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Statistical Parametric Speech Synthesis Based on
Gaussian Process Regression

Tokmoki Koriyama, Student Member, IEEE, Takashi Nose, Member, IEEE,
and Takao Kobayashi, Senior Member, IEEE

Abstract—This paper proposes a statistical parametric speech
synthesis technique based on Gaussian process regression (GPR).
The GPR model is designed for directly predicting frame-
level acoustic features from corresponding information on frame
context that is obtained from linguistic information. The frame
context includes the relative position of the current frame within
the phone and articulatory information and is used as the
explanatory variable in GPR. Here, we introduce cluster-based
sparse Gaussian processes (GPs), i.e., local GPs and partially
independent conditional (PIC) approximation, to reduce the
computational cost. The experimental results for both isolated
phone synthesis and full-sentence continuous speech synthesis re-
vealed that the proposed GPR-based technique without dynamic
features slightly outperformed the conventional hidden Markov
model (HMM)-based speech synthesis using minimum generation
error training with dynamic features.

Index Terms—statistical speech synthesis, Gaussian process
regression, nonparametric Bayesian model, sparse Gaussian pro-
cesses, partially independent conditional (PIC) approximation

I. INTRODUCTION

IN corpus-based statistical speech synthesis, statistical para-metric speech synthesis based on hidden Markov model
(HMM) [1] has been widely studied [2]. In HMM-based
speech synthesis, observation vector sequences consisting of
acoustic features are modeled using HMMs with hidden state
sequences, and speech parameters are directly generated from
a set of trained HMMs for given context labels [3]. The
acoustic characteristics of each speech synthesis unit are
represented at the segmental and supra-segmental levels by
using context-dependent models where phonetic and prosodic
contextual factors are taken into account.
Although the HMM-based speech synthesis can create syn-

thetic speech that well reflects most acoustic characteristics
of training data, there are two major problems. First, HMM
essentially assumes the stationarity of output features within
a discrete state while the characteristics of actual acoustic
features change even within a state. To model such char-
acteristics, dynamic features are generally incorporated as
the acoustic features. However, the dynamic parameters of
each state only represent the average dynamic property of
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the segment associated with the state, which is not always
appropriate to model the variation of the segment. The second
problem is generalization in the model training using decision-
tree-based context clustering. The states of context-dependent
HMMs are clustered using decision trees, and states in each
leaf node are tied to a single state [4]. As a result, the total
number of states is reduced to the total number of leaf nodes.
Although this improves the estimation accuracy of model
parameters and enables model parameters to be predicted for
unseen contexts, the resulting number of model parameters is
limited and contextual diversity decreases.
Several techniques have been proposed to alleviate the

quality degradation caused by the above two problems. For
the first problem, a minimum generation error (MGE) training
[5], trajectory HMM [6], and autoregressive HMM [7] were
proposed. In the MGE training and trajectory HMM, the
explicit relationship between static and dynamic features is
incorporated in the model training. The autoregressive HMM
introduced the dependency of the observed static feature on
not only the state but also the past observations. Rich context
modeling [8], [9] is a technique for alleviating the second
problem of the over-smoothing effect with the parameter-
tying process. In this approach, the optimum untied HMM
sequence for input context labels are searched for by using
conventional tied HMMs as guiding models. The subjective
quality is expected to be improved when there is a sufficient
amount of training data and the contexts of training data
adequately cover those of the input texts.
In recent years, novel approaches using Gaussian processes

(GPs) have been proposed for speech processing, such as
speech enhancement [10], voice conversion [11], phoneme
classification [12], and acoustic modeling [13]. Henter et al.
[13] attempted to solve the problem of state discreteness by
extending discrete states to continuous variables of a latent
space where GP was used for a frame-level function that trans-
formed the latent space variables into acoustic features. They
used a Gaussian process dynamical model (GPDM) to express
the latent space. However, it is not easy to apply GPDM to
text-to-speech directly because of the difficulty in correlating
latent space variables with the linguistic information of a given
input sentence to be synthesized.
In this paper, we propose a speech synthesis technique based

on the Gaussian process regression (GPR) [14] to overcome
the limitations of HMM-based synthesis. GPs are known
to be nonparametric Bayesian models where “nonparametric”
means that model complexity expands as increase data size
increases. That is, the variations within a segment and among
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segments are modeled more appropriately using a sufficient
number of parameters than HMM-based synthesis. Another
advantage of GPs is the robust parameter estimation due to
Bayesian inference that reduces the problem of over-fitting.
Since GPs involve a kernel method, various kinds of data
can be used as input variables by defining the kernel function
of respective samples [15]. Moreover, the GPR, as well as
other types of regression models, can directly represent the
relationship between linguistic and acoustic features of cor-
responding frames without using parameter tying by decision
tree clustering, which is inevitable in the HMM-based speech
synthesis.
Although the proposed technique assumes GP on a frame-

level function in the same way as that by Henter et al.
[13], it differs in that the function transforms frame-level
information obtained from linguistic information instead of
latent space variables. Here, we define a combined kernel
including the kernels for position and phone contexts. In
addition, we incorporate approximation techniques into GPR-
based speech parameter modeling to reduce the computational
cost in calculating the covariance matrices.
The rest of this paper is organized as follows: Section II

introduces the proposed framework based on GPR for isolated
phone segments. Section III describes the basic performance
of the proposed framework using isolated phone segments. In
Section IV, we extend the proposed framework to continuous
speech synthesis of full sentences. Section V presents the
objective and subjective evaluation of the extended framework,
where the proposed technique is compared with the HMM-
based technique using MGE training. Finally we discuss the
remaining issues and plans for improvement in Section VI and
conclude this study in Section VII.

