T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	様々な入力地震動を用いた損傷に寄与するエネルギーEDの評価
Title	
著者(和文)	佐藤大輔, 佐藤大樹, 松澤祐介, 北村春幸, 山口路夫, 脇田直弥, 松蔭知明
Authors	daiki sato, Haruyuki Kitamura, Michio Yamaguchi, Naoya WAKITA
出典 / Citation	 日本建築学会関東支部研究報告集, Vol. 83, , 2037
Citation(English)	, Vol. 83, , 2037
発行日 / Pub. date	2013, 3
rights	
rights	本文データは学協会の許諾に基づきCiNiiから複製したものである
relation	isVersionOf:http://ci.nii.ac.jp/naid/110009769783

様々な入力地震動を用いた損傷に寄与するエネルギーE_Dの評価

四 四日四八	そ同	脇田直弥	同	松蔭知明	
入力エネルギー 損傷に寄与するエネルギー エネルキ ナノ版エデル 長周期長継続地震動	ギー法				

1. はじめに

東北地方太平洋沖地震の経験や、近い将来、発生が懸念され ている長周期長継続地震動に起因して、昨今、累積値による損 傷評価の重要性が高まっており、エネルギーの釣合いに基づく 耐震設計法(以後、エネルギー法)に関する知見の充実がいっ そう望まれる状況にある。

エネルギー法では、損傷に寄与するエネルギー E_D (=入力エ ネルギーE-減衰エネルギー W_h)を用い建物の損傷評価を行う ものであり、秋山より、ダンパーを有しない1質点モデルにお ける E_D の経験式が提案されている¹⁾。この経験式は弾性系・弾 塑性系の双方において有用性を確認されているが、標準波のみ の検討に基づいたものであり、今後、 E_D の経験式を拡張するた めにも様々な入力地震動による E_D の傾向特性の把握は重要で あると考える。

本報では、長周期長継続地震動を含む入力地震動 12 波を用 いたダンパーを有しない1 質点・多質点モデルにおける *E*_Dにつ いて考察を行う。

2. 検討モデル諸元及び入力地震動概要

2.1 検討モデル諸元

はじめに、1 質点モデルの諸元について述べる。検討モデルの1 次固有周期 *T*₁は *T*₁=0.5, 1.0, 2.0, 4.0, 6.0 (s)の 5 種類とし、以降、各モデルをそれぞれ T0.5、T1.0、T2.0、T4.0、T6.0 と称す。 各モデルの初期剛性 *K* は式(1)より表せる。

$$K = M \left(\frac{2\pi}{T_1}\right)^2 \tag{1}$$

ここで、 $M: 建物総質量(=9.8(kN\cdot s^2/cm))$ であり、降伏せん断力 Q_v は R_v 曲線に従い式(2)より求める。

 $Q_v = C_0 \cdot Mg \quad (T_1 \le 1.0)$

$$Q_y = \frac{C_0 \cdot Mg}{T_1} \quad (T_1 > 1.0)$$
 (2a,b)

ここで、C₀:標準せん断力係数、g:重力加速度である。

次に、多質点モデルの諸元について述べる。多質点モデルの 作成にあたっては、5 階建て、8 階建て、10 階建て、21 階建て、 35 階建ての鋼構造建物を対象とした。図1 に各建物の基準階伏 図と軸組図、表1 に各建物の部材断面を示す。なお、解析対象 は X 方向とする。構造減衰は T₁に対して減衰定数 h=2%となる 剛性比例型とした。本報では、図2 に示すように、静的増分解 析から得られる各層の履歴曲線の面積と、終局変形 δ_{ui}(静的増

祝 と 夕食木麻師 こうか 間元						
	5層	8層	10層	21層	35層	
$T_1(\text{sec})$	1.10	1.51	2.01	2.42	4.08	
W (kN)	75199	49115	67912	115347	373870	
$Q_{y1}(kN)$	35154	13352	19578	30354	55176	
α1	0.47	0.27	0.29	0.26	0.15	
$\alpha_1 \cdot T_1$	0.51	0.41	0.58	0.64	0.60	

分解析における最大変形)時の履歴面積が等しくなる完全弾塑 性型に置換し,降伏変形 δ_{yi} を設定したせん断型モデルを用いて 検討を行った²¹。以降,各建物により得られたせん断型モデル を5層,8層,10層,21層,35層モデルと称す。表2に多質点 解析モデル諸元を示す。ここに, α_i :ベースシア係数(= Q_y /

