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Abstract

In modern microprocessor architecture research, hardware-based prototyping using FPGAs has been

used in order to accelerate simulations of processor behaviors. The faster simulation speed strongly

enables system-level evaluations of not only the processor architecture, but also applications and sys-

tem softwares. This thesis presents a sophisticated prototyping framework for future manycores. The

framework comprises of the acceleration method of many-core processor simulations and the design

methodology to decrease the development complexity.

The first contribution of the framework is to propose an FPGA-based simulation method which

achieves the scalable simulation speed against the increasing core count of simulated processors with

the cycle-level accuracy of simulation results. In order to accelerate simulations of many-core proces-

sors, I propose a system architecture of fast and cycle-accurate processor simulator employing multiple

FPGAs. I developed a test bed platform of multiple FPGAs to evaluate the viability of the proposed

method. I evaluated the proposed method by using the test bed system in point of simulation speed.

The evaluation result shows that the proposed method achieves effective scalability of the simulation

speed to simulate a large scale many-core processor with keeping the cycle-accuracy of the simulation

consequences. As the case studies, I applied the test bed system for two innovative researches of task

allocation schemes on many-core processors. By employing the test bed system, the evaluation phases

are dramatically accelerated, so that it enables effective evaluations of computer systems.

The second contribution of this framework is to propose a design methodology under the resource ab-

straction of FPGA platforms. In order to mitigate the development complexity of FPGA-based simula-

tors, I propose a novel design methodology under the abstraction of various resources FPGA platforms

have, such as memory systems and inter-FPGA interconnections. I developed the Python-based design

tool-chain that automatically synthesizes ready-to-implement RTL designs for actual FPGA platforms

from target RTL descriptions under the abstraction. This methodology enables designers to model

a prototyping target processor without concern for actual platform resources. I evaluated simulation

speed under the abstraction using a standard FPGA platform with large capacity of logic and memory.

The evaluation result shows that the simulation speed degradation under the abstraction is not critical

so that the abstraction tool-chain offers the helpful support to develop a high-speed processor simulator

rapidly.
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Finally I evaluated the integrated framework of the two contributions, the scalable simulation accel-

erator and the abstraction methodology. The evaluation result shows that the simulation system auto-

matically synthesized by the abstraction tool-chain archives almost equivalent performance to manual-

tuned multi-FPGA based simulator. The integrated framework aggressively improves the prototyping

efficiency for emerging many-core processors by providing the sufficient simulation speed and the ef-

fective abstraction reducing the development complexity.
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Chapter 1

Introduction

1.1 Motivation
Computer systems are essential for our daily lives. In Japan, most people have some mobile systems,

such as smart phones and mobile gaming machines. Automotive consists of a lot of microprocessors

in order to control the drive system and the peripherals, such as air conditioner and navigation system.

Supercomputers with high-capability of computing power are also used for weather forecasting so that

it improves the prediction accuracy of a forecast. In areas of engineering and drug development, super

computers are used for scientific simulations.

One of the important parts of a computing system is a processor. A processor adopts various op-

erations to the given data being dependent on the given instructions. Processor is also called as CPU

(Central Processing Unit), MPU (Main Processing Unit) or microprocessor. The first microprocessor

had consisted of multiple electric boards. After Intel 4004 released in 1974, microprocessors have been

furnished as integrated circuits. Now most of the microprocessors are given in unified LSI packages of

the memory system and peripheral circuits, by advancing the semiconductor technology.

In the past, the performance of microprocessors had been enhanced by (1) the increase of opera-

tion frequency thanks to the semiconductor processes refinement and (2) the employment of inherent

instruction level parallelisms (ILP) by complex hardware components. However, the limitations of

capable energy consumption and amount of heat generation have made it difficult to increase the oper-

ation frequency more. Additionally, it has been also challenging to obtain corresponding performance

improvements by additional hardware resources to employ the more inherent ILPs. Therefore, the

microprocessor development strategy has moved to utilize another parallelisms, such as thread level

parallelism and data level parallelism, for more computation power and efficiency.

The trend of processor architecture has shifted to multicore architecture that integrates multiple cores

into a single chip. Processors employing multicore architecture are called also as CMP (chip multi pro-

cessor), multicore processor or merely multicore. Of the growing semiconductor process, the number

of cores integrated on a single chip is still increasing. Most microprocessors in these days have two
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or more cores on a single chip. They are employed in wide range areas, including high-performance

computing systems and low-energy embedded systems.

In modern microprocessor architecture research and development, software-based simulators of mi-

croprocessors are essential to evaluate and verify an architectural idea. By using a software-based

simulator with detailed models of processor cores and memory systems, we can realize and evaluate

the proposed idea in an easy way without actual LSI fabrication.

The most critical issue of software-based simulations is simulation speed. Unfortunately, regard-

less of simulation accuracy, however, simulation speeds of software-based simulators are considerably

slower than actual processor LSIs. The simulation speeds of software-based processor simulators are

about 100 KHz in the case of a detailed model. For instance, MARSSx86, a modern cycle-accurate

CMP simulator, can achieve the speed of about 200 KIPS (kilo instructions per second) when an 8-core

CMP is simulated[1].

These software-based simulators have massive inherent fine-grain parallelisms corresponding to each

circuit component. Parallelization of simulators can improve the simulation performance in some mod-

erate degree on contemporary multicore processors. However, it is extremely difficult to fully exploit

these parallelisms in order to accelerate the simulations, because there are huge amount of synchroniza-

tions and communications with tiny messages for every modeled clock cycle in the simulated processor

to keep the cycle level accuracy of simulation results. This property is not appropriate to run on stan-

dard based computing environments very well. Otherwise, relaxing these synchronizations eliminates

accuracy from the simulation result.

In order to accelerate such processor simulations, the hardware-based prototyping with FPGAs (Field

Programmable Gate Arrays) have been commonly used. The fine-grain parallelisms of processor com-

ponents can be naturally utilized by employing internal fabrics of FPGAs. Moreover fine-grain syn-

chronization for cycle-accuracy is much faster on FPGAs than the software simulators. The faster

simulation speed strongly supports system-level evaluations of not only the processor architecture but

also the application and system software.

A problem of FPGA-based prototyping is the lack of any scalable simulation methods. In standard

prototyping way, a large high-end and expensive FPGA is required for simulation of future many-

core processor with over 100 cores. Additionally, the synthesis time that is the elapsed time to create

an FPGA circuit image (bitstream) from HDL source codes is very long in large FPGAs. Previous

FPGA-based simulators projects proposed some clever techniques to reduce resource consumption of

FPGAs. They, however, decrease also the simulation speed if a processor with a large number of cores

is simulated.

Another problem is the absence of any suitable abstraction methods to handle bare-metal sea-of-

resources of FPGAs. Since there is a gap of resource characteristics between simulated processors and
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FPGAs, the structure of microprocessors is not necessarily suitable for FPGA characteristics. In respect

of the memory system, processors have on-chip cache memory systems. Usually these cache memory

systems are implemented by using on-chip fast memory fabrics (block RAM) of FPGAs. Unfortunately,

the amount of these on-chip memory fabrics of FPGA is limited and small. If the simulated processor

requires larger capacity of on-chip FPGA memory, the simulator developer should consider combining

an external memory component (DRAM) for cache system implementation. Development of such a

hierarchical memory system with keeping the cycle level accuracy of simulation result is highly error-

prone and time-consuming.

This thesis presents a sophisticated prototyping framework for future manycores. The framework

comprises of the acceleration method of many-core processor simulations and the design methodology

to decrease the development complexity. In order to accelerate simulations of many-core processors, I

propose a development method of fast and cycle-accurate many-core processor simulator by employing

multiple FPGAs. In order to mitigate the development complexity of FPGA-based simulators, I pro-

pose a novel design methodology with the resource abstraction of FPGAs. The integrated framework

aggressively improves the prototyping efficiency for emerging many-core processors.

1.2 Contribution
The contributions of this thesis are as follows:

• to propose an FPGA-based simulation method which achieves the scalable simulation speed

against the increasing core count of simulated processors with the cycle-level accuracy of simu-

lation results;

• to show that the proposed simulation method is feasible by designing and developing an actual

multi-FPGA based acceleration system;

• to propose a novel design methodology under the physical resource abstraction of FPGAs, with

its software tool-chain to improve the efficiency of prototyping system development; and

• to present and evaluate the integrated framework that wraps up the multi-FPGA based simulation

method and the prototype design methodology.

I refer to the respective contributions below.

As the first and second contributions, I propose a system architecture of fast and cycle-accurate

processor simulator employing multiple FPGAs, focused on the structure of the on-chip-network and

the memory systems on a many-core processor for future manycores with over 100 cores. I developed

a test bed platform of multiple FPGAs to evaluate the viability of the proposed method. I evaluated

the proposed method by using the test bed system in point of simulation speed. The evaluation result

shows that the proposed method achieves effective scalability of the simulation speed to simulate a
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large scale many-core processor with keeping the cycle-accuracy of the simulation consequences. As

the case studies, I applied the test bed system for two innovative researches of task allocation schemes

on many-core processors. By employing the test bed system, the evaluation phases are dramatically

accelerated, so that it enables effective evaluation of computer systems.

As the third and forth contributions, I present a novel design methodology under the abstraction of

various resources FPGA platforms have, such as memory systems and inter-FPGA interconnections. I

developed the Python-based design tool-chain that automatically synthesizes ready-to-implement RTL

designs for actual FPGA platforms from target RTL descriptions under the abstraction. This method-

ology enables designers to model a prototyping target processor without concern for actual platform

resources. I evaluated simulation speed under the abstraction using a standard FPGA platform with

large capacity of logic and memory. The evaluation result shows that the simulation speed degrada-

tion under the abstraction is not critical so that the abstraction tool-chain offers the helpful support to

develop a high-speed processor simulator rapidly.

Finally I evaluated the integrated framework of the two contributions, scalable simulation acceler-

ator and the abstraction methodology. The evaluation result shows that the simulation system auto-

matically synthesized by the abstraction tool-chain archives almost equivalent performance to manual-

tuned multi-FPGA based simulator. The integrated framework aggressively improves the prototyping

efficiency for emerging many-core processors by providing the sufficient simulation speed and the ef-

fective abstraction reducing the development complexity.

1.3 Outline of This Thesis
The outline of the subsequent chapters is as follows.

In Chapter 2, I describe the background of my work. At first, I present various prior software-based

processor simulators. Software-based simulators are fundamental weapons for comprehensive evalua-

tion in processor architecture research. As the trend of microprocessor shifted to multicore architecture,

the purpose and structure of software simulators have been drastically changed. Then I present prior

researches of simulation acceleration using FPGAs. I roughly classify the FPGA-based processor sim-

ulation into two categories based on the implementation ways. I summarize the motivation of this work

based on the discussion about the previous researches. Additionally, I briefly introduce the example

many-core architecture that I used as a simulation target in this research.

In Chapter 3, I describe the first main contribution of this work that accelerates the processor sim-

ulation by employing FPGAs. I present a system architecture of fast and cycle-accurate processor

simulator employing multiple FPGAs. I describe the implementation features of the developed test bed

system built on the proposed method. As the case studies, I applied the test bed system for two innova-

tive researches of task allocation schemes on many-core processors. By employing the test bed system,
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the evaluation phases are dramatically accelerated, so that it enables effective evaluation of computer

systems.

In Chapter 4, I propose a novel design methodology under the abstraction of various resources on

FPGAs. Hardware components within FPGAs, such as memory block and communication interfaces,

are abstracted and given to simulator designers. I describe the implementation features of the Python-

based software tool-chain that realizes the proposed methodology. I evaluated simulation speed with

the resource abstraction on the single large FPGA platform. Then I evaluated the integrated frame-

work of the two main contributions of this thesis, scalable simulation accelerator and the abstraction

methodology.

Finally, in Chapter 5, I wrap up this thesis with the discussion of open-research areas and the con-

clusion.
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Chapter 2

Background

This chapter provides the fundamental knowledges of various evaluation ways on processor architec-

ture researches. First I briefly introduce the entire evaluation flow of microprocessors using several

identical weapons. Then I describe and examine the pros and cons of each evaluation way, in points of

simulation speed and development complexity. Especially I present noteworthy problems on the afore-

mentioned FPGA-based processor prototyping researches. I summarize the motivation of this work

taken into consideration these discussions. Finally I briefly introduce the baseline many-core processor

architecture for my research.

2.1 Simulation for Processor Architecture Evaluation
2.1.1 Purpose

Performance modeling is a critical matter in computer system development and research. As increasing

in the number of cores integrated in a single processor, complexity of microprocessor is also increasing.

At the same time, the required simulation amount of a microprocessor is also increasing to validate

cross cutting issues among microarchitecture, system software and application. To develop a further

useful computer system, evaluation method will become more important.

The main purpose of simulation is to estimate the impact of an idea to the computer performance.

Performance is just an indicative value that represents speed of the processor, in this thesis. We can

obtain not only values of absolute performance but also various associated values of the performance

through processor simulations, such as hit/miss rate of cache memory and branch prediction. Architects

use the performance value and associated values to optimize the architecture and its software systems.

2.1.2 Processor Evaluation Flow

Figure 2.1 shows a standard evaluation flow of processor architecture research. Each simulation tech-

nology has a unique characteristic. Architects should choose an appropriate method for each evaluation

purpose and stage. In early stage of research and development, the customary evaluation way is to use
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software simulators. Simulation is a means to validate and evaluate a microprocessor without any actual

LSI fabrication. To evaluate an idea, the architect implements the idea on a software simulator with the

target architecture model. Then the architect can evaluate the implemented idea by using appropriate

benchmark applications, such as SPEC[2] and PARSEC[3].

Software Simulation

As an important point of software simulators, we can identify the structure of everything in micro-

processors in separated pieces of functional model and timing model. The timing model corresponds

to a definition of the conditions that the hardware component is enabled. The functional model is a

definition of the behavior or result that the hardware component generates when the component is en-

abled. In both parts, designers can develop a simulator with standard software development techniques

to clarify the software structure. This separation simplifies the implementation of the target processor

and improves the portability for another design of processors.

As a critical problem of software simulators, simulation speed of software simulations is slow. While

the absolute simulation speed depends on the accuracy, typical simulation speed of software-based

processor simulators is about some 100 KHz. For instance, MARSSx86, a modern cycle-accurate

CMP simulator, can achieve the speed of about 200 KIPS (kilo instructions per second) when an 8-core

CMP is simulated, which corresponds to about 25 KHz[1].



Chapter 2 Background 8

FPGA-based Prototyping

Acceleration of processor simulation enables much longer simulation using more realistic and compli-

cated applications. FPGA-based simulation is often used to accelerate the simulation. As the standard

development flow of FPGA system, it requires a detailed RTL (Register Transfer Level) design of target

hardware in low level HDL (Hardware Description Language), such as Verilog HDL and VHDL. The

circuit image (bitstream) for FPGA is available from the given RTL design by using a vendor-provided

EDA tool[4, 5]. Circuit synthesis for FPGAs usually takes critically longer time than software compi-

lation, about hours to days for large high-end FPGAs. In order to prevent rollbacks of circuit synthesis,

RTL simulation is often performed before the FPGA implementation for the RTL design verification.

As same as software simulation, the architect then can simulate the behavior of the target processor

using the generated bitstream for FPGA system with adequate benchmarks.

Note that the RTL design for FPGA prototyping might differ from the RTL design for LSI manufac-

tures, due to the characteristic differences between LSI and FPGA. The structure of microprocessors is

not necessarily suitable for FPGA characteristics. In this thesis, I offer a counterplot against the gap of

resource characteristics introducing complications of prototyping system development.

Circuit Simulation

In order to estimate the impact of an idea to the circuit area, architects create a physical LSI design

by using an LSI compiler from the RTL designs. While actual circuit area strongly depends on efforts

for the optimization, the architects can only estimate the approximate impact to the area. In order

to estimate the impact of the idea to the energy, circuit simulation is an effective way without LSI

manufacturing. In general, circuit simulation is employed to estimation of energy consumption for

each distinct event on the simulated hardware, but not for entire system simulation, because circuit

simulation is absolutely slow. The total energy impact is calculated by using the cycle-accurate software

simulators or FPGA-based simulators with the discrete estimated values.

2.2 Software Simulator
Software simulators are roughly classified into two categories: functional-accurate simulators and

cycle-accurate simulators. Functional-accurate simulators generate execution results on the simulated

processor, but does not produce performance information such as elapsed time and cache miss rates.

Functional-accurate simulators are called also as instruction set simulator (ISS). In contrast, cycle-

accurate simulators have an advanced capability to model performance of the simulated processor. In

this thesis, I define the cycle-accurate simulation as a simulation that conforms to the cycle-by-cycle

behavior of the target design definition, based on the definition used in literature[6].
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2.2.1 Functional-Accurate Simulator

Various researchers have developed functional-accurate simulators for research and educational pur-

pose. SimCore/Alpha[7] is a sophisticated and well-tuned Alpha ISA simulator used for evaluation

of branch predictors. SPIM[8] is a famous instruction set simulator of MIPS used for education.

WebMIPS[9] is a similar simulator for MIPS ISA but is provided as a web application with a visu-

alizer of pipeline status. SimMips[10, 11] is a functional simulator supporting operating systems for

MIPS ISA, which is used as a fundamental tool for my research.

QEMU[12] is commonly used for virtualization of physical computer and software development for

embedded systems. As a key feature of QEMU, it employs binary translation technique to transform

the simulated software into suitable binary of the host computer. It enables fast emulation of various

instruction set architectures on various host computers. As an interesting approach to accelerate in-

struction set simulation, ISSGPU[13] employs a GPU as a massive parallel computing unit for future

many-core consisting over 1000 cores on a single chip.

In general, functional-accurate simulators do not provide timing information in detail. These

functional-accurate simulators are still useful to obtain traces of instructions and memory accesses, so

that the generated trace results can be used in other software simulators with detailed models of the

target hardware structure.

2.2.2 Cycle-Accurate Simulator

Until the paradigm shift to multicores, SimpleScalar[14] had been a widely used cycle-accurate proces-

sor simulator for microarchitectural simulations of uniprocessor. SimpleScalar models microarchitec-

tural features of Out-of-Order processors very well. SimpleScalar had no essential functions to simulate

the cross-cutting behavior with system software components.

As the growing of multicore processors and accelerators, various research groups developed full-

system simulators, in order to simulate performance on the target processor with interactions be-

tween applications, operating systems and hardware. M5[15], Simics[16], GEMS[17], gem5[18],

MARSSx86[1], SESC[19], Manifold[20] and CMP$IM[21] are major full-system simulators for mod-

ern multicore processor environments with operating system support, used in various researches. Each

simulator is different in points of supported ISA, memory hierarchy, on-chip network, off-chip periph-

erals and so on. Most of these simulators are under a similar structure that a functional simulation

unit and a timing simulation unit are tightly coupled. Transformer[22] employs a unique approach that

decouples the function simulation unit and timing simulation unit, in order to improve the simulation

speed and portability of simulator.