II. SPEECH SYNTHESIS BASED ON GAUSSIAN PROCESS

REGRESSION FOR ISOLATED PHONES

This section briefly describes the basic theory of general
GPR [14] and then presents the framework of GPR-based
speech synthesis for a small amount of speech data, i.e.,
isolated phone segments. A frame context kernel is designed as
an input variable of the GPR to represent frame-level acoustic
features.

A. Gaussian process for regression

Suppose that we have a training data set, D =
{(xn, yn)|n = 1, . . . , N}, and a test data set, DT =
{(xt, yt)|t = 1, . . . , T}, where xn is a column vector con-
sisting of explanatory (input) variables, and yn is an output
scalar variable. We assume that yn is given by

yn = f(xn) + ε (1)

where f(xn) is a noise-free latent function value and ε
represents the Gaussian noise of ε ∼ N (ε; 0, σ2). Let
X = [x1, . . . ,xN ]� and y = [y1, . . . , yN ]� be matrix
forms of all input and output variables of training data and
f = [f(x1), . . . , f(xN )]� be the latent function values of the
training data. We define XT , yT , and fT as matrix forms for
test data in the same way as the training data.

If output variables are normalized to zero mean and f(xi)
is a Gaussian process, the GP prior is given by

p(y|X) = N (y;0,KN + σ2I) (2)

KN is a covariance matrix (Gram matrix) of the training data
whose element is given by

Kmn = k(xm,xn) m = 1 . . .N, n = 1 . . .N (3)

and k(xm,xn) is a kernel (or covariance) function.
The main goal of GPR is to infer the continuous distribu-

tions of output variables of test data, yT , given new input
vectors XT . The joint distribution on the function values, f
and fT , of the training and test data is given by

p(f , fT |X,XT ) = N
([

f
fT

]
;0,KN+T

)
(4)

KN+T =
[

KN KNT

KTN KT

]
(5)

where KT is a covariance matrix of test frames, and covari-
ance matrix KNT = K�

TN consists of covariances between
the training and test frames.
The joint distribution of y and yT is given by

p(y,yT |X,XT ) = N
([

f
fT

]
;0,KN+T + σ2I

)
. (6)

Given a training data set, the predictive distribution of output
variables of a test data set is obtained by

p(yT |y,X,XT ) = N (yT ; μT ,ΣT ) (7)

μT = KTN [KN + σ2I]−1y (8)

ΣT = KT − KTN [KN + σ2I]−1KNT . (9)

The inversion of [KN +σ2I]−1 requiresO(N3) computational
cost1. For practical implementation, the parameter vector

α = [KN + σ2I]−1y (10)

that depends on the training data set only is calculated in the
training phase. The number of parameters in α is N , which
corresponds to the number of frames of the training data. From
(8), a set of new output means is given by an inner product

μT = KTNα (11)

which requires O(NT ) computational cost.
To use GPs for regression, we need to specify a kernel

function. The necessary conditions for the kernel function
are that the covariance matrix be positive semi-definite and
symmetric. We use two typical kernels in this study: square
exponential (SE) kernel and linear kernel. The SE kernel
is one of the most widely used kernels as the measure of
“similarity” between two input vectors. The SE kernel is
defined by

k(xm,xn) = exp
(
−‖xm − xn‖2

l2

)
(12)

1 To be exact, matrix inversion can be reduced from O(N3). For in-
stance, a Strassen algorithm enables O(N log2 7) ≈ O(N2.807) computation
complexity. However, note that the matrix inversion still requires very large
computational cost.
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– Position context:

0 10.5
/a/

/n//k/Preceding Current Succeeding/a/

/k/Preceding Current /a/

(–1,+1,–1,–1,+1, ..., +1,–1,+1,–1,+1 ...,  –1,–1,–1,+1, ...)

Vocalic
High

Low
Anterior

Back

–
+

–
–
+

+
–

+
–
+

–
–

–
+
–

Phonetic feature table

0.3 (relative position in this segment)

Frame context of the   -th frame:

– Phone context:

/n/Succeeding

-th frame (current frame)

Preceding /k/ Current segment /a/ Succeeding /n/

– Frames of feature vector:

Fig. 1. Example of frame context, i.e., frame-level input variable set for GP
regression. This example has frame context for frame positioned in phone /a/,
which is between preceding phone /k/ and succeeding phone /n/.

where l denotes a length-scale hyper-parameter. The linear
kernel is given by

k(xm,xn) = x�
mxn. (13)

This kernel assumes linearity between output and input fea-
tures. Also note that a new kernel can be constructed by
combining multiple arbitrary kernel functions by means of
some operations such as sum, product, and convolution [15].

