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Abstract
This paper proposes a statistical nonparametric speech synthe-
sis technique based on a sparse Gaussian process regression
(GPR). In our previous study, we proposed GPR-based speech
synthesis where each frame of synthesis units is modeled by a
regression of Gaussian processes. Preliminary experiments of
synthesizing several phones including both vowels and conso-
nants showed a potential of the technique. In this paper, the
previous work is extended to full-sentence speech synthesis us-
ing sparse GPs and context modification. Specifically, cluster-
based sparse Gaussian processes such as local GPs and partially
independent conditional (PIC) approximation are examined as a
computationally feasible approach. Moreover, frame-level con-
text is extended to include not only a position context from a
current phone but also adjacent phones to generate smoothly
changing speech parameters. Objective and subjective evalua-
tion results show that the proposed technique outperforms the
HMM-based speech synthesis with minimum generation error
training.
Index Terms: statistical speech synthesis, Gaussian process re-
gression, non-parametric Bayesian model

1. Introduction
In corpus-based statistical speech synthesis research, HMM-
based speech synthesis [1] has been widely studied [2]. One
of the reasons is that various speaker and style characteristics
are well modeled and reproduced in the synthetic speech using
a relatively small amount of training data by the HMM-based
speech synthesis. Although the technique can generate stable
synthetic speech with smooth speech parameter trajectories us-
ing dynamic acoustic features, it is difficult to precisely model
acoustic characteristics within a state because they are modeled
by a single distribution and a limited number of dynamic fea-
tures.

In our previous study [3], we proposed frame-level acoustic
feature modeling based on Gaussian process regression (GPR)
[4] as an alternative approach to parametric speech synthesis.
This approach uses a regression model that transforms frame-
level linguistic features to corresponding frame-level acoustic
features. Since GPR is a non-parametric Bayesian model, the
number of parameters increases with the size of training data
while keeping the robustness to over-fitting problem. In the
previous study, we defined frame-level context and its associ-
ated kernel for GPR-based speech synthesis. From preliminary
experimental results for isolated phones, we confirmed the po-
tential of this approach.

In this paper, we perform full-sentence speech synthesis
and evaluate the effectiveness of the proposed technique. To
model trajectories of utterances, it is necessary to express their
smoothly changing characteristics. However, the approach pro-

posed in [3] is insufficient because the frame context at the
boundary between adjacent phones is not continuously chang-
ing and, therefore, this causes unsmoothness of the synthetic
speech. Furthermore, since utterances have diverse acoustic
characteristics, a large amount and various kinds of training data
is required. However it is difficult for GPR to utilize a large
amount of training data because the computational complexity
of GPR increases with the cube of the number of training data.

To overcome these problems, we propose a novel tech-
nique by introducing approaches developed in Gaussian pro-
cesses (GPs) for machine learning. In the proposed technique,
sparse Gaussian processes [5,6], which performs approximation
of the covariance matrix of a GP, is incorporated to reduce the
computational complexity. In addition, for the problem of the
unsmoothness of the acoustic features, an extended frame con-
text including multiple adjacent phones is proposed and convo-
lution kernel [7] is employed as a kernel of the extended context.

2. GPR-based speech synthesis

In the previous study [3], we proposed GPR-based acoustic
modeling. We define a training data set D = {(xn, yn)|n =
1, . . . , N} consisting of N frames and a test data set DT =
{(xt, yt)|t = 1, . . . , T} consisting of T frames. xi represents
an input feature vector obtained from linguistic information of
the i-th frame, and yi is the i-th frame’s variable of output
acoustic feature. Although an acoustic feature is generally a
multi-dimensional vector, we here assume that all dimensions
are independent and each dimension can be modeled separately.
We give yi using a function f(·) and noise ε by

yi = f(xi) + ε (1)

Let X = [x1, . . . ,xN ]>, y = [y1, . . . , yN ]>, and f =
[f(x1), . . . , f(xN )]> be matrix forms of training data. We de-
fine XT , yT , and fT as matrix forms of test data in the same
way as the training data. When f(·) is a Gaussian process, the
joint distribution on training and test variables f and fT is given
by

p(f , fT ) = N (0,KN+T ) (2)

KN+T =

»

KN KNT

KTN KT

–

(3)

where KN and KT are Gram matrices of training and test
frames, respectively. Gram matrices KNT and KTN consist
of covariances between training and test frames and KNT =
K>

