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Chapter 1. Introduction 

1.1 Motivation of this thesis 
  Graphics Processing Units (GPUs) which also called visual processing unit are very 

efficient at manipulating computer graphics which was popularized by NVIDIA in 1999. 

Although GPUs have been developed for rendering computer graphics, since Compute 

Unified Device Architecture (CUDA) was released by NVIDIA as a GPGPU programming 

framework in 2006, programming GPUs for scientific computing has been made possible 

without knowing graphics-oriented APIs. GPGPU is well-designed to solve problems that 

can be expressed as data-parallel computations [1]. Many applications that process large 

data sets can use a data-parallel programming model to speed up the computations. 

GPGPU has emerged as a high-performance computing device to accelerate a wide 

variety of applications and become an active research area in parallel computing. 

Heterogeneous computing with both conventional CPUs and vector-oriented GPU 

accelerators is becoming common because of superior raw performance as well as 

power-performance efficiencies [2]. In many CPU-GPU architectures where GPU acts as 

a subsidiary device of CPU, the memory capacity of GPU is smaller than that of CPU. 

Commonly, the size of computational domain is limited by the memory capacity of GPUs. 

In the real scientific simulations, it needs to increase the computational domain for these 

reasons. The first reason is that bigger computational domain means bigger 

computational area at the same accuracy which is important to simulations like weather 

forecast. In those simulations, bigger computational area means capability to predict wider 

range of area which is important to protection from environment disasters. The second 

reason is that bigger computational domain means higher accuracy at the same 

computational area if it use like stencil method. More accuracy can show more details of 

the simulations which make it possible to find more details and uncover some new field of 

research. The third reason is that some scientific simulations are constituted of multiple 

processes that consume the system resource. It is the key challenge that how to extend 

the limitation of GPU memory capacity in those cases.  

   For all those reasons, we need to solve the contradiction between the demand of 

bigger computational domain and the limitation of GPUs memory capacity. The solution 

can benefit wide range scientific simulations. 
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  Most of the GPU clusters are constituted of nodes and the connection between those 

nodes. In many cases, it uses like fat-tree network to connect those nodes by using 

InfiniBand mechanism [3], [4]. At each node, CPU acts as a controller which manages the 

connection between nodes and resource of different mechanism. Each node has some 

sockets that make it easier to input new devices. Devices are inserted to the sockets and 

the mechanism enables the connection between those devices. In this kind of system 

architecture, it is possible to increase the capacity of memories by inserting more memory 

cards into the sockets. For GPU device, the memory card and computing units is 

integrated as a whole device. For this reason, it is difficult to increase the memory 

capacity of GPU. It only depends on the manufactory. Commonly, the memory capacity of 

CPU is bigger than the memory capacity of GPU in most GPU based supercomputer 

systems.  

As a common way to use GPUs to compute scientific simulations, the domain is sent 

from CPU side to GPU side to compute. On the GPU side, it uses different methods that 

focus on the full utilization of GPU architecture. The size of domain needs to fit the 

memory capacity of GPUs as it needs to send the initial to the GPU. For complicated 

simulations, as each process consume the resource of GPU, the memory limitation of 

GPU also makes it sensitive to the problem size [5]. The memory capacity of CPU is 

bigger than that of GPU as it only depends on the number of sockets. So, it gives us a 

possibility to enable the computation on the bigger domain by initialize the domain on the 

CPU side. We can contain the bigger domain on the CPU side and separate the domain 

into some sub-domains. Then, we can compute each sub-domain by GPU. By this kind of 

methods, it can compute bigger domain by GPUs. This is brief view of solving the bigger 

size applications. To achieve the objective, it needs to consider these factors. The first 

factor is to consider the communication between CPU and GPU. The connection is made 

up by the PCI express. Currently, the PCI express has a high speed which is almost 

8GB/s. Yet, compared with the throughput of the GPU, the connection speed still remains 

as a problem. It reduces the performance especially in frequent communication case. The 

second factor is the performance of kernels on the GPU side. To improve the performance 

of the kernels, it uses the methods like spatial blocking, utilization of cache, and utilization 

of registersor shared memory on GPU side. The third factor is to consider the connection 
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between the GPUs. It needs to exchange information via the connection between GPUs in 

some applications. The communication cost is high compared with the throughput of 

kernels. The fourth factor is the total executing time of the applications which is the key 

demand to use supercomputer systems. The fifth is the easiness and portability of 

programming.  

With all those consideration, it is possible to figure out how to compute bigger size 

applications by the limited memory capacity of GPUs.  

1.2 Contribution of this thesis 
This thesis wants to enable the computation on the bigger domains on the GPU cluster 

while maintaining high performance. We select two kinds of real application to figure out 

optimization methods. We evaluate the optimization methods on TSUBAME system to 

analyze the result. The first one is stencil computation which is widely applied as a base 

computational kernel for scientific and engineering simulations [6], [7]. The second one is 

band sparse matrix vector multiplication which is widely applied as a base kernel in 

different kinds of simulations include equation solver [8], [9]. We implement the 

optimization methods to catch the characteristic the two applications and their same 

points. Those optimization methods are to efficiently utilize the memories to achieve high 

performance in real applications. We explain those contributions as below. 

● For stencil computation, we enable the computation on the domain that is bigger 

than the memory capacity of GPUs while maintaining high performance. In single 

node case, it enables the computation on the domain which is 27 times bigger than 

the memory capacity of single GPU while reaches high performance. We developed 

a series of optimization methods and the best one achieves 1.35 times better than 

other methods. In multiple nodes case, we also developed a series of optimization 

methods which enable the computation on the domain that is 40 times bigger than 

the memory capacity of GPUs. The best one achieves 1.72 times better 

performance than other methods. We evaluate the methods for 7-point and 19-point 

stencil.  The evaluation result shows that it can compute bigger domain while 

maintaining high performance in both stencil cases.  

● For band sparse matrix multiplication case, we developed a series of new methods 

to achieve high performance. With the evaluation on those special matrices, we 
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conclude some important points and we plan to extend those methods to wide 

range matrix cases. 

As the evaluation result proves, we enable the computation of bigger size applications 

while maintaining high performance. We use memory of CPUs to contain bigger domain 

and use GPUs to achieve high performance. By the efficient utilization of the memory of 

CPUs and GPUs, we enable the computation on the bigger domain while maintaining high 

performance. 

  This work is very important because of the contradiction between limited system 

resource and the demand of bigger size simulations. As the application size increased by 

the demand of the industry, it should face to the bigger size simulations. The size 

increases because of scientific demands or improvements. All those things may 

independently make the simulation size become bigger. Currently, the simulation size is 

limited by the total memory capacity of GPUs in GPU cluster. To increase the memory 

capacity of GPUs in GPU cluster, it needs to upgrade the system which consumes 

extraordinary time and fund. For this reason, the improvement of the system is slower 

than the growth of simulation size. Our work can efficiently solve that problem by enable 

the computation on the bigger domain by current GPU cluster. As introduced former, it is 

easier to increase the memory size of CPUs by inserting more memory cards into the 

sockets. Our optimization methods only depend on the memory size of CPUs as it needs 

to contain the initial of the bigger domain.  Furthermore, we believe that it can also 

applied by different kinds of supercomputer systems. As the GPU cluster has limited 

number of GPUs, we believe that our methods can benefit all those GPU clusters.  

  We also discuss some limitation of our work in the next step. This includes the easiness 

and portability of programming. Also the further improvement of performance by 

understanding the characteristic of GPU device will be mentioned in the next.  
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Chapter 2. Background 

2.1 Application:  stencil computation 
Stencil computation (SC) is widely applied as a base kernel in scientific and engineering 

simulations [1], [2], [5], [6], [7]. SC performs nearest neighbor computation on a spatial 

domain. For example, stencil computation is the base kernel for weather forecast as the 

below figure shows. The accuracy of the solution depends on the size of domain when 

using stencil computation.  

 

Fig.1.    Weather forecast that uses stencil computation 

SC sweeps through the entire domain multiple times, called time steps, updating each 

domain point with the calculations of its nearest neighbors. At n-th time step, 7-point 

stencil computes all of the grid points for the next (n+1)-th time step. To compute each 

point, it needs to read seven points include itself and adjacent two points in each 

dimension as follows: 
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Fig.2.    7 point stencil 

At n-th time step, in the 19-point stencil, the computation of each point involves adjacent 

18 points (involves corner points). As the below figure shows, the computation of each 

point needs its nearest neighbors. At each time step, it needs to update each point 

through the whole domain.  

 

Fig.3.    19 point stencil  

Here, we check the condition to compute each point at one time step. As we can see in 

below figure, if the nearby points have not been updated, it cannot compute the point for 

the next time step. Also, if there are no nearby points on the same memory, it also cannot 

compute the point for the next time step. If some nearby points are on the outside of the 

whole domain, it can use boundary condition to continue the computation. 
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Fig.4.    The conditions that each point can be computed in 7 point stencil. 

To efficiently perform the stencil computation, it normally uses double buffering method 

to save and read the domain at each time step. It uses two grids, one grid is assigned to 

read the initial of the domain and the other one is assigned to save the result of the 

domain. For the next time step, it swaps two grids. So, the grid that reads the initial is now 

assigned to save the result; the grid that saves the result is now assigned to read the initial. 

It uses two grids to contain the initial and result to efficiently perform the stencil 

computation on the GPU side. It consumes 2 times space on the GPU side. We give the 

example of double buffering method on domain as below: 
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Fig.5.   Double buffering method 

After the computation of each time step, it swaps the two grids to continue the 

computation.  To simplify the explanation, we will not identify the domain on which grid. 

If the domain is divided into sub-domains, each point of the boundary needs adjacent 

nearby points which may belong to the other sub-domains. It calls those points on the 

other sub-domains as ghost boundary. 

 

Fig.6.   Ghost boundary for 1D or 3D decomposition. 

Here Dx, Dy, Dz is the size of the X, Y, Z dimension. NSD is the number of sub-domains. 

If the domain is divided into sub-domains, each point of the boundary needs adjacent 

nearby points which may belong to the other sub-domains. It calls those points on the 

other sub-domains as ghost boundary. 
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2.2 GPU and CUDA program model 
Graphics Processing Units for general-purpose computation (GPGPU) is proved to be a 

high-performance computing device to accelerate a wide variety of scientific and 

engineering simulations. A central processing unit (CPU) is the hardware within 

a computer that carries out the instructions of a computer program by performing the 

basic arithmetical, logical, and input/output operations of the system. The reason of 

floating-point capability difference between the CPU and the GPU is that the GPU is 

specialized for compute-intensive, highly parallel computation and therefore designed 

such that more transistors are devoted to data processing rather than data caching and 

flow control [4].  

 

Fig.7.   NVIDIA GPUs 

More specifically, the GPU is especially well-suited to address problems that can be 

expressed as data-parallel computations – the same program is executed on many data 

elements in parallel – with high arithmetic intensity – the ratio of arithmetic operations to 

memory operations. Because the same program is executed for each data element, there 

is a lower requirement for sophisticated flow control, and because it is executed on many 

data elements and has high arithmetic intensity, the memory access latency can be 

hidden with calculations instead of big data caches.  

http://en.wikipedia.org/wiki/Computer�
http://en.wikipedia.org/wiki/Instruction_(computer_science)�
http://en.wikipedia.org/wiki/Computer_program�
http://en.wikipedia.org/wiki/Input/output�
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Data-parallel processing maps data elements to parallel processing threads. Many 

applications that process large data sets can use a data-parallel programming model to 

speed up the computations. In fact, many algorithms are accelerated by data-parallel 

processing. 

In November 2006, NVIDIA introduced CUDA™, a general purpose parallel computing 

architecture – with a new parallel programming model and instruction set architecture – 

that leverages the parallel compute engine in NVIDIA GPUs to solve many complex 

computational problems in a more efficient way than on a CPU. CUDA comes with a 

software environment that allows developers to use C as a high-level programming 

language. Other languages or application programming interfaces are supported, such as 

CUDA FORTRAN, OpenCL, and DirectCompute. 

 

Fig.8.   GPU architecture and CUDA program model 

The advent of multi-core CPUs and many core GPUs means that mainstream 

processor chips are now parallel systems. Furthermore, their parallelism continues to 

scale with Moore’s law. The challenge is to develop application software that transparently 

scales its parallelism to leverage the increasing number of processor cores, transparently 

scale their parallelism to many core GPUs with widely varying numbers of cores. The 

CUDA parallel programming model is designed to overcome this challenge while 

maintaining a low learning curve for programmers familiar with standard programming 

languages such as C.  

At its core are three key abstractions – a hierarchy of thread groups, shared memories, 

and barrier synchronization – that are simply exposed to the programmer as a minimal set 
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of language extensions.  

These abstractions provide fine-grained data parallelism and thread parallelism, nested 

within coarse-grained data parallelism and task parallelism. They guide the programmer 

to partition the problem into coarse sub-problems that can be solved independently in 

parallel by blocks of threads, and each sub-problem into finer pieces that can be solved 

cooperatively in parallel by all threads within the block.  

This decomposition preserves language expressivity by allowing threads to cooperate 

when solving each sub-problem, and at the same time enables automatic scalability. 

Indeed, each block of threads can be scheduled on any of the available processor cores, 

in any order, concurrently or sequentially, so that a compiled CUDA program can execute 

on any number of processor cores and only the runtime system needs to know the 

physical processor count.  

CUDA C extends C by allowing the programmer to define C functions, called kernels, 

that, when called, are executed N times in parallel by N different CUDA threads, as 

opposed to only once like regular C functions.  

A kernel is defined using the __global__ declaration specifier and the number of CUDA 

threads that execute that kernel for a given kernel call is specified using a new <<<…>>> 

execution configuration syntax. Each thread that executes the kernel is given a unique 

thread ID that is accessible within the kernel through the built-in threadIdx variable.  