B. Frame context with kernel design

We use frame-level features obtained from the linguistic
information of transcriptions for the explanatory variables of
the regression model. For the first step of an implementation
of the proposed technique, we choose simple and compact
representation of frame-level features. Specifically, we define
the frame context that includes the relative position pn and
phonetic information cn of the current frame as

xn = (pn, cn). (14)

Fig. 1 shows an example of the frame context. The position
context pn is defined as a normalized relative position [16]–
[18] in the current phone, where the beginning of the phone
is set to zero and its end is set to one. For phone context cn,
we use a set of preceding, current, and succeeding phonetic
features. More specifically, we introduce binary variables
({positive = +1, negative = −1}) for each phonetic feature
listed in Table I based on a distinctive phonetic feature (DPF)
set [19]. Let P be the number of phonetic features; then, a
3P -dimensional binary-valued vector is constructed.

TABLE I
BINARY PHONETIC FEATURES FOR SEVERAL PRIMARY PHONEMES IN

JAPANESE.

a i u e o k t n s m
vocalic + + + + + − − − − −
high − + + − − + − − − −
low + − − − − − − − − −

anterior − − − − − − + + + +

back + − + − + + − − − −
coronal − − − − − − + + + −
plosive − − − − − + + − − −
affricative − − − − − − − − − −
continuant + + + + + − − − + −
voiced + + + + + − − + − +

nasal − − − − − − − + − +

semi-vowel − − − − − − − − − −
silent − − − − − − − − − −

The proposed frame context kernel is defined as a product
of two kernels.

k(xm,xn) = kp(pm, pn)kc(cm, cn) (15)

where kp(pm, pn) and kc(cm, cn) correspond to the position
kernel and the phone context kernel. The position kernel rep-
resents the similarity of position contexts in phones whereas
the phone context kernel represents that of phone contexts.
1) Position kernel: The SE kernel is used for the position

kernel and is given by

kp(pm, pn) = exp
(
− (pm − pn)2

l2p

)
(16)

where pm is the relative position of the m-th frame.

2) Phone context kernel: We examine two different phone
context kernels in this paper. The first is the sum of SE kernels,
and the second is a linear kernel. The former one is defined
by

kc(cm, cn) =
3P∑
k=1

θ2
ck exp

(
− (cmk − cnk)2

l2ck

)
(17)

where lck is a scale hyper-parameter, and θck is a hyper-
parameter that represents the relevance of the k-th phonetic
feature. The kernel value is maximized when the input phone
contexts are the same.
The linear kernel is given by

kc(cm, cn) =
3P∑
k=1

θ2
ckcmkcnk. (18)

If we use only a linear kernel, GPR corresponds to a Bayesian
inference of multiple linear regression. As a result, the use of
this kernel implies that acoustic features in the same relative
position can be modeled by the multiple linear regression.

C. GPR-based speech synthesis

Fig. 2 outlines a basic GPR-based speech synthesis system.
When synthesizing speech, we generate a single feature se-
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covariance matrix
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Synthetic speech
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Acoustic feature
extraction

Inference of
predictive distribution

GP parameters:

Training

Synthesis

Fig. 2. Outline of speech synthesis process in proposed approach.

quence from the predictive distribution with a certain method,
such as using the mean sequence for synthetic parameters or
generating random sequences from the distribution. In this
study, we adopt the mean sequence, μT , of the predictive
distribution.
Consequently, the training and synthesis procedures are

summarized as follows:

Training phase

1) Frame-level acoustic features such as mel-cepstral coef-
ficients and fundamental frequency are extracted from
the training data.

2) The frame contexts are created from the annotation data
including the phone boundaries of the training data.

3) Covariance matrix KN between the frames of the train-
ing data is determined using the frame contexts.

4) Parameter vector α in (10) is calculated using KN .

Synthesis phase

1) Phone duration information of an input text is predicted
using a certain duration model.

2) The frame contexts are created from the input sentence
and the predicted phone durations.

3) Covariance matrix KTN between the frames of the
training and new input data is calculated.

4) The mean sequence μT of the predictive distribution is
calculated by multiplying covariance matrix KTN and
α and is used as a generated spectral feature trajectory.

5) The output waveform is synthesized using the spectral
and excitation features.

III. EXPERIMENTS ON ISOLATED PHONE SYNTHESIS

A. Experimental conditions

The speech database used in the experiments consisted
of 503 ATR phonetically balanced Japanese sentences [20]
spoken by one female speaker. Speech signals were sampled
at a rate of 16 kHz. The spectral features were extracted with
STRAIGHT [21]. The 0–39th mel-cepstral coefficients were
used as output variables. We assumed that all dimensions of
the acoustic features are conditionally independent given input
context, and each dimension was modeled separately.
We chose five vowels (/a/, /i/, /u/, /e/, and /o/) and five