TN . We assume that the noise ε has a variance σ2. Then the
joint distribution on training and synthetic acoustic features is
given by

p(y,yT ) = N (0,KN+T + σ2I) (4)



The predictive distribution of synthetic acoustic features is ob-
tained by

p(yT |y) = N (µT ,ΣT ) (5)

µT = KTN [KN + σ2I]−1y (6)

ΣT = KT − KTN [KN + σ2I]−1KNT (7)

There are some choices for synthesizing speech from the predic-
tive distribution, such as using the mean sequence for synthetic
parameter or generating random sequence from the distribution.
We here use the mean sequence of the distribution. For this pur-
pose, a parameter vector α is computed in training procedure,
which is given by

α = (KN + σ2I)−1y (8)

The number of parameters in α is N , which corresponds to
the number of training frames. In the synthesis step, the mean
sequence is calculated by

µT = KTNα (9)

In order to achieve GP modeling, we proposed a kernel
function [3] that can represent the relationships among the input
features. The input variable of the kernel function is referred to
as frame context, which comprises phone context and position
context in the phone.

xn = (cn, pn) (10)

The phone context pn is a binary-valued vector of distinctive
phonetic features [8] of the preceding, current, and succeeding
phones. For the position context cn, the relative frame position
in the phone is used, where the position scale is normalized so
that the beginning and end of the phone are 0 and 1, respectively.
The kernel function is defined as a product of the kernels for the
phone context c and for the position context p:

k(xm,xn) = kc(cm, cn)kp(pm, pn) (11)

This kernel gives high covariance between the frames of simi-
lar phonetic features and close positions in their phones. Based
on the results of the previous study, here we use squared expo-
nential (SE) kernel and linear kernel for the kernels for phone
context and position context, respectively.

3. Sparse Gaussian processes
In the training procedure, the matrix inversion needs O(N3)
calculations to obtain the parameter α in Eq. (8). The value of
N is generally at least hundreds of thousands1. Therefore the
GPR computational complexity is not realistic. In this paper, we
introduce two kinds of approximation methods: local GPs [5,6]
and partially independent conditional (PIC) approximation [6].
These methods enable feasible computation by approximating
matrices to be sparse. Although there are various kinds of ap-
proximation methods, e.g., subset of data (SoD) [4, 9] and fully
independent training conditional (FITC) approximation [9], we
choose the local GPs and PIC because they are effective meth-
ods to model locally changing features like short-time changing
acoustic features within phone segments.

3.1. Local GPs

Local GPs is a method to reduce the computation amount by
dividing all of data into local blocks and model each block sep-
arately. That is, the covariance matrix KN+T is approximated

1If we have 10 minutes speech data with 5ms shift, N is 120,000.
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Figure 1: An overview of training and synthesis using PIC ap-
proximation.

by block diagonal one,

KN+T ≈ KLOCAL
N+T = diag [KB1 ,KB2 , . . . ,KBS ] (12)

When all the training frames are divided into S blocks and each
block has at most B training frames, the computational cost
results in O(SB3). By fixing B, the computational complexity
increases linearly with the number of training data N .

In order to use the local GPs, it is necessary not only to de-
termine the block of the training frames but also that of synthe-
sis frames from their linguistic features. In this study, we utilize
decision-tree-based context clustering, which is effectively used
in HMM-based speech modeling. When constructing the deci-
sion tree, we stop the node splitting if a node has less than B
frames. We perform phone-unit clustering instead of state-level
or stream-level clustering because state and stream information
is unknown in the synthesis step.

The local GPs and the HMM-based speech synthesis both
use the decision tree clustering of context dependent HMMs. In
the HMM-based method, the observation samples of each clus-
ter are collected and converted to a limited number of distribu-
tions. In contrast, in GPR with local GPs, the covariances of the
samples in the same cluster are calculated and GPR training of
each cluster yields at most B parameters.

3.2. Partially independent conditional (PIC) approxima-
tion

Although the local GPs can model internally changing features
effectively within the blocks, the covariances between different
blocks are completely ignored. On the other hand, a partially
independent conditional (PIC) approximation estimates the co-
variances between different blocks using pseudo-data set. A
pseudo-data set is a small amount of data set with a size of
M � N , and the pseudo-data are expected to be distributed
similarly to the training data. PIC divides frames into blocks,
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Figure 2: Example of covariance matrices of a Japanese phrase segment “a r a y u r u” using (a) the local GPs and the conventional
single frame context, (b) the PIC and the conventional single frame context, and (c) the PIC and the extended frame contexts.

and the covariance matrix of training data is given by

KPIC
N =

2

6

6

6

4

KB1 QB1B2 · · · QB1BS

QB2B1 KB2 QB2BS

...
. . .

