first introduce types of faults, errors, and failures.

Then we present characteristics of failures on current supercomputers, such as the failure

rate, and the localities. We also review prior fault tolerant techniques on supercomputers

mainly in checkpoint/restart techniques. Then we list the existing challenges of the

current approaches, asynchronous checkpointing, reliable storage design, fault tolerant

messaging interface

2.1 Failure Models

We first clarify what fault tolerance actually means for distributed HPC systems in

order to under stand the role of fault tolerance. All the participants of the HPC domain

involved in fault tolerance come with their own culture and perception of faults, errors,

failures(fail), their origins and consequences [10]. In this dissertation, we explain based

on Andrew’s definition [11].

A malfunction event of a system can be categorized into a failure(fail), a error and a

fault in terms of its degree of impact to system components. A system is said to fail

when the system cannot perform its required functions within specified performance

requirements. In particular, if a HPC system is designed to provide its users with

execution environment where applications run properly, and output results at the end,

the system has failed when an application does not complete the execution. For example,

if a system crashes due to a component failure, such as CPU, GPU, DRAM, M/B, and

local storage, the system is said to fail.

7
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Table 2.1: System malfunction categories: Failure, Error, and Fault

Failure Inability of a system or a component to perform required
function according to its specification (e.g. machine crash)

Error A part of a system state that may lead to a failure (e.g. bit flip error)
Fault Cause of an error (e.g. aging hardware)

Table 2.2: System malfunction categories: transient, intermittent, and permanent

Transient Occur once and then disappear
Intermittent Periodically occur
Permanent Continuously occur (until its faulty

devices are repaired or replaced)

An error is a part of a system’s state that may lead to a failure. For example, when

transmitting messages across networks, it is to be expected that some packets of the

messages have been damaged or dropped off before they arrive at the receiver. Damaged

in this context means that the receiver may incorrectly sense a bit value (e.g., reading a 1

instead of a 0), or may even be unable to detect that something has arrived. Another but

more important example is Silent Data Corruption (SDC). SDC occurs when incorrect

data is delivered by a computing system to the user without any error being logged

(Cristian Constantinescu, AMD). Errors may or may not cause failures. For example, if

ECC (Error Correction Code) of a system is disabled and a bit flip occurs in a memory

region, which is not being used, then nothing happens. But if the memory region is a

pointer of a program and the bit flip direct the pointer to bad address, then the process

crashes.

The cause of an error is called a fault. Clearly, finding out what caused an error is

important. For example, a wrong or bad transmission device may easily cause packets

to be damaged or dropped off. In this case, it is relatively easy to remove the fault by

replacing the failed devices.

As mentioned above, there are three levels of malfunctions of a system. As we will show

the details in Section 2.2, 2.3, the most common malfunction is failure, and the most of

the existing studies target failures. Thus, in this dissertation, we target failures, which

terminate processes, and prevent applications from continuously running.

In term of occurrence of system defects, the malfunction events of systems are also

classified as transient, intermittent, or permanent. Transient failures, errors and faults

are a brief malfunction that often occurs at irregular and unpredictable times, and

usually occur once and then disappear. Intermittent failures, errors and faults occurs,
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Table 2.3: TSUBAME2.0 failure analysis (of Thin nodes)

Failure
level

approximate # of
nodes affected

Failure points Failure rate
(failures/sec)

MTBF

5
4
3
2
1

1408
30
15
4
1

PFS, Core switch
Rack
Edge switch
PSU
Compute nodes

1.778× 10 8 (0.9%)
1.332× 10 8 (0.7%)
6.665× 10 8 (3.5%)
3.999× 10 8 (2.1%)
1.757× 10 6 (92.7%)

65.10 days
86.90 days
17.37 days
28.94 days
15.8 hours

then vanishes of its own accord, then reappears, and so on. A loose contact on a

connector will often cause an intermittent fault. Permanent failures, errors and faults

are ones that continues to exist until the faulty component is replaced. Burnt-out CPUs,

GPUs, and disk crashes are the examples of permanent failures, errors and faults. In

this dissertation, we target any types of malfunctions of systems in Table 2.2.

2.2 Failure Analysis on Supercomputers

In this section, we show detailed failure analysis on several supercomputers and HPC

systems. Especially, we analyze the failure rate and the locality.

2.2.1 The TSUBAME Supercomputer Case Study

First, we analyzed the failure history of TSUBAME2.0 to obtain its failure rate dur-

ing the period of November 1, 2010 to April 6, 2012 based on a TSUBAME2.0 failure

history [12]. TSUBAME2.0, ranking 5th in the Top500 list (November 2011) [13], ex-

perienced 962 failures ranging from memory errors to whole rack failure. In Table 2.3,

we show the levels of failures that occurred during the period. The failures are ranked

highest to lowest in terms of how many compute nodes are affected by a failure in a

particular level. For example, failures of the PFS are at level 5, because the PFS is

shared by all compute nodes; if it fails, all running processes that access the PFS fail.

Level 5 failures include failures of the PFS and core switches. Core switches are upper

level switches, which connect lower level edge switches. A core switch is redundantly

connected to edge switches in order to ensure quality of service. On a core switch failure,

the running job using that switch fails. However, routing is updated and later jobs

can communicate across processes without the failed core switches unless multiple core

switches fails, then each compute node is physically disconnected. We categorize rack

failures at level 4. Because one rack of TSUBAME2.0 contains 30 compute nodes, these
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Figure 2.1: Break-down of system failure rates (failures/second)

failures affect 30 compute nodes at a time. Rack failures are usually caused by a faulty

water-cooling unit sensor. Because the water-cooling unit sensors are independent from

computing components, running jobs do not fail immediately. However, a job running

on the rack will fail at some point, assuming the faulty sensor is not fixed. Failure

levels 3, 2, and 1 include edge switch, PSU (power supply unit) and compute node

failures. Because 15 compute nodes are connected to an edge switch, 15 compute nodes

are affected on an edge switch failure, i.e., level 3 failure. Likewise, a PSU is shared by

4 compute nodes. Thus, on a failure of PSU, 4 compute nodes are affected.

As in Table 2.3, most failures are in level 1, affecting only a single node. The failure

rate (failures/second) is approximately two orders of magnitude larger than the failure

rates of the other categories. Because compute nodes are becoming more complex with

increasing computational power, compute node failures are becoming more frequent.

Figure 2.1 shows break-down of failure rates of each component on a compute node;

approximately half of the failures on a compute node arise from GPU failures. On

TSUBAME2.0, the GPU usage is becoming high, as more applications use the GPUs

through CUDA, OpenACC or OpenCL. This burdens GPUs and increases the overall

temperature, which results in high failure rate of GPUs. In the Table, we excluded fan

failures of compute nodes because compute nodes usually have redundant fans, and the

failures do not immediately affect the compute nodes. As a whole, we can see that the

most common failure is a compute node failure, and fast recovery from the failure is

important.
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Table 2.4: pf3D failures on three different LLNL clusters; Coastal, Hera and Atlas [14]

Coastal Hera Atlas Total
Time span

Number of jobs
Node hours

Oct 09 - Mar 10
135

2,830,803

Nov 08 - Nov 09
455

1,428,547

May 08 - Oct 09
281

1,370,583
871

5,629,933
LOCAL required

failure rate
MTBF

2 (08%)
2.136× 10 7

54.1 days

36 (41%)
5.714× 10 6

2.0 days

21 (26%)
4.564× 10 6

2.5 days

59 (31%)
3.497× 10 6

3.3 days
PARTNER/XOR required

failure rate
MTBF

18 (75%)
1.922× 10 6

6.0 days

32 (37%)
5.079× 10 6

2.3 days

54 (68%)
1.174× 10 5

1.0 days

104 (54%)
6.247× 10 6

1.9 days
PFS required

failure rate
MTBF

4 (17%)
4.279× 10 7

27.1 days

19 (22%)
3.016× 10 6

3.8 days

5 (06%)
1.087× 10 6

10.6 days

28 (15%)
1.510× 10 6

7.7 days
Total failures 24 87 80 191

2.2.2 Other Supercomputers’ Case Study

In this section, we show failure rate on other systems. Table 2.4 shows categorization of

each failure according to the checkpoint level that was required for recovery, which are

collected by Moody et al.[4]. The checkpoint is based on a scalable checkpoint/restart

library (SCR) [14].

SCR is a checkpoint/restart library that production LLNL (Lawrence Livermore Na-

tional Laboratory) applications use. It supports globally-coordinated checkpoints that

the application writes. SCR uses hierarchically distributed storage to implement a multi-

level checkpointing system. For instance, SCR can cache the most recent checkpoints in

RAM disks or SSDs that are local to the compute nodes (LOCAL checkpoint). SCR also

applies redundancy schemes using simple replications or XOR encoding of checkpoint

across the distributed storage devices (Redundancy group or XOR group) according to

configurations such that the application can recover from most failures using the cached

checkpoints. To recover from more catastrophic failures that cannot be recovered by

LOCAL, XOR, and PARTNER, SCR can also store checkpoints on the PFS (PFS).

They analyzed the job logs of 871 runs of the pF3D laser-plasma interaction code [5], and

aggregated to over 5.6 million node-hours on three dierent clusters. LOCAL, PARTNER/XOR

and PFS required means that a failure requiring a recovery from LOCAL, PARTNER/XOR

and PFS checkpoint occurred. In LOCAL checkpointing, each processes only cache a

checkpoint in in-system storage of its own compute node, and recover from a failure by

using the same set of compute nodes as before the failure occurs. The failures requiring
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Figure 2.2: Simple Checkpoint/Restart

LOCAL is expected to be transient failures. PARTNER/XOR creates parity code across in-

system storage on compute nodes within a redundancy group as in RAID-5 [15, 16, 17].

PARTNER/XOR checkpointing can recover from a single compute node failure within a

redundancy group. From Table 2.4, we can find that the most common failure is a

compute nodes failures that can be recovered from LOCAL or PARTNER/XOR checkpoint.

2.3 Fault Tolerant Techniques

As described in the previous section, fault tolerance is becoming more important as the

system size increase for higher performance computing. Nowadays, fault tolerance is

essential techniques for applications, which need to continuously run for days or weeks.

A lot of fault tolerance techniques have been proposed over the pas years to address

the problems. In this section, we introduce these fault tolerance techniques mainly in

checkpoint/restart techniques as well as other state-of-the-art fault tolerant techniques.

First, we introduce several checkpoint/restart techniques in Section 2.3.1, which are our

target fault tolerance techniques. Second, we review other fault tolerant techniques in

Section 2.3.2.

2.3.1 Checkpoint/Restart

Checkpointing is one of indispensable fault tolerance techniques, commonly used by

HPC applications that run continuously for hours or days at a time. A checkpoint is

a snapshot of application state that can be used to restart execution if a failure occurs

(Figure 2.2). However, when checkpointing extreme scale systems, tens of thousands of

compute nodes write checkpoints to a PFS concurrently, and the low I/O throughput

becomes a bottleneck. Figure 2.3 presents expected checkpoint/restart time using PFS in

order to dump whole data on distributed memories across TSUBAME2.0/2.5 thin nodes.

TSUBAME2.0/2.5 has 1,408 thin nodes, which account for over 95% of TSUBAME
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Figure 2.3: Expected checkpointing time to PFS

Table 2.5: Potential System Architecture

Systems 2011 2019 Difference
(K computer) (2011 & 2019)

System peak 10.5 PFlops 1 EFlops � (100)
Power 12.7 MW 20 MW � (1)

System memory 1.6 PB 32 - 64 PB � (10)
Node performance 128 GFlops 1,2 or 15 TFlops � (10) � (100)
Node memory BW 64 GB/s 2 - 4 TB/s � (100)
Node concurrency 8 1K or 10K � (100) � (1000)

Node Interconnect BW 20 GB/s 200 - 400 GB/s � (10)
System size (nodes) 88,124 � (100K) or � (1M) � (10) � (100)
Total concurrency 705,024 � (1 billion) � (1K)

MTTI days � (1day) � (1)

compute nodes. As shown, it approximately takes over three hours to write checkpoints

of all the data on thin nodes.

Thus, although simple, this straightforward checkpointing scheme can impose huge over-

heads on application run times. In addition, future extreme scale systems are expected

to have more memory modules by one order of magnitude. Reducing checkpoint time is

critical for future extreme scale computing.

In this section, we explain the latest checkpoint/restart techniques to address the above

problems. These checkpoint/restart techniques include diskless checkpoint/restart, multi-

level checkpoint/restart, uncoordinated checkpoint/restart, checkpoint compression and

incremental checkpoint techniques.
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Figure 2.4: Low I/O throughput of PFS becomes a bottleneck for checkpoint/restart

Diskless checkpointing is a technique to store checkpoints without relying on PFS. In-

stead, diskless checkpointing utilize local storage by using encoding techniques. Because

diskless checkpoint use distributed in-system storage, the checkpointing technique is

scalable. However, diskless checkpointing is not a silver bullet. Diskless checkpointing

distributes encoded redundant data across distributed storage on compute nodes. If

we lose all of the redundant data due to a catastrophic failure by concurrent multiple

compute nodes, we cannot restart the execution on such a failure. As we seen in Section

2.2, the common failure is a single compute node failure. Although a failure by multiple

nodes does not occur frequently, we need write checkpoints to PFS for more catastrophic

failures. Multi-level checkpoint/restart is a technique to solve the problem. Multi-level

checkpoint/restart uses multiple storage levels, such as RAM, node-local storage, and

the PFS, according to the different degrees of resiliency and the checkpoint/restart

time in those storage levels. Multi-level checkpoint/restart systems typically rely on

node-local storage levels for restarting from more common failures, such as single-node

failures, and the PFS for more catastrophic failures. By taking frequent, inexpensive

node-local checkpoints, and less frequent, high-cost checkpoints to the PFS, applications

can achieve both high resilience and better efficiency.

Diskless and Multi-level checkpointing reduce checkpointing time by making use of a

storage hierarchy. Other methods are minimization of checkpointing time by reducing

checkpoint size. For the methods, we introduce two famous techniques, checkpoint com-

pression and incremental checkpointing. The other methods we review in this section is

uncoordinated checkpoint/restart. When we take a checkpoint, all distributed processes

usually need to synchronize in order to write consistent checkpoint, which introduce

the checkpoint overhead. With uncoordinated checkpointing, each process can write its
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Figure 2.5: Checkpointing to node-local storage: If compute node 2 fails, the appli-
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Figure 2.7: Instead, diskless checkpointing stores checkpoints on distributed in-system
storage, and apply a redundancy scheme

checkpoint without synchronizations, and reduce the number of processes to restart. Fi-

nally, we also explain about application-level and system-level checkpointing, which have

trade-off between usability and performance. For the rest of the sections, we explain the

details of these checkpoint/restart techniques.

Diskless Checkpoint/Restart

First methods we review are diskless checkpointing techniques 1. Diskless checkpoint

was proposed by Plank et al. [18, 19]. Diskless checkpointing stores checkpoints without

relying on a slow PFS. Instead, diskless checkpointing stores checkpoints on distributed

in-system storage such as main memory and node-local storage (e.g. SSD) as in Figure

1The term may lead to misunderstanding because diskless does not mean not using disks. This
approach does not rely on PFS, but may rely on disks if the local-storage is a disk drive insted of a SSD
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2.7. However, if a compute node failed and an application loses access to the failed

in-system storage, the application can not recover form the checkpoint (Figure 2.5).

To address the problem, on checkpointing, diskless checkpointing generates redundant

data by erasure encoding techniques, and then store the original (Ci) and encoded (E)

checkpoint to main memory of compute nodes and spare nodes respectively (Figure 2.6).

The most common encoding is XOR encoding. XOR encoding is an encryption algorithm

that uses an exclusive disjunction operation (• ). If we assume that an application does

diskless checkpoint with n compute nodes, the XOR encoding is computed as:

E = C0 • C1 • ×××• Cn 1 (2.1)

If checkpoint, Ci, is lost due to a failure of the compute nodes, the lost checkpoint can

be restored as:

Ci = C0 • C1 • ×××• Ci 1 • Ci+1 • ×××• Cn 1 • E (2.2)

Thus, in Figure 2.6, an application can restore the lost checkpoint, C2, by computing

C2 = C0 • C1 • E on a failure of compute node 2. This method is simple, and the

encoding overhead is relatively small. However, If more than one compute node fail, we

cannot restore the lost checkpoints.

Another encoding technique, which is widely used for encoding checkpoints of HPC

applications, is a Reed-Solomon encoding [20]. A Reed-Solomon encoding is particularly

useful for burst failures by a failure of concurrent multiple compute nodes. With a Reed-

Solomon encoding, an application can recover from any k failures of compute nodes.

Essentially this technique is based on an XOR encoding technique described above, but[ ]
I

the encoding uses a distribution matrix (size: n + k ⊗ n), A = , where the upper
M

matrix of the distribution matrix (size: n ⊗ n) is an identity matrix, I, and the lower

matrix is a matrix (size: k ⊗ n), M . The matrix, M , has to satisfy a condition that any

sub-square matrix including minor is non-singular. It is known that any Vandermnde

matrix and any Cauchy matrix satisfy this condition. If we assume set of checkpoints of

each compute nodes is C = }C0, C1, . . . , Cn 1\, encoded checkpoints are calculated as[ ]
CT

A⊗CT = . Although a Reed-Solomon encoding is more fault tolerant than XOR
E

encoding, a Reed-Solomon encoding costs larger overhead, and produce a larger amount

of encoding data to store.

Plank et al. [21] also presented first exploration of diskless checkpointing for distributed

systems. They proposed high-performance implementations of several fault tolerant al-

gorithms using diskless checkpointing. These algorithms include Cholesky factorization,



Chapter 2: Fault Tolerance on HPC Systems and the Challenges 17

Local storage 
(Level-1) 

PFS 
(Level-2) 

timeline 

Storage hierarchy 

checkpoint or restart time A single or a few  
nodes failure 

A catastrophic 
failure  

Figure 2.8: Multi-level checkpoint/restart

LU factorization, QR factorization, and Preconditioned Conjugate Gradient. Chen et

al. [22] proposed a chain-piplined Reed-Solomon encoding algorithm for diskless check-

pointing. The technique organizes all computational processors and the checkpoint

processor as a chain, and segment the data on each processor into smalll pieces. With

the algorithm, they reduced the encoding overhead to survive k failures in p processes

from 2�log p{×k ((β + 2γ) m + α) to
(
1 + �

(
1
m

))
×k ((β + 2γ) m), where α is the com-

munication latency, 1/β is the network bandwidth between processes, 1/γ is the rate to

perform calculations, and m is the size of local checkpoint per process.

However, the above studies have several issues. First, the techniques assume there are

spares nodes for storing checkpoints, which decreas available compute nodes for appli-

cations. Seconds, main memory is used to store encoded checkpoints, which decreases

available memory capacity for applications. To address the problem, Bautista-Gomez

et al. [23] proposed distributed diskless checkpointing using weighted checksum encod-

ing and a fault tolerant model. The distributed diskless checkpointing does not rely

on spare nodes for encoded checkpoints with a partitioning and mapping technique.

The distributed diskless checkpointing runtime utilize local SSDs to solve the memory

overhead introduced by the classic diskless checkpoint techniques above.

Diskless checkpointing can recovery from the most common failure, a single or a few

node failure, and also exhibit high scalability as the number of compute nodes increases

towards future extreme scale systems.

Multi-level Checkpoint/Restart

As described in Section 2.3.1, diskless checkpointing is a scalable algorithm while recov-

ering the most common failure. However, diskless checkpointing is not a silver bullet.