As I noted above, the decisive drawback of these software simulators is their simulation speed.
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The typical simulation speed of these full-system simulators is about some 100 KHz, while the ab-

solute value is dependent on the simulated processor size and the simulation accuracy. For example,

MARSSx86 can achieve speed of about 200 KIPS (kilo instructions per second) when an 8-core CMP

is simulated, which equals about 25 KHz[1].

The most major approach accelerating software simulators is parallelization. HORNET[23] is a

software simulator of a tile many-core architecture with various network-on-chip options, which takes

a parallelization approach with the accuracy relaxing option to mitigate synchronization overheads

among multiple threads. In their evaluations, parallelizing a simulation of a 64-core target processor

on the Intel Xeon (12-core, 2-way SMT) host machine with keeping the cycle-accuracy achieves 5

times faster in speed opposed to the sequential simulation. This simulation speed is limited by the

speed of inter-core synchronization. They used a standard SMP environment with two 6-core processor

dies to totally offer 12 cores. The best simulation speed is achieved when only 5 cores on the single

identical processor die are activated. Striding across the two dies drastically decreases the simulation

speed. Therefore employing actual modern many-core environments, such as Intel Xeon Phi, might

more accelerate such software simulations, because the inter-core synchronization overhead on such

environments will much smaller than that of inter-die on SMP environments.

ZSim[24] is the state-of-art software simualtor for future many-core processors of thousands cores,

which uses the accuracy relaxation approach for highly prallelization simulations. They stated that

ZSim models a 1024-core chip on a 16-core host at speeds of up to 300 MIPS using detailed Out-

of-Order cores, 2-3 orders of magnitude faster than existing parallel simulators. Unfortunately, their

simulation method might generate incorrect simulation results due to the accuracy losses. Therefore,

there is a trade-off between the simulation speed and the accuracy.

2.2.3 Simulator not for General Purpose Processors

Numerous software simulators for non-general purpose processors have been developed. SimCell[25]

is a functional simulator of subset of Cell/B.E.. GPGPU-sim[26] is a commonly used cycle-accurate

simulator of NVIDIA Fermi-like GPUs for GPU architecture research. SimMc[27, 28] is a cycle-

accurate simulator of a many-core accelerator with modern network-on-chip supports. SimMc is also

used as a fundamental environment for my research.

Software simulators used not only for entire the processor simulation, but also for particular com-

ponents of microprocessors. Booksim[29] is a major software simulator for network-on-chip (NoC)

simulation. Orion[30] is also major NoC simulator with capability to evaluate power-performance. In

NoC evaluation, standardized traffic patterns and packet traces of particular benchmarks generated by

a full-system simulator are often used as an input to the simulator. NoC simulators are often used

in NoC-centric research, because simulation speed is dramatically improved compared to full-system
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simulation by using traces or standard traffic patterns. Additionally, in order to obtain more accurate

simulation results with due consideration of exact dependencies across the on-chip traffics, Netrace[31]

can handle the dependency-driven packet generation from the given application traces.

2.2.4 Simulator not for Performance Modeling

The architects’ concern is not just the performance. They must examine the impact of a tested idea to

the enegy-efficiency and the circuit area. Not only for the performance evaluation, software simulators

are used also for power modeling and circuit area estimation. Wattch[32] and McPAT[33] are software

simulators to estimate energy consumption of a simulated processor using event counter values obtained

from the corresponding cycle-level software simulators. CACTI is an estimation tool of energy and

circuit area for SRAM. GPGPUWattch[34] is an energy modeling software of GPU architecture used

with GPGPU-sim. Using these software simulators for evaluations of energy and area, architects can

avoid cost-inefficint and time-consuming steps for actual processor implementation as an LSI.

2.2.5 Register Transfer Level (RTL) and Circuit Simulation

Before the LSI fabrication and the development FPGA-based prototyping, the RTL (Register

Transfer Level) design of the target processor should be validated. VCS[35], NC-Verilog[36] and

ModelSim[37] are widely used commercial simulator for RTL simulation of Verilog HDL. Icarus

Verilog[38], GPLCver[39] and Verilator[40] are famous open-source implementations of Verilog

simulators. GHDL[41] is a common open-source VHDL simulator.

In order to improve productivity of hardware development using hardware description languages,

modern hardware description languages and their processing environments have been proposed.

Bluespec[42] is a commercial HDL with a sophisticated debugging tool and simulator. Chisel[43] is a

domain specific language (DSL) on Scala for clear hardware description. It includes a fast simulation

infrastructure of 8 times faster speeds compared to VCS. Many other researchers proposed various

HDLs employing existing software programing languages as a DSL front-end[44, 45, 46]..

SPICE[47, 48] simulators are employed to verification of the circuit behavior in transistor level.

SPICE simulation is absolutely very slower than the cycle-accurate architectural simulators. Therefore

cycle-accurate architectural simulators are often used together to estimate the energy consumption of

the simulated processor.

2.2.6 Discussion

There are many software simulators to strongly encourage computer architecture research. While the

initial effort to develop a simulation system with an existing software simulator is relatively low, the

critical issue of such software simulators is their simulation speed.
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Major approach accelerating software simulations is parallelization. As a beneficial characteristic,

software simulators have inherent fined-grain parallelisms corresponding to each circuit component.

Parallelizing the simulators can improve the simulation performance in some moderate degree on con-

temporary multicore processors. Unfortunately, there are not only many fine-grain parallelisms but also

very fine-grain synchronizations to keep the cycle level accuracy of the simulation result. This feature

makes it difficult to accelerate simulations by running in parallel with keeping the cycle-accuracy.

While HORNET[23], as I mentioned, employs a parallelization approach, its simulation speed with

the cycle accuracy of simulation results is limited by the inter-die synchronization overheads. Employ-

ing modern many-core accelerator integrating a lot of small independent cores on a single die, such as

Intel Xeon Phi, will reduce synchronization overheads among the multiple threads independently run-

ning on each core. However, absolute simulation speed is still very low, up to some hundreds of KIPS

or some Hz in emulation frequency. Like ZSim[24], I mentioned above, relaxing the simulation accu-

racy is effective to reduce the impact of synchronization overheads to the simulation speed. However,

it also reduces the simulation accuracy. Additionally, the absolute speed of such software simulators is

not still enough high.

While there is a trade-off between simulation speed and accuracy, my study in this thesis explores

accurate approaches without any accuracy losses of simulation results.

2.3 FPGA-based Processor Prototyping
FPGA based prototyping is used for higher simulation speed than that of software simulators. The faster

simulation speed strongly supports system-level evaluations of not only the processor architecture but

also the application and system software.

According to literature[49], implementation ways of FPGA prototyping system are classified by

three properties: (1) direct vs. decoupled, (2) full RTL vs. abstract machine and (3) single-threaded vs.

multithreaded. In this thesis, I simply classify the implementation methods into two categories: direct

implementation and simulation-oriented implementation. I present prior researches of each category as

below.

2.3.1 Direct Implementation

Direct implementation is a natural way that the simulated processor is directly implemented on an

FPGA platform with keeping almost structures of the simulated hardware.

Direct implementation will be adequate if any FPGA platform with enough capacity to implement

the entire simulated hardware is available. A simulation system of the target hardware naturally is

realized through standard FPGA system development flow from the RTL design.
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Processor Prototyping on FPGAs

The typical use way of FPGAs is prototyping of LSIs, such as ASICs and general purpose processors.

Depending on the increase of core count in a single microprocessor, several innovative schemes for

rapid prototyping of multicores and many-cores have been proposed.

Heracles[50, 51] is an architectural exploration framework that provides RTL designs of the MIPS

processor, scratchpad-based memory system and on-chip network, with corresponding compiler kit

and software simulators. Heracles provides 3 kinds of processor RTLs of (1) single hardware-threaded

MIPS core, (2) two-way hardware-threaded MIPS core and (3) Two-way hardware-threaded MIPS

core. They evaluated the implemented system on a Xilinx Virtex-6 LX550T FPGA platform.

Unfortunately, available logic capacity of a single FPGA is limited. Additionally, a larger high-end

FPGA is expensive. Some researchers have used multi-FPGA based platforms to extend utilizable logic

capacity of FPGAs.

BeeFarm[52] is an FPGA-based multicore emulation system that supports run-time and compiler

infrastructure by using open-source soft processor written in HDL, plasma, for evaluation of software

transactional memory system.

ATLAS[53] is a prototyping system of 8-core PowerPC-based CMP with hardware transactional

memory support, which implemented on BEE2 FPGA platform. Hu et al. developed a multi-FPGA

based prototyping system for Godson-2G processor[54].

Formic[55] is a multi-FPGA based platform of 64 Xilinx Spartan-6 LX150T FPGAs, which can

simulate a multi-processor system (not CMP) of 512 Microblaze soft processor cores without hardware

coherence of memory. Xinyu et al. developed a many-core prototype of 48-core processors on 4 large-

scale FPGAs[56].

As a practical prototyping system for the commercial system, IBM developed a large-scale prototype

of Bluegene/Q processor from ASIC RTL designs on multi-FPGA platform[57]. The system operates

at 4MHz that is 100,000 faster than the logic level software simulation.

SoC Prototyping on FPGAs

Numerous implementations of FPGA-based prototyping system are reported for rapid SoC (Systemp on

Chip) verification. Banovic et al. developed a prototyping system of DSP (domain specific processor)

to explore the future DSP systems[58]. Nakamura et al. proposed a prototyping framework of custom

processors with a sophisticated debugging interface via PC[59, 60].

Kulmala et al. developed a multi-FPGA based prototyping system for GALS (Globally Asyn-

chronous Locally Synchronous) SoC with 35 Nios II soft processors[61]. Meloni et al. proposed a

cycle-accurate verification platform of ASIC (Application-Specified Integrated Circuit) evaluation[62,

63].
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Logic Emulation on FPGAs

FPGA platforms are used to accelerate logic emulations with keeping cycle-accuracy of the result.

Particularly, various efficient logic-partitioning techniques for multi-FPGA based emulation are

proposed[64, 65, 66, 67, 68, 69, 70].

Babb et al. proposed virtual wire that is a technique to overcome pin limitations in multi FPGA-

based logic emulators[71, 72]. Baviskar et al. proposed a pipelined approach to reduce the slow down

of emulation speed due to cross cutting signals[73].

Discussion

The key advantage of direct implementation is RTL design compatibility to actual LSI design. If

an FPGA platform has enough capacity of logic and memory to implement the target processor, the

modification of RTL design for FPGA implementation is very small.

The main purpose of these prototyping systems is for efficient verification of hardware/software co-

designs, instead of cycle-accurate architectural simulators. Therefore all of these prototyping systems

employ FPGA-friendly microarchitecture for processor cores, instead of no complex microarchitectures

such as Out-of-Order processor. In multi-FPGA platform of direct implementation, additionally, the

cycle-accuracy depending inter-FPGA communication may not be necessarily kept.

The problem, however, is that a large FPGA of appropriate capacity for simulated processor is re-

quired. If multi-FPGA platforms are not considered, a high-end and expensive FPGA is required for

simulations of large systems, such as a many-core processor with over 100 cores in this way. As a

critical problem of rapid prototyping using large FPGA platforms, the synthesis time that is the elapsed

time to create an FPGA circuit image (bitstream) from HDL source codes becomes critically long if

large FPGAs are used.

If multi-FPGA platforms are available, architects should think about how to partition the simulated

processor design into multiple parts and how to keep the cycle-accuracy of simulation results related

to inter-FPGA communications. Those prior researches, as I mentioned above, did not adopt any

techniques to satisfy the cycle-accuracy related to cross cutting signals among FPGAs.

The purpose of the logic emulation approaches is to verify the logics by longer simulation than

the software RTL simulators. Therefore the cycle-accuracy is a most important concern. The cycle-

accuracy should be satisfied even in multi-FPGA platforms. The critical problem of multi-FPGA based

logic emulation is slow down of the emulation speeds due to signal dependencies among FPGAs.

They also lack any appropriate abstractions to emulate memory components of processors. All

memory components should be perfectly mapped into adequate on-chip FPGA resources, even if a fat

processor design with massive memory components is emulated. In general, structure of microproces-

sors is not necessarily suitable for FPGA characteristics. In respect of memory systems, a processor
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has several on-chip cache memory systems. Usually these cache memory systems are implemented by

using on-chip fast memory fabrics (called as block RAM) of FPGAs. Unfortunately, the amount of

on-chip memory fabrics of FPGA is limited and few.

If the simulated processor requires larger capacity of on-chip FPGA memory than the available ca-

pacity of the FPGA, the simulator developer should consider combining external memory components

(DRAM). Development of such a hierarchical memory system with keeping the cycle-accuracy of sim-

ulation results is highly error-prone and time-consuming.

Therefore appropriate abstractions of inter-FPGA communications and memory system are required

for rapid development of useful FPGA-based prototyping systems.

2.3.2 Simulation-Oriented Implementation

The main purpose of simulation-oriented prototyping systems is just to accelerate processor simula-

tions with keeping cycle-accuracy of processor behavior. Against the direct implementation approach,

the simulation-oriented approach does not necessarily keep the hardware structures of the simulated

processors on FPGA platforms, because the purpose of simulation-oriented systems is just to rapidly

obtain execution results of the benchmark applications with some performance information, not to

verify the logic property in register transfer level. Therefore simulation-oriented systems employ the

specialized hardware structure to efficiently simulate the behavior of the target.

HW/SW Hybrid Approach

FAST[74] simulator is a hardware/software hybrid simulator that splits the simulation system into a

QEMU-based functional emulator and an FPGA-based accurate timing model. Decoupling into func-

tional model and timing model simplifies the simulator implementation and improves the customizabil-

ity to other processor design with different property.

PROTOFLEX[75] is also HW/SW hybrid simulator to accelerate cache simulation of CMP sys-

tems. PROTOFLEX virtualizes the execution of many logical processors onto a consolidated number

of multiple-context execution engines on the FPGA. Through virtualization, the number of engines can

be scaled to deliver on necessary simulation performance at a substantial savings in complexity.

Pure HW Approach

RAMP Gold[76] is a simulation-oriented system of 64-core SPARC processor with L2 cache memory

system which does not contain cache-coherence. RAMP Gold also employs the multithreaded simula-

tion feature to improve hardware resource utilization as well as PROTOFLEX so that the system can

be implemented on a common middle range FPGA board.

HAsim[77] is a state-of-art FPGA-based full-system simulator of a multicore processor with 16

cores and detailed on-chip network, with A-Ports[78] technique to reduce hardware resource pressures.
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HAsim employs multithreaded feature not only for processor core simulation but also on-chip router

simulation. On-chip network is a key feature to determine overall performance of modern micropro-

cessors.

Arete[6] is a different sophisticated simulation platform with detailed core model, coherent cache

memory and on-chip network. In Arete, the simulated architecture is represented in cycle-level spec-

ification, and is then transformed into simulation-oriented FPGA-optimized RTL using LI-BDN[79]

technique that relaxes the connectivity amount each hardware unit and helps to improve the FPGA

cycle time and to reduce the FPGA resource requirements by using multiple FPGA cycles to simulate

one cycle of the target architecture.

Network on Chip Simulator on FPGAs

FPGA-based simulation accelerators are not just for full-system processor simulation but also for par-

ticular components of processors. DART[80] is FPGA-assisted NoC cycle-accurate simulators. DART

employs the function-timing-decoupled style as well as RAMP Gold and ProtoFlex to support various

NoC simulations without re-synthesis of FPGA.

FIST[81] takes another approach that abstractly models each router as a load-delay curve and sum

of load-dependent delay at each visited router’s load at runtime. Mostefaoui et al. developed a multi-

FPGA based NoC simulation platform stratifying near cycle-accuracy of the simulation result[82, 83].

GPU Architecture Simulator on FPGAs

FastLanes[84] is an FPGA-based architectural simulator of GPU microarchitecture. FastLanes has

a functional model and a timing model on a FPGA as well as the other simulation-oriented FPGA

simulators. FastLanes outperforms its software equivalent by up to 2 orders of magnitude.

Discussion

The main advantage of these simulation-oriented systems is the fact that the hardware utilization is

much smaller than that of the direct implementation approach. Decoupling functional model and timing

model can avoid implementation of costly hardware components, such as forwarding unit.

These simulators also employ the multithreading technique. When the target system contains multi-

ple instances of the identical component, such as processor cores in a many-core processors, the simu-

lation engine can be modeled so that one physical hardware unit simulates multiple target components

by interleaving the component models’ execution with multithreading manner.

For example, the behavior of the target processor with four isolated cores is modeled using a single

processor core hardware, as shown in Figure 2.2(b). The single physical core unit is reused for 4 target

cores so that total hardware consumption can be dramatically reduced. If 4 target cores are simulated

without multithreading, 4 physical hardware units are required, as shown in Figure 2.2(a). Note that,

in either cases, the execution context, program counter and register file values, for each core should be



Chapter 2 Background 17

FPGA!

Core 
0!

Core 
1!

Core 
2!

Core 
3!

Core 

FPGA!

Context 0 

Context 1 

Context 2 

Context 3 

Core 
0!

Core 
1!

Core 
2!

Core 
3!

Virtual Cores!

(a) Object Duplication! (b) Multithread Simulation!

Figure 2.2 Object Duplication vs. Multithread Simulation

stored independently on the FPGA.

A critical drawback of these simulation-oriented approaches is that the RTL design for simulation-

oriented system is much different from the RTL design for pure implementation. In order to evaluate

energy and area of the simulated processor, a pure RTL design of the target architecture is required.

Therefore the architect has to implement both pure RTL design of simulated processor and correspond-

ing yet another RTL design just for simulation acceleration.

Additionally, employing multithreading technique to improve hardware utilization incurs a scala-

bility problem with the increase of simulated core count. Since a single physical object is shared to

simulate entire same kind objects, activation rate of each simulated object certainly degrades. Finally,

with the increase of simulated core count, the simulation frequency degrades. The simulator developer

should find a balanced point between multithreading simulation and duplicating physical object for

efficient simulation.

2.4 Goal of This Research
Based on the discussions above, I summarize my goals of this research. In this thesis, I establish a

sophisticated prototyping framework for future many-core processors. The framework consists of two

key technological contributions as follows:

• the acceleration method of cycle-accurate processor simulations on multi-FPGA based plat-

forms; and

• the design methodology under the resource abstraction of FPGA platforms, in order to reduce

the development complexity of FPGA-based processor simulators.
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The integrated framework aggressively improves prototyping efficiency using FPGAs for emerging

many-core processors.