consonants (/k/, /s/, /t/, /n/, and /m/), which are primary
phonemes in Japanese, to examine the potential of GPR.
Each phone was segmented using manually annotated phone
boundaries. The phone segments of the training set were
randomly chosen up to 10,000 frames from 450 sentences
for each phoneme. Fifty test phone segments per phoneme
were randomly chosen from the remaining 53 sentences. The
evaluation was performed using the isolated phones segmented
by the manually annotated phone boundaries of the original
utterances. The durations of the original segments were given
when the spectral feature sequences of test segments were
generated.
We compared the sum of SE kernels and the linear kernel

as the phone context kernels. All output variables were
normalized, and the hyper-parameters were given by lp =
0.289, which is equal to the standard deviation of the uniform
distribution on [0, 1], lck = 1.0 (k = 1, . . . , 3P ), σ = 1.0, and
θck = 1.0/3P (k = 1, . . . , 3P ) on the basis of the preliminary
experimental results.
The HMM-based speech synthesis was used as a conven-

tional technique. Triphones were used for the context set
for HMM training. We used a five-state, left-to-right, no-
skip hidden semi-Markov model (HSMM) [22]. Each state
had a single Gaussian distribution with a diagonal covariance
matrix and the feature vector included delta and delta-delta
dynamic features. Decision-tree-based context clustering was
carried out with the minimum description length (MDL)
criterion [23]. State durations were generated using the trained
HSMM. Minimum generation error (MGE) training [5] was
not performed in this experiment.

B. Results

Table II lists the mel-cepstral distances [24] between the
generated and original sequences. GPR-SE and GPR-linear
employed the sum of SE kernels for the former and the linear
kernel for the latter for the phone context kernel. Even though
there were only small differences for consonants other than
/s/ in comparing GPR with HMM, the mel-cepstral distances
for the vowels using GPR-SE and GPR-linear significantly
decreased. We also found that the distances for GPR-SE and
GPR-linear were comparable. One possible reason is that the
characteristics of kernel values were similar in the sum of SE
kernels and the linear kernel under the condition in which the
binary-valued vectors were used as input variables.
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TABLE II
AVERAGE SPECTRAL DISTORTIONS OF GENERATED PARAMETER
SEQUENCES USING FRAME CONTEXT. VALUES REPRESENT

MEL-CEPSTRUM DISTANCES [DB].

Phoneme triphone HMM GPR-SE GPR-linear

a 5.67 5.51 5.52
i 6.01 5.64 5.63
u 6.10 5.94 5.94
e 5.33 5.17 5.16
o 5.90 5.63 5.64

k 5.09 5.05 5.05
t 4.13 4.17 4.17
n 5.73 5.81 5.81
s 4.74 4.57 4.57
m 5.48 5.50 5.50

Avg. 5.42 5.30 5.30

IV. CONTINUOUS SPEECH SYNTHESIS BASED ON SPARSE

GAUSSIAN PROCESSES

The matrix inversion needs O(N3) calculations in the
training procedure to obtain parameter α in (10). The value of
N is generally at least hundreds of thousands2. Therefore the
computational complexity of GPR for continuous speech syn-
thesis is not realistic. We examine two approximation methods
to reduce the computational cost: local GPs [25], [26] and
partially independent conditional (PIC) approximation [26].
These methods enable feasible computation by approximating
matrices to be sparse. While various GP approximation meth-
ods exist [27], we chose the local GPs and PIC because they
effectively model local characteristics within phone segments.

A. Local GPs

Using Local GPs involves a method for reducing the amount
of computation by simply dividing all the data into local blocks
and modeling each block separately. That is, covariance matrix
KN+T is approximated by a block diagonal one:

KN+T ≈ KLOCAL
N+T = blkdiag [KN+T ]

= diag [KB1 ,KB2 , . . . ,KBS ] . (19)

When all training frames are divided into S blocks and each
block has at most B training frames, the computational cost
results in O(SB3). By fixing B, the computational complexity
increases linearly with the number of training data N .
To use the local GPs, it is necessary to determine not only

the block of the training frames but also that of the synthesis
frames from their linguistic features. We utilize decision-tree-
based context clustering [4] in this study, which is effectively
used in HMM-based speech modeling. We conduct phone-
level clustering and stop splitting nodes if a node has less than
B frames. After clustering, we use the clusters as the blocks,
and compute the covariance matrix for each block using the
frames included in the same cluster.

2If we have 10 min of speech data with 5-ms shift, N is 120,000.

B. Partially independent conditional (PIC) approximation

Although the local GPs can model internally changing fea-
tures effectively within a block, the covariances between dif-
ferent blocks are completely ignored. On the other hand, a par-
tially independent conditional (PIC) approximation estimates
the covariances between different blocks using a pseudo-data
set. Pseudo-data set D̄ = {(x̄m, ȳm)|m = 1, . . . , M} is a
small amount of data set with a size of M � N , and
the pseudo-data are expected to be distributed similarly to
the training data. PIC is a kind of approximation method
called the sparse pseudo-input Gaussian process (SPGP) [28].
The joint distribution of the function values, f and fT , is
given by a marginal distribution for pseudo-data variables
f̄ = [f(x̄1), . . . , f(x̄N )]� as

p(f , fT ) =
∫

p(f , fT |f̄)p(f̄)df̄ (20)

where both p(f , fT |f̄) and p(f̄ ) follow Gaussian distributions
and are given by

p(f , fT |f̄ ) = N
([

f
fT

]
; μ̄, Σ̄

)
(21)