Diskless checkpointing distributes encoded redundant data across distributed storage on

compute nodes. If we lose all of the redundant data due to a catastrophic failure by

concurrent multiple compute nodes, we can not restart the execution on such a failure.
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For example, if more than one compute node fail, applications can not restart form the

failure with XOR encoding. Even with Reed-Solomon encoding, applications may not

be able to recover form a failure if the failure is catastrophic to restore the checkpoints

(Figure 2.7). As we seen in Section 2.2, the common failure is a single compute node

failure and a failure by multiple nodes does not occur frequently, but we need write

checkpoints to PFS for more catastrophic failures.

Multi-level checkpoint/restart is a technique to solve the problem. Multi-level check-

point/restart uses multiple storage levels, such as RAM, node-local storage, and the PFS,

according to the different degrees of resiliency and the checkpoint/restart time in those

storage levels. Multi-level checkpoint/restart systems typically rely on node-local stor-

age levels for restarting from more common failures, such as single-node failures, and the

PFS for more catastrophic failures. By taking frequent, inexpensive node-local check-

points and apply cross-node redundancy schemes (e.g. XOR encoding, Reed-Solomon

encoding), and also less frequent, high-cost checkpoints to the PFS, which can withstand

a failure of an entire machine, applications can achieve both high resilience and better

efficiency (Figure 2.8).

The Scalable Checkpoint/Restart library [4] is a first production multi-level check-

point/restart library for MPI applications. Checkpoints are cached in in-system storage

on compute nodes, and then a redundancy scheme is applied. SCR provides two re-

dundancy schemes, XOR encoding, PARTNER. PARTNER is a simple replication creating

the replicated checkpoint on a partner node. SCR also flushes the checkpoints in node-

local storage to a PFS with specified frequency. The Fault Tolerance Interface (FTI)

[7] is also production multi-level checkpoint/restart library for MPI applications. The

main difference between FTI and SCR is the redundancy scheme used for node-local

checkpointing. FTI use Reed-Solomon encoding for the redundancy scheme, and gen-

erate encoded checkpoints in the background of application’s computation to minimize

the overhead. Although the time of Reed-Solomon encoding is much longer than XOR

encoding, FTI provides higher resiliency than SCR.

Checkpoint Size Reduction Techniques

Checkpointing methods in Section 2.3.1, 2.3.1 reduce checkpoint/restart time by stor-

ing checkpoint to node-local storage, and then applying redundancy schemes. Another

method minimizes the checkpoint/restart time by reducing checkpoint size. The most

common methods are Checkpoint compression and incremental checkpointing. Check-

point compression reduces checkpoint size by applying a compression technique or com-

binations of several compression techniques. Incremental checkpointing is a checkpoint
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Figure 2.9: Incremental checkpoint writes only data which is update from the last
checkpoint

reduction technique that only writes variables or data which is updated from the last

checkpoint (Figure 2.9).

For checkpoint compression, a simple method is to use existing fast compression li-

braries such as Parallel-Gzip [24], fpzip [25], FPC [26] and QuickLZ [27]. However,

compression is relatively costly operation, and compression time (Tc) and write time for

the compressed checkpoint (Twc) may exceed write time for the none non-compressed

checkpoint (Tw), i.e., Tc + Twc > Tw. The same is true in decompression. In such

a case, compression is not effective for reducing checkpoint/restart time. Ibtesham et

al. [28] explored the feasibility of checkpoint compression techniques for efficiently re-

ducing checkpoint sizes with checkpoint compression viability model to determine when

checkpoint compression is a sensible choice. The preliminary experiments showed that

checkpoint compression is a useful solution if the product of checkpoint throughput is less

than the product of compression factor and compression throughput. Islam et al. [29]

developed MCRENGINE. MCRENGINEaggregates checkpoints form multiple processes and

compresses them through widely-used I/O libraries, e.g., HDF5 [30] and netCDF[31].

Further, MCRENGINEextracts application specific data semantics by analyzing the meta-

data contained in the checkpoint files, and apply compression to distributed variables or

data across multiple processes instead of their own local variables or data. They showed

that the data-aware checkpoint compression significantly increases the compressibility

of checkpoints.

Another method to reduce checkpoint is incremental checkpointing. There are several

incremental checkpoint/restart techniques. The simple technique is to use binary diff

such as bsdiff, bspatch and xdelta. As described for checkpoint compression, if

time of updated data detection (Td), and write time of incremental checkpoint (Twd)

exceed checkpoint time without incremental checkpointing (Tw), i.e., Td + Twd > Tw,

incremental checkpointing is not effective solution for reducing checkpoint/restart time,

and the straightforward approach may not work.
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Agarwal et al. [32] presented an adaptive incremental checkpoint technique. The in-

cremental checkpointing dynamically identify near-exact changed blocks in memory to

minimize size of the data to store in the file system. They initially splits checkpoint data

into blocks of equal sizes. Then the block size is refined based on the access pattern

history of the application at every checkpoint. This approach finds near-optimal sizes

of the changed blocks over a period of time. Naksinehaboon et al. [33] proposed incre-

mental checkpointing model, and explore the improvement of incremental checkpointing

compared to a conventional checkpointing storing entire application’s data.

When keeping track of updated data, incremental checkpointing uses a hash-based table

by page or block-wise granularity. But computation of hash values is costly because

checkpoint size is usually large. In addition, if only one bit in a page is updated, the whole

page is marked as a dirty page, and is written in the next incremental checkpointing. The

problem increases incremental size. Ferreira et al. [34], proposed hash-based incremental

checkpointing using GPUs. This approach detects updated memory data with byte-wise

granularity to minimize incremental size. They developed libhashckpt that provide

the page protection scheme, and compute hashes using a GPU to reduce the overhead

of the hash computation.

Uncoordinated Checkpoint/Restart

Generally, checkpoint/restart techniques can be categorized into two approaches, co-

ordinated and uncoordinated checkpoint/restart. With coordinated checkpoint/restart,

all processes globally synchronize before taking checkpoints to ensure the checkpoints

are consistent and that no messages are in flight (Figure 2.10). Coordinated check-

point/restart is applicable to a wide range of applications. However, the global synchro-

nization can cause overhead due to propagation of system noise at extreme scale [35]. In

addition, when checkpointing to or restarting from a PFS, tens of thousands of compute

nodes concurrently write or read checkpoints, which can cause large overhead due to
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contention. Meanwhile, uncoordinated checkpointing does not require global synchro-

nization, and allows processes to write/read checkpoints at different times, which lowers

checkpoint overhead (Figure 2.10). However, with uncoordinated checkpointing there

may be messages in flight from one process to another when a checkpoint is taken, which

can cause the so-called domino effect [36] preventing an application from rolling-back

to the last checkpoint at restart. To handle this, uncoordinated checkpointing libraries

log messages, i.e. message logging [37, 38, 39]. But message logging has its own over-

head problem. Thus, reducing message logging overhead is critical for uncoordinated

checkpointing while avoiding domino effects.

To reduce the message logging overhead, several techniques are proposed. Bouteiller [40]

proposed a hybrid approach combining coordinated and uncoordinated checkpointing.

The technique divides processes into correlated process groups (cluster). When check-

pointing, each process synchronizes within its cluster, and writes a consistent checkpoint

(coordinated checkpointing). Meanwhile, each cluster asynchronously write checkpoints

without synchronization with the other clusters. The approach can reduce message log-

ging overhead because only messages, which are transferred between clusters, need to

be logged.

Guermouche et al. [41] proposed a new uncoordinated checkpointing for send-deterministic

MPI applications. Send-deterministic applications send messages in the same order as

long as it’s correct execution [42]. By taking advantage of the send-determinacy, only a

small subset of application messages are required to be logged, which can reduce the mes-

sage overhead. Bautista-Gomez et al. [43] proposed a hierarchical and hybrid approach

combining with multi-level checkpoint/restart and uncoordinated checkpoint/restart.

The approach create clusters giving a good trade-off between the message logging over-

head and restart time based on a graph partitioning technique [44], then creates sub-

clusters with in the cluster in order to maximize the reliability with Reed-Solomon

encoding.

Checkpoint/Restart Models

Another technique to reduce checkpoint/restart time is optimization of checkpointing

interval. Optimization of checkpoint interval is critical. For example, if we write check-

point frequently, it reduces the wasted computation on a roll-back, but applications end

up spending the most of time for checkpointing. Meanwhile, if we write checkpoint

infrequently, applications can spend much more time for its computation, but much

more computations are wasted on a failure. Thus, checkpoint interval optimization,

which gives a good trade-off between reliability and checkpoint overhead, is important.
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Several optimization techniques have been studied. Young [45] proposed a method

to determine the optimal checkpoint interval for single-level, synchronous checkpoints.

Vaidya extended the model to support asynchronous checkpoints, called forked check-

points [46], and two-level checkpoints [47]. Vaidya also combined both methods to

support a two-level asynchronous checkpoint system to achieve higher efficiency [48].

Vaidya’s model assumes that at most one fast-level checkpoint is taken between each

slow-level checkpoint. However, in current multi-level checkpointing systems, the fastest

checkpoints, which are often saved to node-local storage, are orders of magnitude faster

than the slowest checkpoints saved to the PFS. To account for this, we extend prior

work to model an arbitrary number of node-local checkpoints between consecutive PFS

checkpoints.

2.3.2 Other Techniques Related to Fault Tolerance

Optimization of I/O operations itself is also critical approach to reduce checkpoint/restart

time because checkpoint/restart is an I/O intensive operation. Adding a new tier of

storage is one solution. Rajachandrasekar et al. [49] presented a staging server which

drains checkpoints on compute nodes using RDMA (Remote Direct Memory Access), and

asynchronously transfers them to the PFS via FUSE (Filesystem in Userspace). Other

solutions are I/O overhead hiding techniques. Asynchronous I/O has long been used to

hide the I/O bottlenecks by checkpoint/restart. These techniques enable applications to

parallelize I/O with computation to increase CPU utilization and to enhance I/O per-

formance. Patrick et al. [50] presented a comprehensive study of different techniques of

overlapping I/O, communication, and computation, and showed the performance ben-

efits of asynchronous I/O. Nawab et al. [51] asynchronously transfer multiple striped

TCP data streams to increase I/O performance in Grid environments. An asynchronous

staging service using RDMA proposed by Hasan et al. [52] is the closest research to our

asynchronous checkpointing system. The authors achieved high I/O throughput by using

additional nodes. As we will observe, optimizing performance requires determination of

the proper number of staging nodes for a given number of compute nodes. However, the

comprehensive study on the problem is not shown nor do they present their solution. To

deal with bursty I/O requests, Liu et al. [53] simulated a system design that integrates

SSD storage on I/O nodes as burst buffers. They found that such a system could deliver

high I/O bandwidth to an application while reducing the demands on the PFS. In this

dissertation, we effectively implement a system with burst buffers on the compute nodes,

and through experiment and modeling, we arrive at the same conclusions regarding the

need for and benefits of asynchronous I/O to the PFS.
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The state-of-the-art I/O techniques themselves are limited in their ability to improve

I/O efficiency at extreme scale because I/O time depends on underlying I/O device

performance. Wickberg et al. [54] introduced an aggregated DRAM buffer on top of

the PFS called RAMDISK Storage Accelerator (RSA). RSA constructs a low latency and

high bandwidth buffer on the fly, and asynchronously stages in files ahead of execution

coupled with I/O scheduler. Kannan et al. [55] also presented a data staging approach

using active NVRAM (Non-volatile RAM) [56] technology.

Most of all applications exchanges messages during their runtime using messaging inter-

faces such as MPI. Fault tolerant capabilities in messaging interfaces are important.

Fault tolerant messaging runtimes will be critical for applications to be able to recover

from failures on future systems. FT-MPI[57] and ULFM (User Level Fault Mitigation)[58]

implement fault tolerant capabilities on top of MPI. In these libraries, failures are vis-

ible to applications, so users need to write fault tolerant code, such as communicator

recovery and checkpoint/restart. In other efforts, [59, 60], the libraries write checkpoints

transparently on top of MPI, but recovery is not transparent to applications. Adaptive

MPI[61], developed on top of Charm++[62], provides transparent recovery using check-

point/restart. However, failed processes are relaunched on existing nodes instead of

spare nodes, which can cause unbalanced process affinity, and performance degradation

after recovery.

2.4 Towards Optimal Checkpoint/Restart

To achieve more efficient checkpoint/restart, existing techniques are not sufficient. This

clarifies the differences between existing techniques and our approaches, asynchronous

checkpointing (in Chapter 3), reliable storage design (in Chapter 4), and fault tolerant

messaging interface (in Chapter 5).

2.4.1 Light-weight Asynchronous Checkpointing and the Model

Table 2.6: Comparison to existing multi-level asynchronous checkpoint/restart

SCR [4] FTI [7] Our approach
(in Chapter 3)

Multi-level
Checkpoint/Restart

Yes
(XOR)

　Yes
(Reed-Solomon)

Yes
(XOR)

Asynchronous
checkpointing

Yes
(w/o stating)

　Yes
　 (w/o staging)

Yes
(w/ staging)
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Multi-level checkpointing is one of promising approaches for extreme scale computing.

Several implementations exist [4, 7].

SCR [4] is the first implementation of multi-level checkpoint/restart using XOR encoding

for diskless checkpointing. SCR also supports asynchronous checkpointing to PFS. FTI

also implements multi-level checkpoint/restart with Reed-Solomon encoding for diskless

checkpointing, and asynchronous checkpointing to PFS. On asynchronous checkpoint-

ing, however, both checkpoint/restart runtimes directly write checkpoints from compute

nodes to PFS. As will be described in Section 3.2.2, if we directly write checkpoints from

compute nodes to PFS, the net cost to the application increase. A lighter weight asyn-

chronous checkpoint method to minimize the impact on application is important. Our

asynchronous checkpointing system solves the problem through staging nodes running

on additional nodes that asynchronously transfer checkpoints from the compute nodes

to the PFS (in Chapter). In Chapter 3, we describe more details.

Table 2.7: Comparison to existing checkpoint/restart model

Young [45] Vaidya [48] Moody et al. [4] Our approach
(in Chapter 3)

Multi-level
Checkpoint/Restart

No
(Single level)

Yes
(Two levels)

Yes
(Arbitrary levels)

Yes
(Arbitrary levels)

Asynchronous
checkpointing

No 　Yes
(to only computation)

No Yes

Although reducing checkpointing overhead is important, the other factors, such as check-

point interval and frequency of each level of checkpoint, are also critical to performance.

However, as we described in Section 2.3, existing checkpointing models are not sufficient

to the asynchronous checkpointing. We highlights the existing models in Table 2.7. Al-

though the latest model supports arbitrary levels of checkpoint/restart model [4], the

model does not support asynchronous checkpointing. Meanwhile, Vaiday’s model [48]

supports asynchronous checkpointing. However, the model only support two-level case,

and the model assumes that the asynchronous checkpointing to PFS does not overlap

with other levels of faster checkpointing. In current multi-level checkpointing, the fastest

checkpoints, which are often saved to node-local storage, are orders of magnitude faster

than the slowest checkpoints saved to the PFS. Asynchronous checkpointing can over-

laps other levels of checkpointings as well as computation. We must account for this

matter. We describe how we models the asynchronous checkpointing in Chapter 3.
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2.4.2 Multi-tier Storage Design with Bust Buffer

Burst buffer itself is not new technology. As described in Section 2.3.2, Liu et al. [53]

already simulated a system design that integrates SSD storage on I/O nodes as burst

buffers. However, they did not investigate the reliability when we use burst buffer for a

checkpointing target. We describe how we models burst buffer architectures, and exploit

them in Chapter 4.

2.4.3 Fault Tolerant Messaging Interface

Table 2.8: Existing approaches

FT-MPI [57] SCR [4] Charm++ [62] Our approach
(ULFM [58]) (in Chapter 5)

Survivable Yes No Yes Yes
Failure detection Yes

(w/ explicit call)
No Yes

(Not scalable)
Yes

(Scalable)
Auto-recovery No No Yes Yes

MPI Compatibility Yes Yes Yes
(w/o FT feature)

Yes (w/ additonal
function calls)

Checkpoint No Yes Yes
(Only partner)

Yes
(XOR)

As described in Section 2.3.2, a survivable messaging interface itself is not new tech-

niques, and there are a few existing survivable messaging interfaces. FT-MPI [57] and

ULFM [58] are survivable messaging interfaces. However only processes, which issues

communication request to failed processes, can detect the failure. To globally notify the

failure to all running processes, users need to explicitly call a revoke function. In addi-

tion, for recovery, the interfaces do not provide any automated recovery schemes. The

users need to handle the failures, and write codes to store checkpoints, and restore com-

munication and application states to restart its computation. SCR [4] provide scalable

checkpoint/restart capability for MPI applications, but the runtime is not a messaging

interface. Charm++ [62] is also survivable messaging interface, which detects process

failures, recovery all contexts to restart its computation, and write checkpoints with scal-

able methods (Copying checkpoints to another local-disk or in-memory space). However,

global failure detection is not scalable because a process, which noticed a failure, sends

the notification to the other processes. At extreme scale, the scalable global notifica-

tion is critical. In addition, Charm++ applications are written by different programming

model to MPI applications. To support MPI applications, Charm++ provide MPI-based

APIs, but several fault tolerant capabilities, such as auto-recovery, becomes unavailable
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on the MPI-based APIs. At extreme scale, the rack of the fault tolerance capabilities of

existing survivable messaging interfaces will make fault tolerant programming compli-

cated. Thus, a survivable messaging interface, which provides scalable failure detection,

auto-recovery, and fast checkpoint/restart for MPI applications, is critical. We describe

our fault tolerant messaging interface, which solve the above problems in Chapter 5.



Chapter 3

Asynchronous Checkpointing

System

The first approach, multi-level asynchronous checkpointing, solves the checkpointing

overhead to PFS. The multi-level asynchronous checkpointing writes checkpoints through

agents running on additional nodes that asynchronously transfer checkpoints from the

compute nodes to the PFS. Our approach has two key advantages. It lowers application

checkpoint overhead by overlapping computation and writing checkpoints to the PFS.

Also, it reduces PFS load by using fewer concurrent writers and moderating the rate

of PFS I/O operations. Our experiments show that the asynchronous checkpointing

system can improve efficiency by 1.1 to 2.0 times on future machines. Additionally, ap-

plications using the asynchronous checkpointing system can achieve high efficiency even

when using a PFS with lower bandwidth.

3.1 Introduction to Multi-level Asynchronous Checkpoint-

ing System

As described in Chapter 2, Checkpointing is an indispensable fault tolerance technique,

commonly used by HPC applications that run continuously for hours or days at a time.

A checkpoint is a snapshot of application state that can be used to restart execution if

a failure occurs. However, when checkpointing large-scale systems, tens of thousands

of compute nodes write checkpoints to a parallel file system (PFS) concurrently, and

the low I/O throughput becomes a bottleneck. Although simple, this straightforward

checkpointing scheme can impose huge overheads on application run times.

27
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Multi-level checkpointing [4, 7] is a promising approach for addressing these problems.

This approach uses multiple storage levels, such as RAM, local disk, and the PFS,

according to the different degrees of resiliency and the checkpoint/restart time in those

storage levels. Multi-level checkpointing systems typically rely on node-local storage

levels for restarting from more common failures, such as single-node failures, and the PFS

for more catastrophic failures. By taking frequent, inexpensive node-local checkpoints,

and less frequent, high-cost checkpoints to the PFS, applications can achieve both high

resilience and better efficiency.