I describe as below each technology for the final goal of this thesis.

Multi-FPGA based Fast Processor Simulation Platform with Scalable Simulation Speed and
Short Synthesis Time

In this study, I explore a cycle-accurate and scalable FPGA-based prototyping scheme for many-core

processors. While the general FPGA-based prototyping requires the extensive synthesis time to gen-

erate a FPGA circuit image from RTL designs, FPGA-based prototyping system is still effective for

efficient processor simulation because of its absolute simulation speed. In order to avoid additional de-

sign efforts of RTL designs for the simulation-oriented approach, this research explores a sophisticated

direct implementation approach to satisfy the scalability of simulation speeds and the cycle-accuracy

of simulation results.

As the first technological contribution of this thesis, I propose a multi-FPGA based simulation

method that offers the fast simulation speed, the scalability against the core count, short synthesis

time with keeping the cycle-accuracy of simulation results.

In order to archive scalable simulation speed with increasing the core count, my method employs

a tile structure using multiple FPGAs. With increasing the core count of the simulated processor, my

method can increase the used FPGA count in order to keep the same simulation speed. It enables that

the simulation system achieves the perfect weak-scaling in simulation speed.

Another beneficial point of this strategy is the reuse of FPGA circuit image for synthesis time re-

duction. The simulated design is portioned into multiple regions so that they are mapped into for each

small FPGA. With the aid of module level redundancy of manycores, the identical circuit image is

re-used for several FPGAs of the system. It dramatically reduces the circuit synthesis time.

Design Methodology of FPGA-based Prototyping Systems under Resource Abstractions of FPGA
Platforms

The advantage of the direct implementation approach is that almost identical RTL designs can be used

both for LSI fabrications and for FPGA-based prototyping. However, the simulator designer should

manage the characteristic gap between the raw RTL design of simulated processors and the utilizable

resources on FPGA platforms. If the required resource amount exceeds the on-chip capacity of logic

or memory on a single FPGA, simulator designers should consider employments of multiple FPGAs

or off-chip memory components. It needs several time-consuming and error-prone steps, especially for

cycle-accurate simulation results. Therefore appropriate abstractions of inter-FPGA communications

and memory system are required for rapid development of useful FPGA-based prototyping systems.

As the second technological contribution of this thesis, I propose an abstraction methodology of

various resources on FPGA platforms, in order to mitigate the critical gap between ideal LSI-oriented
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RTL designs and FPGA-prototyping-oriented RTL designs. In order to prevent FPGA-specific imple-

mentations of simulated processors, the design methodology offers two abstract objects corresponding

to memory resources of FPGA and inter-FPGA communications on multi-FPGA platforms.

RTL designs using the provided abstractions should be translated into actual FPGA-oriented RTL

designs for FPGA implementation. I developed a IP-core synthesis tool-chain that generates a FPGA-

oriented RTL design package of simulated processors as an IP-core, for my methodology with resource

abstractions. The tool-chain automatically synthesizes an AMBA AXI4 (a popular on-chip interconnect

standard) IP-core from the input RTL design under the resource abstractions. In order to change the

hierarchy of input RTL designs, I also developed an open-source hardware design processing toolkit

for Verilog HDL RTL.

2.5 Baseline Many-core Architecture as a Prototyping Target
This section presents a baseline many-core architecture used as a prototyping target in this research. I

use M-Core architecture[28] as a prototyping target for evaluations of my methods. Figure 2.3 shows

the architectural overview.

M-Core is a many-core accelerator with multiple computation nodes and a 2D mesh interconnection
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connecting the nodes. In this thesis, the computation node is represented as Node. Each Node has a

processor core, a local memory, a DMA controller and an on-chip router. The interconnection for inter-

core communications is a modern packet-based on-chip network, instead of a legacy shared bus, for the

high performance and the scalability. On-chip data sharing is represented by using DMA operations to

another Node, similar to Cell/B.E. It simplifies the structure of hardware systems. Note that the number

of cores is not identified in the architecture. The architect can arrange the appropriate count of cores.

2.6 Summary
In this chapter, I presented the background of my work. As the fundamental knowledges, I described

the purpose of processor simulation and the standard evaluation flow of microprocessors using various

simulation tools.

I described the prior researches of software-based processor simulations. Numerous software simu-

lators have been developed to strongly encourage processor architecture researches. The purpose and

structure of software simulators have been changed with the paradigm shift to multicores.

The software simulators are helpful for early stage evaluations, due to their eases on modifications.

The critical drawback of the software simulators is that the simulation speed is very slow. Paralleliza-

tion of software simulators can improve the simulation performance in some degree. However, the

scalability of simulation speed on the parallelization is restricted by inter-core communication over-

heads. In order to more accelerate the simulations by parallelizations, the accuracy relaxation approach

is highly effective. Unfortunately, it incurs incorrect simulation results. Therefore there is a trade-off

between the speed and the accuracy.

I introduced the related researches of FPGA-based processor simulations. By using FPGAs, pro-

cessor simulations are highly accelerated by employing inherent fine-grain parallelisms with frequent

synchronizations. It enables larger and realistic simulations that are difficult on the software simulators.

I classified the FPGA-based simulators into two categories based on their strategies: direct implemen-

tation and simulation-oriented implementation.

The direct implementation approach is a natural prototyping way to realize a simulation target on

FPGAs. In order to implement a simulation target on FPGAs, the direct implementation approach

does not usually require so many modifications of the RTL designs. FPGA-based simulators of direct

implementation are efficient especially for verification of hardware/software co-designs. Unfortunately,

capacity of logics and memory blocks on a single FPGA is limited. To expand the logic capacity,

multi-FPGA based platforms are typically used. To expand the memory capacity, an off-chip memory

component, such as DRAM, is also used together. In such situations, simulator designers should map

the simulated processor with the adequate logic partitioning and hierarchical memory systems onto

FPGA platforms. To this end, it takes highly error-prone and time-consuming steps in the system
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development.

Simulation-oriented FPGA-based simulators can achieve good area efficiency so that the simulation

system can be implemented on a single middle range FPGA. However, the main purpose of simulation-

oriented prototyping systems is to accelerate cycle-accurate processor simulations. They employ some

clever techniques of decoupling the simulated processor design into a functional model and a timing

model, and multithreaded simulation to reduce the hardware resource overhead. However, these tech-

niques bring a critical drawback that it requires yet another RTL design instead of pure RTL design of

the simulation target for LSI-fabrications.

Based on these discussions, I presented the goal of this research. The goal of this research is to

realize a sophisticated prototyping framework for future manycores. The framework consists of two

key technologies: The acceleration method of cycle-accurate processor simulations on multi-FPGA

based platforms; and the design methodology under the resource abstraction of FPGA platforms in

order to reduce the development complexity of FPGA-based processor simulators. The framework

aggressively improves the prototyping efficiency for emerging many-core processors.

Finally, I presented M-Core, a baseline many-core architecture used for evaluations of my research.

M-Core is a many-core accelerator with simplified DMA-based on-chip memory systems and a 2D

on-chip network.
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Chapter 3

ScalableCore System: A Multi-FPGA
based Processor Simulation Platform

In this chapter, I introduce the acceleration method of cycle-accurate processor simulations on multi-

FPGA based platforms. To counter scalability issues of the simulation speed and the synthesis time, I

propose ScalableCore system, a cycle-accurate FPGA-based simulator of a scalable platform structure

using multiple FPGAs.

I introduce the overall concept and architecture of ScalableCore system. ScalableCore system is

an extendable platform using numerous FPGA units corresponding to each processor core of a 2D

mesh many-core processor. The core count of a simulated processor on ScalableCore system can be

increased by changing the number of used FPGA units. The remarkable characteristic of ScalableCore

system is that the system achieves the perfect weak-scaling at simulation speeds increasing the core

count of the simulated processor, with keeping the cycle-accurate simulation results. In other words,

even increasing the core count of a simulated processor does not decrease the rate of simulated cycle

count per unit time, corresponding to Hertz (Hz).

Not just to propose the architecture of a simulation system, in order to evaluate the viability of the

proposed method, I developed an actual test bed FPGA platform of ScalableCore system. The evalu-

ation result shows that the method of ScalableCore system provides the good scalability of simulation

speeds with low overheads in FPGA resource consumption.

I show informative case studies of many-core processor evaluations using the developed test bed

system. The first case study is an evaluation of a task allocation scheme on a many-core processor.

I evaluated a novel task allocation scheme on many-core processors to improve the chip-level perfor-

mance. The second case study is an evaluation of a task allocation scheme on a dependable many-core

processor with DMR (dual modular redundant) execution mode. I explored a balanced strategy of task

allocations on many-core processors for both high performance and high dependability, by using the

test bed system.

The main contributions of this chapter are as follows:
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• to describe the overall concept and architecture that realizes the scalable simulation speed with

keeping the cycle-accuracy;

• to describe the test bed implementation features;

• to describe the evaluation results using the test bed system, compared with a corresponding

software-based simulator and prior FPGA-based prototyping platforms; and

• to describe the case studies of many-core platform evaluations using the test bed system.

3.1 Motivation
FPGA-based prototyping is effective way for efficient processor simulation, due to its absolute simu-

lation speed. However, FPGA-based prototyping using a large high-end FPGA requires a very long

time to synthesize an FPGA circuit image file (as known as bitstream). Especially future many-core

processors will be greater in circuit sizes.

Fortunately, many-core processors have numerous redundant components, such as processing cores.

With appropriate preparations, we can re-use the identical circuit data for multiple FPGAs. Addition-

ally, by employing the tile architecture for the simulation system and by splitting the simulated proces-

sor design into multiple parts in advance, we can easily expand the simulated processor with keeping

the fast simulation speed and the cycle-level accuracy. To this end, I choose a multi-FPGA based ap-

proach, in order to reduce the synthesis time and to obtain the scalable simulation speed against the core

count of a simulated processor. In this work, I aim for hundreds fold speed up of processor simulations

with keeping the cycle-accuracy with the multi-FPGA way.

3.2 Overall Concept and Architecture
I propose ScalableCore system, a scalable environment using multiple FPGAs for tile architecture

simulation[85, 86]. In this study, I selected as a prototyping target M-Core architecture[28] described in

the previous chapter, a DMA-based homogeneous many-core architecture with a mesh on-chip network.

Figure 3.1 shows an example structure of ScalableCore system to simulate a many-core processor

with 16 processor cores and 4 off-chip memory interfaces. The system consists of 16 FPGA units cor-

responding to processor cores and 4 another FPGA units corresponding to off-chip memory interface.

Whole the system emulates behavior of the target processor.

ScalableCore System is an implementation fashion that the simulated processor is partitioned into

multiple regions, and then connects them to construct an entire processor. If identical partitioned re-

gions exist, sharing the same FPGA circuit image can reduce the synthesis time of the circuit image.

Finally it helps much quick FPGA-based simulation accelerator development.

FPGA unit corresponding to a processor core is named as ScalableCore Unit, and FPGA unit cor-
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Figure 3.1 Concept of ScalableCore System

responding to a memory interface is named as Memory Unit, respectively in this work. ScalableCore

Unit is a small circuit board with a single FPGA (Xilinx Spartan-6 XC6SLX16) and an independent

SRAM IC. Memory Unit is also a small circuit board with a single FPGA (as same as ScalableCore

Unit) and an independent DRAM IC.

As the important feature of ScalableCore system is that the simulated core count can be increased

by increasing the amount of employed FPGA units. For instance, If a many-core processor of 64 (8×8)

cores and 4 DRAM controllers is the simulation target, the system of 64 (8×8) ScalableCore Units and

4 Memory Units is the corresponding setup.

As another important feature of ScalableCore system is the connectivity. Every ScalableCore Unit is

connected to only 4 neighbors of upside, downside, left side and right side. ScalableCore Unit has 4 bi-

directional serial I/O ports to be connected and communicate to the neighbors. For the system stability

in the case of an extended system, ScalableCore system has no global signals through whole the system,

and each ScalableCore Unit works under its own clock signal by the clock oscillator. Therefore the

system is extendable for the target core count by increasing the number of ScalableCore Units with

keeping the stability of the system.

Power supply is also essential for stability of the system. DC 5V power to drive the system is supplied

from the left edge of the system and is shared by the same rows of ScalableCore Units. The voltage
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of applied power is changed to the appropriate voltage to drive each IC by the DC-DC regulator each

ScalableCore Unit has.

In the current implementation, applications running on the simulated processor are loaded via the

USB-serial controller from a host PC to the ScalableCore Unit in upper left in the figure. Simulation

results are transferred to the host from the ScalableCore Unit via the USB-serial controller.

3.3 Design
3.3.1 Architecture of ScalableCore Unit

ScalableCore system consists of multiple ScalableCore Unit (FPGA node) with processor core func-

tions and some system level functions to control the system. Figure 3.2 shows the function stack of

ScalableCore Unit. Figure 3.3 shows the architecture of ScalableCore Unit.

One of principal motivations of this work is to reduce the synthesis time of FPGAs. In ScalableCore

system, the simulated processor is manually partitioned into multiple regions corresponding to each

ScalableCore Unit. Since our simulation target is M-Core, a pure and homogeneous many-core ar-

chitecture, all ScalableCore Units use the identical FPGA circuit image (bitstream). It realizes short

synthesis time for all FPGA circuit images, even if the core count of the simulated processor increased.

In the current system for M-Core, each ScalableCore Unit has 4 functions of M-Core Node: Core,

Router, DMAC and Local Memory. System function in ScalableCore Unit is an essential component

to support cycle-accurate emulation cooperated with all ScalableCore Unit.

Each FPGA emulates behavior of the target core by taking synchronizations of simulation status for

emulated clock cycle. As I explain later, synchronization combinations of each ScalableCore Unit are

restricted to the 4 neighbor ScalableCore Units. We named this bound-reduced synchronization as local
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Figure 3.3 ScalableCore Unit

barrier synchronization. It serves the simulation speed scalability in any core count.

As the low level feature of ScalableCore Unit, FPGA-FPGA communications are treated via Ser/Des

(serializer / de-serializer) components with NRZI encoding and parity code for reliability. Since

Ser/Des runs faster than the other internal components, asynchronous FIFOs are employed in the

boundaries of clock domains.

ScalableCore system adopts an abstraction technique to easily implement a target processor, similar

to A-Ports[78]. In the figure, Memory multiplexer and state machine controller are important system

functions to virtualize the limited FPGA resources in time-multiplexing manner. SRAM controller,

Clock and Reset are basic functions of the system.

3.3.2 Architecture of Memory Unit

In order to emulate an off-chip memory, Memory Unit consisting of a DRAM emulation component

instead of several processor core components in ScalableCore Unit is used. Figure 3.4 shows the

architecture of the Memory Unit. Memory Unit has an off-chip DRAM on the board, and uses a

primitive DRAM controller of Spartan-6 hard macro. In order to provide adequate access latency of

DRAM in the simulation world, this primitive DRAM controller is wrapped with a DRAM timing
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model. DRAM timing model generates stall signal to control the Memory Controller for access latency

emulation.

3.3.3 System Level Function for Cycyle-Accurate Simulation

In ScalaleCore system, two techniques are important to satisfy the scalability of simulation speed and

the cycle-accuracy of simulation: local barrier synchronization and virtual cycle.

Virtual Cycle

Direct implementation of processor component is not easy due to FPGA resource characteristics and

limitations. As prior works, a clock cycle on the FPGA should not necessarily correspond to a clock

cycle on the simulated processor. In order to emulate complex hardware component, such like multi-

port RAM, using simple FPGA-friendly hardware component, a reasonable way is to emulate a clock

cycle of the simulated processor by using multiple clock cycle on FPGA.

In order to simulate the target processor with the cycle-accurate manner, each ScalableCore Unit

takes a synchronization of simulation status for every simulated clock cycle. Synchronization via the

Ser/Des units requires some physical traversal latency. We well scheduled multi-cycle circuit emula-

tions and synchronizations via Ser/Des components so that these operations are overlapped to improve

the simulation performance.

In this work, this method of well scheduling of time-multiplexed circuit simulation and synchroniza-

tion communication is called Virtual Cycle. It makes easy to apply complex hardware components on

FPGAs with keeping cycle accuracy and simulation speed.

Figure 3.5 shows a timing chart of virtual cycle in a ScalableCore Unit. In the beginning of every

virtual cycle, all statuses of internal registers and output signals in the target processor are emulated.
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Then, the memory multiplexer and memory controller emulate behavior of memory accesses using the

latest status in the target in order to emulate memory operations.

Now we assume that the simulated component on each ScalableCore Unit requires 4 ports for mem-

ory accesses: (1) instruction fetches for a core, (2) load/stores for a core, (3) reads for a DMA controller

and (4) writes for a DMA controller. In contrast, hardware unit for emulating local memory is 1-port

memory controller with some DMA control registers and memory-mapped registers. This gap in the

number of ports is resolved by the time-division multiplexing. Finally the memory units complete the

emulation of multi-ported memory.

At the same time, the latest simulation data are arrived from the neighbors. Since every ScalableCore

Unit runs under the control of the clock oscillator, the arrival timing of synchronization data is different

for each ScalableCore Unit. To ensure the cycle-accuracy, state machine controller of ScalableCore

Unit waits for all synchronization data transfers and memory emulation. After the synchronization,

simulation step goes to the next cycle of the simulated processor.

Local Barrier Synchronization

In ScalableCore system, the simulated processor is partitioned and mapped into multiple FPGAs. In

order to obtain a cycle-accurate simulation result for all FPGA units, each ScalableCore Unit needs to

use the latest simulation states generated in other ScalableCore Units.

A simple way to make this is to take an all-to-all barrier operation with respect to each emulated
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cycle is proceeded on each ScalableCore Unit. However, taking an all-to-all operation is not realistic

because of its large overheads interfering the system scalability.

Now we again consider the simulation target architecture. The current ScalableCore system focuses

on M-Core, a tile architectures with 2D mesh on-chip network. Therefore, to satisfy the cycle-accuracy,

each ScalableCore Unit has to know the newest simulation status of only its 4 neighbor ScalableCore

Units.

Newest signal state of a simulated component generated at cycle N can propagate up to only its

neighbors till the next cycle, cycle N+1. Therefore, each ScalableCore Unit has to wait just its 4

neighbor ScalableCore Units to satisfy the cycle accuracy. I named local barrier synchronization for

this minimum status synchronization technique. This technique enables to increase the simulated core

count by increasing employed ScalableCore Units without synchronization overhead increase.

3.3.4 RTL Design Rule

Simulation state is defined as output of emulated hardware, such as flip-flops and wires. In order to

update at certain timing using the correct value, ScalableCore system requires a special input signal for

each register update statement in RTL designs. Figure 3.7 shows a sample code of emulated component

written in Verilog HDL.