μ̄ = K(N+T )MK−1
M f̄ (22)

Σ̄ = KN+T − K(N+T )MK−1
M KM(N+T ) (23)

p(f̄ ) = N (f̄ ;0,KM ) (24)

where K(N+T )M is a covariance matrix between the frames
of all data (X,XT ) and the pseudo-data, and KM is a self
covariance matrix of the pseudo-data set. SPGP is a method
for avoiding the direct calculation of matrix inversion in (10)
by approximating p(f , fT |f̄ ). Σ̄ is approximated in PIC by
using a block diagonal matrix as

Σ̄ ≈ Σ̄PIC = blkdiag[Σ̄]
= diag

[
Σ̄B1 , Σ̄B2 , . . . , Σ̄BS

]
. (25)

The covariance matrix of training data is approximated by

KN ≈ KPIC
N = QN + blkdiag [KN − QN ] (26)

=

⎡
⎢⎢⎢⎣

KB1 QB1B2 · · · QB1BS

QB2B1 KB2 QB2BS

...
. . .

...
QBSB1 QBSB2 · · · KBS

⎤
⎥⎥⎥⎦ (27)

where QN and QBiBj are given by

QN = KNMK−1
M KMN (28)

QBiBj = KBiMK−1
M KMBj . (29)

KNM and KMN are covariance matrices whose elements
are kernel values between the samples of training data and
the pseudo-data set. Also, KBiM and KMBj are covari-
ance matrices whose elements are kernel values between
the samples of the clustered block and the pseudo-data set.
Specifically, the approximation avoids direct calculations of
inter-block covariance matrices by means of the pseudo-data
set. Moreover, sinceKPIC

N is a sum of a block diagonal matrix
and a low rank matrix QN , we can speed up the inversion of
KPIC

N using the Woodbury, Sherman & Morrison formula [29].
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Fig. 3. Overview of training and synthesis stages in GPR-based speech synthesis using PIC approximation.

When a new input value, x∗, for a certain frame is assigned
to cluster Bs, the corresponding mean for x∗ is given by

μ∗ = K∗M (β − βBs) + K∗BsαBs (30)

where K∗M is a covariance matrix between the frames of
x∗ and the pseudo-data set, and K∗Bs is a covariance matrix
between the frames of x∗ and the s-th block data. The first
and second terms on the right-hand side of (30) correspond to
global and local acoustic characteristics. β, βBs , and αBs are
PIC model parameters calculated by

β =
S∑

s=1

βBs (31)

βBs = K−1
M KMBsαBs (32)

[α�
B1

· · ·α�
BS

]� = [KPIC
N + σ2I]−1y. (33)

When the maximum block size is B, the number of blocks
is S, and the number of frames of the pseudo-data set is M ,
the computational cost results in O(S(B3 + M3)). Here, the
blocks of frames are determined in the same way as the local
GPs. We adopt random selection from the training data to
select the pseudo-data set.
Fig. 3 gives an overview of speech synthesis using PIC

approximation. In the training phase, first, the decision tree
of contexts is constructed using context-dependent HMMs.
Then the pseudo-data set is chosen from the training data,
and the cluster for each training data frame is assigned by the
decision tree. Covariance matrices are computed after that.
PIC parameters {αi}S

i=1, {βi}S
i=1, and β in (31)–(33) are

calculated at the end of the training phase. When speech
is synthesized, the cluster for each frame context extracted
from an input text is also determined by the decision tree.

Next, covariance matrices between synthesis and training
frames are computed and the acoustic features of the frames
are generated from the covariance matrices and trained PIC
parameters. Finally, a speech utterance is synthesized by using
the generated spectral features.

C. Extension of frame context using adjacent phones

Even though PIC can express the covariances between
different blocks, the simple frame context proposed in Sec-
tion II-B is insufficient for synthesizing natural-sounding
speech. A problem occurs when the simple frame context is
used where covariances at the boundary of adjacent phones
become discontinuous. For example, the context of the first
frame of a current phone and that of the last frame of the
preceding phone are entirely different. The discontinuity in
covariance causes unsmoothness of the synthetic speech.
We extend the frame context to include smoothly changing

values in order to overcome the discontinuity in covariance.
Since a certain frame has information on not only the current
phone but also nearby phones, extended frame context xn is
defined as a set of position and phone contexts of adjacent
phones.

xn = (wn,pn,Cn) (34)

where w, p, and C are sets of weights, position contexts, and
phone contexts expressed as

wn = {w(−1)
n , w(0)

n , w(+1)
n } (35)

pn = {p(−1)
n , p(0)

n , p(+1)
n } (36)

Cn = {c(−1)
n , c(0)

n , c(+1)
n }. (37)

The superscripts −1, 0, and +1 of the variables correspond
to the preceding, current, and succeeding phones. Note that
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Fig. 4. Example of covariance matrices of Japanese phrase segment “a r a y u r u” using (a) local GPs and simple frame context, (b) PIC and simple frame
context, and (c) PIC and extended frame contexts.