However, computational capabilities are increasing faster than PFS bandwidths. This

imbalance in performance means applications can be blocked for tens of minutes for a

single checkpoint [4]. Thus, the overhead of checkpointing to the PFS can dominate

overall application run time even with infrequent PFS checkpoints. Further, the huge

numbers of concurrent I/O operations from large-scale jobs burden the PFS and are

themselves a major source of failures. Thus, we must reduce the PFS load in order to

achieve high reliability and efficiency.

Our asynchronous checkpointing system solves this problem through agents running on

additional nodes that asynchronously transfer checkpoints from the compute nodes to the

PFS. Our approach has two key advantages. It lowers application checkpoint overhead

by overlapping computation and writing checkpoints to the PFS. Also, it reduces PFS

load by using fewer concurrent writers and moderating the rate of PFS I/O operations.

In particular, our asynchronous checkpointing system maintains a given application

efficiency with significantly lower PFS requirements than synchronous checkpointing.

We make the following major contributions:

≤ The design of an asynchronous checkpointing system;

≤A detailed failure analysis of a petascale supercomputer;

≤A Markov model of asynchronous checkpointing on top of an existing multi-level

checkpointing system;

≤A comprehensive exploration of asynchronous checkpointing on current and future

systems.

Our results show that combining asynchronous and multi-level checkpointing results in

highly efficient application runs with low PFS bandwidth requirements.
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3.2 Scalable Checkpoint/Restart

Our asynchronous checkpointing system is developed as an extension to the SCR li-

brary [63]. Our system asynchronously transfers node-local checkpoints written by SCR

to the PFS.

3.2.1 Checkpoint/Restart Scheme

SCR is a checkpoint/restart library that production LLNL applications use. It supports

globally-coordinated checkpoints that the application writes, primarily as a file per MPI

process – a common checkpointing technique in large-scale codes. SCR uses hierarchi-

cally distributed storage to implement a multi-level checkpointing system. For instance,

SCR can cache the most recent checkpoints in RAM disks or SSDs that are local to the

compute nodes on which the application is running, and it can also store checkpoints on

the PFS.

SCR applies redundancy schemes to the distributed storage devices such that the appli-

cation can recover from most failures using the cached checkpoints. When these storage

devices are local to and scale with the number of compute nodes, the cost to cache

a checkpoint is low, so the application can checkpoint frequently. However, this ap-

proach cannot handle failures involving many nodes so SCR periodically copies (flushes)

a cached checkpoint to the PFS in order to recover from those more severe, but less

frequent failures. After a failure, SCR tries to restart from the most recent checkpoint

in cache. If it cannot, it fetches and restarts from the most recent checkpoint on the

PFS.

3.2.2 SCR Flush

As mentioned, to withstand catastrophic failures, such as a rack-level failure or a data

center-wide power outage, SCR periodically flushes a checkpoint from node-local storage

to the PFS. SCR supports two types of flush operations: synchronous and asynchronous.

When SCR copies a checkpoint to the PFS synchronously, it blocks the application

until the copy has completed. In large-scale computations on tens of thousands or

more compute nodes, the total checkpoint size can reach multiple terabytes, which may

take tens of minutes to complete. Thus, synchronous flushes can dominate application

run time. SCR also supports an asynchronous flush in which it starts the flush and

immediately returns control to the application. An external and independent process

that runs in the background then copies the checkpoint to the PFS, so the application

is not blocked during this transfer.
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Figure 3.1: IOR run time on a 12-core machine with SCR
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Figure 3.2: The asynchronous checkpointing system

In the existing asynchronous flush implementation, an additional process runs on each

compute node to read data from node-local storage and to write data to the PFS. Even

though this process self-throttles its run time, it uses CPU time and other resources that

can impact the application. Figure 3.1 shows the run time of the IOR benchmark [64]

using SCR with synchronous flush, asynchronous flush, and no flush on the LLNL Sierra

system, a 1944-node Linux cluster with 12 cores per node. The result shows, if we

consume a core to conduct asynchronous checkpointing, then we contend with and slow

down the application. The net cost to the application when it uses all 12 cores is similar

to the cost of simply halting the application until it finishes writing a synchronous

checkpoint to the PFS. Motivated by this result, in this work we develop a lighter weight

asynchronous checkpoint method to minimize the impact on application run time.
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3.3 Asynchronous Checkpointing System

Overlapping I/O with computation by delegating operations to dedicated I/O nodes

improves application performance and mitigates PFS workload [52, 65]. Further, multi-

level checkpointing reduces the frequency of PFS checkpoints. By combining long inter-

vals between consecutive PFS checkpoints with asynchronous flushes (i.e., asynchronous

checkpoints), we can copy data to the PFS at a slow rate to reduce the impact on

the application as well as the PFS. This section details the design of our asynchronous

checkpointing system.

3.3.1 Architecture

As Figure 3.2 shows, our asynchronous checkpointing system has two types of nodes:

compute nodes and staging nodes. The compute nodes are the nodes on which the

application executes. The staging nodes are a group of nodes that we use to transfer

checkpoints from the compute nodes to the PFS. The staging nodes asynchronously read

checkpoint data from the compute nodes and write data to the PFS while the application

continues to execute and to write node-local checkpoints. Generally, each staging node

handles multiple compute nodes; we determine the exact ratio through modeling and

experimental testing (See Sections 3.4 and 3.5).

A staging client process runs on each compute node, and a staging server process runs

on each staging node. When SCR finishes caching a checkpoint (node-local checkpoint)

that is to be flushed to the PFS, it signals the staging client process via a library function

call. The staging client then sends a request to the staging server and the two processes

execute a protocol to transfer the checkpoint; details appear in Section 3.3.2. The staging

server reads checkpoints from the compute nodes using Remote Direct Memory Access

(RDMA) to minimize CPU usage on the compute nodes.

Using additional nodes to transfer checkpoint data with RDMA provides our asyn-

chronous checkpointing system with two advantages. First, it minimizes compute node

CPU usage. On a flush operation, even asynchronous checkpointing can impact ap-

plication runtime as Figure 3.1 shows. With RDMA, the asynchronous checkpointing

system drains a checkpoint from compute nodes to the PFS while minimizing the impact

on application runtime. Because staging nodes are independent from compute nodes,

we can coordinate between the staging nodes to throttle the RDMA read rate without

impacting the performance of the running application.

Second, staging nodes can support balancing overall data center I/O. A PFS is often a

shared resource. Ill-timed I/O patterns between two applications accessing the PFS can
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Figure 3.3: Asynchronous checkpointing client/server using RDMA

reduce the performance of both applications, which is particularly likely with checkpoint-

ing since it is one of the most I/O intensive operations. Staging nodes write checkpoints

to the PFS independently of compute node activities, which allows us to throttle I/O

to the PFS without directly throttling the application I/O rate on the compute nodes.

This paper focuses on minimizing CPU usage; we leave I/O throttling techniques for

optimizing overall data center I/O as future work.

3.3.2 RDMA Checkpoint Transfers

We implement an RDMA transfer system for asynchronous checkpointing based on the

SCR library [63]. The existing SCR asynchronous flush implementation executes an

extra process on each compute node, which reads a checkpoint from local storage and

directly writes that checkpoint to the PFS. This extra process does substantial work

on the compute node, and so it contends with and slows down the application. In

contrast, our staging client process that runs on the compute node does minimal work,

and most of the effort is delegated to the staging server process on the staging node.

Other checkpoint management, such as versioning, checkpoint location, and redundancy

scheme, relies on the original SCR library.

Figure 3.3 illustrates the architecture of our design with an example. First, assume that

SCR has cached a checkpoint in local storage (Step 1). After applying its redundancy

scheme to this checkpoint, SCR writes information into a file called transfer.info re-

questing that the checkpoint be copied to the PFS (Step 2). Among other information,

the transfer.info file includes the source path of the checkpoint files in local storage as

well as the destination paths to which the files should be written on the PFS.
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The staging client periodically checks the transfer.info file for requests, and sleeps for

the rest of the time. Thus, our design does minimal work on the compute node (Step 3).

If the staging client detects a new request, it reads the checkpoint file from the source

path and copies the data to a local RDMA buffer (Step 4). Once the staging client

fills the buffer, it calls an RDMA client function to initiate the data transfer (Step 5).

Since the RDMA client function returns control immediately, the staging client can

read the next chunk to one of the buffer entries in the buffer pool (Figure 3.3 shows

the double-buffering case) while the RDMA client transfers checkpoint chunks to the

staging server. The RDMA client sends a short message containing details about the

checkpoint and the RDMA buffer to the RDMA server (Step 6). When the RDMA server

receives this message, it issues an RDMA read request to read a chunk of the remote

buffer space into a local buffer (Step 7). Then it sends an acknowledgment message to

the RDMA client (Step 8), and it copies the data to the staging server buffer (Step 9).

This protocol continues until all checkpoint data has been copied from the staging client

to the staging server. Finally, data writer threads write the checkpoint to the PFS in

parallel with RDMA reads by the RDMA server (Steps 10 and 11).

An RDMA operation can only read or write remote memory regions of a few MB of

data. Thus, we divide a checkpoint into smaller chunks, which the RDMA server re-

motely reads one by one. To reduce the number of staging nodes, a transfer server can

concurrently handle RDMA requests from multiple transfer clients. However, a large

amount of incoming checkpoint data can cause buffer overflow on a staging node. Thus,

our staging client, which runs on the compute node, reads a small chunk of data from

the compute node storage to a registered memory region for RDMA. The staging server

then pulls the chunk (incoming) region to its own space and writes to the PFS (out-

going). If buffered checkpoint data on a staging node exceeds a specified buffer size

limit, the staging server throttles the RDMA read rate (incoming) to balance incoming

and outgoing checkpoint data. To avoid imbalance in incoming and outgoing data, we

determine the number of staging nodes according to outgoing PFS throughput.

3.3.3 Synchronous and Asynchronous Checkpointing

Figure 3.4 shows the difference between synchronous and asynchronous checkpointing.

To clarify the differences, we characterize both schemes with two metrics, checkpoint

overhead and checkpoint latency. Checkpoint overhead (C) is the increased execution

time of an application because of checkpointing. Checkpoint latency (L) is the time to

complete a checkpoint.
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Figure 3.4: Asynchronous checkpointing can hide L2 checkpoint overhead

During synchronous checkpointing, each process writes its checkpoint data to the PFS,

and blocks until the checkpoint operation completes. Thus, the checkpoint overhead is

identical to the checkpoint latency, i.e., Cblk = Lblk = tb ta. N iterations of synchronous

checkpointing increase application run time by N ⊗ Cblk.

With asynchronous checkpointing, each process continues computation during the PFS

checkpoint so checkpoint overhead (nblk) is generally smaller than checkpoint latency

(Lnblk = tc ta). Application characteristics determine Cnblk and Lnblk. If an application

is computation or network bound, Cnblk and Lnblk increase due to resource contention,

and Lnblk can become larger than Lblk. To initiate an asynchronous checkpoint, the

application must write its checkpoint data to local storage. During the write operations,

the application is blocked so we add this overhead to Cnblk.

Asynchronous checkpointing has advantages over synchronous checkpointing. We can

minimize Cnblk by slowly writing checkpoint data to the PFS, thereby alleviating re-

source contention. Because lower-level checkpoints can continue to be cached on the

compute nodes during an asynchronous checkpoint, the application can take more fre-

quent checkpoints and increase resiliency with low checkpoint overhead. In contrast,

when an application takes a synchronous PFS checkpoint, the application loses Cblk po-

tential computation time and it is significantly more vulnerable to failure, as heavy PFS

load increases the likelihood of PFS failures.
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Thus, we intuitively expect asynchronous checkpointing to be more efficient than syn-

chronous checkpointing. However, asynchronous checkpointing has a disadvantage. In

Figure 3.4, the synchronous checkpoint completes at tb while the asynchronous check-

point finishes at tc. If a failure that requires a PFS checkpoint occurs in the period

between tb and tc, an asynchronous checkpointing system incurs a catastrophic rollback

to an older checkpoint. Alternatively, synchronous checkpointing only rollbacks to tb.

Therefore, with asynchronous checkpointing, the checkpoint interval, Cnblk, Lnblk, and

the frequency of each level of checkpoint must be optimized to lower the risk of the

catastrophic rollback.

3.4 Asynchronous Checkpointing Model

As mentioned previously, with asynchronous checkpointing, several factors are critical

to performance: checkpoint interval, Cnblk, Lnblk, and frequency of each level of check-

point. To determine the optimal values, we extend an existing model of a multi-level

checkpointing system [4] to support our asynchronous checkpointing system.

3.4.1 Assumptions

For simplicity, we make several assumptions in our asynchronous checkpointing model.

Because we build on an existing model, we include that model’s assumptions [4]. We

highlight the important assumptions here.

We assume that failures are independent across components and occur following a Pois-

son distribution. Thus, a failure within a job does not increase the probability of succes-

sive failures. In reality, some failures can be correlated. For example, failure of a PSU

can take out multiple nodes. However, topology-aware techniques can provide very low

probability of those failures affecting processes in the same XOR set, which eliminates

the need to restart from the PFS. SCR also excludes problematic nodes from restarted

runs. Thus, the assumption implies that the average failure rates do not change and

dynamic checkpoint interval adjustment is not required during application execution.

We also assume that the times to write and to read checkpoints are constant throughout

job execution. In reality, I/O performance can fluctuate because of contention for shared

PFS resources. However, staging nodes serve as a buffer between the compute nodes

and the PFS. Thus, our system mitigates PFS performance variability.
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Figure 3.5: The basic structure of the asynchronous checkpointing model

If a failure occurs during asynchronous checkpointing, we assume that checkpoints cached

on failed nodes have not been written to the PFS. Thus, we must recover the lost check-

point data from redundant stores on the compute nodes, if possible, and if not, locate

an older checkpoint to restart the application. We can use either an older checkpoint

cached on compute nodes, assuming multiple checkpoints are cached, or a checkpoint

on the PFS.

3.4.2 Basic model structure

As in the existing model [4], we use a Markov model to describe run time states of an

application. We construct the model by combining the basic structures that Figure 3.5

shows. The basic structure has computation (white circle) and recovery (blue circle)

states labeled by a checkpoint level. The computation states represent periods of ap-

plication computation followed by a checkpoint at the labeled level. The recovery state

represents the period of restoring from a checkpoint at the labeled level.

If no failures occur during a compute state, the application transitions to the next right

compute state (gray arrow). We denote the checkpoint interval between checkpoints as

t, the time of a level c checkpoint as cc, and rate of failure requiring level k checkpoint

as λk. The probability of transitioning to the next right compute state and the expected

time before transition are p0(t + cc) and t0(t + cc) where:

p0(T ) = e λT

t0(T ) = T
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∑LWe denote λ as the summation of all levels of failure rates, i.e., λ = λi where Li=1

represents the highest checkpoint level. If a failure occurs during a compute state, the

application transitions to the most recent recovery state that can handle the failure (blue

arrow). If the failure requires a level i checkpoint or less to recover and the most recent

recover state is at level k where i ≥ k, the application transitions to the level k recovery

state. The probability of a level i failure in an interval t+ cc, and the expected run time

before the transition from the compute state c to the recovery state k are pi(t + cc) and

ti(t + cc) where:

pi(T ) =
λi (1 e λT )
λ
1 (λT + 1)×e λT

ti(T ) =
λ×(1 e λT )

During recovery, if no failures occur, the application transitions to the compute state

at the restored checkpoint. If the recovery time from a level k checkpoint is rk, the

probability of the transition and the expected run time are p0(rk) and t0(rk). If a failure

requiring a level i checkpoint occurs while recovering, and i < k, we assume the current

recovery state can retry the recovery. However, if i ≈ k, we assume the application must

transition to a higher-level recovery state. This assumption in recovery states supposes

a pessimistic case. For example, if a compute node fails (level k̂ failure) during level

k̂ recovery, and the failed nodes are distributed across different XOR groups, then the

application can still recover from the multiple level k̂ failures via the level k̂ recovery

state. However if multiple failed nodes are in the same XOR group, the application can

not recover from the failures. Thus, the assumption supposes the latter pessimistic case.

The probabilities and expected times of failure during recovery are pi(rk) and ti(rk).

We also assume that the highest level recovery state (level L), which uses checkpoints

on the PFS, can be restarted in the event of any failure i ≥ L. The detailed derivation

processes of pi(T ) and ti(T ) are described in [14].

3.4.3 Asynchronous checkpoint model

Our model of asynchronous checkpointing combines the basic structures from Figure 3.5.

Figure 3.6 shows a two level example. If no failures occur during execution, the applica-

tion transitions across the compute states in sequence (Figure 3.6(a)). In this example,

level 1 (L1) checkpoints (e.g., XOR checkpoints) are synchronous and level 2 (L2) check-

points (e.g., PFS checkpoints) are asynchronous. With synchronous checkpointing, the

checkpoint is available when the corresponding compute state completes. Thus, if an

L1 failure occurs, the application transitions to the most recent L1 recovery state (Fig-

ure 3.6(b)). Alternatively, with asynchronous checkpointing, the L2 checkpoint is not
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Figure 3.6: Transition diagram of the asynchronous checkpointing

finished when the L2 compute state completes. Thus, we divide compute states into

two segment types: incomplete segments and complete segments. A computation state

in an incomplete segment represents a period when the L2 checkpoint has started but

is not yet completed. For example, if an L2 failure occurs in incomplete segment 1, the

application transitions to the recovery state for the last completed L2 checkpoint (L2-0
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in Figure 3.6(c)). When an L2 failure occurs in a complete segment 2, the application

transitions to the recovery state for the completed L2 checkpoint (L2-1 in Figure 3.6(c)).

Interference from other asynchronous operations can inflate the time in compute states

before transitions. An overhead factor, α, quantifies the overhead on compute states

in incomplete segments. We define the time spent in compute states in an incomplete

segment as (1 + α)t, where t is the sum of the computation time and the time to

complete a checkpoint. Thus, the probability and expected time for compute states in

an incomplete segment, become p0 (T ), t0 (T ), pi (T ) and ti (T ) where T = (1 + α) t+cc.

Throughout our evaluation (Section 3.5), we employ two-level checkpointing, but our

model can be extended to an arbitrary N -level checkpointing model. Figure 3.7 shows

the general structure of our asynchronous checkpointing model. Our model is composed

of hierarchical states, with the outermost state denoted as a W (k) state. The defini-

tion of Z(k, c) and its probabilities and expected times for transition to other states

were defined in the existing model [14]. To distinguish compute states in complete and

incomplete segments, we extend the definition of Y (k, c) to reflect the interference as

Yx(k, c), where x denotes the overhead factor. Using the model, we can compute the

expected time to complete a given number of compute states with an arbitrary number

of checkpointing levels. By merging the states, we can calculate the expected time of

W (k) state as in Appendix A.
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Table 3.1: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 ⊗ 2 (12 cores in total)

Memory 24 GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect QLogic InfiniBand QDR

250 seconds Asynchronous checkpointing Asynchronous checkpointing

Measured 

400GB of 
 memory write/read 

per process 

Asynchronous checkpointing Asynchronous checkpointing

Measured 

100GB of  
communication with  

MPI_AlltoAll per process  

Asynchronous checkpointing
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Figure 3.8: Experimental setups for (Top) CPU-intensive benchmark, (Middle)
Memory-intensive benchmark, and (Bottom) Network-intensive benchmark

3.5 Evaluation

This section compares our asynchronous checkpointing system to the existing SCR im-

plementation [4]. For illustration, we model a two-level system in which the first level

uses SSD on the compute nodes with a RAID-5-like redundancy scheme and the second

level is a PFS.