...
QBSB1 QBSB2 · · · KBS

3

7

7

7

5

(13)

where QBiBj is a matrix given by

QBiBj = KBiMK−1
M KMBj (14)

KM is a self covariance matrix of pseudo data set and KBiM

and KMBj are Gram matrices whose elements are kernel val-
ues between the samples of the clustered block and the pseudo
data set. The approximation avoids direct inter-blocks Gram
matrices calculation by means of pseudo-data set.

When a new input value x∗ is assigned into cluster Bs, the
corresponding mean for the new input value is given by

µ∗ = K∗M (w − wBs) + K∗BspBs (15)

The first and second terms of the right-hand side of Eq. (15)
correspond to global and local characteristics. w, wBs and pBs

are PIC model parameters calculated by

w =
PS

s=1 ws (16)

ws = K−1
M KMBsps (17)

[p>
1 · · ·p>

S ]> = [KPIC
N + σ2I]−1y (18)

When the maximum block size is B, the number of block is S,
and the number of frames of pseudo-data set is M , the computa-
tional cost results in O(SB3 +SM3). Methods of determining
the blocks and the pseudo-data set are needed to use PIC. The
blocks of frames are determined in the same way as the local
GPs. We adopt random selection from the training data to se-
lect of pseudo-data set.

An overview of speech synthesis using the PIC approxima-
tion is shown in Fig. 1. In the training procedure, first the de-
cision tree of contexts are constructed using context-dependent
HMMs. Then the pseudo-data set is chosen from training data,
and the cluster for each training data frame is assigned by the
decision tree. After that, Gram matrices are computed. At the
end of the training procedure, the PIC parameters {ps}, {ws},
and w in Eqs. (16)–(18) are calculated. When synthesizing, the
cluster for each frame of a text input is also determined by the
decision tree. Next, Gram matrices between synthesis and train-
ing frames are computed and the acoustic features of the frames
are generated from the Gram matrices and the trained PIC pa-
rameters. Finally, a speech utterance is synthesized by using the
generated acoustic feature trajectory.

4. Extension of frame context using
adjacent phones

Even though PIC can express the covariances between different
blocks, the conventional frame context is insufficient for synthe-
sizing natural-sounding speech. A problem of the frame context
is the discontinuity of covariances at the boundary of adjacent
phones because the context includes only the position informa-
tion about the current phone. For example, the context of the
first frame of a current phone and that of the last frame of the
preceding phone are entirely different. The discontinuity in co-
variance causes synthetic speech to be unsmooth.

Therefore we propose an extended context in order to
achieve smoothly changing trajectories of synthetic speech. The
point is that a certain frame has not only the information of the
current phone but also that of nearby phones. For example, the
first frame of a current phone can also be regarded as the next
frame of the last frame of the preceding phone. Hence, the ex-
tended context xn is defined as a set of position and phone con-
texts of adjacent phones.

xn = {(w(i)
n , c(i)

n , p(i)
n )|i ∈ {−1, 0, +1}} (19)

Here, the subscriptions −1, 0, and +1 of the variables corre-
spond to the preceding, current, and succeeding phones. w

(i)
n

represents a weight used to emphasize the effect of closer
phones. In this study the following sine window function is
used for the weight

w(i)
n =

(

sin(π(p
(i)
n + 0.5)/2) (−0.5 ≤ pi

n ≤ 1.5)

0 otherwise
(20)

The kernel function between the extended contexts is de-
fined using a convolution kernel [7]. The convolution kernel
enables us to define kernel function of input variables that has
multiple values such as the extended kernel. The proposed ex-
tended kernel is given by

k(xm,xn) =
X

i∈{−1,0,+1}

X

j∈{−1,0,+1}

h

w(i)
m w(j)

n kc(c
(i)
m , c(j)

n )kp(p(i)
m , p(j)

n )
i

(21)

Figure 2 shows an example of covariance matrices. In Fig. 2
(a), since the local GPs are used, we can see many of the ele-
ments are zeros because only intra-cluster covariances are cal-
culated. By using PIC in Fig. 2 (b) and (c), inter-clustered co-
variances are estimated. And in Fig. 2 (c), the extended con-
text gives smooth covariances around the boundaries of adjacent
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Figure 3: Average spectral distortions between original and syn-
thetic speech as a function of the number of training sentences.

phones.