p
(0)
n and c(0)

n correspond to pn and cn in Section II-B. p
(−1)
n ,

p
(0)
n , and p

(+1)
n respectively represent the normalized relative

positions of the current frame in the preceding, current, and
succeeding phones. p

(−1)
n equals p

(0)
n + 1, and p

(+1)
n equals

p
(0)
n −1. c(−1)

n , c(0)
n , and c(+1)

n correspond to the phone context
of preceding, current, and succeeding phones. w(i)

n represents
the weight used to emphasize the effect of closer phones to
the frame. For instance, the weight for the current phone is
set to be larger than that for the preceding/succeeding phone.
The following sine window function is used in this study as a
weight.

w(i)
n = w(p(i)

n ) =

{
sin

(
π(p(i)

n + 0.5)/2
)

−0.5 ≤ p
(i)
n ≤ 1.5

0 otherwise.
(38)

We use a convolution kernel [30], which computes the sum of
all combinations between the adjacent phones of two input
variables. The kernel function for the extended contexts is
given by

k(xm,xn) =∑
i∈{−1,0,+1}

∑
j∈{−1,0,+1}

[
w(i)

m w(j)
n kp(p(i)

m , p(j)
n )kc(c(i)

m , c(j)
n )

]
.

(39)

It is noted that the convolution kernel is positive semi-definite
when each component kernel is positive semi-definite [30].
Fig. 4 shows examples of covariance matrices. Since the

local GPs are used in Fig. 4 (a), many of the elements are zero
because only intra-cluster covariances are defined. In contrast,
inter-cluster covariances are estimated by using PIC in Fig. 4
(b) and (c). Moreover, the extended context in Fig. 4 (c) yields
smooth covariances around the boundaries of adjacent phones.

D. Comparison with HMM-based synthesis

Table III compares memory footprint for model parameters
and computational costs of HMM-based speech synthesis and
GPR-based synthesis using local GPs and PIC. In the table,
D represents the dimension of static feature vector. S′ and
L correspond to the number of leaf nodes in HMM-based
speech synthesis and the dimensionality of dynamic features,

e.g., L = 2 when delta and delta-delta features are used. It
is assumed that HMM-based speech synthesis uses diagonal
covariance matrices for Gaussian distribution.
The memory footprint of GPR is not compact because GPR

is essentially a nonparametric model and requires as many
parameters as training data, whereas HMM-based synthesis
achieves compact representation. In the training of HMM-
based synthesis, the Baum-Weltch algorithm computes the
trellis of states and frames with O(NS′DL) complexity.
Although the complexity is not small, required memory size is
not large because of a sentence-by-sentence training. In con-
trast, covariance matrices among frames are computed in GPR
training. If block size B or pseudo-data set size M becomes
larger, it requires very large memory and computational time
for inversion of the B-by-B orM -by-M matrix. For synthesis,
both methods achieve the computational complexity of O(T ).

V. EXPERIMENTS ON CONTINUOUS SPEECH SYNTHESIS

A. Experimental conditions

The speech database used in the experiments for continuous
speech synthesis was the same as that used in Section III.
Spectral envelope, F0, and aperiodicity features were extracted
by using STRAIGHT [21]. The 0–39th mel-cepstral coeffi-
cients were normalized to zero means and used as output
variables, and each dimension of the mel-cepstral coefficients
was modeled separately, which was also the same condition
as that in Section III. Speech samples were synthesized using
generated mel-cepstral coefficients, while F0s, aperiodicity
features, and phone durations were taken from the original
speech.
The linear kernel was used for the position kernel. The

hyper-parameters were set to lp = 0.289, σ = 1.0, and
θci = 1.0/3P (i = 1, . . . , 3P ), which were the same settings
as those in Section III. KM must be positive definite to
calculate K−1

M of (32) in PIC, and hence the value of θδδmn

was added to the kernel function k(xm,xn) where δmn is the
Kronecker delta. The value of θδ was set to unity on the basis
of preliminary experimental results. For context clustering in
the local GPs and PIC, the model topology of HMM and
feature vector including dynamic features were the same as
those in the case of the HMM-based method in Section III.
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TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITY OF GPR-BASED TECHNIQUES WITH HMM-BASED SPEECH SYNTHESIS.

HMM GPR (local GPs) GPR (PIC)
Memory footprint for model parameters O(S′DL) O(SDB) O(SD(B + M))

Memory for training O(S′DL) O(SDB2) O(SD(B2 + MB + M2))
Complexity for training O(NS′DL) O(SDB3) O(SD(B3 + M3)
Memory for synthesis O(TDL) O(TDB) O(TD(B + M))
Complexity for synthesis O(TDL2) O(TDB) O(TD(B + M))

HMM
HMM-MGE
GPR-LS
GPR-PS
GPR-PE

M
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Number of training sentences
250 350 450150

Fig. 5. Average spectral distortions between original and synthetic speech as
a function of the number of training sentences.