3.5.1 Asynchronous Checkpointing Overhead

First, we evaluate the asynchronous checkpointing system on the Sierra cluster at LLNL

using a PFS designed to deliver a peak performance of 30GB/s. Each Sierra node has

two 2.8 GHz 6-core Intel Xeon 5660 processors (12 cores in total) and 24GB of memory,

and nodes share a QLogic IBA7322 QDR InfiniBand HCA (4X) interconnect.
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Figure 3.9: IOR Runtime with ATS varying number of compute nodes

CPU-intensive benchmark

We use the IOR benchmark [64] developed by LLNL, which measures I/O performance

using POSIX, MPI I/O, or HDF5 with several access patterns. IOR has a main loop that

executes read/write operations followed by a sleep-delay interval. The number of loop

iterations is specified by the user along with the number of seconds for the delay interval.

We ran IOR to write a 200 MB per-process checkpoint files to local storage through the

HDF5 API. IOR repeats this write operation three times with a 250 second sleep interval

between writes, for 750 seconds of delay in total. We write node-local checkpoints to

RAM disk (/tmp) and flush them to a Lustre PFS [66]. To emulate a compute-bound

scientific application writing checkpoints periodically, we replace the sleep-delay with a

CPU-intensive loop based on the do work() function in the ATS (APART Test Suite)

[67]. The do work() function repeatedly generates a random index using the C rand()

function, copies a value of one array at the index to another array at the same index a

specified number of times. We calibrate this computation time to take 250 seconds.

Figure 3.9 shows increased IOR runtime ratio to 250 seconds of ATS run with an increas-

ing number of MPI processes, and different number of staging nodes. In the evaluation,

the MPI processes occupy all cores on computes node, i.e., 12 MPI processes per compute

node (Figure 3.8).

The staging clients uses a 200MB of internal double buffers to flush each checkpoint to

the PFS after IOR writes it. Meanwhile, staging servers use a 20GB buffer. We vary

the number of compute nodes, which a staging node handles, from 4 to 16 in increasing

powers of 2. The first asynchronous checkpointing starts at the end of the first checkpoint

to local storage. The first call of do work() is not affected by asynchronous checkpointing.
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Thus, we measure runtime of second do work() execution. As presented in Figure 3.9,

our asynchronous checkpointing can flush checkpoints to the PFS with less runtime

overhead. Since the asynchronous checkpointing uses RDMA to drain checkpoint data

from compute nodes to the PFS, our system uses less CPU, which can reduce the impact

on the application. Even with over 3,000 processes, the overhead ration is less than 2%.

Therefore, we found that performance analysis and modeling of our asynchronous check-

pointing system are required to determine the appropriate number of staging nodes given

the number of compute nodes, the checkpoint size, network and effective I/O through-

put. In addition, we use the do work() function of ATS, which is a CPU-bound function.

However since our asynchronous checkpointing system shares a network bandwidth, it is

expected to affect network-bound applications. We consider these problems to be future

work.

Memory-intensive and Network-intensive benchmarks

To investigate the impact to memory-intensive and network-intensive applications, we

conduct the same experiment with a memory-intensive and network-intensive bench-

mark. In the experiment, we replace the sleepy-delay with STREAM [68], which write

and read 400GB of data to simulate a memory-intensive application. For a network-

intensive benchmark, we employ MPI AlltoAll, which communicates 100GB of data

per process (Figure 3.8). Figure 3.10 and 3.11 show the runtime of the benchmarks with

and without asynchronous checkpointing. As presented in the figures, overhead is negli-

gibly small in both benchmarks. Because throughput to PFS is low, required bandwidth

by asynchronous checkpointing is much smaller than memory and network bandwidth.

For example, when we asynchronously write checkpoints of 1,000 nodes to PFS whose

throughput is 10GB/s. 10MB/s of bandwidth is required per nodes on average. The
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Figure 3.13: Aggregate writeFigure 3.12: Impact of varying
throughputsdata writer count

Figure 3.14: Empirical overhead
factor

required bandwidth is much smaller than bandwidths of Sierra nodes (Theoretical peak

memory bandwidth:32GB/s, theoretical peak network bandwidth: 4GB/s).

3.5.2 Tuning of Asynchronous Checkpointing

Checkpoint efficiency highly depends on I/O throughput so we must tune I/O operations

such that staging nodes fully exploit the available I/O performance. Generally, we can

increase I/O throughput to a PFS by writing with multiple threads, so we multi-thread

our staging server process. Our goal is to find the optimal numbers of threads and staging

nodes such that we can obtain near peak PFS performance. As a target PFS, we use

the Lustre file system [66] on TSUBAME2.0. A TSUBAME2.0 node has two sockets

of Intel Xeon X5670, 58GB of DDR3 1333MHz memory, 120GB of local SSD and three

Tesla M2050 GPUs. The nodes are connected through Dual-Rail QDR Infiniband(x4).

Figure 3.12 shows the write throughput of one staging node with different numbers of

data writer threads. We achieve the highest performance (1.6 GB/s) on a single staging

node with 16 threads. We then explore how many staging nodes can exploit the Lustre
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file system. Figure 3.13 presents aggregate write throughput with different staging node

counts, each using 16 data writers. Aggregate write throughput rapidly increases from 1

to 32 staging nodes but then quickly saturates around 8 GB/s beyond 32 staging nodes.

Thus, we use 32 staging nodes and set the staging server to run with 16 data writer

threads. Under this set up, checkpoint data can be transferred to the PFS at a rate

of 6.4 GB/s via 32 staging nodes, which is only 2.3% of the 1408 TSUBAME2.0 thin

nodes.

Whenever the staging client and server processes read checkpoint data from compute

nodes in the background, significant overhead is added to the application runtime due

to resource contention. The amount of overhead depends on the read rate. To estimate

this overhead, we transferred checkpoints while running the Himeno benchmark [69]

as a target application. This benchmark solves Poisson’s equation using the Jacobi

iteration method. The Himeno benchmark is a stencil application in which each grid

point is repeatedly updated using only neighbor points in a domain. This computational

pattern frequently appears in numerical simulation codes for solving partial differential

equations. Many fluid dynamics phenomena can be described by partial differential

equations over multi-dimensional Cartesian grids, including weather, seismic waves, heat

flow, and electric charge and magnetic field distribution in a domain.

Figure 3.14 shows the overhead factor imposed on the Himeno benchmark while varying

the checkpoint read rate of a staging node. We find that the overhead factor roughly

increases linearly with the read rate. Based on the result, we model the overhead factor

(α) of the Himeno benchmark as α = cx where c is 0.008768, and x represents the

checkpoint read rate of a staging node in GB/s. The parameter c is derived from the

slope of fitting a line to the data in Figure 3.14. With 32 staging nodes, we calculate

the read rate per staging node to be 209.5 MB/s, which is derived by dividing the

aggregate write throughput when using 32 nodes in Figure 3.13 by 32, the number of

staging nodes. Thus, the overhead factor model gives us the overhead factor of 0.00184

(= 0.008768× 0.20905). We add this overhead to the time of computation in our model

when we compute efficiency of asynchronous checkpointing.

SCR can adjust the degree of resiliency by changing the number of processes in each

XOR group used to compute redundancy data. Figure 3.19 shows encoding throughput

for different XOR group sizes. Resiliency improves with smaller XOR groups, but XOR

encoding throughput decreases. For an XOR checkpoint, SCR computes the parity
Bof each block as in RAID-5 [16, 17], which creates S = B + bytes of encodedN 1

checkpoint data from B bytes of original checkpoint data within N members of an XOR

group. Since the encoding time increases linearly with the encoded checkpoint size, the

large XOR group size, NS, saturates the XOR encoding rate. As Section 2.2 showed,
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Figure 3.15: The multi-level checkpoint/restart simulator transition to com-
pute/checkpoint/recovery states according to failure intervals generated by random

numbers for a exponential distribution
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Figure 3.16: Model errors in different interval and L1 checkpointing count

most failures affect just one node. Thus, we use XOR checkpoints only to handle failure

category 1 in Table 2.3, and we handle the other failure categories k = 2, 3, 4 . . . 5 by a

PFS checkpoint. Thus, we set the XOR encoding rate as the saturated maximal rate,

400MB/s.

3.5.3 Model Accuracy

First we verify our model accuracy. We develop a multi-level checkpoint/restart simu-

lator, and compares efficiency computed by our model with efficiency by the simulator.

The simulator keeps track of application states, i.e, compute/checkpoint/restart states,

according to failure intervals generated by random numbers for a exponential distribu-

tion. The transition of the application follows a Poisson process (Figure 3.15). The

checkpoint overhead, checkpoint latency and recovery time is based on parameters in
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Figure 3.17: Efficiency computed by the multi-level checkpoint/restart simulator: L1
count = 2

Section 3.5.2. For failure rates, we use the ones of TSUBAME2.0 in Table 2.3. In

this evaluation, we assume an application writes two level checkpoints to recovery from

Failure level 1 by level-1 checkpoints, and Failure level 2 to 5 by level-2 checkpoints.

We run the simulator until the application transition to 300,000 states, which give us a

stable number of efficiency.

Figure 3.16 shows error ratios of efficiency of our model to our multi-level checkpoint/restart

simulator. Because the checkpoint intervals (level-2 and 1) are determined by an interval

of level-1 checkpoint, and the number of level-1 checkpoints per level-2 checkpoint. Thus,

the figure becomes a two-dimensional figure. Black-colored panels means the model and

the simulator can not compute the efficiency because level-2 checkpoint intervals are too

short to complete. As shown in the figure, our model is fairly accurate, and the error

rations becomes smaller as the checkpoint interval and L1 count decrease. As system

size grows and the failure rate increase at extreme scale, the checkpoint interval will be

expected to shrink. Thus our model is expected to give us more accurate estimation,

and becomes more necessary model to estimate efficiency at extreme scale.

Based on our model, we can find its optimal checkpoint interval and level-1 checkpoint

count as 4100 seconds of the interval and 2 level-1 checkpoints per level-2 checkpoint for

TSUBAME2.0. Meanwhile the simulator give us 3000 seconds and 4 of level-1 checkpoint

counts for the optimal numbers. To validate our model, we also explore the impact of

the different checkpoint interval and level-1 checkpoint count. Figure 3.17 and 3.18 show

efficiency computed by the simulator with two and four of level-1 checkpoint count in

increasing level-1 checkpoint intervals. As shown in the figures, the best efficiency is

0.864 by 3000 seconds interval and four level-1 checkpoint counts. Meanwhile, with our

model, applications can still achieve high efficiency as 0.856, which means our model

can give us the nearly best checkpoint interval and level-1 checkpoint count.
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Figure 3.18: Efficiency computed by the multi-level checkpoint/restart simulator: L1
count = 4

Figure 3.19: XOR encoding performance per node

3.5.4 Efficiency Comparison

As future systems will be larger and will have larger memory sizes, failure rates and

checkpoint size are expected to increase. To explore the effects, we increase failure

rates and checkpoint/restart times by factors of 1, 2, and 10, and compare efficiency

between synchronous and asynchronous checkpointing. We use 29 GB for the checkpoint

size per compute node, which is half of the memory of a TSUBAME2.0 thin node.

As Figure 3.19 shows, an XOR encoding rate is constant regardless of the number of

compute nodes, which means XOR encoding scales with system size. Thus, when we

increase checkpoint/restart times, we increase only PFS checkpoint/restart time (PFS

cost).
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Figure 3.20: Efficiency of synchronous and asynchronous checkpointing

Figure 3.20 shows the efficiency of both checkpointing methods under different fail-
ideal timeure rates and PFS costs. We define the efficiency as . The ideal time isexpected time

the run time if the application encounters no failures and takes no checkpoints, while

expected time is the expected run time computed from our model for asynchronous

checkpointing and the original model [4] for synchronous checkpointing. When we com-

pute efficiency, we optimize Level 1 counts between Level 2 checkpoints, and the inter-

val between checkpoints, given failure rates and PFS costs, which yields the maximal

efficiency. The asynchronous method always achieves higher efficiency than the syn-

chronous method. The efficiency gap becomes more apparent with higher failure rates

and higher PFS costs. This is because the long time to take a PFS checkpoint during

synchronous checkpointing increases the likelihood of a lower level failure occurring dur-

ing the PFS checkpoint, so the application must rollback to the beginning. However,

with asynchronous checkpointing, the application can rollback to the most recent XOR

checkpoint. Further, since overhead of a synchronous checkpoint is identical to check-

point latency, which is directly added to application run time, the efficiency decreases

more quickly than with asynchronous checkpointing.

Since staging nodes write checkpoints to the PFS independently of compute node ac-

tivities, they can throttle their write rate without reducing application performance.

We found that we could read checkpoints from compute nodes at half of the maximum

bandwidth (i.e., PFS cost ⊗2), but still maintain 90% efficiency with current failure

rates.

Because an asynchronous checkpoint overlaps with application computation, asynchronous

checkpointing can impact the application run time depending on the overhead factor,
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Figure 3.21: Efficiency under varying the overhead factor: α

α, in different applications. If the overhead factor increases enough, our asynchronous

checkpointing could be less efficient than synchronous checkpointing. Figure 3.21 shows

efficiency with increasing overhead factor and different failure rates and PFS costs. F

and C denote the base failure rate and PFS cost. Synchronous checkpointing can be-

come more efficient than asynchronous with a larger overhead factor at current failure

rates and PFS costs. However, in future systems where the failure rates and PFS costs

increase, asynchronous checkpointing can be effective even with a large overhead fac-

tor. With large failure rates and PFS costs, the checkpointing interval decreases so that

checkpointing overhead dominates the overall run time. Since an application is blocked

with synchronous checkpointing, the checkpoint latency impacts application run time

more than with asynchronous checkpointing in future systems. As for different systems,

we observed that three clusters at LLNL show similar failure rates [4], where system

failures can be recovered from level 1 checkpoints and frequent level 2 checkpoints are

not required. Thus, asynchronous checkpointing would benefit other systems.

3.5.5 Building an Efficient and Resilient System

When building a reliable data center or supercomputer, two major concerns are financial

cost of the PFS and the PFS throughput required to maintain high efficiency. Generally,

we want to minimize financial cost, but not sacrifice performance. Using our model, we

can predict the required PFS bandwidth to achieve high system efficiency when using

our checkpointing system.

Figure 3.22 shows the PFS bandwidth required to maintain 90%, 80%, and 70% effi-

ciency under increasing failure rates, scaled from 1⊗ up to 16⊗ today’s rates. Overall,
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Figure 3.22: Required PFS throughput at different failure rates

our checkpointing system outperforms synchronous checkpointing. Failure rates can in-

crease by 16⊗ and still require modest PFS throughputs for 80% application efficiency.

However, at 90% efficiency, the bandwidth requirement rises sharply with failure rates

larger than 5⊗. Here, as failure rates increase, the optimal checkpoint interval decreases,

increasing the overhead contribution of the L1 checkpoints. As the overhead of L1 check-

points approaches 10%, the allowed overhead for writing PFS checkpoints approaches

0%. Therefore, achieving 90% efficiency at higher failure rates requires throughput val-

ues approaching infinity. The curve for synchronous checkpointing at 90% efficiency

follows the same trend, but is much more severe, so much so that it does not appear

in the figure. These trends imply that reducing the overhead of L1 checkpoints will be

necessary on machines with higher failure rates.

With synchronous checkpointing, systems require higher PFS throughput to minimize

the risk of failure during a PFS checkpoint. Further, synchronous checkpointing uses

the PFS only when taking a PFS checkpointing, which means the PFS underutilized

during most of the application run. With our checkpointing system, we not only hide

PFS checkpoint overhead, but use PFS throughout application execution.
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3.6 Summary

We have designed and modeled an asynchronous checkpointing system that extends

an existing multi-level checkpointing system. Our asynchronous checkpointing system

enables applications to save checkpoints to fast, scalable storage located on the compute

nodes and then continue with their execution while dedicated staging nodes copy the

checkpoint to the PFS in the background. This capability simultaneously increases

system efficiency and decreases required PFS bandwidth. Since applications spend less

time in defensive I/O, we find that our asynchronous checkpointing system can improve

machine efficiency by 1.1 to 2.0 times on future systems. Further, our model predicts

that asynchronous checkpointing significantly reduces the PFS bandwidth required to

maintain application efficiency. For example, to maintain 80% efficiency at 4× today’s

failure rates, the PFS bandwidth required for asynchronous checkpointing is an order

of magnitude less than that required by synchronous checkpointing. Additionally, our

asynchronous checkpointing system can maintain 80% efficiency with only modest PFS

bandwidth requirements even when failure rates are 16× higher than on current petascale

systems.
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A User-level Infiniband-based

File System and Checkpoint

Strategy for Burst Buffer

The third approach, a user-level infiniband-based file system and checkpoint strategy for

burst buffers, consider using burst buffers to improve system resiliency. Burst buffers

are a new tier in the storage hierarchy to fill the performance gap between node-local

storage and the PFS. They absorb the bursty I/O requests from applications and thus

reduce the effective load on the PFS With burst buffers, an application can quickly

store checkpoints with increased reliability. We explore how burst buffers can improve

efficiency compared to using only compute-node storage, and we develop and apply

models to investigate the best checkpoint strategy with burst buffers for a wide range

of checkpoint/restart strategies.

4.1 Introduction to Checkpointing Strategies for Burst Buffer

As described in Chapter 2, one indispensable technique for fault tolerance is check-

point/restart, in which the application periodically writes a snapshot of its state to

reliable storage, like a parallel file system (PFS). Then when a failure occurs, the ap-

plication is restored to its previous state recorded in the snapshot. Although storing

checkpoints in the PFS is highly reliable, this method imposes high overhead on appli-

cation run time at large scales. Multilevel checkpoint/restart improves on this approach

by storing most checkpoints in fast, scalable storage on the compute nodes and only

copying a select few to the more reliable PFS [4, 7]. This reduces the overhead of

writing checkpoints in the common case, which greatly increases application efficiency.

52
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Further efficiency gains can be achieved by combining multilevel checkpoint/restart with

asynchronous I/O [50, 52, 70] or uncoordinated checkpointing [40, 43, 44].

However, even with these state-of-the-art checkpoint/restart techniques, high failure

rates at large scale will significantly limit application efficiency. Our earlier failure anal-

ysis study showed that most failures affect a single compute node [4, 70]. To tolerate

node failures, multilevel checkpointing libraries apply redundancy schemes to the cached

checkpoints across compute-node storage. For example, each checkpoint may be copied

to a partner node, or the library may utilize a RAID algorithm and spread redun-

dancy data across multiple compute nodes. This allows the application to recover from

node failures assuming the number of nodes lost is less than what is tolerated by the

redundancy scheme. However, with higher failure rates, the likelihood of multiple si-

multaneous node failures increases. If the simultaneous failures affect nodes in a shared

redundancy set, the cached checkpoints will be lost and the application will need to

restart from the PFS. This could mean the application would spend the majority of its

time in checkpoint/restart activities [70]. Thus, writing checkpoints to in-system storage

is a scalable, but not reliable, solution, and application efficiency may suffer at extreme

scales.

Burst buffers have been proposed as in-system storage to alleviate the problems of

writing to a shared PFS [8, 9]. Burst buffers are a new tier in the storage hierarchy to

fill the performance gap between node-local storage and the PFS. They absorb the bursty

I/O requests from applications and thus reduce the effective load on the PFS. System

software can manage moving data between the burst buffers and the PFS asynchronously.

The storage design is expected to be a promising architecture of future supercomputers.