Update statements for flip-flops (always statement in Verilog HDL) have an if(EN) rule. EN is an

input signal to drive the update statements by state machine controller at the beginning of a virtual

cycle.
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 always @(posedge CLK or negedge RST_X) begin 

        if(!RST_X) begin 

            if_id_invalid <= 1; 

            if_id_pc <= 0; 

        end else if(EN) begin 

            if(!if_id_stall) begin 

                if_id_invalid <= if_id_flush; 

                if_id_pc <= icache_addr; 

            end 

        end 

    end!

When (EN == 1), 
update all flip-flops!

Figure 3.7 RTL Coding Rule for Virtual Cycle

Additionally, to avoid propagating newest output state of emulated hardware to the other hardware

components before the next virtual cycle, interface registers (IR in Figure 3.3) are inserted in boundaries

of hardware components. Then values of them are updated at the end of a simulated cycle. Insertion

points of interface register represent the modularity of each emulated component. The system designer

should manually insert interface registers into the design of ScalableCore Unit.

3.4 Hardware Platform Implementation
To evaluate the viability of my proposal, I developed an actual test bed of ScalableCore system. In

this section, I explain implementation features of the actual ScalableCore system test bed. Figure 3.8

shows a snapshot of ScalableCore system consisting of 100 ScalableCore Units. The overall size of the

system of 100 ScalableCore Units is very small, 46.7cm × 60cm.

As shown in left of Figure 3.9, a ScalableCore Unit is a small card-sized, 4.67cm × 6.0cm, FPGA

board with Xilinx Spartan-6 XC6SLX16 (Speed Grade -2), a 512KB (1-port, 8 bit × 512K entry)

SRAM and a configuration ROM Xilinx XCF04S.

A ScalableCore Unit also has a JTAG port to write circuit information for FPGA and configuration

ROM. Several FPGA’s I/O ports are assigned to external I/O pins in edge of the board to communicate

the neighbors. To drive the system of 100 units requires DC 5V power supplies.

In the current implementation, clock frequency of the oscillator is 40 MHz. Clock frequency of the

Ser/Des modules is 80 MHz. The data transfer rate of the Ser/Des modules is 80 Mbps.
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Figure 3.8 Snapshot of ScalableCore System with 100 FPGA Units

3.5 Evaluation
This section provides the evaluation results of the method of ScalableCore system on the actual test

bed system. I evaluated the system in two points: (1) simulation speed and (2) FPGA resource usage.

I used Xilinx ISE 12.4 for FPGA circuit synthesis.

3.5.1 Simulated Processor Setup

The configuration of the simulated processor for evaluations of ScalableCore system is listed in Table

3.1. As I noted above, I choose M-Core architecture, a homogeneous 2D mesh NoC-based many-core

architecture presented in the background chapter, for the evaluations. The processor core is a simple

single-issue pipeline core without floating point units. The router has an advanced micro architecture

of 4-stage and 2-VC for use in NoC-oriented research. DMA Controller has 2-port for DMA read and

DMA write to local memory. To realize a on-chip node memory of each Node, a SRAM chip on a
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Figure 3.9 Snapshot of ScalableCore Unit (Left) and Memory Unit (Right)

Table 3.1 Microarchitecture of Simulation Target (M-Core)

Core MIPS32 ISA, 5-stage, Single-issue,2-memory-port (Fetch, Load/Store)

DMA controller 2-memory-port (32-bit DMA Read and DMA Write)

Network topology 2-D mesh

On-chip router 5-input/output (North, East, West, South, Core),
4-stage
(NRC and VA: Next Route Computation and Virtual Channel Allocation,
SA: Switch Allocation, ST: Switch Traversal, LT: Link Traversal),
2-virtual-channel, FIFO depth: 4,
Credit-base flow control, X-Y Dimension Order Routing

Node memory 512KB (per Node), 32-bit width, access latency: 1
4-port (Fetch, Load/Store, DMA Read, DMA Write)

ScalableCore Unit is used.

3.5.2 Simulation Speed

In order to demonstrate the speed scalability of ScalableCore system, I evaluated the simulation speed

of actual test bed of ScalableCore system by comparing with the corresponding cycle-accurate software

simulator, SimMc. The configuration in microarchitecture is listed in Table 3.1, but the flow-control

of on-chip network in SimMc is Xon/Xoff. I measured the simulation speed of SimMc running on a

standard computer with Intel Core i7 870 with 4GB memory. As the compiler, gcc 4.5.2 is used with

-O3 option. The operating system is Ubuntu server 11.04.

I used two benchmark applications for the speed evaluation: N-Queen (NQ) and Matrix multiplica-

tion (MM). N-Queen is a computing intensive and massive parallel application of master-worker model,
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Figure 3.10 Simulation Speed

which contains limited DMA communications. The matrix multiplication I used contains much more

DMA communications than the N-Queen.

Figure 3.10 shows the simulation speeds of SimMc and ScalableCore system, respectively. Sim-

ulation speed is defined as a simulation step count proceeded in a unit time (The unit is KHz). In

SimMc, with increase of the Node count of the simulated processor, the simulation speed decreases.

While SimMc is not parallelized for readability and customizability of the simulator code, speed up by

the parallelization will be small due to synchronization overheads for cycle-accuracy. Finally, SimMc

achieves the speed of 90 KHz in 16-Nodes simulation with N-Queen. Then the speed decreases to 8.9

KHz in 100-Nodes simulation with N-Queen.

In contrast, ScalableCore system achieves scalable simulation speed with increase of the Node count

in the simulated processor. It achieves constant simulation speed of 1142 KHz in any cases. In Scal-

ableCore system, a clock cycle in the simulated processor is emulated by using multiple FPGA-side

clock cycles. To give emulation result of 1 cycle in the target processor, it takes about 35 FPGA clock

cycles for updating of target circuit state, memory emulation and synchronization of simulation states.

The evaluation result shows that it does not depend on the application behaviors and the core count,

thanks to local barrier synchronization and virtual cycle.

Figure 3.11 indicates the relative speed of ScalableCore system to SimMc. As shown in Figure
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Figure 3.11 Relative Speed

3.10, increase of the core count of the simulated processor super-linearly decreases the simulation

speed of SimMc. In contrast, simulation speeds of ScalableCore system are consistent. In 16 nodes,

ScalableCore system runs at 12.6 times faster than SimMc. The relative speed to SimMc increases with

the increase of the core count. In 100 nodes, the speed of ScalableCore system peaks at 129 times faster

simulation speed of SimMc.

In respect of absolute simulation speed, ScalableCore system has an advantage over prior FPGA-

based simulation-oriented prototyping systems. HAsim, an FPGA-based multicore simulator employ-

ing fine-grain time multiplexing for efficient resource usage, achieves up to 3.2 MHz at the maximum,

160 KHz at the minimum and 625 KHz on the average for simulation of 16 cores. While not accurate

due to some differences in the architecture of the simulated processor, my evaluation result shows that

ScalableCore system achieves excellent simulation rate on the average compared to the other systems.

In respect of cost performance, ScalableCore system achieves higher simulated frequency per price

than software-based simulations on a standard computer. Price of each ScalableCore unit is about

8,000 yen. Since 100 of ScalableCore units are utilized to simulate a many-core processor with 100

cores, the total price of the FPGA system is 800,000 yen. Additionally, a standard computer is also

required to manage ScalableCore system. The price of the computer is about 100,000 yen. The total

price of ScalableCore system is 900,000 yen. Absolute simulation speed of simulating100 cores is

1142 KHz. Therefore the rate of simulated frequency per price is 1.4275 [Hz/Yen]. In contrast, to
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Figure 3.12 Floorplan of ScalableCore Unit on Spartan-6 XC6SLX16

Table 3.2 Resource Utilization

Module LUT Register BRAM LUTRAM DSP

System Function 1700 2693 16 0 0

Core 1910 713 3 0 6
DMA Controller 444 378 0 0 0

Memory Controller 590 535 0 0 0
Router 2475 959 0 280 0

Target Total 5429 2585 3 280 6

Total 7129 5278 19 280 6

Percent Utilization 84% 29% 31% Nan 6%

simulate the processor using SimMc on a standard computer, it requires only about 100,000 yen for

the computer. However, absolute simulation speeds are relatively slow, which is 8.9 KHz. Therefore

the rate of simulated frequency per price is 0.089 [Hz/Yen]. Finally, this comparison demonstrates that

ScalableCore system achieves 16 times better cost performances.
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3.5.3 Resource Utilization

Figure 3.12 depicts the actual floor plan on Spatan-6 XC6SLX16 FPGA of ScalableCore Unit with

the simulated processor components (core, DMAC, router and local memory) and simulation functions

after all synthesis steps (logic synthesis, map and place-and-route). The detailed breakdown of resource

usage is listed in Table 3.2.

As the result, 84% of LUTs and 29% registers of Spartan-6 XC6SLX16 FPGA are utilized for the

target implementation and system functions, respectively. Note that the resource usage of the local

memory is comprised of the memory controller and the system functions, because the storage part of

the local memory is mapped to the off-chip SRAM.

The target processor use 5429 LUTs and 2585 registers; LUTs are consumed than registers due to

direct implementation of the target processor. An on-chip router consumes much more LUTs than the

registers, because the router is a collection of a lot of multiplexers and decision logics for arbitrations.

The system functions for cycle-accurate simulations utilize 1700 LUTs and 2693 registers; Due

to memory multiplexer and interface registers for separation of emulated components, the amount of

consumed registers is much more than the amount of LUTs. Totally, 20% of LUTs and 15% registers

of entire Spartan-6 XC6SLX16 FPGA are used for the system functions for simulation support. These

resource overheads do not be too serious.

3.6 Discussion
This section provides several discussions compared with prior researches of software-based processor

simulators and FPGA-based prototyping systems.

3.6.1 Comparison with Prior Software Simulators

As I mentioned above, software simulators have many fine-grain parallelisms corresponding to circuit

components of the simulated processor. Parallelizations on modern multicore environments can en-

hance the simulation performance in some moderate degree. However, existence of much synchroniza-

tions to satisfy the cycle-accuracy of simulation results restricts the achievable simulation performance

on parallel platforms. For instance, HORNET[23], I referred to in the background, supports cycle-

accurate parallel simulations on the modern multicore SMP environments. A modern standard SMP

environment consists of multiple multicore CPU dies on an identical mother board. The CPU dies are

tightly connected via fast and high throughput inter-die links for each other. However, the typical com-

munication latency across CPU dies is much bigger than that of on-die inter-core communications using

cache coherent messages. Such many synchronizations with short messages dramatically decrease the
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Table 3.3 Simulation Speed Comparison

Name FPGA Processor Configuration Simulation Speed

Direct Implementation

ScalableCore system 100 × Xilinx Spartan 6 LX16 100-core 1.1 MHz

BeeFarm[52] Xilinx Virte 5 LX115T 8-core 25 MHz

Heracles[50] Virtex 6 LX550T 36-core 100 MHz

Simulation-Oriented Implementation

RAMP Gold[76] Xilinx Virtex 6 LX240T 64-core 50 MIPS (Up to 800 KHz)

HAsim[77] Xilinx Virtex 5 LX330T 16-core 625 KHz

HAsim with LEAP[87] 2 × Xilinx Virtex 5 LX330T 128-core 3 MIPS (Up to 23 KHz)

Arete[6] 4 × Xilinx Virtex 5 LX110T 8-core 55 MIPS (Up to 6.87 MHz)

simulation performance.

If each core on a multicore processor executes a larger simulation engine with numerous instances

of simulated cores, the impact of inter-die synchronization can be reduced. It will improve just the

scalability to the core count. However, absolute simulation speed of software simulators, even if just a

single core is simulated, is much slower than that of FPGA-based simulators. Employing such scheme

will make the absolute simulation speed much slower. Like ZSim[24], I mentioned above, relaxing the

simulation accuracy is effective to reduce the impact of synchronization overheads to the simulation

speed. However, it also reduces the simulation accuracy.

As an innovative approach, many-core processor simulations can be performed on an existing many-

core processors, such as Intel Xeon Phi. Employing modern many-core accelerators with many small

independent cores on a single die will reduce synchronization overheads among the multiple threads

independently running on each core. It improves the scalability of simulation speed. Unfortunately the

absolute simulation speed will be slow, due to their powerless thin cores.

In contrast, ScalableCore system provides a low latency communication module for fast inter-FPGA

synchornizations by the pure hardware implementation. ScalableCore system employs a specialized

structure for tile architecture simulations, so that it partitions and maps a target tile architecture in a

natural way. Even if the core count of a simulated processor increases, the synchronization overheads

do not increase, because synchornizations for each direction on each FPGA can use independent inter-

FPGA communication channel for each. Therefore, when a tile architecture is simulated, ScalableCore

system can provide constant simulation speeds with keeping the cycle-accuracy.

3.6.2 Comparison with Prior FPGA-based Prototyping Systems

The strategy of ScalableCore system is much similar to prior FPGA-based prototyping systems of the

direct implementation approach, such as BeeFarm[52] and Heracles[50], than the simulation-oriented
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systems, such as RAMP Gold[76] and HAsim[77]. The reported simulation speed of each FPGA-based

simulation platform is listed in Table 3.3.

BeeFarm[52] and Heracles[50] are FPGA-based simulators on the direct implementation approach

using a single FPGA. Each of them achieves faster simulation speed, 25 MHz of BeeFarm and 100

MHz of Heracles, respectively, than ScalableCore system. The reason is that each of them employs

a very large FPGA environment without any consideration for multi-FPGA environments. Therefore

they require a very long synthesis time for bitstream generations. In contrast, absolute simulation speed

of ScalableCore system is not faster than them. However, the method of ScalableCore system can easily

expand the simulatino system without additional bitstream synthesis steps. In addition to the advantage

of circuit synthesis, since the method of ScalableCore system is originally designed for multi-FPGA

environment, the system achieves scalable simulation speeds against the increasing core count.

RAMP Gold[76], HAsim[77] and Arete[6] employ the simulation-oriented approach for area-

efficient simulation engine implementation for multiple identical cores. They can achieve good

simulation performance with simulation-specific RTL designs with a separation of functional model

and timing model. Therefore the RTL design structures for LSI implementation and simulation purpose

are much different. Unfortunately, increasing the core count of a simulated processor decreases the

simulation speed represented as a frequency value. Actually, ScalableCore system also requires certain

modification of RTL designs. However, the most structures of RTL designs can be kept, because

ScalableCore system requires only inserting interface registers into boundary of modules and inserting

throttle signals for cycle-accurate register updates. ScalableCore system has an advantage to simplicity

of RTL designs for simulation.

While the current implementation of ScalableCore system is for a DMA-based architecture, Scal-

ableCore system can model modern cache-based architectures, if the architecture employs an approach

of tile architecture. Since those architectures have RAM components, as well as M-Core, and cache

controllers, instead of DMA controllers in M-Core, those architectures can be implemented in the same

way.

Comparison with Prior Multi-FPGA based Platforms

As a popular multi-FPGA platform of many small FPGAs, CUBE[88] is a systolic array system of 512

Spartan-3 FPGAs. The system consists of 8 baseboards that implements 64 FPGAs. The difference

with ScalableCore system is that the interconnection of inter-FPGAs is a unidirectional parallel bus,

and that each FPGA has no corresponding off-chip memory such like SRAM on ScalableCore Unit.

Formic[55] employs more similar a FPGA system architecture to ScalableCore system. Actually

Formic system simulates a multiprocessor system of 512 Microblaze soft processors. I think the FPGA

platform of Formic is also useful to simulate a many-core processor by employing the same implemen-
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tation scheme as well as ScalableCore system.

Additionally, there are various prior researches of multi-FPGA based accelerators. BEE[89] is a

popular multi-FPGA platform used in various researches. BEE employs multiple large-scale high end

FPGAs with costly interconnections among FPGAs, in contrast to ScalableCore system. Sano et al.

proposed several multi-FPGA based platform and efficient computation techniques under the limited

memory bandwidth for high performance CFD (computational fluid dynamics)[90, 91, 92]. FLOPS-

2D[93] is also a multi-FPGA platform for CFD with optimized deep pipelines. Yokota et al. proposed

a multi-FPGA based real-time medical diagnosis system with good scalability[94]. Lin et al. proposed

a vocabulary speech recognizer on dual FPGA platform[95]. Kapre et al. proposed a VLIW-based

accelerator for SPICE model execution on multiple FPGAs[96].

Multi-FPGA platforms are hopeful to accelerate certain applications, not limited to processor simu-

lation. ScalableCore system is useful not only for fast processor simulations but also for high perfor-

mance computing. We developed a scalable stencil computation accelerator using ScalableCore system

as a computing platform[97]. The implementation result shows that the ideology of ScalableCore sys-

tem that partitions an application into multiple parts works very well for HPC applications.

3.7 Case Study 1: Evaluation of Task Allocation Method for
Multiple Parallel Applications

In many-core processors, task allocation (thread allocation) is one of distinct factors to affect applica-

tion performance and whole processor throughput[98, 99]. However, to determine a task mapping for

better performance on the many-core processor is not easy due to its large exploration field. As a novel

lightweight task allocation method for manycores, RMAP[100, 101], has been proposed.

As a case study, I evaluated the impact of RMAP method to M-Core architecture by using Scal-

ableCore system and larger applications that do not suit for slow software-based simulation. I used a

test bed of ScalableCore system with 100 nodes as a simulation accelerator of M-Core architecture.

The simulation takes about 20 minutes for all test applications. If this evaluation is fully completed in

software simulations, it takes about 43 hours.

Note that the all inclusive evaluation time of FPGA bitstream syntheses and simulations is lower than

that of software simulations. In this case, time to synthesize the bitstream for all FPGA units is about

15 minutes. Additionally ScalableCore system requires a time to write the bitstream to every FPGA

unit. It takes about 15 minutes. Therefore the total time of the synthesis and the simulation is about

50 minutes. In a situation that a lot of simulations are required, FPGA-based prototyping systems are

very effective.



Chapter 3 ScalableCore System: A Multi-FPGA based Processor Simulation Platform 40

A A A A

A A A A

A A A A

A A A A

B B B B

B B B B

B B B B

B B B B

C C C C

C C C C

C C C C

C C C C

D D D D

D D D D

D D D D

D D D D

(a) Normal Allocation (4 Apps) 

A B C D

B C D A

C D A B

D A B C

A B C D

B C D A

C D A B

D A B C

A B C D

B C D A

C D A B

D A B C

A B C D

B C D A

C D A B

D A B C

(b) RMAP X4 (4 Apps) 
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Figure 3.14 Task Allocation of 2 Parallel Ppplications (for This Case Study)

3.7.1 RMAP: Contention-Aware Task Allocation for Manycores

Parallel applications have some fragments of network traffic along with application behavior; at one

phase, the application has low network usage, but at other phase, it has high network usage. Key idea

of RMAP to improve the performance is to reduce self-contention of network (additional network con-
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Figure 3.15 Performance comparison of RMAP allocation and the normal allocation

tention by communications traffic of the own application) by allocating together with other applications

with different network behaviors.