Triphones were used for the context set for HMM training.
The maximum number of frames, B, of the cluster described
in Section IV-B was set to 1000, and the size of pseudo-data
set M was set to 200.
We also evaluated HMM-based speech synthesis with and

without minimum generation error (MGE) training [5] for
comparison. The model topology of HMM, feature vector,
and context set were the same as those used in the context
clustering in the local GPs and PIC. The MDL was used for
a stopping criterion for context clustering.
In subjective evaluation, test volunteers were ten native

Japanese speakers, who were university students and re-
searchers. Participants listened to the test samples using a pair
of headphones in a silent room3.

B. Objective evaluation

First, we objectively compared the performance of the
conventional and proposed techniques. The mel-cepstral dis-
tance between synthetic and original speech were used as an
objective distortion measure. We used 150, 250, 350, and 450
sentences as the training data, and 53 sentences not included
in the training data were used as the test data. We compared
two kinds of HMM-based techniques and three kinds of pro-
posed GPR-based techniques. The results are plotted in Fig. 5.

3 Some examples of the synthetic speech used in the subjective evaluation
are available at http://www.kbys.ip.titech.ac.jp/demo/gpss/koriyama/
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Fig. 6. Correlation coefficients between original and generated mel-cepstral
coefficients.

“HMM” in the figure represents the HMM-based technique
where the model parameters were optimized by the maximum
likelihood (ML) criterion. “HMM-MGE” used MGE training
to optimize the model parameters. In the proposed GPR-
based techniques, L and P corresponded to local GPs and
PIC for approximation, and S and E denote the simple frame
context and the extended frame context. We can see that
both HMM-MGE and GPR-based techniques gave smaller
distortions than HMM. Moreover, the GPR-based techniques
derived significantly smaller distortions than HMM-MGE,
which means that frame-level regression performed well. We
could see that distortions decreased slightly for all the training
sets by comparing GPR-LS and GPR-PS. In addition, GPR-
PE had consistently less distortion than GPR-PS.
Next, we compared the HMM-MGE and proposed GPR-PE

techniques in terms of the correlation between the original
and generated mel-cepstral coefficients. In this experiment,
models trained on 450 sentences were used, and correlation
coefficients were calculated for each dimension. From the
results shown in Fig. 6, we can see that the correlation co-
efficients of the proposed GPR-based technique were higher
than those of the HMM-based technique in most dimensions.
This improvement may be attributed to the advantages of GPR
such as nonparametric modeling, context-space representation
by kernel function, and frame-level inference without using
dynamic features.
Computational time was evaluated to examine whether the

realization of GPR-PE is feasible or not. We used a 64bit
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TABLE IV
AVERAGE COMPUTATION TIME FOR MODEL TRAINING AND PARAMETER

GENERATION. THE GENERATION TIME REPRESENTS THE AVERAGE TIME
FOR TEST 53 SENTENCES.

Training data size Training Generation

50 sentences (282.1 sec) 326.8 sec 2.82 sec
150 sentences (886.2 sec) 1039.2 sec 3.48 sec
250 sentences (1436.1 sec) 1731.3 sec 3.67 sec
350 sentences (1968.6 sec) 2448.9 sec 4.22 sec
450 sentences (2492.9 sec) 3023.0 sec 4.32 sec

FreeBSD 8.3 PC with Intel Core i7 3770K 3.50GHz and
32GB/PC3-12800 memory. Table IV shows actual computa-
tional time for training with PIC approximation and acoustic
feature generation. Each value was an average of ten trials. The
training time consists of computing of covariance matrices and
training of PIC parameters. The generation time represents the
average time of covariance matrix computation and acoustic
feature inference for 53 test sentences. The results show that
the training time was approximately 120% as much as the
time of training utterances. The generation time for 1 sentence
was shorter than 5 seconds. This implies that a slight effort
is needed to achieve real time synthesis because the average
length of a synthetic utterance was 4.11 seconds.

C. Subjective evaluation

1) Naturalness: We evaluated HMM-MGE, GPR-LS, and
GPR-PE by using a mean opinion score (MOS) test to
subjectively examine the naturalness of the synthetic speech
samples. There were 450 training sentences. The listeners rated
the naturalness of synthetic speech on a five-point scale: 5:
excellent, 4: good, 3: fair, 2: poor, and 1: bad. Ten sentences
were randomly chosen from the 53 sentences for each par-
ticipant. Fig. 7 shows the mean opinion scores (MOSs). The
error bars indicate 95% confidence intervals based on a t-
distribution. We can see that the score of GPR-LS was lower
than that of HMM-MGE, whereas GPR-LS derived smaller
mel-cepstral distances in the objective evaluation. This is
because the generated acoustic features were not smooth at the
phone boundaries and this discontinuity degraded naturalness.
In contrast, GPR-PE, which provided continuity on covariance
matrices, gave the highest score for the three techniques
although GPR-PE and HMM-MGE do not differ significantly
at the 5% significance level according to a t-test. When
we carefully listened to the synthetic speech samples of the
proposed technique, some plosives, e.g., /k/ and /t/, sounded
unnatural. This can be observed in the spectral sequence of
synthetic utterance shown in Fig. 8. In the spectra of original
speech, we can see a “stop gap” which corresponds to the
period of closure of vocal tract. However we cannot see such
gap in the generated spectrum of GPR-PE. This is one of the
reasons why plosives sounded unnatural.
2) Similarity: We conducted an XAB test on speech sim-

ilarity between vocoded and synthetic speech samples to
compare the reproducibility of synthetic speech samples with
the conventional and proposed techniques. Ten sentences were
randomly chosen from the 53 test sentences for each of the