For convenience, threadIdx is a 3-component vector, so that threads can be identified 

using a one-dimensional, two-dimensional, or three-dimensional thread index, forming a 

one-dimensional, two-dimensional, or three-dimensional thread block. This provides a 

natural way to invoke computation across the elements in a domain. 

2.3 2D spatial blocking method for stencil computation 
2D spatial blocking [5], [11] is an efficient way to perform stencil computation on the 

GPU size. Since the computation involves a large number of memory accesses, it should 

reduce access to the global memory of the GPU. Thus, it should reuse data in registers 

efficiently. Moreover, it should invoke sufficiently larger number of threads than that of 

physical CUDA cores in order to hide latency of memory accesses.  
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Fig.9.   2D spatial blocking of stencil computation 

To fulfill those requirements, it designed a kernel function that calculates the points of a 

computational part of size of (Dx, Dy, Dz) for a single time step. The kernel function is 

invoked on a GPU with (Dx/Bx, Dy/By) thread blocks, each of which has (Bx, By) threads. 

Bx×By should no more than the number of threads that a single block can contain. It is 

better to set Bx more than By to improve data locality. It divides the given part into pieces 

of size of (Bx, By, Dz) as shown in upper figure. Here each thread calculates Dz points in 

the Z direction; a thread that corresponds to (i, j) updates grid points (i, j, k) where k varies 

from 0 to Dz. When a thread computes a point in the k + 1-th plane, some points to be 

referred have been already accessed by itself in the previous k-th plane computation. It 

reuses such data by holding them in registers to reduce the global memory access. On 

the other hand, it does not use on-chip shared memory to store data shared by several 

neighbor threads. It is called as 2D spatial blocking. 

2.4 TSUBAME system 
TSUBAME2.0 supercomputer is developed by Global Scientific Information and 

Computing Center (GSIC) at Tokyo Institute of Technology [10].  TSUBAME 2.0 ranked 

world number two on “The Green 500 List” of 2010 which are the world’s most powerful 

supercomputers in the power efficiency.  TSUBAME2.0 also ranked number 4 on “The 

Top 500 List” by the absolute performance which is 2.4 PFLOPS. It consists of thin, 
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medium and fat computing node which have different system specifications. The nodes 

are interconnected by dual QDR InfinitBand network with a full bisection-bandwidth 

fat-tree topology. The nodes mainly consist of two Intel Xeon Westreme-EP 2.9 GHz 

CPUs and three NVIDIA M2050 GPUs. We call the memory of CPU side as host memory 

and the memory of GPU side as device memory. Each GPU has 3GB device memory and 

connects to the CPU via PCI express. There are 1408 thin computing nodes, 24 medium 

nodes and 10 fat nodes. Each thin node has 54GB host memory, each medium node has 

128 GB host memory and each fat node has 256 GB or 512 GB host memory. The local 

storage (SSD) of each thin node is 120 GB or 240 GB. The local storage of medium and 

fat node is 480GB. As a high performance supercomputer system, TSUBAME2.0 supplies 

peta scale throughput and storage which makes most of current simulations can be 

executed and get correct result in an endurable time. The key point to use TSUBAME2.0 

is the multiple GPUs which can get high throughput by the data-parallel programming 

model of GPU architecture. The CPU is installed separately from the host memory and 

both of them are inserted into the sockets of the motherboard at each node. The host 

memory is also inserted into the socket of motherboard as a memory card. It is possible to 

increase the capacity of host memory by inserting into more memory card. Instead, the 

device memory is integrated to the GPU device which makes it impossible to increase the 

memory capacity.  

 

Fig.10.   TSUBAME2.0 architecture 
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Commonly, the serial code executes on the host while parallel code executes on the 

device to efficiently utilize the strong point of CPU and GPU. The domain is initialized on 

the CPU side and sent to GPU side to compute. This is the common way to use GPU 

cluster to compute real applications on single node. For the applications on multiple nodes, 

it needs to copy data between CPU to GPU to continue the computation or exchange data 

between GPUs. As we mentioned above, TSUBAME2.0 is consisted of nodes and the 

connection between those nodes. On each node, there are CPU memory and GPU 

memory. Recently, TSUBME2.0 is upgraded to TSUBAME2.5. It will be upgraded to 

TSUBAME3.0 in the future. TSUBAME2.5 upgraded TSUBAME2.0 by exchanging the 

Tesla M2050 to Tesla K20X which means the throughput of each GPU is upgraded. The 

CPUs and the connections between nodes and inside nodes remain the same. The Tesla 

M2050 is Fermi and Tesla K20X is Kepler in NVIDIA product series. 

 

Fig.11.   TSUBAME2.5 architecture 

Fermi introduced an L1 cache in addition to the shared memory which is available since 

the earliest CUDA-capable GPUs. In Fermi, the shared memory and the L1 cache share 

the same physical on-chip storage, and a split of 48 KB shared memory / 16 KB L1 cache 

or vice versa can be selected per application or per kernel launch. Kepler continues this 

pattern and introduces an additional setting of 32 KB shared memory / 32 KB L1 cache, 

the use of which may benefit L1 hit rate in kernels that need more than 16 KB but less 

than 48 KB of shared memory per multiprocessor. L1 caching in Kepler GPUs is reserved 
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only for local memory accesses, such as register spills and stack data. In Kepler GPUs, 

global loads are only cached in L2 only. In Fermi GPUs, the global loads are cached in L1 

and L2 caches which mean more data locality in caches to improve data hit rate. Kepler 

has more computing units which are called SMs and has bigger L2 cache. So, Kepler 

ensures performance improvement in most application cases, and Fermi has strong point 

in data caching. For the programs that developed on Fermi GPUs, it also needs to 

consider how to revise the program to Kepler version to fully utilize the strong point of 

Kepler. 

   TSUBAME 3.0 is next generation supercomputer which will come in 2015-2016 to 

target green computing, extra big data computing, and extra scale resilience.  

2.5 Bigger computational domain 
In the real scientific simulations, it needs to increase the computational domain for 

these reasons.  

 

Fig.12.   Bigger computational domain 

The first reason is that bigger computational domain means bigger computational area 

which is important to simulations like weather forecast. In those simulations, bigger 

computational area means capability to predict wider range area which is important to 
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protection from disasters. The second reason is that bigger computational domain means 

higher accuracy if it use stencil method. More accuracy can show more details of the 

simulations which make it possible to find more details and uncover some new field of 

research.  

As we can see in the upper figure, if we use stencil computation method to simulate 

the problem, bigger domain means bigger computational area at the same accuracy. The 

bigger domain also means higher accuracy at the same computational area. For all those 

reasons, we need to solve the contradiction between the demand of bigger computational 

domain and the limitation of GPUs memory capacity. The solution can benefit wide range 

scientific simulations. 

2.6 Common way to use GPUs and limitation 
The common way to use GPU to compute the domain is to initialize the whole domain 

on the CPU side. Then, it copies the whole domain to the GPU side.  

On the GPU side, it computes the whole domain for multiple times which is called time 

steps. By this way it can utilize the throughput of GPU totally and only needs to send the 

whole domain to GPU side at first time step. It copies the result at last time step. So, it can 

efficiently reduce the communication between CPU and GPU. 

 

Fig.13.   Common way for using single GPU on single node 

As the whole domain is copied to GPU side, the domain should fit the memory capacity 

of GPU. If the domain is smaller than the memory capacity of GPU, it does not need to 

consider the limitation of GPU memory capacity. If the domain is bigger than the memory 

capacity of GPU, it cannot directly copy the domain to GPU side as below. 
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Fig.14.   Memory limitation of common way 

If domain is bigger than the memory capacity of GPU, it commonly uses multiple GPUs 

to extend the memory capacity as below:  

 

Fig.15.   Common way to extend the memory capacity of GPUs 
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Fig.16.  The limitation of domain size in common way case 

As the domain should fit the memory capacity of GPUs in common way case, the 

domain size is limited by the total memory capacity of GPUs as the upper figure shows. 

As the total memory capacity of CPUs is bigger than the memory capacity of GPUs, it has 

possibility to enable the computation on the domain that is bigger than the memory 

capacity of GPUs by efficiently use the memory capacity of CPUs. 

2.7 Objective: efficiently use the memories of GPU cluster 
Our objective is to efficiently use the memories of GPU cluster to enable the 

computation on the domain that is bigger than the memory capacity of GPUs. For 

example, if the domain is 4GB and use double buffering method, it cannot copy the 

domain to the GPU side to compute as the below figure shows. We separate the domain 

into sub-domains and compute each sub-domain by the same GPU as below. 

 

Fig.17.   Efficiently use the memories. 
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Chapter 3. Related work 

3.1  Communication Avoiding Kernels 
  Jim Demmel [29], [30] proposed the communication-avoiding algorithm for matrix 

multiplication. In CPU case he has mentioned that the communication cost includes 

moving data between levels of a memory hierarchy and processors over a network as 

below figure shows. 

 
Fig.18. Communication between different processors 

  In tri-diagonal case, his algorithm Improves performance and accuracy on 

extreme-Scale computing systems. On modern computer architectures, communication 

between processors takes longer than the performance of a floating point arithmetic 

operation by a given processor. ASCR researchers have developed a new method, 

derived from commonly used linear algebra methods, to minimize communications 

between processors and the memory hierarchy, by reformulating the communication 

patterns specified within the algorithm. This method has been implemented in the 

TRILINOS framework, a highly-regarded suite of software, which provides functionality for 

researchers around the world to solve large scale, complex multi-physics problems. 

The focus of his method is to develop a systematic approach for designing and 

analyzing dense linear algebra algorithms, paying particular attention to avoiding 

communication costs as much as possible, in order to optimize performance on a wide 

range of platforms. To maintain general applicability of algorithmic ideas, he considers 

one sequential and one parallel architectural model that are simple enough to facilitate 
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coarse asymptotic communication analysis of algorithms but accurate enough to predict 

performance of implementations on real hardware. 

Communication-avoiding ‘2.5D’ algorithms take advantage of the extra available 

memory and reduce the bandwidth cost of many algorithms in numerical linear algebra. 

Generally, 2.5D algorithms can use a factor of c more memory to reduce the bandwidth 

cost. The theoretical communication reduction translates to a significant improvement in 

strong-scalability (scaling processor count with a constant total problem size) on large 

supercomputers.  

In many cases, he proves lower bounds on the communication required of a 

computation on a particular machine model, thereby setting a target for algorithmic 

performance. Establishing lower bounds and developing and improving algorithms is often 

a simultaneous process, with the objective of identifying algorithms that are provably 

communication optimal. After an efficient algorithm has been developed for the modeled 

machine, it will rely on automatic performance tuning, or auto-tuning, to tweak the 

parameters of the algorithm for optimal performance on a particular platform. The ultimate 

goal of his work is to deliver the improved performance of the new and improved 

algorithms to scientists across many disciplines and other users by integrating the ideas 

into the state-of-the-art libraries. The k iterations is y = A⋅x with [Ax, A2x… Akx]. The 

sequential and parallel algorithms are below in matrix case: 

 

Fig.19. Sequential and parallel algorithms 
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3.2   Temporal blocking method 
Leonardo Mattes [25], [26], [27] proposed optimization method for finite difference time 

domain problem which focuses on overcoming the GPU memory limitation on FDTD 

through the use of overlapping sub-grids. The method finite difference time domain (FDTD) 

is widely used in electromagnetic simulations to solve problems of microwave tomography, 

radar and telecommunications. Since this method is a data intensive and computation 

intensive problem, there are a lot of initiatives to improve the scalability and performance 

of the FDTD. In many problems of High-performance computing that need large memory 

capacity, the evident solution is the division of the problem in small parts, in order to solve 

it in a fragmentary way. In other words: store the entire data in the CPU and systematically 

transfer part of these data to the GPU.  

 
Fig.20. Yee sub-grid after n time steps of simulations. For each time steps propagation a      

line of outdated data arises from the board of the division. 
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Specifically to FDTD, store all Yee grids in the CPU memory to transfer part of that to 

GPU to calculate the cell updates, then the simulation could occur in steps and the 

memory amount of the simulation could exceed the GPU capacity (but not the CPU 

capacity).The challenges they had overcome: 

• High latency of data transfer from CPU to GPU: Minimize the memory transfer rate 

between CPU and GPU; 

• Dependence of adjacent cells to calculate the propagation of the Yee grid: The 

calculation of the electric and magnetic fields in a cell of the Yee grid on time step t 

depends on the values of the adjacent cells on time step t-1. Thus, when a Yee 

sub-grid is propagated, it is necessary to seek the updated values of the cells in the 

border of the division. If these values are not available, the correct calculation in the 

border of the division is compromised, an error that could be propagated in a way that, 

for each time step, a line of outdated data arises from the board of the division. Below 

figure shows this kind of error, in which after an isolated propagation of one Yee 

sub-grid for each time steps, a line of outdated data arises from the board of the 

division. 