In this paper, we consider using burst buffers to improve system resiliency. With burst

buffers, an application can quickly store checkpoints with increased reliability. We ex-

plore how burst buffers can improve efficiency compared to using only compute-node

storage, and we develop and apply models to investigate the best checkpoint strategy

with burst buffers for a wide range of checkpoint/restart strategies. Our key contribu-

tions include:

≤An Infiniband-based file system (IBIO) that exploits the bandwidth of burst buffers;

≤A model to evaluate system resiliency given checkpoint/restart and storage con-

figurations;

≤ Simulation results showing how system resiliency improves from the use of burst

buffers;
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≤A quantitative examination of the trade-offs between coordinated and uncoordi-

nated multilevel checkpoint/restart;

≤An analysis of which tiers in the storage hierarchy impact system reliability and

efficiency; and

≤An exploration of burst buffer configurations to discover the best for future large-

scale systems.

In the next section, we categorize checkpoint/restart strategies and describe the targets

for our study. In Section 4.3, we introduce our SSD burst buffer machine. In Section 4.4,

we detail IBIO. We model multi-tiered storage and checkpoint/restart strategies in Sec-

tion 4.5. In Section 4.6, we show IBIO performance, and in Section 4.7 we simulate

system efficiency given checkpoint/restart strategies and storage configurations. We

summarize this chapter in Section 4.8.

4.2 checkpoint/restart Strategies

Over the years, many checkpoint/restart strategies have been studied. These techniques

can be roughly categorized into single or multilevel, synchronous or asynchronous, and

coordinated or uncoordinated checkpoint/restart. We explain each checkpoint/restart

strategy and their advantages and disadvantages. We describe our target checkpointing

strategies.

4.2.1 Single vs. Multilevel Checkpointing

The simplest approach for checkpoint/restart is to write all checkpoints to a single

location, such as the PFS [45, 46]. However, when a large number of compute nodes

write their checkpoints to a PFS, contention for shared PFS resources leads to low I/O

throughput. Multilevel checkpointing is an approach for alleviating this bottleneck [4].

Earlier failure analysis showed most failures on current supercomputers affect a single

compute node, which does not necessarily require writing checkpoints to the reliable, but

slow PFS [4]. For example, only 15% of failures on the Hera, Atlas and Coastal systems

at LLNL required checkpoints on the PFS for restarts. The study also showed multilevel

checkpoint/restart can benefit application efficiency in the face of higher failure rates

and increased relative overhead of checkpointing to the PFS that may occur on future

systems. Therefore, in this study we only target multilevel checkpoint/restart.
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Figure 4.1: Indirect global synchronization on uncoordinated checkpoint/restart

4.2.2 Synchronous vs. Asynchronous Checkpointing

Checkpointing libraries can write checkpoints either synchronously or asynchronously.

Synchronous checkpointing methods write checkpoints such that all processes write their

own checkpoints concurrently, and are blocked until the checkpoint operation com-

pletes [4, 45]. In asynchronous checkpointing [7, 46, 70], the methods write checkpoints

to the PFS in the background of application computation, which can reduce checkpoint-

ing overhead experienced by applications. With asynchronous checkpointing, after each

process writes its checkpoint data to RAM or node-local storage, it can continue its

computation. Another process or thread reads the checkpoint from the storage location,

and writes it to the PFS. Although asynchronous checkpointing can increase an appli-

cation’s runtime due to resource contention from the background checkpoint transfer

process, it resolves the blocking problem of synchronous checkpointing.

Intuitively, one would expect asynchronous checkpointing to be more efficient than syn-

chronous checkpointing. However, our earlier study showed that simple asynchronous

checkpointing, can inflate an application’s runtime and can be worse than synchronous

checkpointing [70]. But with our asynchronous checkpointing system using RDMA, we

minimized the inflated overhead, and showed that the asynchronous checkpointing is

more efficient given current and future failure rates, and expected checkpointing over-

head. Thus, in this paper, we explore only asynchronous checkpointing.

4.2.3 Coordinated vs. Uncoordinated Checkpointing

Last, we consider whether checkpoint/restart is coordinated or uncoordinated. With

coordinated checkpoint/restart, all processes globally synchronize before taking check-

points to ensure the checkpoints are consistent and that no messages are in flight. Co-

ordinated checkpoint/restart is applicable to a wide range of applications. However, at

large scales the global synchronization can cause overhead due to propagation of system
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noise at extreme scale [35]. In addition, when checkpointing to or restarting from a PFS,

tens of thousands of compute nodes concurrently write or read checkpoints, which can

cause large overhead due to contention. Meanwhile, uncoordinated checkpointing [40]

does not require global synchronization, and allows processes to write/read checkpoints

at different times, which lowers checkpoint overhead. However, with uncoordinated

checkpointing there may be messages in flight from one process to another when a

checkpoint is taken. To handle this, uncoordinated checkpointing libraries log messages,

which has its own overhead problem. This protocol can cause the so-called domino effect

preventing an application from rolling-back to the last checkpoint at restart [39] without

message logging.

Earlier uncoordinated checkpoint techniques [43, 44] reduce the message logging over-

head by partitioning processes into clusters, and only logging the inter-cluster commu-

nications. Although the clustering approach can reduce message logging overhead while

minimizing the number of processes that need to restart on failure, application run-

time is still inflated by the logging overhead. In addition, if we apply uncoordinated

checkpointing to MPI applications, indirect global synchronization can occur. In Fig-

ure 4.1, for example, process (a2) in cluster (A) wants to send a message to process

(b1) in cluster (B), which is writing its checkpoint at that time. Process (a2) waits

for process (b1) because process (b1) is doing I/O and can not receive or reply to any

messages, which keeps process (a1) waiting to checkpoint with process (a2). If such a

dependency propagates across all processes, it results in indirect global synchronization.

Many MPI applications exchange messages between processes in a shorter period of

time than is required for checkpoints. In uncoordinated checkpointing, we assume ap-

plications restart with uncoordinated manner (partial restart), but globally synchronize

before checkpointing like coordinated checkpointing. Thus, as in the model in Section

4.5, we model uncoordinated checkpointing time is same as coordinated checkpointing.

4.2.4 Target checkpoint/restart Strategies

As discussed previously, multilevel and asynchronous software-level approaches are more

efficient than single and synchronous checkpoint/restart respectively. However, there is

a trade-off between coordinated and uncoordinated checkpointing given an application

and the configuration. In this work, we compare the efficiency of multilevel asynchronous

coordinated and uncoordinated checkpoint/restart. However, because we have already

found that these approaches may be limited in increasing application efficiencies at

extreme scale [70], we also consider storage architecture approaches.
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A single node 

Figure 4.2: (a) Left: Flat buffer system (b) Right: Burst buffer system

4.3 Storage designs

Our goal is to achieve a more reliable system with more efficient application executions.

Thus, we consider not only a software approach via checkpoint/restart techniques, but

also consider different storage architectures. In this section, we introduce an mSATA-

based SSD burst buffer system (Burst buffer system), and explore the advantages by

comparing to a representative current storage system (Flat buffer system).

4.3.1 Current Flat Buffer System

In a flat buffer system (Figure 4.2 (a)), each compute node has its dedicated node-local

storage, such as an SSD, so this design is scalable with increasing number of compute

nodes. Several supercomputers employ this flat buffer system [14, 71, 72]. However this

design has drawbacks: unreliable checkpoint storage and inefficient utilization of storage

resources for partial restart. Storing checkpoints in node-local storage is not reliable

because an application cannot restart its execution if a checkpoint is lost due to a failed

compute node. For example, if compute node 1 in Figure 4.2 (a) fails, a checkpoint on

SSD 1 will be lost because SSD 1 is connected to the failed compute node 1. Storage

devices can be underutilized with partial restart by uncoordinated checkpoint/restart.

While the system can limit the number of processes to restart, i.e., perform a partial

restart, in a flat buffer system, local storage is not utilized by processes which are not

involved in the partial restart. For example, if compute node 1 and 3 are in a same

cluster for uncoordinated checkpoint/restart, and restart from a failure, the bandwidth

of SSD 2 and 4 will not be utilized. Compute node 1 can write its checkpoints on the

SSD of compute node 2 as well as its own SSD in order to utilize both of the SSDs on

restart, but as argued earlier distributing checkpoints across multiple compute nodes is

not a reliable solution.
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4.3.2 Burst Buffer System

To solve the problems in a flat buffer system, we consider a burst buffer system [53].

A burst buffer is a storage space to bridge the gap in latency and bandwidth between

node-local storage and the PFS, and is shared by a subset of compute nodes. Additional

nodes are required for burst buffers, and the increasing number of nodes may inflate

the overall failure rate. However, a burst buffer can offer a system many advantages

including higher reliability and efficiency over a flat buffer system. A burst buffer system

is more reliable for checkpointing because burst buffers are located on a smaller number

of dedicated I/O nodes, so the probability of lost checkpoints is decreased. In addition,

even if a large number of compute nodes fail concurrently, an application can still access

the checkpoints from the burst buffers. A burst buffer system provides more efficient

utilization of storage resources for partial restart of uncoordinated checkpoint/restart

because processes involving restart can exploit higher storage bandwidth. For example,

if compute node 1 and 3 are in the same cluster, and both restart from a failure, the

processes can utilize all SSD bandwidth (Bandwidth of SSD 1 and 2 for node 1, SSD

3 and 4 for node 3) unlike a flat buffer system. This capability accelerates the partial

restart of uncoordinated checkpoint/restart.

Table 4.1: Node specification

CPU Intel Core i7-3770K CPU (3.50 GHz x 4 cores)
Memory Cetus DDR3-1600 (16 GB)

M/B GIGABYTE GA-Z77X-UD5H
SSD Crucial m4 msata 256 GB CT256M4SSD3

(Peak read: 500 MB/s, Peak write: 260 MB/s)
SATA converter KOUTECH IO-ASS110 mSATA to 2.5’ SATA

Device Converter with Metal Fram
RAID Card Adaptec ASR-7805Q Single

To explore the bandwidth we can achieve with only commodity devices, we developed

an mSATA-based SSD test system. The detailed specification is shown in Table 5.1.

The theoretical peak throughputs of sequential read and write operation of the mSATA-

based SSD is 500 MB/sec and 260 MB/sec, respectively. We aggregate the eight SSDs

into a RAID card, and connect the RAID cards via PCIe 3.0 (x8). The theoretical

peak performance of this configuration is 4 GB/sec for read and 2.08 GB/sec for write

in total. To use the storage systems as burst buffers, the mSTA-based SSDs must be

accessed via a high-speed network (e.g., Infiniband) with a network-based file system.

However, simple methods cannot exploit the bandwidth. For example, if we use NFS

with IPoIB for the network-based file system, the useful bandwidth is only 1 GB/s for
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both read and write (details in Section 4.6). A new network-based file system is required

to exploit the PCIe-attached high bandwidth storage.

4.4 User-level Infiniband-based File System for Burst Buffers

To exploit the bandwidth of burst buffers, we developed a user-level Infiniband-based

file system and I/O API called IBIO. Our earlier work showed that I/O operations with

concurrent multiple threads can effectively exploit the high bandwidth of PCIe-attached
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storage [73] as well as the PFS [70]. Thus, we parallelize the operations of IBIO with

multiple reader and writer threads. The current API of IBIO includes open, write,

read and close. The interfaces are identical to POSIX except that of open. The IBIO

open requires a hostname as well as a pathname so that IBIO clients can access any files

on any IBIO server. IBIO open sends a query to the IBIO server to open the file, and

it returns the file descriptor (fd).

Figure 4.3 and Figure 4.4 show the design of IBIO write and read. When a client

on a compute node writes its file to remote storage via the IBIO write call (Figure

4.3), the IBIO client divides the data into smaller chunks, and it transfers the chunks

using an RDMA API we developed in prior work [70] (Step 1). The RDMA transfer

API enables one-sided communications from the client to the server using a low-level,

user-space Infiniband API called ibverbs. Once the IBIO server thread receives a write

request from a client, the IBIO server reads the chunk into the selected buffer according

to the fd using an RDMA read (Step 2). Then, the IBIO server creates a writer thread

to asynchronously write the chunk to the file (Step 3) so that the IBIO server thread

can receive subsequent chunks from IBIO clients. When all chunks for the write call are

written, the writer threads inform the IBIO server (Step 4), and the IBIO server informs

the IBIO client that the write is complete (Step 5).

Since communications from server to client are required for IBIO read operations, we

extended the RDMA transfer API from prior work to support bi-directional communi-

cations. When an IBIO client reads a file from remote storage via IBIO read (Figure

4.4), the IBIO client sends the read request containing the fd to the IBIO server (Step

1). Once the IBIO server receives the read request, the IBIO server thread identifies the

file according to the fd, and it creates a reader thread to handle the read request (Step

2). Then the IBIO server thread waits for the next request. The reader thread reads

a chunk of the file with file descriptor fd into its buffer (Step 3). It requests that the

IBIO server thread send the chunk to the IBIO client (Step 4), and then it reads the

next chunk. When all chunks for the read call have been read, the reader thread informs

the IBIO server, and the IBIO server informs the IBIO client that the read is complete

(Step 5).

4.5 Modeling

As described in Sections 4.2 and 4.3, each checkpoint strategy and storage architecture

has advantages and disadvantages. Here we discuss the model we developed to identify

the best checkpoint strategy for a given configuration.
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Figure 4.5: Recursive structured storage model

4.5.1 Recursive Structured Storage Model

We introduce a recursive structured storage model to generalize storage architectures

to describe both flat and burst buffer systems with a single model. Figure 4.5 shows

the recursive structured storage model based on a restricted context-free grammar. A

tier i hierarchical entity, Hi, has storage Si shared by mi upper hierarchical entities,

Hi 1. We denote Hi=0 as a compute node. If each tier of hierarchical storage is shared

as }m1,m2, . . . , mN\ within N -tired hierarchical storage, we denote the storage archi-

tecture as HN }m1,m2, . . . , mN\. For example, the flat buffer system in Figure 4.2 (a)

can be represented as H2 }1, 4\. It has 2 levels of storage: the node-local storage is not

shared, so m1 = 1; however, the PFS is shared across all compute nodes, so m2 = 4.

In the same manner, the burst buffer system in Figure 4.2 (b) can be represented as

H2 }2, 2\. The total number of compute nodes can be calculated as
∏2

i=1 mi = 4 nodes.

In this model, we do not distinguish between node-local storage and network-attached

storage. Instead, we differentiate the storage levels using performance parameters. We

consider only sequential read/write bandwidth because typically the I/O pattern of

checkpoint/restart is sequential. Note that the read and write bandwidth values are not

the peak performance of the storage but the throughput between compute nodes and

the storage location. For example, if tier i storage has a read bandwidth of r, but the

network-based file system delivers a bandwidth of r̂ < r, then the model parameter is

set as ri = r̂. Using these performance parameters, we estimate checkpoint/restart time.

However, as we show in Section 4.6, IBIO can minimize the performance gap between

local and remote read/write accesses.
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4.5.2 Modeling of checkpoint/restart Strategies

Given the storage performance parameters of each tier, we model level i checkpoint

overhead (Oi), checkpoint latency (Li), and restart overhead (Ri) in a multilevel check-

pointing library [70]. For simplicity, if multiple compute nodes concurrently access a

single storage location, we assume the read/write throughput scales down linearly with

the number of concurrent accesses.

Checkpoint overhead Oi and restart overhead Ri are the increased execution time of an

application because of checkpointing and restarting, respectively. Checkpoint latency Li

is the time to complete a checkpoint. If a checkpoint strategy conducts erasure encoding,

such as XOR [4] and Reed-Solomon encoding [7], the checkpoint overhead and latency

also include the encoding overhead and latency. We differentiate between checkpoint

overhead and latency to show the differences between synchronous and asynchronous

checkpointing. During synchronous checkpointing, checkpoint overhead and latency are

equal, i.e., Oi = Li, because each process is blocked until the checkpoint is completed.

Asynchronous checkpointing, meanwhile, incurs only initialization overhead, so check-

point overhead is equal or smaller than checkpoint latency, i.e., Oi < Li.

We model level i checkpoint overhead and latency as{ 
Ci + Ei (synchronous checkpointing)

Oi =
Ii (asynchronous checkpointing)

Li = Ci + Ei

where Ci denotes actual checkpointing time, Ei denotes encoding time, and Ii denotes

initialization time for asynchronous checkpointing. If the level i checkpointing does not

encode checkpoints, Ei becomes 0; otherwise we model the encoding time as Ei = D/ei

where D is the checkpoint size per compute node and ei is encoding throughput. The

actual checkpointing time Ci, i.e., sequential write time, is calculated as ⎧⎧⎧ D ×M/wi (i = N)1 
Ci =   ⎧⎧⎧ M1 D × QN /wi (otherwise)

k=i+1 mk

∏Nwhere M denotes the total number of checkpointing compute nodes, i.e., M = i=1 mi.

With uncoordinated checkpointing, we assume the checkpointing time is identical to

coordinated checkpointing time because of indirect global synchronization as described∏Nin Section 4.2.3. Because k=i+1 mk is the number of storage locations Si, the quantity  
M

QN represents the max number of compute nodes per storage location Si.
k=i+1 mk
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When restarting with uncoordinated checkpointing, the restart overhead is different from

coordinated checkpointing. We model the restart overhead Ri, i.e., sequential read time,

as:

Ri =

⎪⎪⎪⎨⌈
⎪⎪⎪⎩

D ⊗K/ri (i = N)

KD ⊗ QN /ri (otherwise)
k=i+1 mk

where K is the number of restarting compute nodes. With coordinated restart, all

compute nodes concurrently read their checkpoints, so K is identical to the total number

of compute nodes M . With uncoordinated restart, only the cluster, which includes failed

compute nodes will read its checkpoints and restart. Here, K is the cluster size, and we

assume that each compute node in a cluster is distributed across Si>N storage locations

with a topology-aware process mapping technique.

4.5.3 Multilevel Asynchronous checkpoint/restart Model

Our multilevel asynchronous checkpoint/restart model [70] computes the expected run-
ˆtime T given the checkpoint overheads at each storage level O = }O1, O2, . . .\, the

checkpoint latencies L = }L1, L2, . . .\, the restart overheads R = }R1, R2, . . .\, the

failure rates F = }F1, F2, . . .\, the checkpoint frequencies V = }v1, v2, . . .\, and the

checkpoint interval T . Here, vi is the number of level i checkpoints within each level i +

1 period. For example, if an application writes fifteen level 1 checkpoints for every level

2 checkpoint, and five level 2 checkpoints for every level 3 checkpoint, V is }15, 5, 1\.

Given these parameters, we can compute the optimal checkpoint frequency an interval

by minimizing T̂ , where f(O, L,R, F, V, T ) O T̂ .

To evaluate the checkpoint strategies given a storage configuration, we use efficiency

defined as
ideal time I

efficiency = = .
expected time T̂

I is the minimum run time assuming the application spends no time in checkpointing

activities and encounters no failures. So I is simply computed as:

I = T ⊗ (v1 + 1)⊗×××⊗ (vN 1 + 1)
N∏1

= T × (vi + 1).
i=1
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Figure 4.6: Sequential read and write throughput of local I/O, and I/O with IBIO
and NFS via FDR Infiniband networks

The efficiency metric indicates the fraction of time an application spends only in com-

putation. We use this metric to compare the checkpoint strategies. Our earlier study

provides more details of the model [70].