4.03.0 5.02.01.0

HMM-MGE

GPR-LS

GPR-PE

MOS

95% confidence interval

Fig. 7. MOS on naturalness of synthetic speech.

j i k a n
0 kHz

8 kHz
0 kHz

8 kHz
0 kHz

8 kHz

(a) Original

(c) GPR-PE

(b) HMM-MGE

Fig. 8. Example of running spectra of a Japanese word “jikan” (“time” in
English). (a) extracted from original speech, (b) generated using HMM-MGE,
and (c) generated using GPR-PE.

participants. After being given a vocoded speech sample (X)
as a reference, the participants listened to two synthetic speech
samples (A and B) in random order and were asked whether A
or B was closer to X. We used synthetic speech samples with
all combinations of the three techniques for the pairs of A and
B. Fig. 9 shows the results of XAB test with 95% confidence
intervals assuming a binomial distribution. Although there are
no statistically significant differences among the scores, we
can see that GPR-PE gives slightly higher score than HMM-
MGE.

VI. DISCUSSIONS

A. TTS system

In this study, we focused only on the modeling and synthesis
of spectral features. To achieve a full TTS system, we must
examine the same issue for the other features, i.e., F0, duration,
and aperiodicity features. For this purpose, it is essential to
take into account not only the phonetic contexts but also
the prosodic ones, e.g., syllable, accent phrase, and sentence
length that are usually used in HMM-based speech synthesis.
It will be also important to examine the choice of appropriate
speech synthesis unit other than the phone-based segment, e.g.,
diphone-based segment.

B. GP approximation

In the experiments, the maximum number of frames of
each cluster, B, was set to 1000 and the size of pseudo-
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Fig. 9. XAB test score on similarity of synthetic speech to original speech.

data set M was set to 200. Increasing these parameters may
improve the accuracy because approximated GPs become
closer to full (non-approximated) GPs. Since computational
cost increases with these size parameters, the relationship
between the performance and computational cost should be
examined for a practical TTS system. The selection of a
pseudo-data set, which was randomly chosen in this study,
should be also investigated. For example, using the decision-
tree yields a balanced pseudo-data set and may lead to more
effective modeling.

C. Parameter generation

Using the predictive mean sequence generates the most
likely sequence but generally causes over-smoothing. An al-
ternative way is incorporating a global variance (GV) [31] or
postfiltering [32], [33]. The GV model works as a restriction
in parameter generation. Another way is sampling from the
predictive distribution. It is reported that the sampled trajec-
tories using HMM-based methods sounds very artificial and
unnatural [34]. However, the explicit covariance representation
of frames in GPs may produce more appropriate trajectories.

D. Kernel design

We need to adjust hyperparameters of kernels, which were
manually tuned on the basis of preliminary experimental
results in this study. To optimize hyperparameters such as
scales and relevance weights, we can use Type-II maximum
likelihood, which maximizes the marginal likelihood of all
training frames [14]. Kernel selection is another important
issue. Instead of choosing either a linear or SE kernel, we
can use a combination of them. We can also examine
other kernels. For instance, a neural network kernel was used
effectively for terrain data [35] and represents sharp feature
variation like cliffs, whereas SE kernel generally assumes
smoothly changing features. The neural network kernel could
overcome the problem of trajectories that are too smooth in
plosive phonemes. Furthermore, the window function for the
convolution kernel should be examined.

E. Input variables

The input features used in this paper were quite simple and
compact. The linearly normalized position loses the phone
characteristics that have rapid changes at the beginning and
end of the phone. Therefore, we need to consider additional

features for position context using not only linear normal-
ization but also other techniques, e.g., warping function for
normalization [36] and alignment of sub-phones such as short
silence before plosive. For example, since the normalized po-
sition ignores the distinction of phone duration, unnormalized
position should be added to input features. In addition, phone
context can be extended by using questions for individual
phones, such as whether the phoneme is /i/ or not.

VII. CONCLUSIONS

This paper proposed a novel approach to speech synthesis
using Gaussian process regression (GPR). We first described
the basic framework of GPR-based speech synthesis and
evaluated it using a small data set of isolated phones. We
then achieved continuous speech synthesis with feasible com-
putational cost using partially independent conditional (PIC)
approximation and context extension. The evaluation results
revealed that introducing PIC and context extension into the
proposed technique effectively reduced spectral distortion.
However, the naturalness of synthetic speech was comparable
with HMM-based technique and there are still many issues
to using GPR-based speech synthesis as a general and useful
system. In addition, the current study focused only on the
spectral feature modeling and had a lack of prosody modeling.
In our future work, we will examine the modeling F0, duration,
and aperiodicity features using both phonetic and prosodic
contexts. It is also important to compare the performances of
GPR- and HMM-based speech synthesis under the better con-
ditions where the hyperparameters and/or model complexity
are manually/automatically tuned and controlled.
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