Together, the high data transfer latency and the dependence of adjacent cells to 

calculate the propagation of the Yee grid is a challenge to apply the FDTD on a GPU in a 

fragmented. They proposed a model of Yee grid division with areas of redundancy, 

creating overlapping sub-grids that allow the propagation of the Yee sub-grids for multiple 

time steps without compromising the integrity of the simulations. After the Yee division, 

each sub-grid is increased by a redundancy area of n lines of width. Thus, after its n time 

steps propagation, the area of outdated values correspond to the redundancy area that is 

discarded without compromising the integrity of the simulation. In according of the 

proposed solution, the FDTD propagation is made through the following steps: 

  His work can avoid communication cost between CPU and GPU and can overcome the 

memory limitation of GPU. Yet, as he mentioned, his method has to initialize a bigger 

sub-grid which cause more communication and computation. We call his method as 

temporal blocking method and the more communication and computation is called as 

redundancy problem. It is important to solve the redundancy problem to improve the 

performance. 
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3.3   Other related works 

3.3.1 Efficiently use the shared memory of GPU 
Anthony Nguyen [11] proposed and implement a 3.5D blocking scheme for stencil 

kernels by performing a 2D spatial and 1D temporal blocking to convert bandwidth bound 

kernels into compute bound kernels. The resultant stencil computation scales well with 

increasing core counts and is also able to exploit data-level parallelism using SIMD 

operations. Additionally, he provides a framework that determines the various blocking 

parameters – given the byte/op of the kernel, peak bytes/op of the architecture and the 

on-chip caches available to hold the blocked data. As a result, the performance of 7-point 

stencil is comparable or better than the fastest reported in the literature for GPUs. With the 

future architectural trend of increasing compute to bandwidth ratio, his blocking scheme 

would become even more important for stencil based kernels. 

He presented a novel 3.5D blocking algorithm that performs a 2D spatial blocking and 

an additional temporal blocking of the input grid into on-chip memory. His method which is 

called 3.5D spatial blocking blocks in two dimensions and streams through the third 

dimension.  Thereby it increases the blocking size and resulting in better utilization of the 

on-chip memory. The temporal blocking performs multiple time steps of SC, re-using the 

data blocked into shared memory and registersfiles for GPUs. This reduces the effective 

bandwidth requirement and allows for full utilization of the available compute resources. 

The resultant algorithm is amenable to both thread-level and data-level parallelism, and 

scales near-linearly with SIMD width and multiple cores. He applies this 3.5D blocking 

algorithm to two specific examples. He gives the example is a 7-point stencil for 3D grids. 

The performance of previously optimized implementations of 7-point stencil is bandwidth 

bound on state-of-the-art CPUs and GPUs. He made the following contributions: 

• It presents the most efficient blocking mechanism that reduces memory bandwidth 

usage and reduces overhead due to blocking. His stencil computation (SC) 

implementation is no longer memory bandwidth bound even for very large grids. 

• By making SC compute bound, his implementation effectively utilizes the available 

thread- and data level parallelism on modern processors. It scales near linearly with 

multiple cores and SIMD width on both CPUs and GPUs. 

• It presents a flexible load-balancing scheme that distributes the grid elements equally 
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amongst the available threads, all of which perform the same amount of external 

memory read/write and stencil computations. 

• On NVIDIA GTX 285 GPU, his 7-point stencil for single precision inputs is 1.8X faster 

than previously reported numbers. His GPU implementation employs an efficient 

work distribution across thread warps, thereby reducing the overhead of 

parallelization. 

Although 2D spatial blocking ensures near-optimal usage of memory bandwidth, it still 

does not guarantee full utilization of the computational resources. Since the original 

application executes multiple time steps (usually hundreds to thousands), the only way to 

reduce bandwidth is to execute several time steps of the blocked data so that the 

intermediate data can reside in the cache, and then store the resultant output to the main 

memory. This proportionately reduces the amount of bandwidth.  

 

Fig.21. 3.5D spatial blocking 

Although temporal blocking has been used in the past [26], [27], he provides: (a) 

algorithm for combining temporal blocking with 2D spatial blocking to achieve the compute 

and bandwidth friendly 3.5D blocking, (b) thread-level and data level parallel algorithms to 

fully exploit the available compute resources. For temporal blocking, denote dimT as the 

number of time steps, it needs to block before writing the data to the external memory. To 

accommodate for dimT time steps, it extends the buffer to store the XY sub-planes for 

dimT time instances (starting from 0 to (dimT -1)). After the (dimT −1) time steps, the 

output for the next step is written out to the external memory. 
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3.3.2  Efficiently use the registersof GPU 
In Wai Teng Tang’s paper [28], he explores a different data access strategy to improve 

the performance of stencil kernels. In particular, he proposed a novel algorithm for 

computing stencil operations based on an in-plane method as opposed to the more 

commonly used forward-plane method. One of the main difficulties of stencil computations 

is the loading of boundary data elements known as the halo regions. With the appropriate 

tuning, his in-plane method is able to obtain optimal parameters on different GPU 

platforms, and is able to achieve better performance than prior methods.  

 

Fig.22. Forward and in-plane loading methods 

In the in-plane method that he proposed, the plane in which the interior elements are 

read is made to coincide with the plane containing the halos. This opens up a few 

possibilities in which the memory loading patterns can be varied. The main difference 

between the two methods is that the former fetches all neighbor values for calculating 

each output element, while his method performs incremental updates of the output 

element from partial reads of the neighbor data. With in-plane loading, the number of flops 

per stencil element is increased while the number of data references remains the same. 

Note that since the z values are also stored in registers as in the 2D blocking method, the 

bandwidth required by the in-plane method is similar to that of 2D blocking method. 
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3.3.3 Implementation on TSUBAME system 
In Takashi Shimokawabe and Takayuki Aoki’s paper [5], they describe their 

implementation of the phase field simulation. They describe a single-GPU implementation 

first and then their implementation strategies with multiple GPUs over the TSUBAME 2.0 

nodes including techniques to improve scalability. They describe their strategies of 

multi-GPU computation. Using multiple GPUs is necessary not only for higher 

performance, but for accommodating larger-size problems beyond the capacity of video 

memory on a single GPU (i.e., 3 GB on M2050 GPU).  

 

Fig.23. Scheme of the GPU-only method. 

They decompose the whole computational domain in both y- and z-directions (2D 

decomposition) and allocate each sub-domain to one GPU. We have chosen this method 

since 3D decomposition, which looks better to reduce communication amount, tends to 

degrade GPU performance due to complicated memory access patterns for data 

exchanges between GPU and CPU. Similar to conventional multi-CPU implementations 

with MPI, their multi-GPU implementation requires boundary data exchanges between 

sub-domains. Because a GPU cannot directly access to the global memory of other GPUs, 

host CPUs are used as bridges for data exchange. For inter-node cases, this data 

exchange is composed of the following three steps: (1) the data transfer from GPU to CPU 

using CUDA APIs such as cudaMemcpy, (2) the data exchange between nodes with MPI, 

and (3) the data transfer back from CPU to GPU with CUDA APIs. 
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Chapter 4. Optimization methods for stencil computation 

on single node 

4.1 Introduction 
  In this chapter, we first introduce existing optimization methods that can compute bigger 

domain by single GPU while maintaining high performance. Then, we will introduce our 

optimization methods. In single node case, we only use 1 GPU and only use 1D 

decomposition to simplify the implementation. We assume the points are saved in an 

order of X, Y, Z dimension. Double buffering is the method to save initial and result of 

domain. 2D spatial blocking is the method to implement the kernel on GPU side. We use 

double buffering method and 2D spatial blocking as default in 3D domain case. 

 

Fig.24. Set the number to each plane. 

We set the number to the planes to explain the optimization method as upper figure 

shows. Each plane has a unique number. As upper figure shows, in domain Dx×Dy×Dz, 

each plane is Dx×Dy×1. We use single node of TSUBAME2.0 and TSUBAME2.5 to 

evaluate the optimization methods. The difference between two systems is that the 

memory capacity of each GPU is increased from 3 GB to 6GB. The memory capacity of 

each GPU on TSUBAME2.0 is 3GB; the memory capacity of each GPU on TSUBAME2.5 

is 6GB. We assume the computation precision is floating. 
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Fig.25. Use single node of TSUBAME2.0 to evaluate the optimization methods 

 

Fig.26. Use single node of TSUBAME2.5 to evaluate the optimization methods 

4.2 Existing: Common way 
The common way to use single node to compute the domain of stencil computation is to 

initialize the domain on the CPU side. Then, it copies the whole domain to the GPU side.  

On the GPU side, it computes the domain for multiple times which is called time steps. 

By this way, it can utilize the throughput of GPU totally and the communication between 

CPU and GPU only occurs at first and last time step. It can efficiently reduce the cost of 
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the communication between CPU and GPU via PCI express. As it only computes the 

domain that is smaller than the memory capacity of GPU, it can only compute small 

domain as below figure shows. On the small domain area, it has high performance. If use 

double buffering method, domain size is limited by the formula: Dx×Dy×Dz×2 <= GPU 

memory capacity.  

 

Fig.27. Evaluation of common way on TSUBAME2.0 

As it uses double buffering method, the domain should smaller than 1/2 of GPU 

memory capacity. For Tesla M2050, Dx×Dy×Dz×2 <= 700×700×1400 in floating precision 

case. 

4.3 Existing: 1D-N method 
We implement the 1D-decomposition version of naive method [31] which is called as 

1D-N method. Different from the original naive method, it only separates the domain by 

one dimension. So, it is called as 1D-N. The whole domain is separated into sub-domains 

by 1D decomposition. In 3D domain case, it separates the whole domain by Z dimension. 

In 2D case, it can separate the domain by Y dimension. If there is no data dependence, it 

can compute multiple time steps on the GPU side. If there is data dependence like stencil 
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computation case, it can only compute 1 time step on GPU side. 

 
Fig.28. Copy initial to GPU side 

 

Fig.29. Compute 1 time step and copy the result back 

1D-N can only compute one time step. Then, it needs to copy the result back and copy 

the next sub-domain to the GPU side. So, to compute the domain for one time step, it has 

to copy each sub-domain to the GPU and copy the result back to the CPU at each time 

step. This frequent communication reduces the performance. As the computation of single 

time step is faster than the communication between CPU and GPU, the total time is 

occupied by the communication cost. After all of the sub-domains are computed, it can 

continue to compute the next time step. So, it causes frequent communication between 

CPU and GPU. The process of 1D-N is below: 



 

- 31 - 

 

 
Fig.30. Process of 1D-N method 

  As the figure shows, after it computes all sub-domains, it can continue to computes the 

next time step. We give the pseudo code of 7-point stencil as below: 

Allocate Grid on CPU to read initial of domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += 1)  

{ 

For (j = 0; j < NSD; j += 1) 

{ 

Copy sub-domain j with ghost boundary from CPU to Grid0; 

Compute1 time step and save result to Grid1; 

Copy result of sub-domain j from Grid1 to CPU; 

} 

}                                                                            
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TSI is the iteration times; NSD is the number of sub-domains. If use double buffering, 

Dx×Dy×(Dz/NSD+Cs)×2 <= GPU memory capacity. We evaluated 1D-N for 7 point stencil 

on single node of TSUBAME2.0. The domain is from 240×240×240 to 2160×2160×2160. 

For Tesla M2050, Dx×Dy×(Dz/NSD+2)×2 <= 700×700×1400 in floating computation case. 

 

Fig.31. Evaluation on TSUBAME2.0 

  As we can see in the upper figure, 1D-N can compute big domain. But, it has low 

performance because of the frequent communication between CPU and GPU. We should 

reduce the communication cost between CPU and GPU to improve the performance. 

4.4 Existing: 1D-T method 
  As we introduced, temporal blocking method [25], [26], [27], [28], [29], [30], [31] is an 

efficient way to avoid the communication between CPU and GPU. The main point of this 

method is to send more information that is needed to GPU. Then, it computes multiple 

time steps on the GPU side. In stencil case, it copies more boundary points. For example, 

as below figure shows, the domain is Dx×Dy×Dz. Each sub-domain is Dx×Dy×Dz/NSD. It 

first copy initial Dx×Dy×(Dz/NSD+Cs×TBT). Then it can compute TBT time steps and get 

the result of sub-domain Dx×Dy×Dz/NSD. By this way it can compute multiple time steps 
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on the GPU side. It sends sub-domain with more ghost boundaries as initial to GPU side. 

To compute more time steps on GPU side, it should copy more ghost boundaries. 

 

Fig.32. Copy bigger initial to GPU side 

 

Fig.33. 1D-T can compute multiple time steps on the GPU side. 

  Both of the ghost boundaries and the sub-domain consume space on the GPU side. 

More ghost boundaries mean more time steps can be computed on the GPU side. Yet, it 

decreases the size of sub-domain which makes it separate the whole domain into smaller 

sub-domains. The ghost boundaries are only needed to continue the computation of 

sub-domain. So we should balance the number of ghost boundaries and the size of 

sub-domain to get higher performance.  

For bigger domain, the size of each dimension is increased. So, it needs to separate the 

domain into more sub-domains to fit the GPU memory capacity. Ghost boundaries 

become bigger as the size of plane grows. So it can contain less ghost boundaries. The 

memory limitation remains the same. So, it needs to rebalance both sub-domain and the 

ghost boundaries. It has to separate the domain into smaller sub-domains and contain 
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less the ghost boundaries. The process of this method is below: 

 

Fig.34. 1D-T method 

  As the upper figure shows, it first needs to separate the domain into sub-domains. Then, 

it needs to copy each sub-domain with more ghost boundaries to GPU side. On the GPU 

side, it can compute multiple time steps. Then, it copies result back to the CPU side. It 

copies next sub-domain with more ghost boundaries to continue the computation. It needs 

to copy more ghost boundaries for each sub-domain. As the object is to compute the 

sub-domains, the ghost boundaries are only for the temporal blocking method. The 

redundant communication and computation of ghost boundaries degrade the performance. 