Figure 3.13 shows a normal task allocation and a RMAP allocation for 4 applications. Figure 3.14

shows each allocation with 2 applications for this case study. I used two parallel applications: bitonic

sort and matrix multiply. Bitonic sort is network-intensive workload, heavier than matrix multiply.

In normal task allocation, threads of each application are mapped separately to each group of Nodes.

In contrast, in RMAP task allocation, threads of two applications are mixed and mapped. Location

of each application forms one solution of N-Rook problem. When one application consumes network

bandwidth a lot and the other does not, the bi-section bandwidth for the network-consuming application

is temporally increased by RMAP mapping.

3.7.2 Evaluation

I evaluated two task allocation strategies by using ScalableCore system. The configuration of the

simulated M-Core processor is same as the previous evaluation, which is listed in Table 3.1.

Figure 3.15 shows the application performances of each application in two task allocations and the

performance improvement by RMAP. The performance of bitonic sort is improved at 4% by RMAP

because the serious self-contention of bitonic sort is eliminated in RMAP allocation. In contrast, the

performance of matrix multiply is improved by 0.32% because matrix multiply does not originally have

such serious self-contention.

3.7.3 Summary of Case Study 1

In this case study, I evaluated the task allocation method for multiple parallel applications on many-core

processors. The evaluation result shows that the task allocation strategy for reducing the communica-
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tion contention within each application improves the total performance of the processor. By utilising

the ScalableCore system, simulation time is dramatically reduced from 43 hours to 20 minutes.

3.8 Case Study 2: Evaluation of Task Allocation Method for
NoC-based DMR Execution Manycores

In order to develop a functional computing system, dependability of a microprocessor is a key issue.

However, transistor scaling increases the soft-error rate of microprocessors. It is one of the critical

problems to decrease the dependability.

I have proposed SmartCore system[102, 103], NoC-based DMR (Dual Modular Redundant) execu-

tion mechanism on many-core processors. Key feature of SmartCore system is to employ the inherent

redundancy of PEs (Processing Element) constructing a DMR pair executing the identical thread by

using multifunction routers.

In order to detect errors on PEs, a DMR pair of independent PEs executes a single identical thread.

Eventually PEs of a DMR pair generates some packets to the network. Then all packets going out from

the DMR couple are verified at the multifunction router.

In this case study, I used ScalableCore system to explore an effective task allocation strategy with

good performance and dependability for NoC-based DMR many-core processors.

3.8.1 SmartCore System: An NoC-based DMR Execution Mechanism for
Manycores

Overview

I provide an overview of the architecture of SmartCore system, a DMR execution mechanism with

multifunction on-chip routers’ support. Figure 3.16 shows a simple example of DMR execution on

SmartCore system. Now we assume that a many-core architecture with multiple PEs (processing ele-

ment) and a conventional 2D-mesh on-chip network. Each PE in the processor is attached to the others

by the on-chip network. In the figure, a circle with R is a multifunction router.

The purpose of SmartCore system is to detect any soft-error on the PEs by simultaneously executing

an identical thread on the different PEs. If any soft-errors are occurred on the PE, the contents of packets

from the PE may be changed by the errors. SmartCore system detects these soft-errors by comparing

the packets from two different PEs executing an identical thread.

In the figure, Master A and Slave A work as a pair of DMR execution, which executes identical

program thread. Master B and Slave B also work as a pair of DMR execution. Master A and Master B

are proper PEs executing a program, and Slave A and Slave B are additional PEs for DMR executions.

In this paper, we refer to these proper PE as Master Node, and also refer to these additional PE as

Slave Node.
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Figure 3.16 SmartCore System: NoC-based DMR Execution Mechanism for Many-core Processors

Now we consider that Master A and Slave A generate packets to the other PE (Master B). In order to

verify the contents of the packet, the packet generated on Slave A is forwarded to the router of Master

A, is not traversed to the original destination. The router on Master A waits the forwarded packet

from Slave A. After the forwarding packet arrives at the router on Master A, the forwarded packet

and the original packet generated on Master A are checked by comparing each flit of these packets in

sequential order. When these packets are verified correctly by the comparison, these two packets are

merged and forwarded to the original destination. If the verification result shows that the there are any

mismatches of flits, the SmartCore system takes some adequate recovery processes, such as stopping

the corresponding threads and re-executions.

When the merged packet arrives at the router of the destination, the packet is copied into two packets

that a packet destined to the PE of the original destination and a packet destined to the Mirror Node

of the destination. The pair of DMR execution must receive the same packet sequence to continue the

program execution with the same control flow with the same data.

On-chip communications in DMR execution mode of SmartCore system are classified into 3 parts:

(1) Normal communication from a Master Node (Master-A) to another Master Node (Master-B), (2)
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Figure 3.17 Standard On-chip Router Architecture

Merge communication from a Slave Node (Slave-A) to a Master Node of the pair (Master-A) and (3)

Copy communication from a Master Node (Master-B) to a Slave Node of the pair (Slave-B). Without

DMR executions, the merge communication and the copy communication are not used.

SmartCore system does not restrict the locations of DMR pairs so that the programmer or system

software can allocate the pair for any places in the processor. In some allocations, irregular turns that

are not used in the original X-Y dimension order routing are used to forward the packets in merge

communication and copy communication. These irregular turns may incur some deadlocks of network.

In order to avoid deadlocks due to these irregular turns, a different virtual channel is used for each kind

of communication.

With DMR executions, amount of packets is increased due to the copy communication and the merge

communication. It increases the packet contentions on the network. Additionally every packet from

a PE on a Master Nodes has to wait for the corresponding packet from its Slave Node to verify the

contents. It increases the traversal latency from the source PE to the destination PE.

DMR On-chip Router

Figure 3.18 shows the microarchitecture of multifunction router. Figure 3.17 shows the microarchitec-

ture of standard on-chip router for comparison. Multifunction router has 3 special functions to support

DMR executions: (1) Packet coping; (2) Packet rendezvousing; and (3) Packet comparison and merg-

ing. Hence multifunction router architecture includes some unusual hardware components that are

shown in gray.

In order to sustain the same control flow between the DMR pair, a packet arrived at the router on the
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Figure 3.18 DMR On-chip Router Architecture

master node is copied and forwarded to its slave node. When a packet going to the PE of the master

node from its router, the packet is copied and inserted into copy buffer ((a) in Figure 3.18). At this time,

ID translator for the copy buffer ((b2) in Figure 3.18) changes the destination into its slave node, and

it also changes the virtual channel number of packets from the normal communication channel to copy

communication channel. By employing a copy buffer, an extended crossbar of 6-input 5-output is used.

A packet is checked by rendezvous and comparison of the packet contents. When a packet inserted

from the PE on the master node, the packet waits for the corresponding packet from its slave node in

the input buffer. At the same time, a packet inserted by the PE on the slave node to the router forwarded

to its master node by changing the destination by ID translator for input buffer ((b1) in Figure 3.18).

Then the packet traverses as same as a normal packet to the next router. The forwarded packet to the

Slave node eventually arrives at the router of the Master node, a flit of the packet is compared with a flit

of the packet from the PE of the Master node in sequential order by Comparator ((c) in Figure 3.18).

If any comparison mismatching of packet are found, some adequate processes for recovery from the

errors are done.

Multifunction router requires additional resource for two special-purpose virtual channels and packet

verification. These virtual channels use 2 input queues for each external direction, and packet verifi-
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Figure 3.19 Task Allocation (Separate, Master-Slave Distance = 1)

cation uses 1 input queue for the copy buffer. DMR execution with multifunction routers uses 9 input

queues and some control logics for each router.

3.8.2 Task Allocation for DMR Executions

In many-core processors, task allocation pattern affects each application performance and whole the

processor throughput, as I explained above. Since DMR execution increases on-chip traffics to verify

the execution status in SmartCore system, task allocation problem is ever more complex.

A simple task allocation strategy to avoid the slow down due to DMR executions is that two tasks

of each DMR pair are put side by side. In contrast, in order to increase the dependability, the nodes of

each DMR pair should be separately allocated so that it avoids falling in a failure mode from the same

causes, such as voltage variation, GND noise and radiations.

In this case study, I tested several allocation patterns to explore the effective allocation strategy to

achieve both superior performance and dependability. Now we assume a situation that multiple parallel

applications are executed on an identical many-core processor. In this experiment, the number of

threads of each application is 16, and each application performs in DMR mode. Totally 64 threads are

executed in a single processor all together.
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Figure 3.20 Task Allocation (Interleave, Master-Slave Distance = 1)

Side-by-Side Allocation

First, I show 3 patterns of the side-by-side allocation in Figure 3.19, Figure 3.20 and Figure 3.21,

respectively. All the distances of master-slave pairs in these allocations are 1. Note that M1 and M2

in the figures represent off-chip memories for application 1 and application 2, respectively. On the

allocation in Figure 3.19 (separate), applicatoin 1 and application 2 are separated for each other. On the

allocation in Figure 3.20 (interleave), applicatoin 1 and application 2 are separated and interleaved on

the Y-axis. On the allocation in Figure 3.21 (RMAP), applicatoin 1 and application 2 are still interleaved

based on RMAP task allocation which I explained the previous case study. Since all the master-slave

pairs are allocated side-by-side, the impact of additional communications of DMR executions to the

performance might be small.

Separated Allocation

Then, I show 4 patterns that master-slave pairs are separated in Figure 3.22, Figure 3.23, Figure 3.24

and Figure 3.25, respectively. On the allocation in Figure 3.22 (block), all master nodes and all slave

nodes are packed, respectively. On the allocation in Figure 3.23 (interleave ROT), the positions of

all slave nodes in Figure 3.20 are exchanged in Y-axis. On the allocation in Figure 3.24 (interleave
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Figure 3.21 Task Allocation (RMAP, Master-Slave Distance = 1)

ROTx2), the positions of all slave nodes in Figure 3.23 are exchanged in X-axis. On the allocation in

Figure 3.25 (RMAP ROT), the positions of all slave nodes in Figure 3.21 are exchanged for each block.

The average distances between a mater node and a slave node are 4 in Figure 3.22, 5 in Figure 3.23,

8 in Figure 3.24 and Figure 3.25, respectively. Since the distances are greater than the previous ones,

the impact of additional communications of DMR execution to the performance will be increased

3.8.3 Evaluation
Setup

I evaluated 7 allocation patterns depicted above by using ScalableCore system. I implemented the

modified M-Core architecture with multifunction on-chip routers for DMR execution on the test bed of

ScalableCore system. The configuration of the simulated processor is listed in Table 3.4. 2 applications

(16 threads for each application) are put together based on each task allocation I mentioned, and are

executed on DMR mode of SmartCore system. I observed the impact of task allocation to the execution

time of each application. The two applications are executed repeatedly so that the simulation length is

350 M cycles. I used two benchmarks for the evaluation: (1) bitonic sort for application 1 and (2) matrix

multiply using Cannon’s algorithm for application 2. The detailed configuration of these applications

is listed as below.
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Figure 3.22 Task Allocation (Block, Master-Slave Distance = 4)

Table 3.4 Evaluation Setup

Core MIPS32 ISA, 5-stage, Single-issue,2-memory-port (Fetch, Load/Store)

DMA controller 2-memory-port (32-bit DMA Read and DMA Write)

Network topology 2-D mesh

On-chip router 5-input/output (North, East, West, South, Core),
4-stage
(NRC and VA: Next Route Computation and Virtual Channel Allocation,
SA: Switch Allocation, ST: Switch Traversal, LT: Link Traversal),
2-virtual-channel, FIFO depth: 4,
Credit-base flow control, X-Y Dimension Order Routing

Node memory 512KB (per Node), 32-bit width, access latency: 1
4-port (Fetch, Load/Store, DMA Read, DMA Write)

# Nodes 64 (8 × 8)

# DRAM Controllers 2 (Location (X,Y): App1 (1,9), App2 (5,9))

Bitonic Sort: Parallel sort[104]．The data size is 1 M entries (4MB). Executed 3 times repeatedly in

the period of 350 M cycles.

Matrix Multiply: Parallel matrix multiplication using Cannon’s algorithm[105]. The data size is

262144 entries (512×512, 1MB). Executed 4 times repeatedly in the period of 350 M cycles.
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Figure 3.23 Task Allocation (Interleave ROT, Master-Slave Distance = 5)

Note that the simulation time of 350 M cycles for each configuration using ScalableCore system for

this evaluation is about 6 minutes. Compared to the corresponding software simulator, the simulation

speed is 80 times faster.

Baseline Performance without DMR Execution

First, I evaluated the baseline performance impact of the task allocations for each application without

DMR execution. Instead of DMR execution, an idle thread executing nothing is allocated for every

position of a slave node for each allocation pattern. Figure 3.26 shows the performance improvement

from the performance on the separate allocation.

In bitonic sort, the performance on the interleave allocation is 0.1% worse than the separate alloca-

tion, due to the increase of communication latency. The performance on the block allocation is same

as the separate allocation. By using RMAP allocation, the performance is improved 1.02% from the

separate allocation, due to the communication contention reduction.

In contrast, performances for all allocations are worse than the separate allocation in matrix multiply.

Particularly, the performance of RMAP is 0.96% worse than the separate allocation, because the amount

of communication contention on matrix multiplication is small. Additionally the increase of the number

of hops between a source node to a destination node decreases the performance.
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Figure 3.24 Task Allocation (Interleave ROTx2, Master-Slave Distance = 8)

Performance with DMR Execution

Figure 3.27 and Figure 3.28 show the performance improvements from baseline performances of the

separate allocation without DMR executions in each task allocation.

In the figures, the x-axes represent the average distance between a master node and a slave node of

a DMR pair. The y-axes represent the performance improvement from the separate allocation without

DMR execution.

In bitonic sort, performances in any cases excepting the RMAP allocation (Figure 3.21) are worse,

0.83% in the separate allocation and 0.79% in the interleave allocation, respectively, than the baseline

performance, due to the additional communications for DMR executions. In the RMAP allocation,

since the amount of communication contentions within each application is reduced by the task alloca-

tion effect, the performance is improved 0.41% in spite of DMR execution overheads.

In the allocations with a long distance between the master and the slave, there is a huge variability

among the allocations. In the block allocation (Figure 3.22), the interleave ROT allocation (Figure

3.23) and the interleave ROTx2 allocation (Figure 3.24), the performance degradations are 4.28%,

3.88% and 4.83%, respectively. The reason why the degradation of the interleave ROT is less than the

block allocation is that the bi-section on-chip bandwidth of the interleave ROT allocation is higher than
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Figure 3.25 Task Allocation (RMAP ROT, Master-Slave Distance = 8)
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(b) Matrix Multiply
Figure 3.26 Performance (without DMR mode)

the block allocation.

In contrast, the RMAP ROT allocation (Figure 3.25) achieves good performance that the performance

degradation is 1.75% in spite of the same master-slave distance as the interleave ROTx2 allocation.

While the RMAP ROT allocation is an alternative allocation of the original RMAP allocation so as

to increase the master-slave distance, RMAP ROT still has a few traffic contentions. It improves the
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Figure 3.27 Relationship between Master-Slave Distance and Task Allocation Pattern (Bitonic Sort)

performance.

In matrix multiplication, performances in all cases are worse than the baseline. In the allocations

with small master-slave distances, the performance degradations are 0.19% in the separate allocation,

0.69% in the interleave allocation and 0.44% in the RMAP allocation, respectively.

In the allocations with long master-slave distance, the performance degradations are large, 3.33%

in the interleave ROT allocation, 4.09% in the interleave ROTx2 allocation and 4.17% in the RMAP

ROT allocation, respectively. However, the performance degradation of the block allocation is not high,

0.76%.

According to the previous evaluation results of non-DMR executions, the RMAP allocation is not

good for matrix multiplication. Otherwise the block allocation works very well. Even if DMR execu-

tion is enabled, it does not increase serious traffic contentions in matrix multiplication with the block

allocation. In contrast, the performance of bitonic sort is improved by the RMAP allocation and the

RMAP ROT allocation, because the amount of traffic contentions on bitonic sort is reduced by the

RMAP allocation also on DMR executions.

In conclusion, I found that task allocation strategy should be selected founded on the amount of

traffic contentions on the original application without DMR mode. For an application with many traffic

contentions, an allocation with lesser traffic contentions is effective. In contrast, for an application with

less traffic contentions, an allocation with short master-slave distances of DMR pairs is effective.
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Figure 3.28 Relationship between Master-Slave Distance and Task Allocation Pattern (Matrix Multiply)

3.8.4 Summary of Case Study 2

In this case study, I evaluated various task allocation patterns to explore an effective allocation strategy

for DMR execution mode on many-core processors. From the evaluation results, the effective allocation

strategy depends on the amount of traffic contentions on the original application without DMR mode.

By using ScalableCore system, this evaluation time is reduced to one-eightieth of that of the software

simulator.

3.9 Summary
In this chapter, I introduced ScalableCore system, the acceleration method of cycle-accurate processor

simulations on multi-FPGA based platforms. ScalableCore system aims to counter scalability issues of

the simulation speed and the synthesis time.

I described the overall concept and architecture of ScalableCore system, which realizes the scal-

able simulation speed with keeping the cycle-accuracy. Then I described the test bed implementation

features for viability evaluations of the proposed method.

I presented the evaluation results using the test bed system. I discussed the achieved performance

of ScalableCore system, compared with a corresponding software-based simulator and prior FPGA-

based prototyping platforms. The evaluation result shows that the system achieves good scalability in



Chapter 3 ScalableCore System: A Multi-FPGA based Processor Simulation Platform 55

simulation speed. The simulation speed of a many-core processor with 100 nodes on the developed test

bed is 129 times faster than the corresponding software simulator.

Finally I introduced two case studies of many-core platform evaluations using the test bed system. As

the first case study using ScalableCore system, I showed the evaluation results of task allocation method

on ScalableCore system. As the second case study, I explained research on task allocation strategy on

dependable many-core processor with multifunction NoC support. In both cases, the simulation times

are dramatically reduced by using ScalableCore system.
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Chapter 4

flipSyrup: An FPGA-based Flexible
Prototyping Methodology

In this chapter, I introduce the design methodology under the resource abstraction of FPGA platforms,

in order to reduce the development complexity of FPGA-based processor simulators. To counter the

absence of appropriate abstractions for portable FPGA-based rapid prototyping, I propose flipSyrup

(flexible interface for prototyping system development on reconfigurable platforms), an RTL modeling

methodology and tool-chain with appropriate resource abstractions on FPGA platforms.