Mg) である。

2.2 入力地震動概要

解析に用いる入力地震動は位相特性 JMA KOBE1995NS にお ける観測波(以後, JMA KOBE), コーナー周期 T_c=0.64 (s) 以 降の領域で擬似速度応答スペクトル $_{n}S_{V}=100 \text{ cm/s}(h=5\%)$ と なる位相特性 HACHINOHE 1968 EW(以後, ART HACHI)お よび JMA KOBE1995NS(以後, ART KOBE)の模擬地震動, 最大速度を 50 cm/s に基準化した El Centro1940NS(以後, El Centro), 東北地方太平洋沖地震本震(以後,本震)における 宮城県古川地区,仙台地区,東京都新宿区と神奈川県小田原地 区において観測された地震動(以後, FURU, SEN, SHIN, ODA), およびそれらのデータ^{注1)}をもとに $T_c = 0.64(s)$ 以降の領域で $_{\rho}S_{\gamma} = 0.64(s)$ 100 cm/s (h=5%)に基準化した模擬地震動(以後, ART FURU, ART SHIN, ART ODA), 東海・東南海地震を想定した東海地方 の長周期地震動である三の丸波(以後, SAN)の 12 波を用い た。図3に各入力地震動の加速度時刻歴波形、図4に_pSvとエ ネルギースペクトル V_Eを示す。図中の_et₀は、実効地震継続時 間³⁾である。またf値は周期0~10秒の範囲でh=0.1のときの エネルギースペクトルの平均値 VEL=01 と速度応答スペクトル の平均値 $\overline{S}_{\nu,h=01}$ から求められるものであり, El Centro NS 波な どの標準波に対して何倍の入力エネルギーを持つかを表す係数 である 3)4)。

3. 損傷に寄与するエネルギーEDの検討

3.1 秋山による ED の経験式

最大応答時 t_m , 地震終了時 t_0 におけるエネルギーの釣合式は 以下のように書ける⁵⁾。

$W_e(t_m) = E_D(t_0)$	(弾性系)	(3)
-----------------------	-------	-----

$$W_{p}(t_{0}) = E_{D}(t_{0})$$
(弾塑性系)(4)

最大層間変形角や最大塑性率などの最大応答の予測式は $t = t_m$ 時の釣合い式 (式(3)),損傷の程度に関わる塑性歪エネルギーなどの累積値は $t = t_0$ 時の釣合い式 (式(4)) から求める。ここに、 $W_p(t)$:塑性歪エネルギー、 $E_D(t)$:損傷に寄与するエネルギー ($=E(t) - W_h(t)$),E(t):入力エネルギー、 W_h :減衰エネル ギーである。 $W_e(t)$:弾性振動エネルギー ($=W_{ek}(t) + W_{es}(t)$), $W_{ek}(t)$:運動エネルギー、 $W_{es}(t)$:弾性歪エネルギーであり、本報では $W_e(t_m) = W_{es}(t_m)$ とした。本報では多質点モデルにおける W_e の算出において、各層の最大応答発生時刻のずれを無視し式 (5)より求めた。

$$W_e(t_m) = \sum_{n=1}^{N} \frac{Q_{\max i} \cdot \delta_{\max i}}{2}$$
(5)

ここに、 Q_{maxi} :最大層せん断力、 δ_{maxi} :最大層間変形、N: 全層数である。本報では弾性系における E_D を式(3)の釣合い式より求め、弾塑性系における E_D を式(4)の釣合式により求めた¹⁾。

以下に,秋山より提案された Epの経験式を示す¹⁾。

$$E_{D} = \frac{E}{\left(1 + 3h + 1.2\sqrt{h}\right)^{2}}$$
(6)

$$E_D = \frac{E}{\left(\sqrt{1 + 4\pi hn}\right)^2} \tag{7}$$

ここに、n: 減衰エネルギーの等価繰返し数である。本報では<math>h=0.02, n=2,3を用いた。h=0.02, n=2,3を用いた場合,式(6)における E_D は E の 66.1%,式(7)(n=2)における E_D は E の 66.5%,式(7)(n=3)における E_D は E の 57.0%となる。