More ghost boundaries cause more redundant cost. For a bigger domain, there are more 

sub-domains and ghost boundaries which cause more redundant cost. So, it needs to 

consider the cost of communication and ghost boundaries. We give the redundant cost of 

3 time steps computation as below. 
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Fig.35. Redundant cost of 1D-T method 

We give the example of 7-point stencil as below: 

Allocate Grid on CPU to read initial of domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += TBT) { 

For (j = 0; j < NSD; j += 1){ 

Copy sub-domain j with more ghost boundaries from CPU to Grid0; 

  For(k = 0; k<TBT; k+=1){ 

Compute1 time step and save result to Grid1; 

Swap Grid0 and Grid1; 

    } 

Swap Grid0 and Grid1; 

Copy result of sub-domain j from Grid 1 to CPU; 

}}}                                                                            

 

Here TSI is the iteration times; NSD is number of sub-domains; TBT is temporal 

blocking times. If use double buffering, Dx×Dy×(Dz/NSD+Cs×TBT)×2 <= GPU memory 

capacity. We evaluated the 1D-T method for 7 point stencil on single node of 
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TSUBAME2.0. The domain is from 240×240×240 to 2160×2160×2160. 1D-T can compute 

bigger domain and has high performance. For Tesla M2050, Dx×Dy×(Dz/NSD+2×TBT) × 

2 <=700×700×140 in floating computation case. 

 

Fig.36. Evaluation on TSUBAME2.0 

4.5 Contribution: 1D-2T method 
In this section, we try to adopt the temporal blocking method for kernel [36] to improve 

the performance of the kernel on GPU side. The main idea of this method is to reduce the 

access time to the global memory of GPU device. We apply temporal blocking method for 

GPU kernel to improve the performance. It temporally saves the result into shared 

memory and reuses them to compute next time step.  

Now we need to determine the number of time steps that can be computed by each 

kernel. Considering limited capacity of the shared memory of GPU, we configured the 

number as two. The result of first time step will be temporally saved on the shared 

memory. By the result on the shared memory, it can compute the next time step. By 

efficiently reusing the space of shared memory, it can continue the computation to get the 

result of second time step. We allocate the space on the shared memory to contain three 

small XY-planes for 7-point stencil computation as below:  
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Fig.37. Allocate space to contain 3 small XY-planes. 

  The initial should be bigger than the final result area to continue the computation. 

 

Fig.38. Each block uses 3 bigger XY-planes to compute 1 time step to shared memory. 

 For example, to compute Dx×Dy×Sz domain in upper figure, we should copy initial Dx×

Dy×(Sz+Cs×2). Each block read small XY-planes (0,1,2) which size is (Bx+Cs×2)×(By+Cs

×2) as initial. Then, it can compute the plane 1 of time first time step which size is (Bx+Cs)

×(By+Cs) .  

 

Fig.39. Continue to compute small XY-planes to shared memory 
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Fig.40. When the number of smaller XY-planes is 3, it can compute the second time step 

 

Fig.41. Compute the second time step by using data on the shared memory. 

As the memory capacity of shared memory is limited, it reuses the space of the shared 

memory as below: 

 

Fig.42. Reuse the space of the shared memory to continue the computation. 

If it uses temporal blocking method for kernel, it only improves the performance of 

kernel.  It computes 2 time steps by 1 kernel. If we use temporal blocking method for 

kernel to 1D-T, we call the method as 1D-2T. 
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As the capacity of shared memory is 32×32×3 currently. We can get the pseudo code of 

1D-2T method as below:  

Allocate Grid on CPU to read initial of domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += TBT)  

{ 

For (j = 0; j < NSD; j += 1) 

{ 

Copy sub-domain j with more ghost boundaries from CPU to Grid0; 

  For(k = 0; k<TBT; k+=2){ 

Compute 2 time steps by one kernel and save result to Grid1; 

Swap Grid0 and Grid1; 

    } 

Swap Grid0 and Grid1; 
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Copy result of sub-domain j from Grid 1 to CPU; 

} 

}                                                                            

 

If use double buffering, Dx×Dy×(Dz/NSD+Cs×TBT) ×2 <= GPU memory capacity.  

We evaluated the 1D-2T method for 7 point stencil on single node of TSUBAME2.0. The 

domain is from 240×240×240 to 2160×2160×2160. 1D-2T can compute bigger domain 

and it achieves 1.16 times higher performance than 1D-T. For Tesla M2050, Dx×Dy× 

(Dz/NSD+2×TBT)×2 <=700×700×140 in floating computation case.  

 

Fig.43. Evaluation on TSUBAME2.0 

4.6 Contribution: 1D-TBM method 

4.6.1 Buffer copy method 
Temporal blocking method can reduce the communication times to reduce the 

communication cost. But as we explained, there is redundancy cost because of the more 

ghost boundaries. The redundancy cost is to compute multiple time steps on the GPU 

side. The more ghost boundaries cause more redundant cost. As the more ghost 
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boundaries are essential to reduce the communication cost, we should focus on how to 

solve the redundancy problem. We found that there are overlapped part between ghost 

boundaries and sub-domains. It computes same part multiple times on the device memory. 

So, we think about how to reduce this redundant cost by saving and reusing the 

overlapped part. 

The overlapped part is copied and computed twice. So, we consider if there is a way to 

reuse them to avoid the overlapped work. As the overlapped part has been computed 

when computing current sub-domain, we consider containing some result on the GPU 

side. When computing next sub-domain that has the overlapped part, it can reuse saved 

result to avoid overlapped work. Still, we need to find the least XY-planes that need to 

save and reuse. As the reused part is stored on the GPU side, it also needs to allocate 

space for the reused part. Those reused part compete space with sub-domain and ghost 

boundaries which may degrade the performance of temporal blocking. So, we need to 

balance the space for reused part, sub-domain and the ghost boundaries.  

We first consider how to save and reuse those overlapped part to solve redundancy 

problem. The 7-point stencil computation consumes 2 XY-planes at each time steps, so 

we try to reuse 2 XY-planes and supply them to next sub-domain. We explain this step by 

step. When we compute current sub-domain, at time step 0, we save two XY-planes to the 

buffer on GPU along the border line as the below figure shows. When computing the next 

time step, we also save two XY-planes along the border line. This phase will continue until 

the last time step. So, it first allocates a buffer for those XY-planes on the GPU side as 

below: 

 

Fig.44. It first allocates a buffer on the GPU side 
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Fig.45. It saves XY-planes (2, 3) to the buffer at time step 0. 

 

Fig.46. Then, it computes time step 1. 

 

Fig.47. It also saves XY-planes (1, 2) to the buffer on GPU. 
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Fig.48. Then, it computes time step 2.  

 

Fig.49. It copies the result back to CPU side. 

When computing the next sub-domain, at time step 0, we copy sub-domain1 from CPU 

to GPU as below figure shows. Then we read two XY-planes from the buffer on the GPU. 

We compute time step 0 with the sub-domain and the two XY-planes from buffer. So, we 

get the result of time step 0. Then we also read two XY-planes of time step 1 from buffer. 

With those XY-planes, it can continue to compute time step 1. We continue this kind of 

method until last time step. 
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Fig.50. It copies the initial XY-planes (4,5,6,7) of next sub-domain 

 

Fig.51. It reads XY-planes(2,3) from buffer 

 

Fig.52. It computes time step 1. 
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Fig.53. It reads XY-planes (1, 2) of time step 1 from buffer. 

 

Fig.54. It computes time step2 

 

Fig.55. It copies the result back to CPU side. 
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As it reads two XY-planes along the border line and the stencil computation consumes 

two XY-planes, it can continue the computation till to get the final result. The next figure 

gives the difference of computation and communication between temporal blocking 

method and our method. We call this method as buffer-copy method [36], [37]. Note that 

this buffer-copy method does not degrade computation accuracy, since it stores some 

result of current and reuse them to solve redundant problem. It can work out the correct 

result, while it resolves redundancy problem. Therefore, our method can be adopted by 

other stencil forms. The space for the buffer should big enough to contain the reused 

XY-planes. The buffer can be reused by next sub-domain. When computing next 

sub-domain, it first reads two XY-planes from the buffer. After reading 2 XY-planes for 

current sub-domain, the space for those two XY-planes can be reused for next 

sub-domain. So it can reuse the buffer for each sub-domain. By this way, it can use less 

space to perform the buffer-copy method. We call the 1D-T with buffer-copy method as 

1D-TB method. 

 

Fig.56. The communication and computation cost of 1D-T on example sub-domain. 

 

Fig.57. The communication and computation cost of 1D-TB on example sub-domain. 

As upper figure shows, the computation and communication cost of 1D-TB is less than 

1D-T. The additional cost is to save two XY-planes to the GPU and read two XY-planes 
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from the buffer. Compare with the communication between CPU and GPU, the cost of 

access to GPU memory is lower. So by this way, it can efficiently solve the redundancy 

problem. For the first sub-domain, as there is no former sub-domain, it no needs to read 

from the buffer. But it needs to save two XY-planes to the buffer for next sub-domain. For 

the last sub-domain, as there is no next sub-domain, it no needs to save two XY-planes to 

the buffer. But it still needs to read two XY-planes from the buffer. The middle 

sub-domains need to read two XY-planes from the buffer and save two XY-planes to the 

buffer at each time step. Then we can give the process as below: it first separates the 

whole domain into sub-domains. Then, it only copies sub-domain from GPU to CPU. In 

this phase, it can decrease the communication cost. Then, it reads two XY-planes from 

the buffer. After it computes 1 time step, it also saves two XY-planes to the buffer. It only 

accesses to the device memory of GPU and the computation of current time step does not 

affect the data on the buffer. So it ensures the correctness of the result.  

For different kinds of stencil forms, we can save and read related number of XY-planes. 

For example, 13-point stencil depends on 4 points at each dimension on 3D domain. In 

13-point stencil case, it consumes 4 XY-planes at each time step. To continue the 

computation, it needs to reads 4 XY-planes from the buffer. Also, it needs to save 4 

XY-planes to the buffer for next sub-domain. So the number of XY-planes that need to be 

buffered is decided by the stencil form. Although it needs to access those XY-planes at 

every time step, compared with the redundant communication of first time step and the 

redundant computation at every time step, the cost of reading those XY-planes are lower. 

This is the whole process of the buffer-copy method. With the buffer-copy method, the 

temporal blocking method can efficiently reduce the communication and computation 

cost. 

4.6.2 Memory-saving method 
Double buffering is a common way to perform the stencil computation on the GPU. One 

grid is assigned to read and the other one is assigned to save. When save to or read from 

the grid, each point is to save to the same position during the whole iteration. So each 

XY-plane is to save to the same space of the grid during the whole iteration. As 1D-TB 

method only computes un-overlapped parts, there is blank on the grid after each time step. 

Those blanks cannot be reused during the computation of current sub-domain. To save 
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those spaces, we propose memory-saving method [37]. At each time step, it shifts the 

planes to fill blank as below: 

 

Fig.58. The computation of first time step. 

 

Fig.59. It shifts the result to fill the blank after the computation of each time step. 

 

Fig.60. Then, it continues the computation of next time step. 



 

- 49 - 

 

 

Fig.61. It also shifts the result till final time step. 

 

Fig.62. It can save (Cs×TBT-Cs) × Dx × Dy space than 1D-T 

We call this method as memory-saving method [37]. Compared with the buffer-copy 

method, the memory-saving method can save space while get same effect. Saving space 

is important because we can use saved space to contain more ghost boundaries. The 

saved space can also be used to contain bigger sub-domain. Both of them can improve 

the performance. Bigger sub-domain means that it needs fewer phases to compute the 

whole domain.  

Although the cost of buffer-copy method is less than the communication cost between 

CPU and GPU, it also needs to consider reducing the cost of buffer-copy. We call 1D-TB 

method with memory-saving method as 1D-TBM method. So, the whole process of 

1D-TBM is below: 



 

- 50 - 

 

 

Fig.63. The process of 1D-TBM method 

   As upper figure shows, it separates the domain into sub-domains. Then it copies 

sub-domain from CPU to GPU. Then it uses the temporal blocking with buffer-copy and 

memory-saving method. The difference between with or without memory-saving method 

is that it shift the XY-planes to fill the blank when saving the result to the global memory.  

The buffer-copy method cost less communication and computation. Furthermore, by the 

memory-saving method, it consumes less space to perform the buffer-copy method. By 

the temporal blocking method, it can reduce the communication times to reduce the 

communication cost. So we can give the pseudo code of 1D-TBM method as below: 
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Allocate Grid on CPU to read initial of domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Allocate Buffer on GPU; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += TBT)  

{ 

For (j = 0; j < NSD; j += 1) 

{ 

Copy sub-domain j from CPU to Grid0; 

      For(k = 0; k<TBT; k+=1) 

{ 

          Read Cs XY-planes from Buffer; 

Compute1 time step; 

Save result to the shifted position on Grid1; 

Save Cs XY-planes to Buffer; 

Swap Grid0 and Grid1; 

        } 

Swap Grid0 and Grid1; 

Copy result of sub-domain j from Grid1 to CPU; 

} 

}                                                                         

 

4.7 Contribution: 1D-2TBM method 
By applying the buffer-copy and memory-saving method to 1D-2T, we can get 

1D-2TBM method. As it computes 2 time steps, it needs to read Cs×2 XY-planes from the 

buffer of GPU. Also it needs to save Cs×2 XY-planes to the buffer of GPU. It reduces the 

loop time by 2. So the total time step of iteration should be divided by 2. Also the position 

that needs to be shift is Cs×2 planes. The program model of 1D-2TBM is below: 
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Fig.64. The process of 1D-2TBM method 

We can get the pseudo code of 1D-2TBM method as below:  

Allocate Grid on CPU to read initial of domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Allocate Buffer on GPU; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += TBT)  

{ 

For (j = 0; j < NSD; j += 1) 
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{ 

Copy sub-domain j from CPU to Grid0; 

      For(k = 0; k<TBT; k+=2) 

{ 

          Read Cs×2 XY-planes from Buffer; 

Compute 2 time step by one kernel; 

Save result to shifted position on Grid1; 

Save Cs×2 XY-planes to Buffer; 

Swap Grid0 and Grid1; 

        } 

Swap Grid0 and Grid1; 

Copy result from Grid1 to CPU; 

}}                                                                             

 

We evaluated the 1D-P-2TBM method for 7 point stencil on single node of 

TSUBAME2.0. The domain is from 240×240× 240 to 2160×2160× 2160. 1D-P-2TBM can 

compute bigger domain and has higher performance. It has 1.44 times better performance 

than 1D-2T. 