I introduce the overview of the proposed design methodology that mitigates the critical gap between

ideal LSI-oriented RTL designs and FPGA-prototyping-oriented RTL designs. In order to prevent

FPGA-specific implementations of simulated processors, the design methodology offers two abstract

objects corresponding to memory resources of FPGA and inter-FPGA communications on multi-FPGA

platforms.

To this end, first I developed Pyverilog, an open-source toolkit for design analysis and code gener-

ation of RTL designs written in Verilog HDL. Pyverilog offers (1) code parser, (2) dataflow analyzer,

(3) control-flow analyzer, (4) visualizer and (5) code generator for Verilog HDL.

Then I developed the Python-based design tool-chain that automatically synthesizes ready-to-

implement RTL designs for actual FPGA platforms from target RTL descriptions under the abstraction.

This methodology enables designers to model a prototyping target processor without concern for

actual platform resources.

I evaluated simulation speed under the abstraction using a standard FPGA platform with large ca-

pacity of logic and memory. The evaluation result shows that the simulation speed degradation under

the abstraction is not critical so that the abstraction tool-chain offers the helpful support to develop a

high-speed processor simulator rapidly.

Finally, I present the evaluation result of the proposed methodology on ScalableCore system. The

evaluation result shows that the proposed design methodology works well for multi-FPGA based plat-

forms. The simulation system synthesized automatically by the flipSyrup tool-chain archives almost
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equivalent performance to manual-tuned ScalableCore system. The integrated framework aggressively

improves the prototyping efficiency for emerging many-core processors by providing the sufficient sim-

ulation speed and the effective abstraction reducing the development complexity.

The main contributions of this chapter are as follows:

• to describe the overall concept and tool-chain architecture that provides appropriate abstractions

for rapid FPGA-based prototyping;

• to describe the detailed implementation of the Python-based open-source toolkit for Verilog

HDL designs;

• to describe the evaluation results of the proposed methodology on a single FPGA platform; and

• to describe the evaluation results of the proposed methodology on ScalableCore system as a

multi-FPGA based platform.

4.1 Motivation
In order to map a target processor design to an FPGA, emulator developers should consider resource

limitations on FPGA. It requires detailed implementation suited for each FPGA’s characteristics. In

memory perspective, in order to assemble fast evaluation environment, on-chip memory fabrics on

FPGA (such as block RAM of Xilinx FPGAs) should be efficiently utilized. However, the amount of

on-chip memory fabrics is limited. Memory systems in a processor design might be modified to fit the

memory capacity. If the original design requires the larger capacity than the amount of on-chip memory

fabrics on the FPGA, the prototyping system can use a huge off-chip memory, such as DRAM. It is

time-consuming to develop such an FPGA system with complicated hierarchical memory systems.

Another problem of employing a hierarchical memory system is how to satisfy the cycle-accuracy

of logic emulation. In every clock cycle, if the required data for logic emulation are not ready on the

top of the memory hierarchy, emulated hardware must be stalled to wait for the correct data for cycle-

accurate emulation. In order to correctly emulate the behavior of hardware, an additional mechanism

to throttle the hardware is required. It is equally time-consuming to implement complicated logics for

cycle-accuracy without any mistakes.

In case of multi-FPGA based prototyping, the emulator designer should also consider arbitration log-

ics among FPGAs. In order to simulate the target processor with keeping the cycle-accuracy, the status

of boundary signals crossing multiple FPGAs is carefully managed. Actually, in ScalableCore system,

the control system for a memory system and synchronization is manually designed and implemented.

If the target architecture is changed, these complex and important parts should be carefully redesigned.

Therefore appropriate abstractions of inter-FPGA communications and memory system are required

for rapid development of useful FPGA-based prototyping systems.
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4.2 Methodology Overview
I propose flipSyrup, a novel design methodology to automatically synthesize a coordinated system of

memory, communication and arbitration logics for FPGA-based rapid prototyping. The tool-chain of

flipSyrup generates an IP-core (Intellectual Property core) package of specialized RTL for FPGA-based

prototyping from RTL design of the simulated processor. The tool-chain supports both single FPGA

platform and multi-FPGA platform as implementation environments of prototyping systems.

The tool-chain of flipSyrup provides two key abstractions of FPGA resources for simulated proces-

sors based on the RTL. The first is just an abstraction of a memory system that is like a fast large

memory space via a simple interface by employing on-chip memory blocks and off-chip large-capacity

memory components. The on-chip memory fabrics are invoked as cache memories to improve the total

memory performance. Emulated logics can use a fast and large memory space without the on-chip

memory capacity limitation of FPGA.

The second abstraction is for communication channel between FPGAs. The tool-chain provides

also an abstraction of communication channels to the neighbor FPGAs through FPGA I/Os. Emulated

hardware RTL can use them as registers. Read/write operations to abstract registers are automatically

translated into FPGA-FPGA communications with keeping the cycle level accuracy of the total simu-

lation result.

The key point of flipSyrup is to keep the cycle-accuracy of emulated hardware in spite of two resource

abstractions. In order to sustain the cycle-accuracy, flipSyrup synthesizes a management hardware that

throttles the emulated hardware when any miss events happen, such like cache misses on abstract

memories and transmission rendezvous of abstract communications. To control the emulated hardware

from a manager of the tool-chain, RTL design is automatically converted into a controllable design by

using static code analysis.

4.3 Design Flow
4.3.1 Flow Overview

Figure 4.1 shows the development flow of a processor prototype using flipSyrup. FlipSyrup tool-

chain generates an IP-core package from the simulated processor RTL designs. In developments with

flipSyrup, all the processor design is defined in HDL. In the current implementation of flipSyrup,

Verilog HDL is only supported for target processor implementation.

In order to synthesize the ready-to-implement RTL design as an IP-core package from the pure RTL

design under the flipSyrup abstractions, the original RTL designs are converted into AST (Abstract

Syntax Tree). Then the corresponding parts of the AST (input port declarations, instance declarations
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and always-statements) are modified. Finally, the modified AST is converted into source code of Ver-

ilog HDL. To this end, I developed Pyverilog, a Python-based hardware design processing toolkit for

Verilog HDL, as I describe later.

Now, we assume a standard multicore processor as a prototyping target, as shown in Figure 4.2. The

processor includes several processor cores and memory sub-systems, such as caches and scratchpads.

The memory sub-systems include some RAM objects, such as a data array of a cache memory. These
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hardware components are connected by any on-chip interconnects, such as NoC.

I explain each design step of processor prototyping with the flipSyrup tool-chain, as follows.

4.3.2 Step 1: Design Partitioning

To generate a simulation system design in RTL from the pure processor designs, it takes several steps.

Unfortunately, the current implementation of flipSyrup does not provide fully-automatically synthesis

functionality for the final IP-core design of a simulated processor. In the preprocess step, RTL designs

of the simulated processor should be manually partitioned into multiple regions, as well as ScalableCore

system, if multi-FPGA platform is utilized. Otherwise any partitions are not required.

An example of a partitioned design is illustrated in Figure 4.3. Each partition will be implemented on

each sub-FPGA system, as well as ScalableCore system. In order to partition the on-chip interconnect,

flipSyrup provides an abstraction of communications to neighbor partitions on the different sub-FPGA

systems. Additionally, flipSyrup offers an abstraction of memory systems on each FPGA to eliminate

capacity limitations of FPGA on-chip memory systems.
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4.3.3 Step 2: Object Replacement

Simulator developers should modify some of the baseline RTL designs in order to flipSyrup methodol-

ogy. The developers should replace (1) a RAM component represented in standard inferable descrip-

tions (such as block RAM) with an abstract memory (Syrup Memory in the figure) and insert an abstract

channel (Syrup Channel) into the boundary between the two partitioned designs.

4.3.4 Step 3: flipSyrup Synthesis

After the partitioning, the flipSyrup tool-chain automatically generates an IP-core design for actual

FPGA platforms from each partitioned RTL design. The current tool-chain supports both the AMBA

AXI4[106, 107] interconnect architecture and the general handshake protocol for IP-core interfaces.

The tool-chain uses a specification of FPGA memory systems, in order to synthesis appropriate mem-

ory sub-systems to increase the simulation speed. The specification includes the capacity of on-chip

memory systems (block RAM), the data width of the off-chip memory controller to an external memory.

4.3.5 Step 4: Bitstream Synthesis on Standard EDA

Figure 4.4 shows the final overview of the generated simulation system designs by flipSyrup tool-

chain. Each sub-FPGA system includes one IP-core corresponding to each sub-region of the simulated

processor. FlipSyrup synthesizes a coordinated system of (1) a memory system abstracting memory

components, (2) a communication channel for each abstract channel to the neighbor FPGA, and (3)

cycle-accurate manager to control the simulated hardware throttling.

The generated IP-core package for processor simulations can be integrated with other essential com-

ponents to construct a complete FPGA system, such as a memory controller, on the standard FPGA

system development flow. Then the FPGA bitstream for processor simulations on the actual FPGA

platform is obtained through the standard EDA flow. Finally the simulated processor is realized on the

FPGA platform, by using the generated circuit images.

4.4 RTL Modeling under flipSyrup Abstractions
In order to automatically synthesizes ready-to-implement RTL designs for actual FPGA platforms from

target RTL descriptions under the abstraction, flipSyrup provides two kinds of abstractions in user HDL

level: (1) a abstract memory system and (2) a abstract channel between the neighbor FPGA. They

enable designers to shape a prototyping target processor without concern for actual platform resources.

Figure 4.5 shows Verilog HDL templates for these abstract objects.

I describe the purpose and use of each flipSyrup abstraction as follows.
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4.4.1 Syrup Memory

The first abstraction of flipSyrup is for on-chip memory systems that each FPGA platform has. Every

FPGA has some on-chip memory blocks, such as block RAM and LUT RAM. Unfortunately, the

amount of them is restricted and very small. In order to expand the available memory capacity, off-chip

DRAM also can be utilized together. In general, off-chip DRAM has a much greater capacity than the

on-chip memory blocks. However, just using such off-chip memory system cannot easily satisfy the

cycle-accuracy of simulation results, because these external memory system and their access interface

have very different characteristics opposed to on-chip memory blocks. On-chip memory blocks usually

can be accessed within the constant latency (in most cases, the latency is 1 cycle). In contrast, the access

latency of such external memory systems is not constant and varied. Therefore, in order to satisfy the

cycle-accuracy of simulation results by using the external memory systems, decoupling clock cycles

on the FPGA platform and clock cycles on the simulated processor is essential. Then a mechanism
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Figure 4.5 Abastract Objects of flipSyrup

throttling the simulated hardware is also required, as described in the chapter of ScalableCore system.

For user-level RTL designs of simulated processors, flipSyrup provides a Syrup memory that behaves

an ideal on-chip memory block in the simulated processor world. Syrup memory is just an abstract

memory using a cache memory with on-chip memory block of FPGAs and an external memory system

(DRAM).

Syrup memory (1-port) in Figure 4.5 represents an example instance template of Syrup memory with

a single access port in Verilog HDL. The module of SyrupMemory1P corresponds to an ideal single-

cycle memory block with 1 memory access port in the simulated processor world. To easily use a Syrup

memory in the user-level RTL design, Syrup Memory has a generic interface with standard block RAM.

The simulator designers should change the original instance declarations of on-chip memory blocks

with instance declarations of the Syrup memory. For more complex memory blocks with multiple

access ports, flipSyrup provides not only a single-port memory module but also multi-ported memory

modules. For instance, SyrupMemory2P corresponds to dual-ported (2-port) memory block.

In user-level RTL designs, the simulated hardware can read and write data on an abstract memory

by using the standard read/write protocol. As the user-level RTL view, the abstract memory can be

accessed within just 1 cycle in latency. Using this abstraction of memory systems, system designers

can express the simulated hardware without any concerns of on-chip memory capacity limitations.
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Syrup memory in the simulated processor design can be treated as an ideal on-chip memory block

of FPGA, without the actual capacity limitations of on-chip memory blocks. Actually, these Syrup

memory instances are translated into system level cache memories to be attached to an external memory,

in the flipSyrup tool-chain. Therefore the maximum size is constrained by the capacity of the external

memory, not by the capacity of on-chip memory blocks. Syrup memory behaves as a very large on-chip

memory block on FPGAs, while the actual implementation uses a cache memory for abstractions. If

a miss event happens, the cycle-accuracy manager generated by flipSyrup stalls the entire simulated

processor. Then the cycle-accuracy of simulation result is naturally kept.

Since the logical size of whole Syrup memory objects on each FPGA is not limited by the on-chip

memory capacity for each FPGA, the designer can choose the appropriate size for each emulated hard-

ware component. It improves the programmability to develop a target processor on FPGAs, because the

designers do not have to consider the actual limitation of on-chip memory capacity. The logical size and

the data width of Syrup memory are defined by the parameters of passing arguments of instantiation,

as shown in the figure. By using given memory specification of FPGA system, flipSyrup automati-

cally determine the cache size and the bus width to the external memory. In contrast, by passing the

parameter of cache line size and the number of ways, the designer can optimize the cache performance.

4.4.2 Syrup Channel

The second abstraction of flipSyrup is for inter-FPGA communications. In manual developments of

multi-FPGA based simulation systems, designers should think about how to partition the simulated

processor into multiple parts. Signal states on the boundary of each partition should be shared with

the neighbor FPGAs for correct simulation results. Since communications across FPGAs take several

latency, they should implement a control mechanism keeping the cycle-accuracy that depends inter-

FPGA communications, as well as memory system abstractions mentioned above.

In order to represent a boundary of a logical partition in user-level RTL designs, flipSyrup provides

a Syrup channel that behaves an ideal single-cycle communication interface in the simulated processor

world. An instance of Syrup channel corresponds to an abstract I/O interface via the inter-FPGA

communication link between the neighbor FPGA. Actual communications across FPGAs elapse several

periods to be completed. The cycle-accuracy issue of the simulated processor behavior is well managed

by the cycle-accuracy manager, as well as memory system abstractions.

As shown as Figure 4.5, there are separate abstract templates for two-way communication direc-

tions: SyrupOutChannel for output interface to the neighbor FPGA, and SyrupInChannel for input

interface from the neighbor FPGA. Every SyrupOutChannel has a corresponding SyrupInChannel in

the other logical partition. Beforehand, system designers should define every connectivity between the

SyrupOutChannel and the corresponding SyrupInChannel.
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In user-level RTL designs, sending a value to the neighbor partition is represented by a write op-

eration to the corresponding SyrupOutChannel. The data port (D) of SyrupOutChannel is set with

the sent value, and the enable port (WE) is asserted as well. In the user-level RTL view, the written

value on the data port is transferred to the corresponding SyrupInChannel within 1 cycle. As well as

write operations, read operations are also abstracted. In the user-level RTL designs, receiving a value

from the neighbor partition is represented by a read operation to the corresponding SyrupInChannel.

The enable port (RE) is asserted. Then, at the next clock cycle in the simulated processor world, the

value can be read from the data port (Q). Using this abstraction of inter-FPGA communications, sys-

tem designers can express the simulated hardware without any concerns of the elapsed latency for each

communication and the cycle-accuracy matter.

In order to keep the cycle-accuracy of the simulated processor behavior, the cycle-accuracy manager

stalls the entire simulated processor, when a corresponding read value is not prepared. In contrast

to memory abstractions, the actual connectivity of these abstractions depends on the architecture of

the FPGA platform. As the actual low-level hardware of these abstract interfaces, the tool-chain of

flipSyrup produces a FIFO-based standard interface accessing data in the abstract interface. Then

system designers should connect the corresponding generated interfaces for each other on the utilized

FPGA platform.

4.5 flipSyrup in Detail
This section presents the detailed features of flipSyrup. The flipSyrup tool-chain automatically syn-

thesizes low-level hardware designs that are able to be implemented on an actual FPGA platform. To

this end, the tool-chain generates various additional hardware components for accurate simulations,

and then translates the input RTL design of the simulated processor into controllable designs by the

generated additional hardware.

4.5.1 Abstract Object Conversion

As I described above, Syrup memory can be used just an single-cycle on-chip memory block of FPGAs

without capacity limitation in the user-level RTL designs. The actual implementation of the Syrup

memory is a cache memory to be attached to external DRAM through an on-chip interconnection

network. The access latency of a cache primitive is 1 clock cycle for both read and write operations.

Since the cache primitive has just one shared port for all read and write requests, a request arbiter is

also used together, in order to handle simultaneous multiple requests in the simulated processor world.

A cache memory consists of two raw memory instances: Tag RAM and data RAM. Both memory

instances are implemented using true dual-port memory blocks on FPGAs. An entry of tag RAM

consists of 4 kinds of information: an original tag (represented as a part of address), a valid-bit, a dirty-



Chapter 4 flipSyrup: An FPGA-based Flexible Prototyping Methodology 66

DRIVE!

ADDR! WDATA!WEN! REN! RDATA! RDY!

Port 0!

ADDR! WDATA!WEN! REN! RDATA!

Port 0!

DONE!RWAIT!

WDATA! ADDR!RDATA!

WWAIT!

Logic Interface 0!

Cache Interface 0!

ADDR! WDATA!WEN! REN! RDATA! RDY!

Port N-1!

ADDR! WDATA!WEN! REN! RDATA!

Port N-1!

DONE!RWAIT!

WDATA! ADDR!RDATA!

WWAIT!

Logic Interface N-1!

Cache Interface N-1!

"""!

"""!

"""!

User-logic!

flipSyrup Cache!

Figure 4.6 Cycle-Accuracy Manager

bit and an access-bit (indicating whether the line has been ever accessed or not). Data RAM consists

of multiple independent banks of byte-granularity in order to support byte-access.

As well as Syrup memory, a Syrup channel can be utilized just an single-cycle communication inter-

face that is connected to the neighbor region in the user-level RTL designs. The actual implementation

of the Syrup channel is a FIFO to be attached to external I/O ports connected to the neighbor FPGAs. In

the user-level RTL view, interfaces of the SyrupChannel can be viewed as a single-cycle shared register

interface without any stalls.

A generated interface of SyrupChannel should be connected with that of the neighbor FPGA. Since

the connectivity definition of SyrupChannel objects is not managed by the flipSyrup tool-chain, design-

ers beforehand determine how to partition the simulated processor and how to connect them.

4.5.2 Architecture of Cycle-Accuracy Manager

In order to keep cycle-level accuracy of the simulation results under the flipSyrup abstractions, a hard-

ware mechanism to throttle the entire simulated hardware when any miss events occur, such as a cache

misses on the cache memory of a Syrup memory. In the previous chapter about ScalableCore system,

the simulated hardware is controlled by the manually pre-defined state machine controller for local

barrier synchornizations by decoupling the FPGA clock cycle and the simulated clock cycle.