5. Experiments
5.1. Experimental conditions

We used speech data of a Japanese female voice actress. The
speaker uttered 503 phonetically balanced sentences with a
reading style. These sentences were taken from ATR Japanese
speech database set B [10]. The total length of the 503 speech
samples was about 45 minutes. The phone boundary informa-
tion was annotated manually. Speech signals were sampled at
a rate of 16kHz, and the frame shift was 5ms. In this study,
we only modeled and generated a spectral feature. The 0-39th
mel-cepstral coefficients derived from the spectral envelop ex-
tracted by STRAIGHT [11] were used as the spectral features.
The maximum number of frames B of the cluster described in
Sect. 3 was set to 1000 for the local GPs and PIC, and the num-
ber of pseudo data sets M was set to 200. For comparison,
we also evaluated the HMM-based speech synthesis with and
without minimum generation error (MGE) training [12]. The
model topology was 5-state, left-to-right, no-skip hidden semi-
Markov model (HSMM). The output distribution in each state
was modeled with a single Gaussian pdf, and covariance matri-
ces were assumed to be diagonal. The feature vector included
delta and delta-delta dynamic features as well as the static one.
Triphones were used for the context set for the HMM training.
In the decision-tree-based context clustering for parameter ty-
ing, the MDL was used as a stopping criterion [13].

5.2. Objective evaluation

First, we objectively compared the performance of the conven-
tional and proposed techniques. Mel-cepstral distance between
synthetic and original speech was used as an objective distortion
measure. 150, 250, 350, and 450 sentences were used as the
training data, and 53 sentences were used as the test data. The
test data was not included in the training data. We compared
two kinds of HMM-based methods and three kinds of proposed
GPR-based methods. The results are shown in Fig. 3. In the
figure, “HMM” represents the HMM-based method where the
model parameters was optimized by the ML criterion. “HMM-
MGE” used MGE training for the model parameter optimiza-
tion. In the proposed GPR-based methods, L and P denote local
GPs and PIC for approximation, respectively, and S and E de-
note conventional single frame context and proposed extended

4.03.0 5.02.01.0

HMM-MGE

GPR-LS

GPR-PE

MOS

95% confidence interval

Figure 4: Naturalness of the synthetic speech.

frame context, respectively. From the result, it is seen that both
HMM-MGE and GPR-based methods gave smaller distortions
than HMM. Moreover, the GPR-based methods gave signifi-
cantly smaller distortions than HMM-MGE which means that
the frame-level regression has a good performance though the
proposed methods do not include dynamic acoustic features. By
comparing GPR-LS and GPR-PS, we can see that the distortion
decreased slightly for all of the training sets. In addition, GPR-
PE had slightly higher reproducibility than GPR-PS.

5.3. Subjective evaluation

To examine the total performance of the proposed technique, we
evaluated HMM-MGE, GPR-LS, and GPR-PE by a mean opin-
ion score (MOS) test. The number of training sentences was
450. Speech samples were synthesized by STRAIGHT using
generated spectral features and original F0 and phone durations.
Five participants listened to the synthetic speech samples and
rated the naturalness of synthetic speech on a five-point scale,
i.e., 5: excellent, 4: good, 3: fair, 2: poor, and 1: bad. For
each participant, ten sentences were randomly chosen from the
53 sentences. Figure 4 shows the mean opinion score (MOS).
The error bars stand for 95% confidence intervals. When com-
paring GPR-LS and HMM-MGE, we see that the scores were
comparable whereas GPR-LS gave smaller distortion in objec-
tive evaluation. This is because the generated acoustic features
were not smooth at the phone boundaries and this discontinuity
degraded the naturalness. In contrast, GPR-PE, which had con-
tinuity on the covariance matrices, gave the highest score of the
three methods. There is a significant difference between GPR-
PE and HMM-MGE at a 5% significance level (p = 0.027).

6. Conclusion
This paper described a technique for the GPR-based speech syn-
thesis. We used block-based sparse GP approximations such as
local GPS and PIC for trajectory modeling of utterances with
feasible computation. Moreover, for the generation of smooth
parameter trajectory, the frame context was extended to include
nearby phone information. From the objective and subjective
evaluation, the proposed method using the PIC approximation
and the extended context achieved better performance than the
HMM-based methods. However there are various kinds of pa-
rameters and kernel structures that has to be optimized. There-
fore, in future work, we have to refine them and this might lead
to improvements in the quality
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