 

Fig.65. Evaluation on TSUBAME2.0 
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4.8 Contribution: 1D-P-2TBM method 
As the domain grows, the sub-domain and buffer for buffer-copy method grows. As the 

GPU memory is limited, it contains smaller sub-domain or fewer XY-planes to reuse. 

Smaller sub-domain means more phases to compute and fewer XY-planes on buffer 

means fewer time steps that can be computed locally on GPU. Both of them degrade the 

performance. We parallel the communication with the computation to solve this problem.  

The communication is paralleled during the computation. The computation uses two 

grids to execute. So, it should use other space to perform the communication. As it should 

send initial to the GPU and copy result from the GPU, the additional space is to send and 

receive those data. So, two buffers on the GPU are to perform the communication. We call 

those buffers as Buffer0 and Buffer1. The first buffer is to receive the initial from the CPU. 

The second buffer is to send the result to CPU. So by those two buffers, we can perform 

communication during the computation as they are independent. 

 

Fig.66. Parallel the communication with computation by additional buffers 

We call this new method as 1D-P-TBM. 1D-TBM method needs two grids to perform 

double buffering. So the size of the space for initial, result and computation are same. As 

the below figure shows, it also separates the domain into sub-domains. Then, it copies 

sub-domain from CPU to GPU. Then, it can also use the temporal blocking with 

buffer-copy and memory-saving method.  
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Fig.67. The process of 1D-P-2TBM 

As there are two additional buffers to receive the initial and send the result, the 

communication can be paralleled with the computation. The current computation can be 

started only if there is the initial of current computation. The result is obtained after the 

computation of final time step. So sending the initial and result of current computation 

cannot be paralleled with the current computation. After the end of current computation, 

there comes the computation of next sub-domain. So, the initial for next sub-domain is 

required. So, we consider sending the initial for next sub-domain during the computation 

of current sub-domain. Also, the result of former sub-domain is prepared during the 

computation of current sub-domain. So, we consider sending the result of former 

sub-domain during the computation of current sub-domain. By adopting the temporal 

blocking method to the kernel, we can get 1D-2TBM method [37]. As it computes 2 time 

steps, it needs to read Cs×2 XY-planes from the buffer of GPU. Also it needs to save 
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Cs×2 XY-planes to the buffer of GPU. It reduces the loop time by 2. So the total time step 

of iteration should be divided by 2. Also the position that needs to be shift is Cs×2 

XY-planes. We can get the pseudo code of 1D-P-2TBM method as below:  

Allocate Grid on CPU to read initial of domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Allocate Buffer on GPU; 

Allocate Buffer0 and Buffer1 on GPU; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += TBT) { 

For (j = 0; j < NSD; j += 1){ 

Read initial from Buffer0; 

Parallel Do { 

Send next initial from CPU to Buffer0; 

Send former result from Buffer1 to CPU; 

          For(k = 0; k<TBT; k+=2) 

{ 

              Read Cs×2 XY-planes from Buffer; 

Compute 2 time step by one kernel; 

Save result to shifted position on Grid1; 

Save Cs×2 XY-planes to Buffer; 

Swap Grid0 and Grid1; 

            } 

        } 

Swap Grid0 and Grid1; 

Save result to Buffer1; 

} 

} 

We evaluated the 1D-P-2TBM method for 7 point stencil on single node of 

TSUBAME2.0. The domain is from 240×240× 240 to 2160×2160× 2160. 1D-P-2TBM can 

compute bigger domain and has higher performance. 1D-P-2TBM has 1.35 times better 

performance than 1D-2TBM. 
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Fig.68. Evaluation on TSUBAME2.0 

4.9 Reevaluation on TSUBAME2.5 

 

Fig.69. Reevaluation on TSUBAME2.5             
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We evaluated the 1D-P-2TBM method for 7 point stencil on single node of 

TSUBAME2.5. The domain is from 240×240× 240 to 2160×2160× 2160. 1D-P-2TBM can 

compute bigger domain and has higher performance. 1D-P-2TBM is 2.26 times higher 

than 1D-T on TSUBAME2.0. 1D-P-2TBM is 1.94 times higher than 1D-T on TSUBAME2.5  

  The domain that common way can compute is 700×700×700 on TSUBAME2.0. The 

domain that common way can compute is 900×900×900 on TSUBAME2.5. The domain 

size that can be computed by common way is increased. But, it still cannot compute 

bigger domain as below figure shows. 

We evaluated the 1D-P-2TBM method for 19 point stencil on single node of 

TSUBAME2.5. The domain is from 240×240× 240 to 2160×2160× 2160. 1D-P-2TBM can 

compute bigger domain and has higher performance. 1D-P-2TBM is 1.78 times higher 

than 1D-T on TSUBAME2.5  

 

Fig.70. Reevaluation on TSUBAME2.5        

Here we want to give how to decide the parameters for 1D-P-2TBM, Dx is size of X 

dimension, Dy is the size of Y dimension, Dz is the size of Z dimension, and our objective 

is to get max TBT.  Here, NSD is the number of sub-domain; TBT is the temporal 
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blocking times. GPU memory is shared by 2 grids    (sub-domain), 2 buffers 

(communication), 1 buffer   (buffer-copy) . So we can get the formula as below: 

Dx×Dy×(Dz/NSD+Cs×2)×4+Dx×Dy×TBT×Cs ≤ GPU memory capacity           (1) 

TBT < Dz / NSD, get maxt TBT                                               (2) 

       

Fig.71. Parameters on TSUBAME2.0                              

As using 1D temporal blocking method causes lower performance in bigger domain 
area, we think 3D temporal blocking method can maintain high performance since the 
sub-domain size is the same.  

4.10 Existing: compiler loop unrolling 
Software pipelining is a type of out-of-order execution technique which is a loop 

optimization technique to make statements within iteration independent of each other. The 
goal is to remove dependencies so that seemingly sequential instructions may be 
executed in parallel.  Software pipelining is often used in combination with loop unrolling. 
Here we give the technique of loop unrolling by CUDA compiler which symbol is #pragma 
unroll. By default, the compiler unrolls small loops with a known trip count. The #pragma 
unroll directive however can be used to control unrolling of any given loop. It must be 
placed immediately before the loop and only applies to that loop. It is optionally followed 
by a number that specifies how many times the loop must be unrolled. For example, in this 
code sample:  

#pragma unroll 4  

for (int i = 0; i < n; ++i)  

The loop will be unrolled 4 times. The compiler will also insert code to ensure 
correctness (in the example above, to ensure that there will only be n iterations if n is less 
than 4, for example). It is up to the programmer to make sure that the specified unroll 

http://en.wikipedia.org/wiki/Out-of-order_execution�
http://en.wikipedia.org/wiki/Loop_unrolling�
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number gives the best performance. #pragma unroll 1 will prevent the compiler from ever 
unrolling a loop. If no number is specified after #pragma unroll, the loop is completely 
unrolled if its trip count is constant, otherwise it is not unrolled at all.  

We evaluate the unrolling (use #pragma unroll) by the CUDA compiler on different 

GPUs. The first GPU type is Kepler K20C on raccoon cluster of Tokyo Institute of 

Technology. The second GPU type is Kepler K20X on TSUBAME2.5.  Here we give the 

architecture of the two GPUs. 

 K20C K20X 

CUDA version 5.5 5.0 

Peak single precision floating point performance 3.52 TFlops 3.95 TFlops 

Shader processing units 2496 2688 

Memory size 5GB 6GB 

Bandwidth max 208 GB/s 250GB/s 

L1 cache + shared 64KB/32 cores 64KB/32 cores 

L2 cache 1310KB 1536KB 

4.10.1 Evaluation: different stencil forms 
We first evaluate the compiler loop unrolling on K20X GPU. We select 7 point stencil 

and 19 point stencil on domain 640×640×640 of 1D-TBM. NSD equals to 2. Temporal 

blocking times equal to 300. The threads in each block are (128, 8). Unrolling number 0 

means it does not use the unrolling. 

 

Fig.72. Performance of 7 point and 19 point stencil 
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In 7 point stencil case, we found that the performance falls as it increases unrolling 

number. In 19 point stencil case, we found that the performance degrades less than 7 

point case.  

4.10.2 Evaluation: different GPUs 
We evaluate the compiler loop unrolling on K20C. We select 7 point stencil and 19 

point stencil on domain 640×640×640 of 1D-TBM. NSD equals to 2. Temporal blocking 

times equal to 300. The threads in each block are (128, 8). Unrolling number 0 means it 

does not use the unrolling. 

 

In 7 point stencil case, we found that the performance also falls as it increases unrolling 

number. In 19 point stencil case, we found that the performance is improved a little.  

4.10.3 Evaluation: different parameters for threads in each block 
We evaluate the compiler loop unrolling on K20X. We select 7 point stencil on domain 

768×768×768 of 1D-TBM. NSD equals to 2. Temporal blocking times equal to 240. Loop 

unrolling number is 0, 2 and 4. We set threads in each block are (256, 4), (128, 8), (64, 16), 

(32, 32) for spatial blocking method that computes kernel. As we can see in the below 

figure, we change the parameters of threads in each block. It shows that it cannot improve 

the performance by compiler loop unrolling in 7 point stencil case when it changes the 

parameters of threads in each block. 
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Fig.73. Change the parameters of threads in each block. 

4.10.4 Evaluation: different domains 
We evaluate the compiler loop unrolling by the compiler on K20X. We select 7 point 

stencil of 1D-TBM. Loop unrolling number is 0, 2 and 4. The domain is from 256×256×256 

to 2176×2176×2176. As we can see in the below figure, the unroll 0 is better than the 

others in 7 point stencil case.  

 

Fig.74. Loop unrolling on different domains. 
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4.10.5 Evaluation: cache hit rate 
In this section, we use the NVIDIA visual profiler to analyze the loop unrolling by 

compiler. The NVIDIA visual profiler is a cross-platform performance profiling tool that 
delivers developers vital feedback for optimizing CUDA C/C++ applications. First 
introduced in 2008, Visual Profiler supports all 350 million+ CUDA capable NVIDIA GPUs 
shipped since 2006 on Linux, Mac OS X, and Windows. The NVIDIA Visual Profiler is 
available as part of the CUDA Toolkit. 

  

Fig.75. NVIDIA visual profiler 

We evaluate the cache hit rate, DRAM reading and writing throughput (reading and 
writing the device memory by the kernel) to analyze the unrolling methods. We select the 
time step as 10, 20, 50 and 100 and get the average values. We evaluate the unrolling by 
compiler for kernel of 1D-TBM. We evaluate the 7 point and 19 point stencil on K20X GPU 
of TSUBAME2.5. The domain size is 640×640×640. The number of sub-domains is 2. 

7 point stencil Cache hit rate Reading[GB/s] Writing[GB/s] Registers 

Unrolling  
1D-TBM by  
compiler 

Unroll 1  80.3% 82.33  49.35  16 

Unroll 2  83% 61.9   46.1 24 

Unroll 4 84.3% 58.4 43.92 32 

 

19 point stencil Cache hit rate Reading[GB/s] Writing[GB/s] Registers 

Unrolling  
1D-TBM by  
compiler 

Unroll 1  94.1% 24.76 17.29 21 

Unroll 2  94.2% 23.66 17.26 29 

Unroll 4 94.3% 23.25 17.23 36 

As we can see in the up table, the hit rate grows as the unroll number grows. But, it 

needs to allocate more registers to execute each thread. So, it affects the number of 

https://developer.nvidia.com/cuda-downloads�
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threads that can be executed concurrently which cause the DRAM reading and writing 

throughput falls. As the hit rate 19 point is high, it affects less than 7 point stencil. So, we 

need to consider manual unrolling method to improve the performance. 

4.11 Contribution: manual loop unrolling, 1D-TBMR, 

1D-P-TBMR 

By using shared memory to compute 2 time steps in 1 kernel, it can improve the 
performance of kernel. But, it should mange the data on the shared memory which may 
cause difficulty of programming. As the upper evaluation shows, the performance cannot 
be improved obviously by the compiler loop unrolling. So, to easier programming while 
improving the performance of kernel, we try to use the manual loop unrolling method that 
uses registers to improve the performance of kernel as the related works has introduced. 

4.11.1 Manual loop unrolling: use the registers to improve kernel 
Here we give the manual unrolling technique. When we use the 2D spatial blocking 

method at the kernel on the GPU, The data should be prepared to compute each point on 

the thread. When we compute upper point, it also needs to prepare some overlapped data. 

So, there are overlapped reading between 2 points. 

 

Fig.76. Overlapped reading between two points 

To reduce the overlapped reading, it save some of them on the registers, and reuse 

them when computing upper point.  
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Fig.77. Read the nearby points for point 4 on the register. 

 

Fig.78. Save some part of initial of point 4 on registers. 

 

Fig.79. Reuse the saved part on registers for point 5. 

Here we give the example code for using registers 
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__global__  void  kernel(grid0, grid1,…)  

{  

int jx = blockDim.x * blockIdx.x + threadIdx.x;  

int jy = blockDim.y * blockIdx.y + threadIdx.y;  

for(jz = zstart;jz < zend; jz++)  

    {  

        ji = Dx*Dy*jz + Dx*jy + jx;  

        je = ji+1; jw = ji-1;  jn = ji+Dx; js =ji-Dx;  

        tempt     = grid0[ji];  

        grid1[ji]   = tempo + cc*tempc + ct*tempt + cb*tempb;  

        tempb    = tempc;  

        tempc    = tempt;  

        tempo    = ce*grid0[je] + cw*grid0[jw]  

                 + cn*grid0[jn] + cs*grid0[js];  

    }  

} 

As we can see in the up table, it reads 5 points instead of 7 points from the device 

memory. Also, it completes the computation by reading the data from register. It only 

needs to allocate 4 more points on the registers to unroll 2 loops. It also reduces the 

overlapped reading which is different from simple unrolling by compiler. By using registers 

instead of using shared memory to improve the performance of kernel, we can get 

1D-TBMR (instead of 1D-2TBM), 1D-P-TBMR (instead of 1D-P-2TBM). The pseudo code 

is in Appendix A.1 and A.2. 