4.6 Performance of IBIO

For a burst buffer system, it is important to exploit the high bandwidth of the burst

buffers through network access. To evaluate this property of IBIO we conducted se-

quential read and write tests using the mSATA-based SSD system described in Section

4.3.2. Figure 4.6 shows the local sequential read and write performance of IBIO, NFS

with increasing numbers of client processes from a single compute node. We connected

the mSATA-based SSD system to an Infiniband network with a Mellanox FDR HCA

(Model No.: MCX354A-FCBT) for remote access evaluations of IBIO and NFS. We use

64 MB for the maximal chunk size to read and write files to and from the NFS and IBIO

servers to maximize the sequential read and write throughputs. In NFS, the parameters

are configured by rsize and wsize options.

We find that the read and write throughputs of IBIO are almost identical to the local

throughputs with 8 processes and more. When the number of read processes is 4 or less,
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Flat buffer system Burst buffer system
H2{m1,m2} H2{1, 1088} H2{32, 34}
{r1, r2} {500 MB/s, 10 GB/s} {16 GB/s, 10 GB/s}
{w1, w2} {260 MB/s, 10 GB/s} {8.32 GB/s, 10 GB/s}
{e1, e2} {400 MB/s, N/A}

D 5 GB
{2.14×10 6, 4.28×10 7} {2.63×10 6, 1.33×10 8}

Chapter 4: A User-level Infiniband-based File System and Checkpoint Strategy for
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Table 4.2: Simulation configuration

{F1, F2}

we see performance degradation of read operations on IBIO (Read-IBIO) compared to

the local read access (Read-Local). In IBIO read, the client first sends a message to

request the first 64 MB of chunk of the file, and the constant request latency is added

to the read time. Because of the constant latency, the read throughput decreases with

a smaller number of clients. However, when applications write and read checkpoints,

multiple processes concurrently access the storage, so applications can exploit the band-

width. In contrast, when IBIO clients write data to a file, the clients send the first chunk

with the first request message. Thus, the write throughput does not decrease with the

fewer processes.

We also evaluate the sequential read and write performance of NFS. Because NFS runs

on IPoIB, NFS incurs as much as 49.7% and 35.3% performance degradation compared

to local read and write, respectively, while IBIO incurs only 4.3 % over local read and 2.7

% over local write. NFS can not exploit the FDR network bandwidth, because IPoIB

becomes a bottleneck. In contrast, IBIO uses the low-level infiniband API (ibverbs).

Thus IBIO can minimize data transfer overhead even over networks.

4.7 Resiliency Exploration

In this section, we evaluate the trade-offs of different checkpointing and storage config-

urations.

4.7.1 Experimental Setup

We describe our experimental setup including configuration details for checkpoint/restart

and storage configurations, and how we determine the failure rates to use in our model.
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Table 4.3: Checkpoint Levels and Failure Rates

Flat Buffer System Burst Buffer System

Level 1
C/R method XOR on local store XOR on burst buffer
Failure rate 2.14× 10 7 + 1.92× 10 6

= 2.14× 10 6
4.28× 10 7

Level 2
C/R method PFS PFS
Failure rate 2.14 × 10−7 + 1.92 × 10−6 + 4.28 × 10−7 + 6.67 × 10−8

= 2.63× 10 5
3.93× 10 10 × 34

= 1.33× 10 8

checkpoint/restart and Storage Configuration

In this study, we evaluate multilevel checkpoint/restart on a 2-tiered storage system.

Table 4.2 shows the base configuration. The system sizes (Hi) are based on the Coastal

cluster at LLNL, which is an 88.5 TFLOP theoretical peak system consisting of 1,088

batch nodes. We use 500 MB/s for local read throughput, 260 MB/s for local write

throughput for the Flat buffer system. The burst buffer system has 34 burst buffer nodes,

each of which is shared by 32 compute nodes. In this exploration, we simulate that we

aggregate the 32 storage into the single burst buffer node, and connect the burst buffer

nodes via a high speed interconnect which does not create a bottleneck in bandwidth to

simulate future extreme scale system. With IBIO, applications can remotely access to

the burst buffers with the almost same throughput as local access throughput. Thus,

we use 16 GB/s for read throughput, and 8.32 GB/s for write throughput in the burst

buffer system.

For uncoordinated checkpointing, we use 16 nodes for the cluster size (K). Earlier

studies showed that the optimal cluster size is from 32 to 128 processes, i.e., 4 to 16

nodes for a 8-core Coastal compute node, to provide a good trade-off between the size of

the clusters and the amount of messages to log for most applications [44, 74]. Because

the cluster size is small enough to assign a compute node to a single burst buffer node,  
K

Q2 is computed as 1 compute node for uncoordinated restart.
k=2 mk

We use asynchronous checkpointing for PFS, and synchronous checkpointing for XOR. For

the encoding rate, we only provide an encoding rate (e1) for level 1 (XOR) because PFS

does not need encoding.

Failure Rate Estimation

Failure rates (F ) are based on a failure analysis study using a multilevel checkpoint/restart

library called the Scalable checkpoint/restart (SCR) Library [4]. SCR provides several
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checkpoint options: LOCAL, XOR, and PFS. With LOCAL, SCR simply writes the check-

point data to node-local storage. In this case, if one of the checkpoints is lost due to a

failure, an application would not be able to restart its execution. So, SCR provides XOR,

which is a RAID-5 strategy that computes XOR parity across subgroups of processes so

that SCR can restore the lost checkpoint data. SCR also provides PFS to keep checkpoint

data on the most reliable storage level, the PFS. The failure analysis study shows that

the average failure rate (failure/seconds) per a single compute node requiring LOCAL is

1.96× 10 10, XOR is 1.77× 10 9, and PFS is 3.93× 10 10.

In a flat buffer system, each failure rate is calculated by simply multiplying the failure

rate by the number of compute nodes, 1088 nodes. This leads to failure rates of 2.14×
10 7 (= 1.96× 10 10 × 1, 088) for LOCAL, 1.92× 10 6 (= 1.77× 10 9 × 1, 088) for XOR,

and 4.28× 10 7 (= 3.93× 10 10 × 1, 088) for PFS. The failure rates are identical to the

measured ones of the LLNL Coastal cluster. Actually, if the level-i failure rate is lower

than the level-i + 1 rate, the optimal level i checkpoint count is zero because a level i

failure can be recovered with a level i + 1 checkpoint, which is written more frequently

than level i [14] . Thus, we do not consider LOCAL checkpointing for the simulation. We

evaluate the two level checkpoint/restart case where level 1 is XOR, and level 2 is PFS,

with failure rates of {F1, F2} = {2.14× 10 6, 4.28× 10 7} (See Table 4.3).

In a burst buffer system, we use 34 burst buffer nodes, and assume the failure rate of

a burst buffer node is identical to a compute node. On a compute node failure, an

application does not lose checkpoint data because the checkpoint data is not in compute

nodes. However, if a burst buffer node fails, checkpoint data on the failed burst buffer

nodes is lost. Thus, we also use two level checkpoint/restart where level 1 is XOR, and

level 2 is PFS. Because the total number of nodes increases, failure rate requiring level 1

checkpoint increases according to the number of burst buffer nodes. For 34 burst buffer

nodes, the level 1 failure rate is calculated as 6.67 × 10 8 (= (1.96 × 10 10 + 1.77 ×
10 9)× 34). Meanwhile, checkpoint data is stored on fewer nodes, which decreases the

failure rate requiring PFS for recovery. The level 2 failure is 1.33× 10 8 (See Table 4.3).

On compute node failures, application can restart from level 1 checkpoint regardless of

the number of failed compute nodes in a burst buffer system. Thus, the failure rate of

each level is {F1, F2} = {2.63× 10 6, 1.33× 10 8} for the burst buffer system. Because

the burst buffer system uses more nodes for burst buffers, the overall failure rate of the

burst buffer system is higher than one of the flat buffer system.
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Figure 4.7: Efficiency of multilevel coordinated and uncoordinated checkpoint/restart
on a flat buffer system and a burst buffer system

4.7.2 Efficiency with Increasing Failure Rates and Level 2 checkpoint/restart

Costs

We expect the failure rates and aggregate checkpoint sizes to increase on future ex-

treme scale systems. To explore the effects, we increase failure rates and level 2 (PFS)

checkpoint/restart costs by factors of 1, 2, 10, 50 and 100 from the base configuration

in Table 4.2, and compare the efficiencies of multilevel coordinated and uncoordinated

checkpoint/restart on a flat buffer system and on a burst buffer system. We do not

change the level 1 (XOR) checkpoint cost; because the total performance of node-local

storage and burst buffer will scale with increasing system size.

Figure 4.7 shows application efficiency under increasing failure rates (xF) and level 2

checkpoint/restart costs (xL2). When we compute efficiency, we optimize the level-1

and 2 checkpoint frequencies (v1 and v2), and the interval between checkpoints (T ) to

discover the maximal efficiency. The burst buffer system achieves a higher efficiency than

the flat buffer system in most cases. The efficiency gap becomes more apparent with

higher failure rates and higher checkpoint costs because the burst buffer system stores

checkpoints on fewer burst buffer nodes. By using uncoordinated checkpoint/restart and

leveraging burst buffers, we achieve 70% efficiency even on systems that are two orders

of magnitude larger. This is because partial restart with uncoordinated checkpointing
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can exploit the bandwidth of both burst buffers and the PFS, and accelerate restart

time.

4.7.3 Allowable Message Logging Overhead

The efficiencies shown in Figure 4.7 do not include message logging overhead. We con-

sider this factor in Table 4.4 which shows how much ratio the message logging overhead of

uncoordinated checkpointing is allowed to occupy the given computation time to achieve

a higher efficiency than coordinated checkpointing. As in Figure 4.7, we increase both

the failure rates and level 2 checkpoint/restart cost by the scale factor shown on each

row. We find that the logging overhead must be relatively small, less than a few percent,

for scale factors up to 10. However, at scale factors of 50 and 100, very high message

logging overheads are tolerated. This shows that uncoordinated checkpointing can be

more efficient on future systems even with high logging overheads.

4.7.4 Effect of Improving Storage Performance

When building a reliable data center or supercomputer, significant efforts are made to

maximize system performance given a fixed budget. It can be challenging to decide

which system resources will most affect overall system performance. To explore how

the performance of different tiers of the storage hierarchy impact system efficiency, we

increase performance of each tier of storage by factors of 1, 2, 10, and 20. Figures 4.8

and 4.9 show efficiency with increasing performance of level 1 and 2 checkpoint/restart,

i.e., decreasing level 1 and 2 checkpoint/restart time, using failures rates at 100 ⊗

current rates. We see that improvement of level 1 checkpoint/restart does not impact

efficiency for either flat buffer or burst buffer systems. However, as shown in Figure 4.9,

increasing the performance of the PFS does impact system efficiency. We can achieve

over 80% efficiency with both coordinated and uncoordinated checkpoint/restart on the

Table 4.4: Allowable message logging overhead

Flat buffer Burst buffer
scale factor Allowable message

logging overhead
scale factor Allowable message

logging overhead
1
2
10
50
100

0.0232%
0.0929%
2.45%
84.5%
⇒100%

1
2
10
50
100

0.00435%
0.0175%
0.468%
42.0%
99.9%
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Figure 4.8: Efficiency in increasing level-1 checkpoint/restart performance in x100
failure rate: L1 checkpoint/restart time/scale factor

burst buffer system with improved PFS performance of 10 and 20 ⊗. These results tell

us that level 2 checkpoint/restart overhead is a major cause of degrading efficiency, and

its performance affects the system efficiency much more than that of level 1. We also

find that improvement of system reliability for failures requiring level 2 checkpoint is

important for future extreme scale systems.

4.7.5 Optimal Ratio of Compute Nodes to Burst Buffer Nodes

Another thing to consider when building a burst buffer system is the ratio of compute

nodes to burst buffer nodes. A large number of burst buffer nodes can increase the total

bandwidth, but the large node counts increase the overall failure rate of the system.

To explore the effect of the ratio of compute node and burst buffer node counts, we

evaluate efficiency under different failure rates and level 2 checkpoint/restart costs while

keeping I/O throughput of a single burst buffer node constant. Figures 4.10 and 4.11

show the results with coordinated and uncoordinated checkpoint/restart. We see that

the ratio is not significant up to scale factors of 10 ⊗. However, at a scale factor of 50

⊗, a larger number of burst buffer nodes decreases efficiency. Adding additional burst

buffer nodes increases the failure rate which degrades system efficiency more than the

efficiency gained by the increased bandwidth. Thus, increasing the number of compute
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Figure 4.9: Efficiency in increasing level-2 checkpoint/restart performance in x100
failure rate: L2 checkpoint/restart time/scale factor

nodes sharing a burst buffer node is optimal as long as the burst buffer throughput can

scale to the number of sharing compute nodes.

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 

Ef
fic

ie
nc

y 

Scale factor (xF, xL2) 

1  node/burst buffer 2  nodes/burst buffer 
4  nodes/burst buffer 8  nodes/burst buffer 
16  nodes/burst buffer 32  nodes/burst buffer 

Figure 4.10: Coordinated: Effi-
ciency in different ratios of com-
pute nodes to a single burst buffer
nodes with coordinated check-

point/restart

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1 2 10 50 

Ef
fic

ie
nc

y 

Scale factor (xF, xL2) 

1  node/burst buffer 2  nodes/burst buffer 
4  nodes/burst buffer 8  nodes/burst buffer 
16  nodes/burst buffer 32  nodes/burst buffer 

Figure 4.11: Uncoordinated: Ef-
ficiency in different ratios of com-
pute nodes to a single burst buffer
nodes with uncoordinated check-

point/restart



72
Chapter 4: A User-level Infiniband-based File System and Checkpoint Strategy for
Burst Buffer

4.8 Summary

In this work, we explored the use of burst buffer storage for scalable checkpoint/restart,

and developed IBIO to exploit the high bandwidth of the burst buffers for future extreme

scale systems. We also developed a model to explore the performance difference of

checkpointing strategies, specifically coordinated and uncoordinated checkpointing. We

used the model to evaluate multilevel checkpointing on flat buffer storage systems that

are currently available on today’s machines and hierarchical storage systems using burst

buffers.

From our exploration, we found that burst buffers are indeed beneficial for check-

point/restart on future systems, increasing reliability and efficiency. We also found

that the performance of the parallel file system has high impact on the efficiency of

a machine, while increased bandwidth to burst buffers did not affect overall machine

efficiency. However, the reliability of burst buffers does impact efficiency, because unre-

liable buffers mean more I/O traffic to a PFS when multiple burst buffer nodes fail, and

checkpoints on the failed burst buffer nodes are lost. Overall, uncoordinated checkpoint-

ing was more efficient than coordinated checkpointing, even with high message logging

overhead. These findings can benefit system designers in making the trade-offs in per-

formance of components so that they can create efficient and cost-effective machines.



Chapter 5

FMI: Fault Tolerant Messaging

Interface

The second approach, a fault tolerant messaging interface (FMI) for fast and transpar-

ent recovery, is a survivable messaging interface that uses fast, transparent in-memory

checkpoint/restart and dynamic node allocation. With FMI, a developer writes an ap-

plication using semantics similar to Message Passing Interface (MPI). The FMI runtime

ensures that the application runs through failures by handling the activities needed for

fault tolerance, and achieve quick recovery and restart. Our experiments show that FMI

runs with similar failure-free performance as MPI, but FMI incurs only a 28% overhead

with a very high mean time to failure of 1 minute.

5.1 Introduction to Fault Tolerant Messaging Interface

The Message Passing Interface (MPI) [75] is the de-facto HPC programming paradigm,

but it employs a fail-stop model. On failure, all processes in the MPI job are terminated.

MPI applications generally cope with failures using checkpoint/restart schemes. They

periodically write their state to files on a reliable store, such as a parallel file system

(PFS). When a failure occurs, the current job is terminated, and the application is

relaunched as a new job that restarts from the last checkpoint. The approach is simple,

but it incurs significant overheads due to high checkpoint and restart costs [76, 77].

In environments with high-frequency failures, it is critical that applications restart

quickly, so that useful work can be done before the next failure occurs. There are

four capabilities needed for resilience in such an environment: a messaging interface

73
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that can run through faults, fast in-memory or node-local checkpoint storage, fast fail-

ure detection, and a mechanism to dynamically allocate additional compute resources

in the event of hardware failures.

Our approach to satisfy these requirements is the Fault Tolerant Messaging Interface

(FMI), a survivable messaging interface that uses fast, transparent in-memory check-

point/restart and dynamic node allocation. With FMI, a developer writes an applica-

tion using semantics similar to MPI. The FMI runtime ensures that the application runs

through failures by handling the activities needed for fault tolerance. Our implemen-

tation of FMI has failure-free performance that is comparable with MPI. Experiments

with a Poisson equation solver show that running with FMI incurs only a 28% overhead

with a very high mean time to failure of 1 minute.

Our key contributions are:

≤ a simplified programming model to enable fast, transparent checkpoint/restart;

≤ implementation of a runtime that withstands process failures and allocates spare

resources;

≤ a new overlay network structure called log-ring for scalable failure detection and

notification;

≤ and demonstration of the fault tolerance and scalability of FMI even with a MTBF

of 1 minute.

Our paper is organized as follows. We present characteristics of failures on large systems,

and we identify critical resilience capabilities in Section 5.2. In Section 5.3, we introduce

FMI, and we detail its implementation in Section 5.4. We describe our in-memory

checkpoint/restart strategy in Section 5.5. In Section 5.6, we present our experimental

results. In Section 5.7, we summarize this chapter.

5.2 Requirement for Survivable Messaging Interfaces

5.2.1 Fast Checkpoint/Restart

A non-fail-stop communication interface itself is not sufficient for fault tolerant com-

puting at extreme scales, because on node failure needed application state can be lost.

Today, applications use simple checkpoint/restart with checkpoints written on a reliable

PFS to mitigate node failures. While simple checkpoint/restart is sufficient for small
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Figure 5.1: TSUBAME1: Number of failures normalized by total failures (Period:
3.5 years of Oct 26th 2006 - March 21th 2010, Total # of failures: 744)
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Figure 5.2: TSUBAME2.0: Number of failures normalized by total failures (Period:
1.5 years of Nov 1st 2010 - April 6th 2012, Total # of failures: 962)

systems, it can incur huge overheads, and is not practical as the sole method of fault

tolerance at large scales.

Multilevel checkpoint/restart is an approach for lowering the overheads associated with

traditional checkpoint/restart. Multilevel checkpoint/restart [4] caches checkpoints in

in-system storage such as RAM or other node-local storage. It also uses encoding tech-

niques to preserve application data on node failures, and copies a select few to the

PFS to survive more catastrophic failures. Because we expect node failure to be more

common on future systems, we need the fast checkpoint/restart provided by multilevel

checkpointing to make these failures recoverable in a reasonable amount of time.

5.2.2 Failure locality

In a non-fail-stop model, non-failed processes are not terminated and keep running.

Newly allocated spare nodes dynamically join the execution without stopping the run-

ning processes. One solution for acquiring additional nodes is to request additional

nodes in the allocation, and use a subset of the allocated nodes for the job, reserving

the additional nodes as spares. If we know the failure rate of the target system, we can
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estimate the appropriate number of spare nodes for a given job. However, we expect this

estimation to be more difficult at extreme scales because there may be a larger number

of nodes that fail concurrently. Another alternative is to request compute nodes from

the resource manager as needed. This has the disadvantage of possibly being a very

high overhead operation. However, this could be mitigated if the resource manager kept

a reserve of spare nodes for just this use.

Another complication is that we observe that the occurrence of failures has both spatial

and temporal locality. For example, four TSUBAME2.0 nodes and two LLNL Coastal

nodes respectively share a single power supply. When a power supply fails, it takes

several compute nodes with it. If system has a fat-tree network topology, a switch

failure can causes more catastrophic failures.