In flipSyrup, the tool-chain automatically synthesizes such a hardware controller to throttle the entire

simulated hardware, named as cycle-accuracy manager. I present here the architecture of the cycle-

accuracy manager as follows. For the simplicity of descriptions, we assume a single FPGA platform

without any Syrup channels to be connected with other FPGAs.
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Figure 4.6 shows the structure of the cycle-accuracy manager with N ports for independent memory

accesses on Syrup memory objects. DRIVE is a throttle signal port supplied to the simulated hardware.

To stall the simulated hardware, the DRIVE port is de-aaserted. Otherwise, the DRIVE port is asserted

when there are not any uncompleted operations related to the flipSyrup abstractions.

At the side of simulated hardware, the controller provides simple interfaces similar to the standard

memory interface of on-chip memory fabric of FPGAs. Each interface consists of 5 signals for memory

operations: (1) address, (2) write enable, (3) write data, (4) read enable and (5) read data. For raw

cache memories of Syrup memory objects, the controller provides the same interfaces as the simulate

hardware. It also provides ready signal ports to receive notifications of memory access completions in

low-level memory systems.

In order to throttle the simulated hardware, the cycle-accuracy manager internally stores some infor-

mation from the low-level cache memories: (1) address, (2) write data, (3) whether read enable port or

write enable port is asserted or not from the simulated hardware,(4) and whether the previous requests

are completed or not. The controller controls the throttle signal for the simulated hardware using these

information for cycle-level accuracy of simulation results.

For each clock cycle on an FPGA, the controller checks whether there are any uncompleted requests.

Then the controller asserts DRIVE signal if all the requests are completed. If there are any requests in

processing, the controller stalls the simulated hardware by de-asserting the DRIVE signal. Because the

simulated hardware assumes an ideal memory block with 1-cycle in latency, the simulated hardware

might issue new requests at the timing that the simulated hardware is already stalled. To correctly

process all requests, the controller keeps the request information issues in the previous clock cycle.

4.5.3 Throttling by Cycle-Accuracy Manager

Figure 4.7 illustrates a timing chart of two read requests that arbitrated by the cycle-accuracy manager

for cycle-accurate simulations. The main contribution of cycle-accurate manager is to throttle the

simulated hardware components, when requested operations are not yet completed. By this, simulated

hardware can use low-level memory objects and inter-FPGA communications as ideal single-cycle

interfaces. I explain the behavior of cycle-accuracy manager by using the simple example depicted in

the figure.

At cycle 0, the DRIVE signal (enable signal to process the hardware state, which is an inverted

Boolean of stall signal) is asserted because LogicREN0 and LogicREN1 (read enable signals from the

emulated hardware) are not asserted.

At cycle 1, the state of emulated hardware proceeds for 1-cycle by the asserted DRIVE signal at

cycle 0. Then the emulated hardware generates two new memory requests. The controller receives

these requests and directly passes to the lower memory system. So CacheREN0 and CacheREN1 (read
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Figure 4.7 Timing Chart Example of Cycle-Accuracy Manager

enables signals to the cache memories) are asserted.

At cycle 2, the controller de-asserts DRIVE signals because the all requests are not completed at

cycle 0. Because of the asserted DRIVE signal at cycle 0, status of LogicREN0 and LogicREN1 is

updated by 1-cycle progress. At a time, two internal registers (RWAIT0 and RWAIT1) record that

those requests at cycle 1 are still in processing, so that the controller correctly asserts CacheREN0 and

CacheREN1 until all the requests are completed. In this example, at this cycle, CacheRDY0 is asserted

by the lower memory. Then the controller de-asserts the CacheREN0 because all the requests are not

accomplished at cycle 0.

At cycle 3, the completion of CacheREN0 request at cycle 2 is registered by the internal DONE0

register. In this example, CacheRDY1 is asserted, so that the controller recognizes its request comple-

tion at a time. Because all requests at cycle 1 are completed at this time, the controller asserts DRIVE

signal to go forward the emulated hardware for 1 cycle progress.

The number of memory access ports and inter-FPGA communication ports depends on the simu-

lated processor structure. The flipSyrup tool-chain automatically synthesizes a suitable cycle-accuracy

controller for each configuration.
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Figure 4.8 Inserting Control Ports of Abstract Objects

4.5.4 RTL Design Conversion

The flipSyrup tool-chain generates a controller hardware to satisfy the cycle-level accuracy of simula-

tion results, as I described above. Then the tool-chain automatically translates the pure RTL designs

of the simulated processor into controllable RTL designs by the generated controller. The RTL design

conversion takes two independent steps: (1) inserting control ports for abstract objects, and (2) inserting

throttling ports for cycle-accuracy manager.

Inserting Control Ports for Abstract Objects

To define an ideal memory or communication interface, system designers can use stubs of Syrup objects

in the baseline RTL code. Figure 4.8(a) shows an example instance template of a Syrup memory object.

To identify the personality of the abstract object, several parameters are essential for instance creation:

(1) domain name, (2) object id, (3) data width of the user-side interface and (4) address length to
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Figure 4.9 RTL Conversion Rules for Inserting Throttling Ports

identify the memory space capacity.

In the flipSyrup compilation step, the user RTL translator (Instance Hierarchy Analysis in Figure 4.1)

analyzes the input RTL code, in order to replace stubs in the code with actual hardware components

for abstractions. Then the translator automatically inserts additional signals for abstract objects into

the RTL design. Therefore the designers do not have to prepare any signal ports that control abstract

objects from outside of the user-level RTL.

As illustrated Figure 4.8(a), a generate statement can be used to represent a parameterized mod-

ule/instance hierarchy. As shown in Figure 4.8(b), several signals for abstract objects are inserted to

the instance port of an abstract instance. When a generate statement is used, some if statements are

appended to switch the inserted signals. If instances of the module including abstract objects are cre-

ated twice or more, the module definition in the RTL design is duplicated to avoid any name conflicts

caused by the additional signals.

Inserting Throttle Ports for Cycle-Accuracy Manager

If any miss events, such as cache misses or port conflicts occur, the corresponding cycle-accuracy

manager stalls the simulated hardware by using public throttle signal. The tool-chain of flipSyrup

automatically inserts a throttle signal into RTL designs of the simulated processor.

Figure 4.9 shows the conversion rules for the throttle signal insertion. The signal of DRIVE is a

throttle signal port that is controlled by the cycle-accuracy manager. The RTL conversion tool adopts

three conversions for the RTL designs: (1) adding an input port of the throttle signal for each module
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definition, (2) adding a signal port for each instance definition, and (3) transforming always-statements

as the all registers are synchronously updated with the external throttle signal.

By adding an input port by the rule (1) and the rule (2), the throttle signal on the top level of the RTL

design is propagated to the lowest module in the RTL. By adding an update condition into all always-

statements by the rule (3), the cycle-accuracy controller can stall the entire simulated processor*1.

Since most processors have mechanisms to stall the computation pipelines by the internal controller,

the degradation of the maximum operation frequency due to these code translations is quite small. Ad-

ditionally, modern FPGAs have gated-clock mechanisms to reduce power consumptions, such throttling

signals can be naturally implemented using the functionality of FPGA raw primitives.

4.6 Pyverilog: A Python-based Hardware Design Processing
Toolkit for Verilog HDL

As I described, the tool-chain of flipSyrup automatically synthesizes an IP-core from the input pure

RTL designs under the resource abstractions. For such RTL design handling, I developed Pyverilog, a

hardware design processing toolkit for Verilog HDL. Pyverilog is a Python-based open-source toolkit

of various independent functions for analysis, code translation and code generation of Verilog HDL

RTL designs. Pyverilog is entirely implemented in Python for its portability.

There are some popular open-source Verilog simulators that encourage the hardware development

community[38, 39, 40]. These simulators are originally designed for practical Verilog simulations, not

for reuses of the design analysis result by other software tools. To the best of our knowledge, however,

there are no open-source products for both analysis and code generation of Verilog hardware design.

In this section, I describe the design and implementation of Pyverilog, especially for flipSyrup.

4.6.1 Overview

As the fundamental knowledge, Verilog HDL is the most-used design language to express the fabric

of a hardware structure in the register transfer level (RTL) for both ASIC implementation and FPGA-

based implementation. Since Verilog HDL has been used for many years, a lot of useful information

and common design patterns are available in the literature and the web. Additionally, constructing an

effective hardware structure for high performance and low power requires cycle-by-cycle scheduling

definitions for computations and data movements. In cases that the high-level design languages do not

fit with the application characteristics, the designers would prefer to use a general register transfer level

HDL. Verilog HDL is certainly useful for such fine-grain hardware definitions in any cases, because

Verilog HDL has enough capability to express cycle-level circuit behaviors. Thus Verilog HDL will

*1 The current tool does not support level-sensitive latches and multiple clocks.
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Figure 4.10 Pyverilog Toolkit Overview

certainly be important as both a cycle-by-cycle modeling language for highly tuned hardware structures,

and a low-level format of hardware, like assembly languages of conventional software environments.

Figure 4.10 presents the overview of Pyverilog toolkit. Pyverilog offers (1) code parser, (2) dataflow

analyzer, (3) control-flow analyzer, (4) visualizer and (5) code generator for Verilog HDL. The objective

of Pyverilog is to make it easy for researchers and engineers to implement a novel CAD tool for Verilog

HDL design. I describe the function and design alternatives for each useful tool of Pyverilog, as

follows.

4.6.2 Design and Implementation
Code Parser

The code parser of Pyverilog is a fundamental tool to analyze the definition in Verilog HDL source

codes. The code parser generates an abstract syntax tree (AST) from the code of Verilog HDL.

We chose PLY (Python Lex-Yacc)[108] as the compiler-compiler for all Pyverilog tools, which is a

lightweight implementation of a lexical analyzer and an LR-parser. Since PLY is entirely implemented

Python, the portability of the code parser is satisfied enough.
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Dataflow Analyzer

The dataflow analyzer of Pyverilog is to create a dataflow graph that represents the relationship among

the defined signals by using the AST. The generated dataflow graph is also used as the intermediate

representation in the next step for control-flow analysis. The dataflow analyzer has 3 sub-analyzers to

analyze the entire structure of codes: (1) module analyzer, (2) signal analyzer and (3) bind analyzer. All

tools of dataflow analyzer are implemented using the standard visitor pattern that calls an appropriate

function of the visited AST node recursively.

The module analyzer first traverses the input RTL code to get the list of modules. The signal analyzer

then traverses the same RTL code again to gather signal definitions. At the same time, the optimizer

resolves the constant value definitions, such as parameter and localparam, in order to determine the

precise instance hierarchy. The bind analyzer finally generates the assignment tree each signal defini-

tion.

In the tool-chain of flipSyrup, it uses the module analyzer and the signal analyzer to identify the

instance hierarchy and to insert control signals and throttle signals for abstract objects.

Control-flow Analyzer

The control-flow analyzer of Pyverilog is to generate an intermediate representation of finite state ma-

chines (FSMs) in the Verilog code. The control-flow analyzer uses the analysis result of the signal def-

initions and their relationship on the dataflow analyzer. The control-flow analyzer has 2 sub-analyzers:

(1) state machine pattern matcher and (2) active condition analyzer.

The state machine pattern matcher explores representable signals of FSMs by using pattern matching

schemes of typical signal names, by using the signal lists provided by the dataflow analyzer.

The active condition analyzer then analyzes the conditions that the value of the FSM candidate signal

is modified. The dataflow analyzer provides the assignment definition of each signal. They contain

the assigned value and its assignment condition for each signal. The control-flow analyzer infers the

values of candidate conditions from these assignment conditions. Results of active condition analyses

are represented as a number of pairs of cause signal name and its actual values for each state transition.

The control-flow analyzer can independently identify the conditions that a signal is asserted or de-

asserted, so that it can identify the conditions of state transitions. This feature can be also used to

identify the asserted conditions of non-FSM signals. It helps to automatically synthesize an additional

circuit to accelerate computational components in part.

Note that the tool-chain of flipSyrup does not use the control-flow analyzer, while the control-flow

analyzer provides the advanced functionality for RTL design analysis.
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Code Generator

The code generator of Pyverilog is to generate a source code written in Verilog HDL from the internal

representation of ASTs. Common source code generators in any languages have a number of template

texts of output codes in their internal source codes. Therefore, the source codes tend to be larger than

the other parts. In order to separate the implementation of the entire code generator into code write

parts using template texts and the control parts, I used a template engine. I used Jinja2[109], a major

template engine in Python community. By using the template engine, all template texts of Verilog HDL

codes are removed from the Python source code. It simplifies the software structure of the tool. As

well as the dataflow analyzer, the code generator is also implemented using the standard visitor pattern

that calls an appropriate function of the visited AST node recursively.

The tool-chain of flipSyrup uses the code generator to convert the AST of the modified RTL designs

by the signal insertion tools of flipSyrup into actual source codes written in Verilog HDL.

Visualizer

The visualizer of Pyverilog is used to obtain a graphical output of the analysis results, such as dataflow

graphs and finite state machines. The implementation of the visualizer of Pyverilog is very simple.

The visualizer uses Graphviz[110] with its Python binding. The main operations of the visualizer are

to convert a graph of a dataflow or a finite state machine into a graph representation in the Graphviz

format.

Figure 4.11 is an example code of a vector-add circuit in Verilog HDL. This circuit calculates the

summation value of an array stored in the external memory. The circuit has memory access ports that

the name prefixes are MEM_. The circuit also includes a finite state machine of the variable state to

control these memory access ports.

Figure 4.12 shows a dataflow graph picture of the variable MEM_RE. The value definition of the

variable MEM_RE is represented as a tree of several (1) arithmetical or logical operators and (2) as-

signment conditions represented as Branch. The graphical representation of dataflow graphs makes us

easy to find out the definition of a value by intuition.

Figure 4.13 shows the control-flow graph picture of the finite state machine of the variable state. The

picture represents the FSM of the variable state consists of a cyclic transition pattern. The graphical

representation of control-flow graphs also makes us easy to figure out the control structure of the circuit.

4.6.3 Summary of Pyverilog

Pyverilog is an open-source hardware design processing toolkit purely implemented in Python. Pyver-

ilog is already released for public. I believe that understanding the detailed implementation of Pyverilog

by reading this paper makes it easy to create another innovative software using Pyverilog for advanced
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Figure 4.11 Example Verilog HDL Code (Vector-Add)

FPGA/ASIC development.

Note that Pyverilog is used for the fundamental back-end tool of the other CAD tool I developed

and published. I developed PyCoRAM[111], an efficient CAD tool for FPGA-based accelerator devel-

opment with memory system abstraction and the Python-to-Verilog high-level synthesis. Pyverilog is
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Figure 4.12 Graphical Output of Dataflow Graph

used for code analysis and generation of Verilog HDL, as well as flipSyrup.

4.7 System Generation by flipSyrup
4.7.1 Memory Specification Reader

As I depicted in Figure 4.1, the tool-chain of flipSyrup uses a memory specification file to determine

the used capacity of on-chip memory blocks on FPGAs. In order to read the specification, I developed a

specification reader implemented in Python with ANTLR[112] (a major LL grammar parser generator)

and its Python binding.

4.7.2 Control Circuit Synthesis

The tool-chain of flipSyrup then synthesizes a coordinated simulation system with a cycle-accuracy

manager. The code generator of the entire Verilog HDL codes is implemented in Python with the

Jinja2[109] template engine.



Chapter 4 flipSyrup: An FPGA-based Flexible Prototyping Methodology 77

Figure 4.13 Graphical Output of Finite State Machine

4.8 Multi-core Processor Simulation on a Single FPGA Platform
As the first evaluation, I evaluate flipSyrup on a standard evaluation board with a single and large FPGA,

so that the simulated processor design is not partitioned in this situation. I used M-Core architecture,

NoC-based many-core architecture used for the evaluation of ScalableCore system, as a prototyping

target processor.

4.8.1 Evaluation Methodology

Table 4.1 shows the evaluation setup. I evaluated the tool-chain of flipSyrup in performance (simulation

speed), resource utilization and maximum operation frequency.

I used Xilinx VC707[115] evaluation board. The prototype is deployed as an AXI4 master IP and

connected to the DRAM controller via an AXI4 interconnect. The operation frequency of the system
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Table 4.1 Evaluation Setup

Implementation Environment
Development tool Xilinx ISE 14.5, Xilinx PlanAhead 14.5, Xilinx Platform Studio 14.5

FPGA Xilinx Virtex-7 XC7VX485T (VC707 Evaluation Board)
On-chip memory (Block RAM) 18Kbit × 2,060 blocks and 36Kbit × 1,030 blocks, Maximum 37,080Kbit

Off-chip memory (DRAM) SODIMM DDR3-800 1GB
Operation frequency 50MHz (Target processor and flipSyryp system)

flipSyrup cache 64byte per line, 1-way (Direct map), 1-outstanding miss, no-prefetching
On-chip interconnection AXI4 256bit width, Cross-bar mode (Performance optimized), 100MHz op.

Target Processor Architecture
Architecture M-Core architecture[28] (DMA-based many-core processor)

Core MIPS32 ISA, 6-stage pipeline, single-issue, 2-memory-port (Fetch, Load/Store)
DMA Controller 2-memory-port (32-bit DMA Read and DMA Write)

Network topology 2-D mesh
On-chip router 4-stage pipeline, 3-virtual-channel, FIFO depth: 4

Credit-base flow control, X-Y Dimension Order Routing
Node memory 512KB (per Node), 32-bit width, access latency: 1

4-port (Fetch, Load/Store, DMA Read, DMA Write)
Number of Nodes 8 (4 × 2, Size of each flipSyrup Cache : 256KB)

16 (4 × 4, Size of each flipSyrup Cache : 128KB)
24 (6 × 4, Size of each flipSyrup Cache : 64KB)

Benchmark dhrystone[113] (dh), n-queens solver (nq)
matrix multiply (mm), 5-point stencil[114](st)

(excepting the AXI4 interconnect and peripheral controllers) is 50MHz. As data RAM of the synthe-

sized cache memories, 2MB of whole block RAM is assigned. The associativity of the cache memories

is 1 (direct-map). The line size of the caches is 64 bytes (512 bits) as same as the DRAM burst length.

The target architecture is M-Core architecture as well as the evaluation of ScalableCore system. In

this evaluation, I do not assume the external off-chip memory as prototyping target. The tool-chain of

flipSyrup generates a cache memory for each scratchpad memory on the target. In order to measure

the performance variations according to the core count, I tested three core counts: 8-core 16-core and

24-core. I used 4 benchmarks running on the target processor. To execute these applications on the

prototype of FPGA, it takes about several ten seconds.