4.11.2 Evaluation: 1D-P-TBMR vs other methods 
We evaluated the optimization methods for 7 point and 19 point stencil on single node 

of TSUBAME2.5. The domain is from 240×240×240 to 2160×2160×2160 of floating 

computation. As we can see in the below figure, 1D-P-TBMR method gets 2.63 times 

higher performance than 1D-T method in 7 point stencil case. 1D-P-TBMR method gets 

2.98 times higher performance than 1D-T method in 19 point stencil case. It shows that 

manual unrolling can efficiently improve the performance of kernel than the unrolling by 

compiler. 
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Fig.80. 7 point stencil, 1D-P-TBMR vs others 

 

Fig.81. 19 point stencil, 1D-P-TBMR vs others 
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When we use the manual unrolling method, it can unroll the loop and read less data 

from the device memory. As it reads some data from registers to complete the 

computation, it can benefit writing the result to device memory. By those two reasons, it 

can improve the performance of kernel. 

4.12 Discussion 

4.13.1. Performance model 
In this section, we first discuss the performance model of 1D-T and 1D-TBM.  

We build the model of 1D-T as below: 

TTBT = TC2G(domain)+TC2G(ghost boundaries)+TG2C(domain) 

       + Tcomputation (domain)+Tcomputation(ghost boundaries) 

To get high performance, it should minimize TTBT×Iteration / TBT 

We build the model of 1D-TBM as below: 

TTBT = TC2G (domain)+TG2C (domain)+Tcomputation (domain)  

To get high performance, it should minimize TTBT×Iteration / TBT.  

We evaluate the actual time on the single node of TSUBAME2.5 to compare with the 

model. The domain is 640×640×640; the number of sub-domains is 2. 

 

Fig.82. The model and actual of T_iteration/TBT on single node of TSUBAME2.5       

As we can see in the upper figure, the models are similar to the actual evaluations 

which can be used to decide the parameters. 
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4.13.2. Other stencil forms 
Then, we discuss about how to apply optimization methods to other stencil forms. As 

below figure shows, we define the area of computing 1 point is Px×Py×Pz. The nearby 

points are all included in this Px×Py×Pz area. For example, the area of computing one 

point in 7 point stencil case is 3×3×3. 

 

Fig.83. The area of computing 1 point.       

So, we can get Cs = Pz – 1, space for 1D-P-2TBM:  

Dx×Dy×(Dz/NSD+Cs×2)×4+Dx×Dy×TBT×Cs ≤GPU memory capacity    (1) 

TBT< min{Dz/NSD, Communication(1)/computation(1)/Ratio}            (2) 

Get max TBT, Ratio = (0,1)                                                                                             

If the TBT is big enough, it cannot reduce the communication significantly. So, we set  

TBT< min {Dz/NSD, Communication(1)/computation(1)/Ratio}.  For example, Ratio can 

be the value from 0 to 1 which means it is to reduce the communication cost enough. Our 

objective is to get max TBT until min{Dz/NSD, Communication(1)/computation(1)/Ratio}. 

4.13.3.  Other domains: 2D domain 
The second discussion is to apply optimization methods to computation on other 

dimension. As below figure shows, we define the area of computing 1 point is Px×Py in 2D 

dimension case. The nearby points are all included in this Px×Py area. 

 

Fig.84. The optimization methods for 2D dimension case.       
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So we can get Cs = Py - 1 , data reuse Dx×Cs, space for 1D-P-2TBM:  

Dx×(Dy/NSD+Cs×2)×4+Dx×TBT×Cs ≤GPU memory capacity          (1) 

TBT< min{Dy/NSD, Communication(1)/computation(1)/ Ratio}          (2) 

Get max TBT, Ratio = (0,1)                  

4.13.4. Multi-D temporal blocking: 2D temporal blocking    
The third discussion is to apply multi-dimension temporal blocking method. As the 

below figure shows, we give the example for 2D temporal blocking method for 2D domain. 

It separates the domain into sub-domains by 2D decomposition. Then, when it goes from 

left sub-domain to right sub-domain, it reuses some data by the buffer on the GPU as the 

upper figure shows. Also, when it goes from bottom sub-domain to upper sub-domain, it 

also reuses some data by the buffer on the GPU. So, it can apply 2D temporal blocking 

method to 2D domain.  

  When it copies sub-domain to the GPU side, it should rearrange the data to continuous 

space. Also, when it reuses the data by the buffer, it should manage the data form. Both of 

them increase the difficulty of implementation.      

                                                              

Fig.85. 2D temporal blocking method for 2D domain.    

4.13.5. Limitation of multi-D temporal blocking 
Here we discuss 2D temporal blocking method for 2D domain. 
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Fig.86. The limitation of 2D temporal blocking method for 2D domain.   

The domain is separated into sub-domains by the 2D decomposition method. Then, it 

uses 2D temporal blocking method between sub-domains. Between the sequential 

sub-domains, it can use TBM method (temporal blocking+buffer-copy+memory-saving) to 

reduce the redundant cost. But, between the sub-domains that are not computed 

sequentially, it cannot reduce the redundant cost since it does not save overlapped part 

between those sub-domains as the upper figure shows. So, we can build performance 

model for 2D-T and 2D-TBM as below: 

The model of 2D-T: 

TTBT = TC2G(domain)+TC2G(ghost boundaries)+TG2C(domain) 

          + Tcomputation (domain)+Tcomputation(ghost boundaries) 

The model of 2D-TBM as below: 

TTBT = TC2G(domain)+TC2G(ghost boundaries/2)+TG2C(domain) 

          + Tcomputation (domain)+Tcomputation(ghost boundaries/2) 

To get high performance, it should minimize TTBT×Iteration / TBT. 2D-T cannot reduce 

the redundant cost between any sub-domains. 2D-TBM can reduce the redundant cost 

between 2 sequential sub-domains. So, it can reduce 1/2 of the redundant cost. Below 

shows the estimated time on TSUBAME2.5 by those models. As the below figure shows, 

2D-TBM can reduce more redundancy cost than 2D-T method. 
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Fig.87. The estimated time of 2D-TBM, 2D-T, 1D-TBM, domain is 16384×16384. 

So, we can decide whether use 2D-TBM or 1D-TBM. In 1D-TBM case, the time is 

reduced as the temporal blocking times grow. In 2D-TBM case, the time rebounds as the 

temporal blocking times grow. So we can use the 2D-TBM instead of 1D-TBM only if 

Min_time(1D-TBM)/Min_time(2D-TBM)>Ratio, Ratio>1.0. NSDx  means the number of 

sub-domains in X dimension, NSDy  means the number of sub-domains in Y dimension,   

In 1D-TBM case, the max TBT for Min_time(1D-TBM) is decided by below formula.   

Dx×(Dy/NSD+Cs)×2+Dx×TBT×Cs≤GPU memory capacity                  (1) 

TBT<min{Dy/NSD,Communication(1)/computation(1)/Ratio0} ,Ratio0=(0,1)   (2) 

In 2D-TBM case, the max TBT for Min_time(2D-TBM) is decided by below formula.   

(Dx/NSDx+Cs)×(Dy/NSDy+Cs)×2+Max{Dx,Dy}×TBT×Cs≤GPU memory capacity         (1) 

TBT that get minimum TTBT×Iteration / TBT                                (2) 

 

The below figure is an example. The domain is 16384×16384. In small domain case, it 
is better to use 1D-TBM instead of 2D-TBM. 
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Fig.88. An example of small domain 

The below figure is an example. The domain is 491520×491520. In big domain case, it 
is better to use 2D-TBM instead of 1D-TBM. 

 

Fig.89. An example of big domain 
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4.13 Summary 
In this chapter, we proposed 1D-2T, 1D-TBM, 1D-2TBM, 1D-P-2TBM, 1D-TBMR, 

1D-P-TBMR methods. Those methods enable the computation on the domain while 

maintaining high performance on single node of TSUBAME system. 

The naive method can enable the computation on the domain that is bigger than the 

memory capacity of GPUs. But, it causes frequent communication between CPU and 

GPU. Temporal blocking method can reduce the communication cost between CPU and 

GPU. But, it causes redundant communication and computation cost more by the more 

ghost boundaries. We propose buffer-copy method which saves some result to the buffer 

on GPU and reuse the result to solve redundancy problem. We also propose buffer-copy 

method to save space. We use shared memory to improve the performance of kernel. We 

also evaluate the unrolling method by compiler and manual to improve the performance of 

kernels. We use NVIDIA visual profiler to analyze the unrolling methods. The result shows 

it is better to use manual unrolling to our optimization methods. Then we overlap the 

communication with computation to improve the performance of the optimization methods. 

By the combination of those methods, we can get different optimization methods which 

get higher performance than other optimization methods. 

In discussion part, we figure out performance model and optimization methods for other 

stencil forms and other dimensional domains. Those works can be used to decide 

parameters and optimization methods in other stencil or domain case. We published 2 

papers depend on our new optimization methods.  

[36] 金 光浩，遠藤 敏夫，松岡 聡． GPU メモリ容量を超える問題規模に対応する高性 

能ステンシル計算法 ． ハイパフォーマンスコンピューティングとアーキテクチャの

評価に  関する北海道ワークショップ (HOKKE-20), 情報処理学会研究報告 , 

2012-ARC-194/HPC-137, 6 pages, 2012.12. (Domestic, non refereed, published)     

[37] Guanghao Jin, Toshio Endo, Satoshi Matsuoka. A Multi-level Optimization Method for 

Stencil Computation on the Domain that is Bigger than Memory Capacity of GPU. In 

Proceedings of The Third International Workshop on Accelerators and Hybrid 

Exascale Systems (AsHES), in conjunction with IEEE IPDPS 2013, Boston, May 

2013. (International, refereed, published) 

 



 

- 75 - 

 

Chapter 5. Optimization methods for stencil computation 

on multiple nodes 

5.1 Introduction 
To apply optimization methods on multiple nodes, we first propose decomposition 

methods among nodes. We only use 1 GPU in each node. First, we implement existing 

optimization methods which called 2D-1D-N, 2D-1D-T. Then, we propose our optimization 

method which called 2D-1D-TBM and 2D-1D-TBMR. We evaluate 7, 19 point stencil on 

3D domain of floating computation on TSUBAME2.0 and TSUBAME2.5.   

 

Fig.90. TSUBAME2.0       

 

Fig.91. TSUBAME2.5 
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5.2 Contribution: decomposition 
To enable the computation on the bigger domain by multiple nodes, we first need to 

consider how to separate the whole domain among the nodes. Our upper optimization 

methods achieve scalability in Z dimension as it separate the domain by one dimension. 

In 3D domain case, to achieve scalability in three dimensions, it is better to separate the 

domain in X and Y dimensions among GPUs. So, we separate the domain in the other two 

dimensions among nodes. Our objective is to enable the computation on the bigger 

domain. If we can enable the computation on each sub-domain that is bigger than the 

memory capacity of each GPU, it means that the whole domain is bigger than the memory 

capacity of GPUs. So, we should enable the computation on the sub-domain which is 

bigger than the memory capacity of each GPU. Then we use each GPU to compute this 

bigger sub-domain. As each sub-domain is bigger than the memory capacity GPU, we 

also need to separate the sub-domain into parts to fit the memory capacity of GPU. 

 

Fig.92. Separate the domain by two dimensions for 3D domain 

To use the optimization method like 1D-N, 1D-T, 1D-TBM, it is better to separate the 

sub-domain by one dimension. As you can see in the below figure, we also separate each 

sub-domain to parts. We send each part which is smaller than the memory capacity of 

GPU to the GPU to compute. The size of each part depends on the optimization method. 

For example, if we only use naive method, it only needs space to contain each part. If we 

use temporal blocking method, it also needs to allocate the space for multiple ghost 

boundaries. If we use temporal blocking with buffer-copy method, it needs to allocate 
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additional buffer for buffer-copy method.  

The common 2D decomposition method is to separate the domain in Y and Z 

dimensions. As it saves the domain points in X, Y, Z order, 2D decomposition in Y and Z 

dimension can benefit the implementation and boundary exchange in common way case. 

When using 1D optimization method between sub-domain and parts, the computational 

part on the GPU size is changed at each time step. To contain the points in continuous 

space on GPU side, it is better to separate the domain in X, Y dimension among nodes. 

 

Fig.93. Common decomposition VS our decomposition 

5.3 Apply 1D optimization methods 
We need to consider how to apply the optimization methods when computing the big 

sub-domain by each GPU. When compute each sub-domain, we separate it into parts and 

send each part to GPU to compute. So, it is similar to the 1D optimization methods that 

have been introduced. 

 

Fig.94. Separate each sub-domain into parts 
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5.4 Exchange the boundary 
When each part is computed by each GPU, it needs to exchange the boundary 

information during the computation. As the computation of each point needs information of 

the nearest neighbors, the boundary of each part also needs the updated information of its 

neighbors. The neighbors are updated by the adjacent part on the other nodes. It should 

exchange boundary information during the iteration. So the boundary exchange is 

executed as below figure. As we can see in the figure, each part should exchange the 

boundary information to continue the computation. Each GPU computes the same part of 

each sub-domain. So after the computation of each time step, it should update the 

information of the boundary. By exchanging the boundary information, each part gets the 

information to continue the iteration. To deliver the boundary, it compresses the boundary 

to a vector. As it is divided in X and Y dimension, it is more difficult to compress the 

boundaries. Then, it can send the boundary to the CPU side. It delivers the boundary to 

the remote CPU. Then it sends the boundary from the remote CPU to remote GPU. 