Figure 5.1 and 5.2 show the number of failures normalized by the total number of failures

on TSUBAME1 and TSUBAME2.0 supercomputers respectively. The failure analysis

shows that the most of nodes are highly reliable, and the overall failure rate is inflated by

a small number of faulty nodes. By replacing the failed components, the component may

decrease. But a small number of nodes, which stochastically several faulty components,

fails several times, which result in the spatial locality on failures. Moreover, another

failure analysis [78] by Los Alamos National Laboratory (LANL) show about 19% of root

causes is unknown. In that case, replacement of the components is obviously impossible.

If the failure is transient, the node may fail again after the short period of time.

The LANL failure analysis also showed that there is temporal locality, and failure rate

fluctuate one order of magnitude during different time period. Due to the fact, fail-

ure rate can severely vary depending on application’s resource usage, allocated nodes,

and time period. Thus, determining of the number of spare nodes is impossible on a

execution, and dynamic node allocation are important.

5.2.3 Existing Survivable Messaging Interfaces

As described in Section 2.4.3, a survivable messaging interface itself is not new tech-

niques, and there are several existing survivable messaging interfaces [57, 58, 62]. How-

ever, the capabilities are limited as in Section 2.4.3. At extreme scale, the rack of the

fault tolerance capabilities of existing survivable messaging interfaces will make fault tol-

erant programming complicated. Thus, a survivable messaging interface, which provides

scalable failure detection, auto-recovery, and fast checkpoint/restart for MPI applica-

tions, is critical.
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Figure 5.3: Overview of FMI

5.3 FMI Programming Model

In this section, we describe the FMI programming model with an overview and then

with an example.

5.3.1 Overview

With FMI, an application developer writes an application with MPI semantics, and FMI

ensures that the application is agnostic to failure. The FMI runtime software handles

the fault tolerance activities, including fast checkpointing of application state, restarting

failed processes on failure, restoring application state, and allocating additional nodes

when needed. FMI does not belong to any existing MPI implementations, and is devel-

oped from full scratch for fault tolerance while maintaining MPI programing model and

API as much as possible.

In Figure 5.3, we give an overview of FMI. Each process in an FMI application has

an FMI rank as in MPI. But unlike MPI, an FMI rank is virtual and not bound to

a particular process (Px) on a physical node. FMI may change the mapping of FMI

ranks to processes to hide underlying hardware failures, transparently to the application.

FMI also provides a capability for compute nodes to join or leave the job dynamically,

primarily to replace failed nodes with spare nodes. Although our current prototype of

FMI has limitations to support general applications, FMI transparently intercepts MPI

calls, so that existing MPI applications can run on top of FMI without any code changes

or with minimal code changes.
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1: int main(int *argc, char *argv[]) {
2: FMI_Init(&argc, &argv);
3: while ((n = FMI_Loop(...)) < numloop) {
4: /*user program*/
5: }
6: FMI_Finalize();
7: }

Figure 5.4: FMI example code
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0 = FMI_Loop(…): checkpoint 

1 = FMI_Loop(…): checkpoint
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H3 

Figure 5.5: Example: P0(rank=0) and P1(rank=1) fail after loop id=1. P8 and P9
start from loop id=1 as rank 0 and 1 each, and the other processes retry loop id=1

5.3.2 Writing an FMI Application

Writing a fault tolerant application is usually a complex ordeal, especially if there are a

large number of dependencies across processes. With FMI, application developers simply

write their code with MPI semantics and fault tolerance is provided by FMI. Figure 5.4

shows an example main loop for a code using FMI. The primary difference between the

FMI and MPI programming models is that FMI provides the function FMI Loop that

synchronizes the application, writes checkpoints, or rolls back and restarts as needed.

This single function call makes an application fault tolerant:

int FMI Loop(void∞∞ckpts, int∞sizes, int len).
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The parameter ckpts is an array of pointers to variables that contain data that needs to

be checkpointed. If a failure occurred during the previous loop iteration, the last good

values of the variables replace the values in ckpts to roll back to the last checkpoint.

The parameter sizes is an array of sizes of each checkpointed variable, and len is the

length of the arrays. FMI Loop returns the loop iteration count (loop id) incremented

from 0 regardless of whether a checkpoint was written during this loop or not. However,

if FMI Loop rolls back and restores the last checkpoint, it returns the loop id during

which the last checkpoint was written.

When FMI Loop is called the first time at the beginning of the execution, it writes

checkpoints in memory using memcpy to minimize checkpoint time, and applies erasure

encoding to the checkpoints using XOR encoding (See Section 4.2). When completed,

FMI Loop guarantees that an application can continue to run even on a failure within

the loop as long as any failures that occur are recoverable. After the first call, FMI Loop

writes checkpoints at an interval specified by an interval environmental variable. Alter-

natively, if a user specifies an MTBF environmental variable, FMI dynamically auto-

tunes the checkpoint interval to maximize efficiency according to the MTBF based on

Vaidya’s model [46].

Figure 5.5 shows an example where FMI Loop writes checkpoints every loop, i.e. interval=1.

If a failure occurs (e.g., after loop id = 1), all FMI ranks are notified of the failure by

FMI (See Section 5.4.3), and all FMI communication calls return an error until recovery

is performed in FMI Loop. Then, the FMI process management program (fmirun) trans-

parently allocates another node and spawns new processes (P8, P9 in the example) on

the node to keep the number of FMI ranks constant. Then, FMI Loop restores the values

of the checkpointed variables from loop id = 1 and returns loop id = 1. All recovery

operations are transparent to the application, and all processes are simply rolled back

to the last good state.

5.4 FMI System Design

In this section, we detail our implementation of FMI. We describe our methods for

keeping track of process states, managing dynamic node allocation, and joining new

processes into the running application; our new overlay network design called log-ring for

scalable failure detection and notification; and our method for transparently recovering

communicators.
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Figure 5.6: Process states for FMI

5.4.1 Process State Management

FMI manages the states of all processes, tracking whether or not processes are running

successfully, and synchronizing for recovery when a failure occurs. Figure 5.6 shows a

high level and low level view of transitions of process states. There are three process

states in FMI: Bootstrapping (H1), Connecting (H2), and Running (H3).

The H1 and H2 states involve launching processes and establishing internal FMI com-

munication networks, while the H3 state represents the running state of the application.

In the H1 state, fmirun launches the FMI ranks (See Section 5.4.2), which then gather

connection information (endpoints) to establish a dedicated low-latency communication

network, similar to Open MPI’s Matching Transfer Layer [79]. FMI uses PMGR [80],

which provides a scalable communication interface for bootstrapping MPI jobs and ex-

changing messages via TCP/IP. On success, the processes transition to the H2 state,

where the FMI ranks create a log-ring overlay network for scalable failure detection (See

Section 5.4.3). If both H1 and H2 states succeed, the processes transition to H3. In

the H3 state, the processes execute the application code, with the addition of FMI Loop,

that performs fault tolerance activities as described in Section 5.3.2.

If any processes terminate because of a failure, fmirun launches new processes to replace

them; they begin in the H1 state. The non-failed processes transition from their current

state back to H1 on the Notified transition path. All processes then update endpoints

to transparently recover communicators (See Section 5.4.4). On success, all processes

transition to H2 and then H3 on Successful transition paths.
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Figure 5.7: FMI process management

Figure 5.6(b) shows details of the states and transitions. H1 and H2 are synchronizing

states because they involve collective communications. Newly launched processes in

H1 execute FMI Init. Non-failed processes block in FMI Loop until the new processes

are bootstrapped and endpoints in the internal communication network are established.

Then all processes transition to H2 to rebuild the log-ring network. Following this, the

application computation begins from the previous iteration or the iteration with the last

good checkpoint.

5.4.2 Hierarchical Process Management

Figure 5.7 shows an overview of the hierarchical structure of FMI process management.

The master process fmirun is at the top level. fmirun has similar functionality to

mpirun in MPI, but also manages processes during recovery in the event of failure.

fmirun spawns fmirun.task processes on each node, which are at the second level of

the hierarchy. Each fmirun.task calls fork/exec to launch a user program (Px) and

manages the processes on its own local node.

If any fmirun.task receives an unsuccessful exit signal from a child process, fmirun.task

kills any other running child processes, and exits with EXIT FAILURE. When fmirun

receives an exit signal from an fmirun.task, fmirun attempts to find spare nodes to

replace those that failed in the machinelist file; if no spare nodes are found, or if

there are not enough to replace all that failed, it requests new nodes from the resource

manager. It then spawns any lost fmirun.task processes onto the spare nodes.

In our design, the master process (fmirun) becomes a single point of failure. However,

because the MTBF of a single node in HPC systems is an order of years[4, 81], the

failure rate for fmirun is negligibly small. That said, we plan to explore distributed

management designs in future work.
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Figure 5.8: Left: Structure of the log-ring overlay network (n = 16). Middle: If
process 0 fails, processes 1, 2, 4, 8, 12, 14, and 15 are notified by ibverbs. Right: All

processes are notified with 2 hops.

5.4.3 Scalable Failure Detection

On failure, all surviving processes need to be notified so that the recovery process can

begin. However, not all low-level communication libraries include a failure detection ca-

pability. For example, the Performance Scaled Messaging (PSM) library, a low-latency

communication library for QLogic Infiniband, returns an error if there is a failure dur-

ing connection establishement. However, once the connection is established, successive

communication calls (e.g., sends or receives), do not return any errors even in the event

of a peer failure.

One approach for detecting failures is that when fmirun receives a EXIT FAILURE signal

from an fmirun.task, fmirun could send notification signals to all other fmirun.task

processes. However, the time complexity of this approach is O(N) in the number of

compute nodes, which is not scalable.

Our approach to failure detection is to use a log-ring overlay network across the FMI

ranks which can propagate failure notification in �	log2(n)
/2{ messages. We use the

Infiniband Verbs API, ibverbs, a low-level communication library for Infiniband. The

ibverbs library includes an event driven error notification capability, such that, if a

process fails, all processes connected to the failed process can detect it by catching the

error event.

The structure of the overlay network is critical for scalable failure detection. One option

is a completely connected graph, where each process connects to all the other processes.

In this option, notification of failure to all n processes occurs in O(1) steps. However,

establishing the complete graph overlay network is O(n). In contrast, if we establish a

ring overlay network, the connection cost is O(1), but propagation of failure notification

to all processes is O(n).
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Figure 5.9: Transparent communicator recovery

To achieve a good balance between the overlay establishment cost and the global de-

tection cost, we propose a log-ring overlay network. In a log-ring overlay network, each

process makes log2(n) connections with neighbors that are 2k hops away in the FMI

rank space (2k < n). Figure 5.8 shows an example log-ring overlay network with n = 16

processes. In the example overlay, process 0 connects to 1, 2, 4, and 8 (log2(16)=4

connections), and receives connections from processes 8, 12, 14 and 15 (left in Figure

5.8). If process 0 fails, processes 1, 2, 4, 8, 12, 14 and 15 receive a disconnection event

from ibverbs (middle in Figure 5.8). Once these processes receive the disconnection

event, they explicitly close their other existing connections to propagate the failure no-

tification. In this way, the failure notification reaches all processes with 2 hops in the

example overlay network (right in Figure 5.8). In general, the log-ring overlay network

can propagate failure notification across all processes with �	log2(n)
/2{ hops. Thus,

the overlay network establishment and global failure notification are of order O (log (n))

and scalable.

The value of k in logk (n) is a tunable parameter in FMI logk (n). Changing its value

can change the overlay establishment and the global detection costs. As we show in

Section 5.6.1, the establishment cost is negligible even with k = 2, which has maximal

connections in the log-ring. Thus, we use k2 as the default value, but we leave the

optimization of k for future work.
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5.4.4 Transparent Communicator Recovery

One of obstacles of fault tolerant parallel computing is recovering communicators used

in message passing. In FMI, communicators are a mapping between FMI ranks and

physical processes, so recovering communicators is necessary for communication with the

newly launched processes after recovery. Because FMI virtualizes the rank-to-process

mapping, it can transparently recover communicators. Figure 5.9 shows an example

where the application duplicates FMI COMM WORLD, and splits the communicator into two

communicators. If a failure occurs on Node 0 and P0 and P1 terminate, FMI changes

the process mapping by updating connection information (endpoint). In this example,

FMI transparently updates the endpoints of FMI ranks 0 and 1 to P8, P9 respectively

during the H1 bootstrapping state (See Figure 5.6(b)).

Another problem to address is that stale messages could be received if they are sent

before a failure and not yet received by the target rank. For example, if process A

sends a message before a failure, but process B does not receive it before the failure,

it may receive the stale message when it executes the receive operation after recovery.

To address the problem, FMI increments an epoch variable after each recovery, and

discards all messages that arrive with an older epoch value.

5.5 Fast and Scalable In-Memory checkpoint/restart

With FMI, an application can continue to run even if a failure occurs. However, if

a node fails, we may lose needed simulation data from processes on the failed node,

so checkpoint/restart is critical and must be scalable to be effective at large scales.

Because the most common failures affect only a single or a few nodes [4, 70], multilevel

checkpoint/restart is effective and scalable.

5.5.1 Implementation

FMI employs a multilevel checkpoint/restart strategy, using the same checkpoint and

encoding algorithm as the Scalable Checkpoint/Restart library (SCR) [4]. However,

while SCR requires a file system interface for storing checkpoints, FMI writes check-

points directly to memory without involving a file system for faster checkpoint/restart

throughput. Unlike with MPI, FMI does not terminate non-failed processes on a failure,

and in-memory checkpoint data is not flushed.

FMI employs the same encoding algorithm as SCR. At initialization, FMI splits ranks

into XOR encoding groups (XOR group) with ranks in each group distributed across
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Figure 5.10: XOR encoding algorithm: The circled numbers are the steps of send-
ing/receiving parity

nodes. Because the common failure affects a single node, FMI ensures that each rank

in the same node belongs to a different XOR group. When processes are launched

as in Figure 5.7, FMI splits the ranks as shown in Figure 5.9. Figure 5.10 shows the

encoding algorithm for one XOR group. First, for an XOR group size of n, FMI divides

a checkpoint into n 1 chunks, and allocates an additional parity chunk initialized with

zeros. Each rank sends the parity chunk to its “right-hand” neighbor, and receives

from its “left-hand” neighbor. and calculates ”parity √= chunk 1”. In general, each

rank sends and receives a parity chunk, and computes ”parity √= chunk k” at step k

(circled number in Figure 5.10). Thus, each rank receives back the encoded parity chunk

after n steps. When FMI restores a checkpoint, FMI decodes it with the same algorithm

as the encoding, and then a newly launched rank collects the decoded checkpoint chunks

from the other ranks.

5.5.2 Performance Model

When FMI writes s bytes of checkpoint data and encodes it, s bytes are copied by
smemcpy, and s+ bytes are transferred, with s bytes are encoded in total. Therefore,n 1

the time for checkpoint/restart can be modeled as:

s s + s/ (n 1) s
+ +

mem bw net bw mem bw

where mem bw is memory bandwidth, and net bw is network bandwidth. Because the
sXOR operation is memory-bound, the time becomes . When restoring a check-mem bw

point, a newly launched rank collects the decoded checkpoint chunks from the other
sranks at the end, so is added for restart.net bw

The model tells us that the checkpoint/restart time is constant regardless of the total

number of processes. Thus, the in-memory XOR checkpoint/restart is scalable as well

as fast.
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Figure 5.11: XOR checkpoint time Figure 5.12: XOR restart time

5.5.3 XOR Group Size Tuning

FMI uses memory to store checkpoints. Thus, reducing memory consumption while

maintaining resiliency is important. If an XOR group size is small, memory consump-

tion and checkpoint/restart time become large. For large XOR group sizes, resiliency

decreases because the XOR checkpoint/restart encoding is tolerant to only a single rank

failure in a XOR group. We performed experiments to evaluate the trade-offs of check-

point/restart time and XOR group size.

Figures 5.11 and 5.12 show the checkpoint and restart times where the checkpoint size

is 6GB per node. For the memory and network bandwidths in the model, we use

the peak bandwidth of the Sierra cluster at LLNL in Table 5.1. We find that the

checkpoint/restart time starts to saturate at an XOR group size of 16 nodes. For this

XOR group size, the parity chunk size is only 6.6 % of the full checkpoint size. Thus,

we use 16 nodes for the XOR group size in the rest of our experiments.
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Table 5.1: Sierra Cluster Specification

Nodes 1,856 compute nodes (1,944 nodes in total)
CPU 2.8 GHz Intel Xeon EP X5660 × 2 (12 cores in total)

Memory 24GB (Peak CPU memory bandwidth: 32 GB/s)
Interconnect QLogic InfiniBand QDR

5.6 Experimental Results

To evaluate the performance and resiliency of FMI, we measured several benchmarks

with FMI, and predict the performance of an FMI application run at extreme scale.

We ran our experiments on the Sierra cluster at LLNL. The details of Sierra are in

Table 5.1. Because FMI follows the messaging semantics of MPI, we want to compare

the performance of FMI with an MPI implementation. For those experiments, we used

MVAPICH2 version 1.2 running on top of SLURM [82].

5.6.1 FMI Performance

Table 5.2: Ping-Poing Performance of MPI and FMI

1-byte Latency Bandwidth (8MB)
MPI 3.555 usec 3.227 GB/s
FMI 3.573 usec 3.211 GB/s

We measured the point-to-point communication performance on Sierra, and compare

FMI to MVAPICH2. Table 5.2 shows the ping-pong communication latency for 1-byte

messages, and bandwidth for a message size of 8 MB. Because FMI can intercept MPI

calls, we compiled the same ping-pong source for both MPI and FMI. The results show

that FMI has very similar performance compared to MPI for both the latency and the

bandwidth. The overhead for providing fault tolerance in FMI is negligibly small for

messaging.

Because failure rates are expected to increase at extreme scale, checkpoint/restart for

failure recovery must be fast and scalable. To evaluate the scalability of checkpoint/restart

in FMI, we ran a benchmark which writes checkpoints (6 GB/node), and then recovers

using the checkpoints. Figure 5.13 shows the checkpoint/restart throughput including

XOR encoding and decoding. The checkpoint time of FMI is fairly scalable because the

checkpointing and encoding times are constant regardless of the total number of nodes.

Also, because FMI writes and reads checkpoints to and from memory, the throughputs
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Figure 5.13: Checkpoint/Restart scalability with 6 GB/node checkpoints, 12 process-
es/node
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Figure 5.14: Failure notification time with log-ring overlay network

are high. FMI achieves 2.4 GB/sec checkpointing throughput per node, and 1.3 GB/sec

restart throughput per node. On a restart, newly launched processes gather the restored

checkpoint chunks from the other processes in the XOR group after the decoding as in

Figure 5.12, so the restart throughput is lower than that of checkpointing.

Fast and scalable failure detection time and reinitialization time (H1 and H2 states)
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Figure 5.15: MPI Init vs. FMI Init

are critical in environments with high failure rates. Figure 5.14 shows the time for all

processes to be notified of failure with the log-ring overlay In this experiment, we inject

a failure by sending a signal to kill a process. As shown, the global detection is scalable

because the log-ring propagates the notification in logarithmic time. When a process

terminates, ibverbs waits approximately 0.2 seconds before closing the connection to the

terminated process. Therefore there is a constant overhead of 0.2 seconds before the

notification process begins in the log-ring.