The hardware components (core, network interface and on-chip router) are described in about 6,300

lines Verilog HDL codes. Although whole the memory system of flipSyrup includes multiple defini-

tions of many similar components, it is described in about 38,000 lines of Verilog HDL, in the case of

24-core.

4.8.2 Simulation Speed

I evaluated the performance of a simulation environment with flipSyrup by using some performance

counters implemented for each cache memory. Figure 4.14 shows the normalized cycle count on an
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Figure 4.14 Simulation Speed of Single FPGA Simulator with flipSyrup

actual FPGA that elapsed for the execution for each configuration. The each vertical value is normalized

by the elapsed FPGA-side clock cycle count on the same clock frequency operation on an ideal FPGA

with infinite on-chip memory.

If the FPGA with infinite on-chip memory is used, any memory parts with any ports and capacity can

be directly implemented on the FPGA. Hence there are no stalls by any cache misses or port-conflicts.

In contrast, using virtual memory blocks of flipSyrup memory system on an actual FPGA, it increases

the simulation cycle count due to stalls caused by their cache misses or port-conflicts.

In order to analyze the reasons for simulation slowdown, I classified the elapsed cycle count into 4

parts as follows by using the performance counters. Note that the performance counter value of each

cache memory is different because each cache memory is corresponding to each scratchpad memory

on the simulated hardware, and each core executes a program on a different path for each other. As

representing value for each cause of slowdown, I used a geometrical mean for all cache memories.

• Hit: The cycle count where the simulated hardware is running without any stalls. This value is

same as the number of total elapsed cycles on an ideal FPGA with infinite on-chip memory in

the same clock frequency.

• Miss: The cycle count where the simulated hardware is being stalled due to misses of the own

cache memory.

• Conflict: The cycle count where the simulated hardware is being stalled due to port-conflicts on

the own cache memory for multiple memory requests.

• Wait: The cycle count where the simulated hardware is being stalled to wait for the other cache
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Figure 4.15 Resource Utilization Breakdown of Single FPGA Simulator with flipSyrup

memory that their requests are in processing.

In 8-core, flipSyrup-based system simulates the target hardware in 1.79x longer clock cycles in

average with cycle-accurate manner than the ideal FPGA with infinite on-chip memory. In other words,

the average FPGA-side clock cycle rate to simulate 1 clock cycle on the simulated hardware with its

cycle-accuracy is 1.79. In 16-core, the rate is 1.91, and in 24-core, the rate is 2.16, respectively. These

evaluation results show that employing a flipSyrup memory system can simulate an ideal hardware

assuming infinite on-chip memory in about 2x clock cycles.

However, it increases the clock cycles by the increase of the target core count. I discuss the reasons

based on the performance counter values. In any cases, compared to the cycle count without stalls,

the rate of stalls by cache misses (Miss) is very low. Rates of stalls by port-conflicts (Conflict) are not

very increased by increasing the core count: 12.0% in 8-core, 12.5% in 16-core and 12.6% in 24-core,

respectively. In contrast, rates of stalls for waiting for memory access completion of the other cache

memories are increased according to the core count: 63.5% in 8-core, 74.5 in 16-core and 98.3% in

24-core, respectively. In flipSyrup memory system, any cache misses or port-conflicts incur some stalls

for entire interfaces in the same domain. Therefore the larger design with more interfaces on a single

domain is more sensitive to stalls from the other cache memories. In order to decrease the stall rate, it is

better to replace the current single-port caches with multi-port caches that can accept multiple requests

at a time, described in [116].
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Figure 4.16 Maximum Frequency of Each Module

4.8.3 Resource Utilization

Figure 4.15 shows the resource utilization of register, LUT and on-chip memory, for each configu-

ration. By increasing the number of cores, the amount of occupied resources for both the simulated

hardware and the flipSyrup memory system is increased linearly. Compared to the resource amount of

the simulated hardware, the flipSyrup memory system occupied almost same amount of registers and

about 43% of LUTs in any cases.

We assigned 2MB capacity of block RAMs for the flipSyrup cache memories in all cases, so that the

utilized amount is constant in any cases. However, the amount of utilized block RAMs is also increased

by increasing of the number of cores. It is thought to be due to the data RAM structure of cache that

is bank-partitioned for each byte in a cache line. In order to reduce memory fabric consumption, it

requires a more sophisticated data RAM structure that FPGA resource characteristics are considered.

4.8.4 Clock Frequency

Figure 4.16 shows the maximum operation frequency for each configuration. We evaluated the fre-

quencies of independent modules: a flipSyrup memory system, a simulated hardware and the overall

system that we implemented on an FPGA. Each frequency value is calculated in logic synthesis phase

in the Xilinx ISE.

First of all, in order to evaluate the frequency degradation caused by the addition of a throttling signal,

we compare the two configurations, the raw simulated hardware (Target w/o DRIVE) and the modified
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simulated hardware with throttling signal (Target w/ DRIVE). With the addition of a throttling signal,

the maximum frequency has declined 10.1% in 8-core, and 3.6% in 24-core, respectively. However,

the frequency is increased 0.3% in 16-core. These values are in estimation of the synthesis tool. There

are some margins from the actual maximum operation frequency that determined after the place and

routes. In average, the maximum frequency has declined 4.5%. These results show that the frequency

degradation by the addition of a throttling signal is compact and tolerable.

Maximum frequency of independent flipSyrup memory system is decreased by increase of the num-

ber of cores. It is likely to be caused by the increase of the number of ports in the off-chip memory

arbiter and the number of signals that observed by the cycle-Accuracy manager to generate a throttling

signal.

For simplicity of development, all memory ports to the off-chip memory are integrated in to a single

interface with an internal arbiter in this implementation. In order to reduce the degradation due to the

off-chip memory arbiter, it is better that the flipSyrup cache entities are directly connected to a device-

level interconnect (such as AXI). It is also better that the arbitration of requests to the off-chip memory

is delegated to the interconnect arbiter.

4.8.5 Summary of Evaluation on a Signle FPGA Platform

I evaluated the framework on a standard FPGA platform with a single and large FPGA. The evaluation

result shows that behavior of the multicore can be simulated at about half speed of ideal FPGA with in-

finite on-chip memory, by using an existing FPGA with the synthesized memory system and controllers

of the tool-chain.

4.9 Many-core Processor Simulation on a Multi-FPGA Platform
The second evaluation uses ScalableCore system as a multi-FPGA based prototyping environment. In

this situation, the simulated processor is partitioned into each core, as well the original ScalableCore

system. By using flipSyrup, the manual scheduling of hardware simulation and local barrier synchro-

nization is not required. Instead, the tool-chain of flipSyrup automatically synthesizes such synchro-

nization logics and simulation logics.

This evaluation is very important, because the configuration of this evaluation includes both main

contributions of this thesis: the acceleration method of cycle-accurate processor simulations on multi-

FPGA based platforms; and the design methodology under the resource abstraction of FPGA platforms,

in order to reduce the development complexity of FPGA-based processor simulators.
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Table 4.2 Evaluation Setup

Implementation Environment
Development tool Xilinx ISE 14.6

FPGA Xilinx Spartan-6 XC6SLX16 for each ScalableCore Unit
On-chip memory (Block RAM) 18 Kbit × 32 blocks, Maximum 576 Kbit

Off-chip memory (SRAM) 8-bit × 512K entry
Operation frequency 40MHz (Target processor and flipSyryp system)

flipSyrup cache 16byte per line, 1-way (Direct map), 1-outstanding miss, no-prefetching

Target Processor Architecture
Architecture M-Core architecture[28] (DMA-based many-core processor)

Core MIPS32 ISA, 6-stage pipeline, single-issue, 2-memory-port (Fetch, Load/Store)
DMA Controller 2-memory-port (32-bit DMA Read and DMA Write)

Network topology 2-D mesh
On-chip router 4-stage pipeline, 1-virtual-channel, FIFO depth: 4

Credit-base flow control, X-Y Dimension Order Routing
Node memory 512KB (per Node), 32-bit width, access latency: 1

4-port (Fetch, Load/Store, DMA Read, DMA Write)
Number of Nodes 8, 16, 32, 64, 128

Benchmark n-queens solver (nq) and matrix multiply (mm)

4.9.1 Evaluation Methodology

I evaluated flipSyrup with ScalableCore system, a multi-FPGA platform for processor prototyping. I

used M-Core architecture again as a prototyping target. The configuration of this evaluation is listed

in Table 4.2. The processor configuration is nearly same as the evaluation of the original ScalableCore

system. However, due to the hardware resource consumption, the number of virtual channels on the

on-chip network is lowered to 1.

Base on the development flow of flipSyrup, I manually partitioned the entire M-Core processor

design for each FPGA unit. Since the configuration of every Node is identical, the identical IP-core is

used for all the FPGA units. In order to verify the simulation performance differences by the number of

FPGAs, I test 4 configurations of the core count of M-Core: 16, 32, 64 and 128. As well as the original

evaluation of ScalableCore system, I used 2 benchmarks: N-Queen (NQ) and Matrix Multiplication

(MM).

4.9.2 Simulation Speed

Figure 4.17 shows the obtained simulation speed for each configuration. The evaluation result shows

that the number of FPGAs and the behavior of benchmarks do not affect the achievable performance.

In all cases, simulation speeds are 1111 [KHz], which are almost same as the original ScalableCore

system.

The reason for this stability and fast simulation speed is that inter-FPGA communications are the
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Figure 4.17 Simulation Speed of ScalableCore System with flipSyrup

bottleneck of simulation performance, in spite of flipSyrup generates on-chip cache systems to improve

the simulation performance. If FPGAs have faster interconnections, the bottleneck of simulation speeds

will be changed to the memory system on simulation platforms.

The multi-FPGA based with flipSyrup achieves the equivalent performance compared to the manual-

scheduled ScalableCore system. This result shows that the integrated framework of ScalableCore sys-

tem and flipSyrup improves the prototyping efficiency for emerging many-core processors by providing

the sufficient simulation speed and the effective abstraction reducing the development complexity.

4.9.3 Resource Utilization

Figure 4.18 shows the breakdown of the resource utilizations of ScalableCore Unit with flipSyrup

abstractions. Part of target corresponds to the simulated processor. Part of system corresponds to

the hardware units of ScalableCore system. Part of flipSyrup corresponds to the simulation functions

generated by the tool-chain.

The flipSyrup system consumes 12.0% LUTs and 7.2% registers of the entire FPGA resource. Com-

pared to the target processor that consumes 59.7% LUTs, these resource impacts are not serious. Ac-

tually, the generated system by flipSyrup consumes a lot of BRAMs, due to the system level cache

memory. Since designers can control the amount of used BRAMs via the parameters to identify the

Syrup memory personality, this is not also a serious problem.
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Figure 4.18 Resource Utilization Breakdown of ScalableCore System with flipSyrup

4.9.4 Summary of Evaluation on a Multi-FPGA Platform

I evaluated flipSyrup on ScalableCore system as a multi-FPGA based platform. In this situation, the

simulated processor is partitioned for each core, as well as the original implementation of ScalableCore

system. By using flipSyrup, the manual scheduling of hardware simulation and local barrier synchro-

nization is not needed. Instead, flipSyrup automatically synthesizes such a synchronization hardware

system with adequate RTL translations.

The evaluation result shows that ScalableCore system with flipSyrup system achieves equivalent

performance compared to the manual-scheduled ScalableCore system. The tool-chain of flipSyrup

improves the programmability of FPGA-based processor prototyping with keeping the coordinative

performance.

This evaluation is very important for this thesis. The result shows that the integrated framework

of two main contributions aggressively improves the prototyping efficiency for emerging many-core

processors by providing the sufficient simulation speed and the effective abstractions to reduce devel-

opment complexity.

4.10 Comparison with Other Methodology
Some researchers have proposed attractive frameworks for effortless implementation of a coordinated

memory system on reconfigurable logics.

Yiannacouras et al.[117] proposed an automatic cache generation tool for FPGA-based computing.
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The tool supports various configurations of caches, and can effortlessly create different caches to meet

the target system.

Closely related research to our work is LEAP scratchpads[118, 119]. LEAP is just an integrated

framework to manage data placement on hierarchical caches of on-chip memory, off-chip DRAM and

host-side memory. Similar to our work, LEAP provides a simple interface to access the abstracted

memory system of hierarchical caches for user logics. Memory space limitation caused by small on-

chip memory capacity is eliminated so that the user logic can use the large space of memory.

CoRAM[120] and PyCoRAM[111] are memory abstraction frameworks for reconfigurable comput-

ing. The feature of CoRAM is that data movements between on-chip memory and off-chip memory are

explicitly managed by control threads, user-defined state machines represented in the software model.

In processor prototyping, these memory abstraction frameworks can expand the available memory

capacity used for emulations. However, such caching and replacement mechanisms in the memory

system are not sufficient to sustain the cycle-accuracy of logic emulation.

The latency of on-chip memory in most FPGAs is very short, which is usually 1 cycle. So it is

the same for implement optimized computing logics with assumption of the fixed single-cycle latency.

However, the typical latency to complete a memory request to the off-chip memory is variable and

long, due to the behavior of DRAM controllers and intermediate interconnects. In order to exactly em-

ulate the hardware with fixed single-cycle memories on an abstracted memory environment, a kind of

synchronization mechanism to throttle the emulated hardware behavior for each clock cycle is required.

The tool-chian of flipSyrup provides a fast and huge memory space for user-level RTL design, by

employing on-chip memory fabrics on FPGA as a fast cache memory via simple accessing interface.

The major difference from previous works is that FlipSyrup framework also provides a synchronization

controller managing all memory requests from the user-level design and throttling its behavior when

any cache misses or port-conflictions occur.

4.11 Summary
In this chapter, I propose a novel design methodology under the abstraction of various resources on

FPGAs. Hardware components within FPGAs, such as memory block and communication interfaces,

are abstracted and given to simulator designers. This methodology enables designers to model a proto-

typing target processor without concern for actual platform resources.

To this end, first I developed Pyverilog, an open-source toolkit for design analysis and code gener-

ation of RTL designs written in Verilog HDL. Pyverilog offers (1) code parser, (2) dataflow analyzer,

(3) control-flow analyzer, (4) visualizer and (5) code generator for Verilog HDL. Then I developed a

Python-based software tool-chain that realizes the proposed methodology. I described the implementa-

tion features of the tool-chain.
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I evaluated simulation speed under the resource abstraction on the single large FPGA platform. The

evaluation result shows that the simulation speed degradation under the abstraction is not critical so

that the abstraction tool-chain offers the helpful support to develop a high-speed processor simulator

rapidly.

Finally I evaluated the integrated framework of the two contributions in this thesis: scalable sim-

ulation accelerator and the abstraction methodology. The evaluation result shows that the simulation

system automatically synthesized by the abstraction tool-chain archives almost equivalent performance

to manual-tuned multi-FPGA based simulator. The integrated framework aggressively improves the

prototyping efficiency for emerging many-core processors by providing the sufficient simulation speed

and the effective abstraction reducing the development complexity.
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Chapter 5

Conclusion

5.1 Concluding Remarks
In this thesis, I proposed a sophisticated prototyping framework for future many-core processor evalu-

ations. The framework comprises of the acceleration method of many-core processor simulations and

the design methodology to decrease the development complexity.

The contributions in this thesis are as follows:

• to propose an FPGA-based simulation method which achieves the scalable simulation speed

against the increasing core count of simulated processors with the cycle-level accuracy of simu-

lation results;

• to show that the proposed simulation method is feasible by designing and developing an actual

multi-FPGA based acceleration system;

• to propose a novel design methodology under the physical resource abstraction of FPGAs, with

its software tool-chain to improve the efficiency of prototyping system development; and

• to present and evaluate the integrated framework that wraps up the multi-FPGA based simulation

method and the prototype design methodology.

I proposed a system architecture of fast and cycle-accurate processor simulator employing multiple

FPGAs, focused on the structure of the on-chip-network and the memory systems on a many-core pro-

cessor for future many-core processors with over 100 cores. I developed a test bed platform of multiple

FPGAs to evaluate the viability of the proposed method. I evaluated the proposed method by using

the test bed system in point of simulation speed. The evaluation result shows that the proposed method

achieves effective scalability of the simulation speed to simulate a large scale many-core processor with

keeping the cycle-accuracy of the simulation consequences.

I present a novel design methodology under the abstraction of various resources FPGA platforms

have, such as memory systems and inter-FPGA interconnections. I developed the Python-based design

tool-chain that automatically synthesizes ready-to-implement RTL designs for actual FPGA platforms
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from target RTL descriptions under the abstraction. This methodology enables designers to model

a prototyping target processor without concern for actual platform resources. I evaluated simulation

speed under the abstraction using a standard FPGA platform with large capacity of logic and memory.

The evaluation result shows that the simulation speed degradation under the abstraction is not critical

so that the abstraction tool-chain offers the helpful support to develop a high-speed processor simulator

rapidly.

Finally I evaluated the integrated framework of the two contributions, scalable simulation acceler-

ator and the abstraction methodology. The evaluation result shows that the simulation system auto-

matically synthesized by the abstraction tool-chain archives almost equivalent performance to manual-

tuned multi-FPGA based simulator. The integrated framework aggressively improves the prototyping

efficiency for emerging many-core processors by providing the sufficient simulation speed and the ef-

fective abstraction reducing the development complexity.

5.2 Open Research Topics
There are several remaining topics from this research. I describe some of them as follows:

• to develop a method for automatic design partitioning of simulated RTL design under the flip-

Syrup abstractions;

• to adopt flipSyrup abstractions for general FPGA-based computing; and

• to integrate flipSyrup abstractions to the multithreaded simulation technique.

The current implementation of the flipSyrup tool-chain requires manual partitionings of the simu-

lated processors. The first topic is that to explore an automatic partitioning way of the entire simulated

processor. The prior researches for multi-FPGA based logic emulations had proposed various cluster-

ing algorithms the input logic designs into multiple parts. By using these approaches, the automatic

partitioning is possible.

In this thesis, I evaluated the tool-chain of flipSyrup for the processor prototyping purposes. How-

ever, architecture and methodology of flipSyrup are not actually limited to the processor prototyping

purpose. Cache-based computing on FPGAs will improve the development efficiency as well as pro-

cessor prototyping. Additionally, employing a more sophisticated cache architecture will improve the

performance of general applications, if flipSyrup is adopted to the general computing on FPGAs.

The last open research topic is to integrate the methodology of flipSyrup with simulation-oriented

approaches. As I described in the background chapter, simuation-oriented approaches require addi-

tional implementations of different RTL designs just for the simulation. I believe that we can realize a

stylish way to automatically synthesize the simulation-oriented RTL designs from the pure processor

RTL designs, by using my flipSyrup tool-chain and Pyverilog toolkit.
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