 

Fig.95. Exchange the boundary information through the CPUs. 

5.5 Overlap the communication with computation 
When it performs communication, it also computes inside part to reduce the 

communication cost. 
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Fig.96. Overlap the communication with inside computation. 

5.6 Existing: 2D-1D-N method 
We can figure out the pseudo code as below: 

Separate the domain into sub-domains; 

Allocate Grid on each CPU to read initial of sub-domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Separate domain into parts; 

For (i = 0; i< TSI; i += 1)  

{ 

For (j = 0; j < NPS; j += 1) 

{ 

Send initial from CPU to Grid0; 

Compute boundary; 

Compress boundary; 

Parallel Do 

{ 

  Compute inside; 

  Exchange boundary; 

} 

Read result from Grid1 to CPU; 

} 

}           
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On each node, it copies each part to GPU side and only computes 1 time step and copy 

the result back. So, it also cannot get high performance because of frequent 

communication between host and device memory. We first implement the 2D-1D-N 

method as below: 

 

Fig.97. The process of 2D-1D-N method 

As we can see in the upper figure, it separates the domain into sub-domains. Then, it 
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initializes the sub-domain on the CPU side. Then it separates the sub-domain into parts. It 

sends each part to the GPU and only computes 1 time step. Then it sends the result back 

to CPU. So it degrades the performance because of the frequent communication.  

5.7 Existing: 2D-1D-T method 
The process of the 2D-1D-T method is below: 

 

Fig.98. The process of 2D-1D-T method 
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We can figure out the pseudo code as below: 

Separate the domain into sub-domains; 

Allocate Grid on each CPU to read initial of sub-domain; 

Allocate Grid0 and Grid1 on each GPU to perform double buffering; 

Separate domain into parts; 

For (i = 0; i< TSI; i += 1)  

{ 

For (j = 0; j < NPS; j += 1) 

{ 

Copy part j with more ghost boundaries from CPU to Grid0; 

  For(k = 0; k<TBT; k+=1){ 

Compute boundary; 

Compress boundary; 

Parallel Do 

{ 

Compute inside; 

    Exchange boundary; 

} 

Swap Grid0 and Grid1; 

        } 

Swap Grid0 and Grid1; 

Copy result of sub-domain j from Grid 1 to CPU; 

} 

}           

 

On each node, it copies initial to the GPU side and compute multiple time steps on GPU 

side, and copy the result back. So, it can get high performance but also causes redundant 

cost. 
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5.8 Contribution: 2D-1D-TBM method 
The process of the 2D-1D-TBM method is below: 

 

Fig.99. The process of 2D-1D-TBM method 

We can figure out the pseudo code as below: 
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Separate the domain into sub-domains; 

Allocate Grid on each CPU to read initial of sub-domain; 

Allocate Grid0 and Grid1 on each GPU to perform double buffering; 

Allocate Buffer on each GPU; 

Separate domain into parts; 

For (i = 0; i< TSI; i += 1)  

{ 

For (j = 0; j < NPS; j += 1) 

{ 

Copy part j from CPU to Grid0; 

  For(k = 0; k<TBT; k+=1){ 

          Read Cs XY-planes from Buffer; 

Compute boundary; 

Compress boundary; 

Save Cs XY-planes to Buffer; 

Parallel Do 

{ 

Compute inside; 

    Exchange boundary; 

} 

Swap Grid0 and Grid1; 

        } 

Swap Grid0 and Grid1; 

Copy result of sub-domain j from Grid 1 to CPU; 

} 

}           

 

On the each device memory, it can reduce the communication cost between the GPU 

and CPU. By reusing the data on the buffer of GPU, it can solve redundancy problem. To 

perform 2D-1D-TBM, we should allocate 2 grids (performs computation) and 1 buffer 

(performs buffer-copy) and buffer for boundary on GPU side. We name TBT as temporal 
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blocking times on GPU side. We name Dzp as the Z dimension size of each part. Here 

NPS stands for the number of parts of each sub-domain. We should set TBT as big as 

possible, and it should not bigger than Dzp (Z size of part ).  Dzp = Dz / NPS, Cs = 2. If 

use double buffering, (Dx/Nx)×(Dy/Nx)×(Dzp+Cs)×2+(Dx/Nx)×(Dy/Ny)×TBT× Cs+(Dx+Dy) 

×(Dzp)×2 ≤ GPU memory capacity,  TBT < Dzp,  Get max TBT. 

5.9 Evaluation on TSUBAME2.0 

5.9.1 Strong scalability of 7-point and 19-point 

We first evaluated 2D-1D-TBM method on multiple nodes of TSUBAME2.0. We select 

7-point and 19-point stencil to evaluate. The 3D domain is 5120×5120×2560. We increase 

the number of GPUs from 16 to 256. 

 

Fig.100. Strong scalability of 2D-1D-TBM for 7-point and 19-point 
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As we can see that it achieves high performance when the number of GPUs increases. 

Common way needs 205 GPUs to compute domain 5120×5120×2560. 2D-1D-TBM 

method can compute 40 times bigger domain than the common way. The domain size is 

only depends on the memory capacity of CPUs when using 2D-1D-TBM method. 

5.9.2 Weak scalability of 7-point and 19-point 

We evaluated 2D-1D-TBM method on multiple GPUs of TSUBAME2.0. We select 

7-point and 19-point stencil. The sub-domain on each CPU is (640×640×1920). We 

increase the number of GPUs from 16 to 256. 

 

Fig.101. Weak scalability of 2D-1D-TBM for 7-point and 19-point 

As we can see that it achieves high performance when the number of GPUs increases. 

It can compute bigger domain than the common way while reaches high performance. 
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5.9.3 Strong scalability: 2D-1D-TBM Vs other methods 

We evaluated 2D-1D-TBM, 2D-1D-T, and 2D-1D-N method on multiple GPUs of 

TSUBAME2.0. We select 19-point stencil forms. The 3D domain is 5120×5120×2560. We 

increase the number of nodes from 16 to 256. 

 

Fig.102. Strong scalability of 2D-1D-TBM, 2D-1D-T, 2D-1D-N for 19-point 

As we can see that 2D-1D-TBM has 1.58 times better performance than the other 

methods. Common way needs 205 GPUs to compute domain 5120×5120×2560. 

2D-1D-TBM method can compute 40 times bigger domain than the common way. The 

domain size is only depends on the memory capacity of CPUs when using 2D-1D-TBM 

method. 
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5.9.4 Weak scalability: 2D-1D-TBM Vs other methods 

We evaluated 2D-1D-TBM, 2D-1D-T, and 2D-1D-N method on multiple GPUs of 

TSUBAME2.0. We select 19-point stencil. The sub-domain on each CPU is 

640×640×1920. We increase the number of GPUs from 16 to 256. 

 

Fig.103. Weak scalability of 2D-1D-TBM, 2D-1D-T, 2D-1D-N for 19-point 

As we can see that 2D-1D-TBM has 1.88 times better performance than the other 

methods. 2D-1D-TBM, 2D-1D-T, 2D-1D-N can compute bigger domain than the common 

way while reaches high performance. 

5.9.5 Various domains 

We evaluated 2D-1D-TBM on multiple GPUs of TSUBAME2.0. We select 19-point 

stencil form. As it achieves scalability in two dimensions among the nodes, we only need 

to evaluate the scalability in the other dimension. So, we set the domain size is 
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2560×2560×Z.  Then we increase the size of Z to evaluate our method. We set the 

number of nodes is 16. 

 

Fig.104. (a) The number of nodes that is needed  (b) Related performance 

We increase the Z from 2000 to 32000. As the domain increases, the common way 

needs more GPUs to compute big domain. Yet, 2D-1D-TBM method only uses 16 GPUs 

to compute this big domain. Finally, it can compute 40 times bigger domain than the 

common way while reaches high performance. 

5.9.6 Time evaluation 

Below figure (a) is the elapsed time of strong scalability of 2D-1D-TBM for 19-point 

stencil. Figure (b) is the elapsed time of weak scalability of 2D-1D-TBM for 19-point stencil. 

The 3D domain is 5120×5120×2560. We increase the number of nodes from 16 to 256. 

We measure the time for 760 time steps. We try to figure out the relationship between 

total, communication, computation time. We observe that the total time is similar to the 

time of computation. It proves that the inside computation well covers the boundary 

exchange and the cost of communication between CPU and GPU is reduced. The cost of 
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sending data between CPU and GPU is reduced by optimized temporal blocking method. 

The computation time is the main factor that affects the performance. So, we need to 

improve the performance of computation in future. 

 

Fig.105. Elapsed time of strong scalability and weak scalability 

5.9.7 Parameters 

To perform 2D-1D-TBM, we should allocate 2 grids (performs computation) and 1 buffer 

(performs buffer-copy) and boundaries on GPU side. We name TBT as temporal blocking 

times on GPU side. We name Zp as the Z dimension size of each part. Here NPS stands 

for the number of parts of each sub-domain. To reduce communication times between 

CPU and GPU, we should set TBT as big as possible. So, we can get the (TBT, NPS) 

pairs for different number of GPUs. Figure (a) shows the relationship between NPS and 

TBT. As NPS grows, Zp decrease and TBT grows. As we set TBT no more than Zp, TBT 

grows until it reaches the Zp. Figure (b) shows the performance of those (NPS, TBT) pairs. 

As it shows, the max point of TBT gets max performance. Also, if the TBT remains big 

enough, the communication time between CPU and GPU remains small since it is divided 

by TBT. 
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Fig.106.  (a) Relationship of parameters   (b) Related performance 

5.10 Contribution: 2D-1D-TBMR method 
Here Dx is X dimension size of sub-domain, Dy is y dimension size of sub-domain.  

It also reuses the space on the register. We can figure out the pseudo code as below: 
Separate the domain into sub-domains; 

Separate domain into parts; 

For (i = 0; i< TSI; i += 1)  

{ 

For (j = 0; j < NPS; j += 1){ 

Copy part j from CPU to Grid0; 

  For(k = 0; k<TBT; k+=1){ 

          Read Cs XY-planes from Buffer; 

Compute boundary; 

Compress boundary; 

Save Cs XY-planes to Buffer; 

Parallel Do{ 
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Compute inside with in-plane and memory-saving method; 

    Exchange boundary;} 

Swap Grid0 and Grid1; 

        } 

Swap Grid0 and Grid1; 

Copy result of sub-domain j from Grid 1 to CPU; 

}}           
On each GPU, it computes multiple time steps to reduce the communication cost. It also 

efficiently uses the registersto solve redundancy problem. The process of the 

2D-1D-TBMR method is below: 

 

Fig.107. The process of 2D-1D-TBMR method 
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5.11  Reevaluation on TSUBAME2.5 
We reevaluate our method 2D-1D-TBMR with former 2D-1D-TBM and the existing 

2D-1D-T and 2D-1D-N. The domain is 5120×5120×2560. We select 7 point stencil of 

floating computation.  

 

Fig.108. Evaluation on TSUBAME2.5 

As we can see in the upper figure, 2D-1D-TBMR method gets 1.59 times higher 

performance than 2D-1D-TBM and 1.84 times higher performance than 2D-1D-T method 

in 7 point stencil case. 

We reevaluate our method 2D-1D-TBMR with former 2D-1D-TBM and the existing 

2D-1D-T and 2D-1D-N. The domain is 5120×5120×2560. We select 19 point stencil of 

floating computation. In 19 point stencil case, 2D-1D-TBMR method gets 1.71 times 

higher performance than 2D-1D-TBM and 2.68 times higher performance than 2D-1D-T. 

As 19 point stencil reads more nearby points, it is more important to use registers to 

reduce access time.  
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Fig.109. Evaluation on TSUBAME2.5 

The each GPU on TSUBAME2.0 has 3GB memory. The each GPU on TSUBAME2.5 

has 6GB memory. So, the max point on TSUBAME2.5 comes earlier than on 

TSUBAME2.0. 

 

Fig.110. Parameters on TSUBAME2.0 and TSUBAME2.5 
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5.12 Summary 
In this chapter, we proposed 2D-1D-TBMR, 2D-1D-TBM methods for multiple nodes. 

The evaluation on multiple nodes of TSUBAME system shows that our optimization 

methods get higher performance than the existing optimization methods. 

To achieve 3D scalability on 3D domain, we first propose new 2D decomposition 

method to separate the domain among the nodes. Different from the existing 2D 

optimization methods, it separates the domain by X and Y dimension. The existing 

decomposition method decomposition method separates the domain by Y and Z 

dimension which can benefit the implementation of common way. As the optimization 

methods only compute un-overlapped part on the GPU side, our decomposition method 

can benefit the implementation of applying 1D optimization methods on each node.   

On each node, we apply the 1D optimization methods to reduce the communication 

cost between CPU and GPU. We overlap the boundary exchange with the inside 

computation to reduce the communication between nodes.  

By the combination of 2D decomposition and 1D optimization methods for 3D domain, it 

achieves 3D scalability and gets different optimization methods in multiple nodes case. As 

it computes sub-domain that is bigger than the memory capacity of GPU on each node, it 

can compute the domain that is bigger than the memory capacity of GPUs on multiple 

node. 

The evaluation of the performance shows that our optimization methods can compute 

bigger domain than the common way while maintaining higher performance than existing 

optimization methods on multiple nodes on TSUBAME systems. We also analyze the 

performance and parameters difference between TSUBAME2.5 and TSUBAME2.0. 