FMI establishes the log-ring overlay network (H2 states) on the recovery. The initializa-

tion must be fast and scalable for fast recovery. In Figure 5.15, we show the initialization

time for MVAPICH2 and FMI. For FMI, this is time spent in the H1 and H2 states. We

compare the time in FMI Init with that in MVAPICH2’s MPI Init. We see that the time

to build the log-ring (H2 state) is small and scalable, because each process only connects

to log2 n other processes. The FMI bootsrapping time (H1 state) is about two times

faster than that of MVAPICH2. The current prototype of FMI has limited capabilities

compared to MPI. A smaller number of messages are exchanged in FMI initialization

than in MVAPICH2, which results in faster bootstrapping. However, we expect that if

FMI evolves to support more capabilities, it will also exchange more messages and its

initialization time will approach that of MVAPICH2.
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Figure 5.16: Himeno benchmark (Checkpoint size: 821 MB/node, MTBF: 1 minute)
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Figure 5.17: Probability to continuously run for 24 hours

5.6.2 Application Performance with FMI

To investigate the impact of FMI on the performance of an actual application run, we

used a Poisson equation solver, the Himeno benchmark [69]. Himeno is a stencil ap-

plication in which each grid point is iteratively updated using only neighbor points.
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Figure 5.18: Efficiency of multilevel checkpoint/restart under increasing failure rate
and L2 checkpoint/restart time

The computational pattern frequently appears in numerical simulation codes for solv-

ing partial differential equations. Himeno uses point-to-point communications and one

Allreduce at the end of each iteration.

Figure 5.16 shows the performance of Himeno compared with MPI using SCR [4]. The

FLOPS metric is computed based on time spent in application code making useful

progress. For example, if an application fails at time t1, and rolls back to time t0, the

FLOPS metric does not include the lost computation done to restore the application back

to the state at t1. We configured SCR to write checkpoints to tmpfs and optimize the

checkpoint interval of both SCR and FMI with Vaidya’s model [46] based on configured

MTBF of 1 minute, and measured checkpointing time.

Because the point-to-point communication performance of FMI and MVAPICH2 are

nearly the same (Table 5.2), the performance of Himeno is nearly the same for FMI

and MPI if we do not write any checkpoints during the execution (FMI & MPI in

Figure 5.16). For checkpointing, SCR writes to memory via a file system (MPI + C),

while FMI writes checkpoints directly to memory using memcpy (FMI + C). Thus, FMI

exhibits higher performance by 10.3 % with the same memory consumption as MPI

when checkpointing is enabled. We also injected failures into Himeno to see the impact

of killing a process with a MTBF of 1 minute during the execution. Even with the

very high failure rate, we found that Himeno incurred only a 28% overhead with FMI.

Because the FMI checkpoint/restart time is constant regardless of the total number of
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nodes according to performance model in Section 5.5.2, we expect FMI to scale to a

much larger number of nodes.

5.6.3 Resiliency with FMI

FMI applications can continue to run as long as all failures are recoverable. To investi-

gate how long an application can run continuously with or without FMI, we simulated an

application running at extreme scale. If we assume failures occur according to a homoge-

neous Poisson process, the probability that an application runs for time T continuously

is e λ∗T where λ is the unrecoverable failure rate.

Figure 5.17 shows the probability to run continuously for 24 hours using failure rates

from the LLNL failure analysis of the Coastal cluster [4], with a level-1 failure rate of

2.13 6 (MTBF = 130 hours) (recoverable by XOR encoding), and level-2 failure rate

of 4.27 7 (MTBF = 650 hours) (unrecoverable failures). We increase the failure rates

from the observed level-1 and 2 values by scale factors of 1 (observed values) to 50 to

evaluate FMI’s performance at larger scales. With FMI, 80% of executions can run for

24 hours with even 6⊗ higher failure rates. At failure rates of 10⊗ higher than today’s,

70% of FMI executions can run continuously for 24 hours, while only 10% of non-FMI

executions can do the same. Executions without FMI are terminated by any failures,

while FMI executions are terminated by only level-2 failure. Thus, using FMI effectively

decreases λ, and thus the probability of long continuous runs is higher with FMI, even

at very high failure rates. At scale factor 50, level-1 MTBF becomes 2.6 hours (= 130

hours /50), which is quite long MTBF for FMI. As in Figure 15, FMI achieves an only

28% overhead (72% of efficiency) even with MTBF of 1 minute. If an unrecoverable

failure does not happens, an application can run with negligibly small overhead.

If FMI uses a multilevel checkpoint/restart strategy and writes some checkpoints to the

PFS (level-2 checkpoint/restart) in addition to XOR checkpoint/restart (level-1 check-

point/restart), level-2 failures can also be recoverable. Here, we predict the efficiency

of using multilevel checkpoint/restart with FMI, where efficiency is the ratio of time

spent in useful computation only versus computation, checkpoint/restart activities, and

recomputation after recovery. As future systems become larger, we expect higher failure

rates and total aggregate checkpoint sizes. Thus, to predict application efficiency at

larger scales, we increase failure rates and checkpoint costs up to 50⊗, using the Coastal

system as a base line. Because level-1 checkpoint/restart time is constant regardless of

the total number of nodes, we only increase level-2 checkpoint/restart time. For level-2

checkpoint/restart, we assume we write checkpoints asynchronously to the PFS using

the framework and model developed in our prior work[81].
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Figure 5.18 shows the efficiency of multilevel checkpoint/restart in FMI. Because we

are uncertain as to whether level-2 failure rates will increase at extreme scale, in our

evaluation we increase only the level-1 failure rate (L1) or both the level-1 and 2 failure

rates (L1,2) with different checkpoint sizes per node (1 or 10 GB/node). We estimate

level-1 checkpoint/restart time using the performance model in Section 5.5.2. For level-

2 checkpoint/restart time, we use a PFS bandwidth of 50 GB/s, the bandwidth of

the LLNL Lustre file system /p/lscratchd. We find that we can achieve fairly high

efficiencies if future systems can keep current level-2 failure rates constant or keep the

size of checkpoints small. However, if both level-1 and 2 failure rates increase and the

checkpoint size is large, the efficiency drops down to under 2%. Thus, future systems

must either decrease level-2 failure rates or increase PFS throughput to achieve high

system efficiency.

5.7 Summary

From our analysis of failures on tera- and peta-scale systems, we have identified four

critical capabilities for resilience with extreme scale computing: a survivable messaging

interface that can run through process faults, fast checkpoint/restart, fast failure de-

tection, and a mechanism to dynamically allocate spare compute resources in the event

of hardware failures. To satisfy these requirements, we designed and implemented the

Fault Tolerant Messaging Interface (FMI), a survivable messaging runtime that uses

in-memory checkpoint/restart, scalable failure detection, and dynamic spare node al-

location. With FMI, a developer writes applications using semantics similar to MPI,

and the FMI runtime ensures that the application runs through failures by handling the

activities needed for fault tolerance. Our implementation of FMI has performance com-

parable to MPI. Our experiments with a Poisson equation solver show that running with

FMI incurs only a 28% overhead with a very high MTBF of 1 minute. By defining a sim-

plified programming model and custom runtime, we find that FMI significantly improves

resilience overheads compared to similar existing multi-level checkpointing methods and

MPI implementations.
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Conclusions and Future Work

6.1 Conclusions

The computational power of HPC systems is growing exponentially enabling finer grained

scientific simulations. However, as the capability and component count of the systems

increase, the overall failure rate increases accordingly. Without a viable fault tolerance

technique, applications will be unable to continuously run for even one day on current

supercomputers, and for a hour on future systems. Therefore, resilience in HPC has

become more important than ever as we plan for future larger-scale systems. To make

progress despite of system failures, applications periodically write checkpoints to a reli-

able PFS so that the applications can restart from the last checkpoint even on a failure.

While simple, this straightforward checkpointing scheme can impose huge overhead on

application run times for both checkpoint and restart operations. Although several tech-

niques have been proposed to reduce the overhead, these techniques are not sufficient,

had several limitation for extreme scale computing.

First, to understand detailed system failures on current and future supercomputers, we

first analyzed failure history on TSUBAME supercomputers, systems in LLNL and other

systems in Chapter 2. We also review existing studies mainly in checkpoint/restart, and

then described three main challenges to achieve more fault tolerant computing for future

extreme scale systems.

The first challenge was reducing checkpointing overhead/workload to PFS. Computa-

tional capabilities are increasing faster than PFS bandwidths. This imbalance in perfor-

mance means applications can be blocked for order of hours for a single PFS checkpoint.

Thus, the overhead of checkpointing to the PFS can dominate overall application run

time even with infrequent PFS checkpoint by multi-level checkpointing. Further, the

94
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huge numbers of concurrent I/O operations from large-scale jobs burden the PFS and

are themselves a major source of failures. Therefore, we must reduce the PFS load in

order to achieve high reliability and efficiency

The second challenge was exploration of more reliable storage architectures. In multi-

level checkpoint/restart, applications generally cache checkpoints in in-system storage

such as RAM or other node-local storage on compute nodes because aggregated band-

width of in-system storage scales with the increasing number of compute nodes. How-

ever, as mentioned above, the most common failures affect the compute nodes. Storing

checkpoints in the in-system storage on compute nodes is not reliable solution because

an application can not restart its execution if one of checkpoints stored across compute

nodes is lost due to a failed compute node.

The third challenge was a demand for efficient recovery. Most failures only affect a

small portion of the compute nodes so the vast majority of processes and connections

are still valid after a failure. It is inefficient for the runtime to tear all of these down

only to immediately relaunch and reconnect it all. Launching large sets of processes,

loading executables and libraries from shared file systems, and bootstrapping connections

between those processes takes non-trivial amounts of time.

To achieve the above three challenges, we proposed asynchronous checkpointing system

for light-weight checkpointing to PFS, propose fault tolerant messaging interface (FMI)

for fast and transparent recovery, and explore multi-tier storage design with burst buffer

for reliable checkpointing.

The first approach, multi-level asynchronous checkpointing, solves the checkpointing

overhead to PFS. We designed and modeled an asynchronous checkpointing system that

extends an existing multi-level checkpointing system in Chapter 3. Our asynchronous

checkpointing system enables applications to save checkpoints to fast, scalable storage

located on the compute nodes and then continue with their execution while dedicated

staging nodes copy the checkpoint to the PFS in the background. This capability si-

multaneously increases system efficiency and decreases required PFS bandwidth. Since

applications spend less time in defensive I/O, we find that our asynchronous check-

pointing system can improve machine efficiency by 1.1 to 2.0 times on future systems.

Further, our model predicts that asynchronous checkpointing significantly reduces the

PFS bandwidth required to maintain application efficiency. For example, to maintain

80% efficiency at 4× today’s failure rates, the PFS bandwidth required for asynchronous

checkpointing is an order of magnitude less than that required by synchronous check-

pointing. Additionally, our asynchronous checkpointing system can maintain 80% effi-

ciency with only modest PFS bandwidth requirements even
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The second approach, a user-level infiniband-based file system and checkpoint strategy

for burst buffers, consider using burst buffers to improve system resiliency. In Chap-

ter 4, we explored the use of burst buffer storage for scalable checkpoint/restart, and

developed IBIO to exploit the high bandwidth of the burst buffers for future extreme

scale systems. We also developed a model to explore the performance difference of check-

pointing strategies, specifically coordinated checkpointing where all processes checkpoint

simultaneously, and uncoordinated checkpointing where subsets of processes coordinate

a checkpoint instead of the whole job. We also developed a model to explore both check-

pointing strategies and storage architectures. We used the model to evaluate multi-level

checkpointing on flat buffer storage systems that are currently available on today’s ma-

chines and hierarchical storage systems using burst buffers. From our exploration, we

found that burst buffers are indeed beneficial for checkpoint/restart on future systems,

increasing reliability and efficiency. We also found that the performance of the PFS has

high impact on the efficiency of a machine, while increased bandwidth to burst buffers

did not affect overall machine efficiency. However, the reliability of burst buffers does

impact efficiency, because unreliable buffers mean more I/O traffic to a PFS when mul-

tiple burst buffer nodes fail, and checkpoints on the failed burst buffer nodes are lost.

Overall, uncoordinated checkpointing was more efficient than coordinated checkpointing,

even with high message logging overhead. These findings can benefit system designers

in making the trade-offs in performance of components so that they can create efficient

and cost-effective machines.

The third approach, a fault tolerant messaging interface (FMI) for fast and transpar-

ent recovery, is a survivable messaging interface that uses fast, transparent in-memory

checkpoint/restart and dynamic node allocation. From our analysis of failures on tera-

and peta-scale systems, we have identified four critical capabilities for resilience with

extreme scale computing: a survivable messaging interface that can run through process

faults, fast checkpoint/restart, fast failure detection, and a mechanism to dynamically

allocate spare compute resources in the event of hardware failures. To satisfy these re-

quirements, we designed and implemented the Fault Tolerant Messaging Interface (FMI)

in Chapter 5, a survivable messaging runtime that uses in-memory checkpoint/restart,

scalable failure detection, and dynamic spare node allocation. With FMI, a developer

writes applications using semantics similar to MPI, and the FMI runtime ensures that

the application runs through failures by handling the activities needed for fault tolerance.

Our implementation of FMI has performance comparable to MPI. Our experiments with

a Poisson equation solver show that running with FMI incurs only a 28% overhead with

a very high MTBF of 1 minute. By defining a simplified programming model and cus-

tom runtime, we find that FMI significantly improves resilience overheads compared to
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similar existing multi-level checkpointing methods and MPI implementations. In addi-

tion, FMI enables applications to survive from a system failure, and continuously run

for longer time with high efficiency.

As a whole, these approaches enabled fast, scalable and transparent checkpoint and

restart for extreme scale systems.

6.2 Future Work

6.2.1 FMI for general applications

Although the current FMI prototype has demonstrated promising results, it is not yet

complete enough to support a broad range of applications. Here, we discuss the limita-

tions of our prototype and how we plan to address them.

First, our prototype FMI implementation only supports a subset of MPI functions.

For example, collective I/O, i.e., MPI IO, is an important feature of MPI, because it

is often used for checkpoint/restart to the PFS. Checkpointing to a PFS can be very

time consuming, especially at large scales. Additionally, an application can experience

higher than average failure rates of the PFS when there is high load on the PFS. Thus,

a checkpoint may never complete due to frequent roll-backs. However, if we create

parity data across nodes before initiating the MPI IO operation, we can restore lost

data and continue the I/O operation in the middle without starting over. Thus, support

of MPI IO in FMI is in our plans.

Second, several applications dynamically split a communicator with nested loops in order

to balance the workload across processes. Such applications change not only application

state but also communicator state over the iterations. To support such applications, fu-

ture versions of FMI Loop will support checkpoint/restart of communicators, and nested

loops.

Third, our prototype does not support multilevel checkpoint/restart. FMI cannot re-

cover from multiple nodes failure within XOR group. Future versions of FMI will support

multilevel checkpoint/restart to be able to recover from any failures occurring on HPC

systems.

FMI is an on-going project, and future FMI versions will remove the above limitations

to support a wider range of applications, and become more resilient.
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6.2.2 Energy-Efficient Checkpoint/Restart

Increased power consumption in modern large-scale supercomputers limits the design

and the scale of the systems, and this power limitation is also applied to future extreme

scale supercomputing systems. For example, the IESP (International Exascale Software

Project ) [83] reports that the upper limit of the power in an exa-scale supercomputer

should be less than 20MW, while current power efficient technique requires over 60MW

of the system. As described, in such large HPC systems, applications are required

to conduct tera- or peta-byte scale massive I/O operations to local storages (e.g. a

NAND flash memory) for scalable checkpoint and restart. However, as HPC system size

grows, compute nodes perform less computation but consume huge power during check-

point/restart, which result in undesirable energy consumption. Thus, energy efficiency

of I/O operations is important at extreme scale

Recent rapid progress of flash technology introduces new memory devices in existing

computer systems. That is, modern computer systems employ NAND flash memories,

such as SSD or PCIe-attached flash memory, as a padding layer in order to mitigate

the performance gap between DRAM and PFS. Indeed, modern supercomputers such as

TSUBAME2.0 and Gordon employ flash-based storages, and these NAND flash technolo-

gies may also improve checkpoint and restart I/O performance in terms of throughput

and latency for various HPC applications. These devices can be applied to storage vol-

umes for checkpoint/restart instead of a traditional PFS; however, the validity of energy

efficiency of checkpoint/restart to these devices is not clear. We partially solved the

problem [73], but the study does not support multi-level checkpoint/restart.



Appendix A

Merging Edges and Vertices of

W(k) state

Although W(k) state is described as in Figure A.1, we can simplify the markov model

by merging edges and vertices.

pZ 0
tZ 0

pY 0
tY 0

pZL
tZL

pYL
tYL

PRY
TRY

PY 0
TY 0

PYR
TYR

Figure A.1: Original W (k)state

First, we merge EDGE(PRY , TRY ), EDGE(PY 0, TY 0) and VERTEX(Y ) into EDGE(PRZ , TRZ)

as following.
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PRZ = PRY ×
(
1 + PY R ×PRY + (PY R ×PRY )2 + . . .

)
×PY 0

=
PRY ×PY 0

1 PY R ×PRY

= 1 (∵ PRY = 1, PY 0 = 1 PY R)

TRZ = PRY ×
(
(PY R ×PRY )0 ×(TRY + 0×(TY R + TRY ) + tY 0) +

(PY R ×PRY )1 ×(TRY + 1×(TY R + TRY ) + tY 0) + . . .
)
×PY 0

= PRY ×

(
(TRY + tY 0)×

∧∑
i=0

(PY R ×PRY )i + (TY R + TRY )×
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i=0

i×(PY R ×PRY )i

)
×PY 0

= PRY ×

(
TRY + tY 0

1 PY R ×PRY
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(TY R + TRY )×PY R ×PRY

(1 PY R ×PRY )2
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×PY 0
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tYL

PRZ (=1)

TRZ

Figure A.2: Merging EDGE(PRY , TRY ), EDGE(PY 0, TY 0) and VERTEX(Y ) into
EDGE(PRZ , TRZ)

Second, we merge EDGE(pZL, tZL) and EDGE(pZ0, TZ0) into EDGE(PZY , TZY ) as fol-

lowing.
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PZY =
(
1 + pZL ×PRZ + (pZL ×PRZ)2 + . . .

)
×pZ0

=
pZ0

1 pZL ×PRZ

= 1 (∵ PRZ = 1, pZ0 = 1 pZL)

TZY = p0
ZL ×pZ0 ×(0×(tZL + TRZ) + tZ0)

+ p1
ZL ×pZ0 ×(1×(tZL + TRZ) + tZ0) + . . .

= pZ0 ×

(
(tZL + TRZ)×

∧∑
i=0

i×pi
ZL + tZ0 ×

∧∑
i=0

pi
ZL

)

=
(tZL + TRZ)×pZL

1 pZL
+ tZ0
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pYL
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TRZ

PZY (=1)

TZY

Figure A.3: Merging EDGE(pZL, tZL) and EDGE(pZ0, TZ0) into EDGE(PZY , TZY )

Finally, we merge the rest of the other edges and vertices as following.

PW0 = 1

TW0 = p0
Y L ×pY 0 ×(TZY + 0×(tY L + TRZ + TZY ) + tY 0)

+ p1
Y L ×pY 0 ×(TZY + 1×(tY L + TRZ + TZY ) + tY 0) + . . .

= pY 0 ×

(
(tY L + TRZ + TZY )×

∧∑
i=0

i×pi
Y L + (TZY + tY 0)×

∧∑
i=0

pi
Y L

)

=
(tY L + TRZ + TZY )×pY L

1 pY L
+ (TZY + tY 0)
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PW 0
TW 0

Figure A.4: Merging the rest of all edges and vertices
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