Although it increased the memory capacity of each GPU on TSUBAME2.5, it also needs 

to compute bigger domain by using optimization methods. We published 1 papers depend 

on 2D-1D-TBM method.  

[38] Guanghao Jin, Toshio Endo, Satoshi Matsuoka. A Parallel Optimization Method for 

Stencil Computation on the Domain that is Bigger than Memory Capacity of GPUs. In 

Proceedings of IEEE Cluster 2013, Indianapolis, September 2013.  

(International, paper, refereed, and already published)  
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Chapter 6. Optimization methods for band SpMV on 

single node  

6.1 Introduction 
The common way to use GPU to compute matrix vector multiplication is to initialize the 

matrix and vector on the CPU [12], [13], [14], [15], [16], [17]. Then, it copies the matrix and 

vector to the GPU side. On the GPU side, it continues the computation for multiple time 

steps.  

The compressed sparse row (CSR) format is perhaps the most popular 

general-purpose sparse matrix representation [18], [19], [20], [21], [22]. CSR explicitly 

stores column indices and nonzero values in arrays indices and data. A third array of row 

pointers, ptr, allows the CSR format to represent rows of varying length. Below figure 

illustrates the CSR representation of an example matrix. 

 

Fig.111.   CSR format 

One-Thread-One-Row maps each dot production between row and vector to a thread. 

One-Warp-One-Row maps each dot production between row and vector to one warp of 

threads as bellow: 

_global_ void spmv_cscvectockernel (const int, num_rows, const int *Ptr, const int 

*Indices, const float *Data, const float *x, float *y) { 

_shared_ float vs[32]; 

int thread_id = blockDim.x * blockIdx.x + threadIdx.x; 

int warp_id = thread_id / 32; 

int la = thread_id & (32 - 1); 

int row = warp_id; 

if(row < num_rows){ 
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int row_start = ptr[row]; 

int row_end = ptr[row + 1]; 

vs[threadIdx.x] = 0; 

for(int j = row_start + la; j < row_end; j += 32) 

vs[threadIdx.x] += data[j] * x[indices[j]]; 

if(la < 16) vs[threadIdx.x] += vs[threadIdx.x + 16]; 

if(la < 8) vs[threadIdx.x] += vs[threadIdx.x + 8]; 

if(la < 4) vs[threadIdx.x] += vs[threadIdx.x + 4]; 

if(la < 2) vs[threadIdx.x] += vs[threadIdx.x + 2]; 

if(la < 1){ 

vs[threadIdx.x] += vs[threadIdx.x + 1]; 

y[row] = vs[threadIdx.x]; 

}}} 

 

If a group of cooperating threads is assigned to only one row, then the number of blocks 

required to process the entire matrix may be more than 65535. To complement this 

approach more than one row per cooperating thread group can be processed. 

__global__ void csrmv (float *values, int *rowPtrs, int *colIdxs, float *x, float *y, int 

dimRow, int repeat, int coop) { 

int i = (repeat*blockIdx.x*blockDim.x + threadIdx.x)/coop; 

int coopIdx = threadIdx.x%coop; 

int tid = threadIdx.x; 

extern __shared__ volatile float sdata[]; 

for (int r = 0; r<repeat; r++) { 

float localSum = 0; 

if (i<dimRow) { 

// do multiplication 

int rowPtr = rowPtrs[i]; 

  for (int j = coopIdx; j<rowPtrs[i+1]-rowPtr; j+=coop) { 

    localSum += values[rowPtr+j] * x[colIdxs[rowPtr+j]]; 

  } 
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  // do reduction in shared mem 

  sdata[tid] = localSum; 

  for(unsigned int s=coop/2; s>0; s>>=1) { 

    if (coopIdx < s) sdata[tid] += sdata[tid + s]; 

  } 

  if (coopIdx == 0) y[i] = sdata[tid]; 

    i += blockDim.x/coop; 

}}}} 

 

6.1.1 Diagonal matrix 
In diagonal case, as there is no data dependence between the sub-vectors, it can 

continue the computation locally on GPU side without the communication.  

 

Fig.112. Decomposition of diagonal matrix 

6.1.2 Tri-diagonal matrix 
In some case like sparse tri-diagonal matrix case, there is data dependence between 

separated sub-vectors by the structure of the tri-diagonal matrix. For this kind of case, the 

sub-vectors need to exchange the dependent data to continue the computation as below. 
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Fig.113. Tri-diagonal matrix 

 
Fig.114. Decomposition of tri-diagonal matrix 

To efficiently use the host and device memory, it needs to separate the whole matrix 

and vector into sub-matrix and sub-vector to the device memory. So, we need to consider 

the data dependence. We start the some special SpMV on single node as the base of our 

research.  

In this section, we apply optimization method to sparse matrix case on single node. The 

optimization methods include 1D-N, 1D-T and 1D-TB (temporal blocking + buffer-copy).  
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6.1.3 Existing: 1D-N method 
1D-N method separates the whole domain (matrix and vector) into sub-domain 

(sub-matrix and sub-vector). Then copy each sub-domain to GPU to compute 1 time step. 

So, it causes frequent communication between CPU and GPU. 

 

Fig.115. Compute current sub-domain for 1 time step 

 

Fig.116. Compute next sub-domain for 1 time step 

 

As we can see in the upper figure, the program model for SpMV is the same as the 

stencil case. It proves that our program model is correct for 1D-N in data dependence 

case. 
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6.2 Existing: 1D-T method 
1D-T method separates the whole domain (matrix and vector) into sub-domain 

(sub-matrix and sub-vector). When it copies each sub-domain to GPU, it copies more 

rows of matrix and vector. So it can compute multiple time steps on the GPU. 

 

Fig.117. Compute current sub-domain for first time step 

 

Fig.118. Compute current sub-domain for second time step 

 

Fig.119. Compute current sub-domain for third time step 
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Fig.120. Compute next sub-domain for first time step 

 
Fig.121. Compute next sub-domain for second time step 

 
Fig.122. Compute next sub-domain for third time step 

As we can see in the upper figure, the program model for SpMV is the same as the 

stencil case. It proves that our program model is correct for 1D-T in data dependence 

case. 
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6.3 Contribution: 1D-TB method 
1D-TB (Temporal blocking + buffer-copy) separates the whole domain (matrix and 

vector) into sub-domain (sub-matrix and sub-vector). When it copies each sub-domain to 

GPU, it copies more rows of matrix and vector. So it can compute multiple time steps on 

GPU. To reduce the computation cost, it saves some result of current sub-domain to 

buffer at each time step. When it computes next sub-domain, it reads from buffer. By 

reusing those results, it can do less computation. 

 

Fig.123. Compute current sub-domain for first time step and save to buffer 

 

Fig.124. Compute current sub-domain for second time step and save to buffer 
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Fig.125. Compute current sub-domain for third time step and save to buffer 

 

Fig.126. Read from buffer and compute next sub-domain for first time step 

 

Fig.127. Read from buffer and compute next sub-domain for second time step 
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Fig.128. Read from buffer and compute next sub-domain for third time step 

As we can see in upper figure, the program model for SpMV is the same as the stencil 

case. It proves that our program model is correct for 1D-T in data dependence case. 

6.4 Evaluation on TSUBAME2.5 
We evaluate optimization methods on single GPU of TSUBAME2.5.  Bandwidth 

means the width of diagonal matrix.  

6.4.1 1D-N vs 1D-TB 
We set Bandwidth = 64, temporal blocking times = 800, time steps = 800 and increase 

the size of vector to compare Usual and TB method. In small matrix case, TB method 

performs 77% of usual method. In big matrix case, TB performs 15.2 times better than 

usual method. TB totally performs 8 times better performance than usual method. 

 

Fig.129. Band matrix and 1D decomposition. 
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6.4.2 1D-T vs 1D-TB 
We set Bandwidth = 64, size of vector = 7×1.0e06, number of sub-domains =2, time 

steps = temporal blocking times, and increase temporal blocking times to compare 1D-TB 

and 1D-T method. 1D-TB has a little better performance than 1D-T. 

 

Fig.130. 1D-T vs 1D-TB 

In 1D-T and 1D-TB method case, we found that when the temporal blocking time is big 

enough, the performance will not improved as the communication cost is reduced enough 

and will less affect the total time. So, we set TBT as below: 

TBT< min{Dz/NSD, Communication(1)/computation(1)/Ratio} , get max TBT. 
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Chapter 7. Conclusion and directions for the future 
In this thesis, we proposed optimization methods for stencil computation on 3D domain 

for single node and multiple nodes, and compared them with the existing optimization 

methods. The result of those optimization methods shows that our optimization methods 

enable the computation on the domain that is bigger than the memory of GPUs while 

maintaining higher performance than existing optimization methods. We combine the 

existing methods that can efficiently use the shared memory and registersof GPU to the 

optimization methods to maintain higher performance. We also evaluate our methods on 

TSUBAME2.0 and TSUBAME2.5. The result shows that our methods can achieve high 

performance on both TSUBAME2.0 and TSUBAME2.5. We analyzed the performance 

and parameters differences between TSUBAME2.0 and TSUBAME2.5. The memory 

capacity of each GPU is increased on TSUBAME2.5. But, it still cannot compute bigger 

domain. So, the optimization methods also are important to TSUBAME2.5. 

In this thesis, we only use 1 GPU on each node. There are 3 GPUs in each node on 

TSUBAME2.5. It also needs to consider how to use those GPUs which is important to 

improve the performance and extend the memory capacity of GPUs. Using multiple GPUs 

on each node, it can get higher performance. But, how to efficiently use the GPUs of each 

node is also a challenge. It also needs to consider better way to use shared memory and 

registersof GPUs to improve the performance of kernels. In different stencil case, it needs 

to consider the better method that which part can be reused by shared memory or register. 

Also, as the size of shared memory or registersis limited, it needs to consider reusing 

minimum part to improve the performance. As the optimization methods are complicated 

to be implemented, it also needs to consider the program easiness. Our optimization 

methods combine multiple methods which include like temporal blocking, buffer-copy, 

memory-saving. All of them will increase the difficulty of programming. As the optimization 

methods are designed for specific stencil computations, it also needs to consider how to 

apply the optimization methods to wide range stencil computations. In different kinds of 

stencil, the consumed planes are different. Also, the dimension of domain becomes 

different. So, it needs to consider how to apply optimization method in different stencil 

case. All of those directions should be solved in future. 
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Appendix A Other optimization methods 

Here, we give some other optimization methods. 

A.1 1D-TBMR method 
So, we can get the pseudo code of 1D-TBMR method as below:  

Allocate Grid on CPU to read initial of domain; 

Allocate Grid0 and Grid1 on GPU to perform double buffering; 

Allocate Buffer on GPU; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += TBT)  

{ 

For (j = 0; j < NSD; j += 1) 

{ 

Copy sub-domain j from CPU to Grid0; 

      For(k = 0; k<TBT; k+=1) 

{ 

          Read Cs XY-planes from Buffer; 

Compute 1 time step by one kernel with In-plane method; 

Save result to shifted position on Grid1; 

Save Cs XY-planes to Buffer; 

Swap Grid0 and Grid1; 

        } 

Swap Grid0 and Grid1; 

Copy result of sub-domain j from Grid1 to CPU; 

} 

}                                                                             

 

The difference between 1D-2TBM and 1D-TBMR is the optimization method for the 

kernel. 1D-2TBM uses shared memory to reduce the access time to the global memory. 

1D-TBMR method uses registersto reduce the access time to the global memory.  
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A.2 1D-P-TBMR method 
As the domain grows, the sub-domain and ghost boundaries grow. As the GPU memory 

is limited, it contains smaller sub-domain or fewer ghost boundaries. Smaller sub-domain 

means more phases to compute and fewer ghost boundaries mean fewer time steps that 

can be computed locally on GPU. Both of them degrade the performance. We parallel the 

communication with the computation to solve this problem.  

The pseudo code of 1D-P-TBM method is below: 

Allocate Grid to read initial of domain; 

Allocate Grid0 and Grid1 to perform double buffering; 

Allocate Buffer on the GPU memory; 

Allocate Buffer0 and Buffer1 on the GPU memory; 

Separate domain into sub-domains; 

For (i = 0; i< TSI; i += TBT) { 

For (j = 0; j < NSD; j += 1){ 

Read initial from Buffer0 to Grid0; 

Parallel Do { 

Send next initial from CPU to Buffer0; 

Send former result from Buffer1 to CPU; 

    For(k = 0; k<TBT; k+=1) 

{ 

              Read Cs XY-planes from Buffer to Grid0; 

Compute1 time step; 

Save result to shifted position on Grid1; 

Save Cs XY-planes from Grid0 to Buffer; 

Swap Grid0 and Grid1; 

            } 

        } 

Swap Grid0 and Grid1; 

Read result from Grid1 to Buffer1; 

}}}                                                                         
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A.3 2D-1D-TBMS method 
We can figure out the pseudo code as below: 

Separate the domain into sub-domains; 

Allocate Grid on each CPU to read initial of sub-domain; 

Allocate Grid0 and Grid1 on each GPU to perform double buffering; 

Allocate Buffer on each GPU; 

Separate domain into parts; 

For (i = 0; i< TSI; i += 1)  

{ 

For (j = 0; j < NPS; j += 1) 

{ 

Copy part j from CPU to Grid0; 

  For(k = 0; k<TBT; k+=2){ 

          Read Cs×2 XY-planes from Buffer; 

Compute boundary of two time step; 

Compress boundary; 

Save Cs×2 XY-planes to Buffer; 

Parallel Do 

{ 

Compute inside of two time steps with memory-saving method; 

    Exchange boundary; 

} 

Swap Grid0 and Grid1; 

        } 

Swap Grid0 and Grid1; 

Copy result of sub-domain j from Grid 1 to CPU; 

} 

}           

 