3.2 EDと入力地震動の関係

図 5~7 に、1 質点・多質点モデル、弾性系・弾塑性系における 入力地震動と E_D/E の関係を示す。図 6(a)は $C_0=0.2$, (b)は $C_0=$ 0.4, (c)は $C_0=0.6$ の場合における検討結果である。なお、図 5~7 の入力地震動の順は、右ほどf値が大きくなるように並べた。

はじめに、弾性系について考察する。図 5(a)、(b)より、全体的 に、1 質点・多質点モデルともにf値が大きく継続時間が長くな るような地震動ほど、 E_D/E が小さくなる傾向が確認できる。 各地震動において、 T_1 の違いによる E_D/E の特徴的な傾向はみ られない。El Centro をはじめとするf値が比較的小さい地震動 において、経験式(式(6)、(7))による E_D は時刻歴解析の E_D よ りもおおむね小さく、経験式は時刻歴解析に対し危険側の評価 を下すことが確認できる。一方、長周期長継続地震動などのf値が比較的大きい地震動において、経験式の E_D が時刻歴解析

図8 $E_D/E \succeq \mu \sigma$ 関係(1 質点, C_0 =0.6, モデル) 図9 $E_D/E \succeq \mu \sigma$ 関係(多質点, モデル) の E_D よりも大きく,経験式は時刻歴解析に対しおおむね安全 側の評価を下すことがわかった。

次に, 弾塑性系について考察する。1 質点モデルの場合(図 6),入力地震動が E_D/E に及ぼす影響は弾性系よりも小さい。 各地震動における T_1 の違いに着目すると、 T_1 が長いほど E_D/E が小さく W_h/E が大きくなる傾向にある。 C_0 の違いに着目する と、 $C_0=0.2$ の場合,経験式の E_D は時刻歴解析の E_D よりもおお むね小さいが、 C_0 が大きくなると上記の傾向は逆転し経験式の E_D は時刻歴解析の E_D よりも大きくなることがわかる。図7よ り、多質点モデルの場合、 $\alpha_1 \cdot T_1$ が比較的大きいため(表 2), E_D/E は小さくなる。

以上より,弾性系の場合,地震動(継続時間の長さ等)が *E_D* に大きく影響を与え,弾塑性系の場合,*C*₀の大きさと建物の1 次固有周期 *T*₁ が *E_D/E* に大きく影響を与えることがわかった。 3.3 *E_D/Eと*塑性化の程度の関係

図 8~11 に, 弾塑性系における主架構の塑性変形倍率の平均 値_f μ (式(8)) と E_D/E の関係を示す。

$${}_{f}\overline{\mu} = \frac{1}{N} \sum_{j=1}^{N} \left(\frac{\delta_{\max j} - \delta_{yj}}{\delta_{yj}} \right)$$
(8)

なお、図8は1質点モデル(C0=0.6)、図9は多質点モデルに おける解析モデルを凡例としたものであり,図10は1質点モデ ν ($C_0 = 0.6$), 図 11 は多質点モデルにおける f 値を凡例とし たものである。図8,9より,1質点・多質点モデル双方において, 全体的に, $_{\mu}$ が大きくなるほど E_D/E は大きくなる。また E_D/E $E \geq \mu$ (塑性化の程度)は規則的な関係にあることがわかった。 前節において,1質点モデル,弾塑性系の場合,E_D/Eに影響を 与える要素は主に Coの大きさと建物の1次固有周期 T1である と述べたが、図8より、上記の2つの要素($C_0 \ge T_1$)は塑性 化の程度におおむね直結しており、秋山が述べていることと一 致していることを確認した¹⁾。1 質点モデルの場合, T₁による 傾向の違いは確認できなかったが、多質点モデルの場合、超高 層モデルの E_D/E の方が中低層モデルの E_D/E よりも小さい傾 向にある。これは、超高層モデルにおいて高次モードによる影 響から減衰成分が比較的大きくなったためであると考える。図 10,11より,1質点·多質点モデル双方において,f値が大きくな る地震動ほど(濃色ほど) E_D/E が小さくなる傾向にある。

以上より,弾塑性系において,1 質点モデルの場合,①塑性 化の程度,②地震動の2要素が*E_D/E*に大きく影響を与え,多

質点モデルの場合, ①塑性化の程度, ②地震動, ③解析モデル 諸元の3要素が *E_D/E*に大きく影響を与えることがわかった。

4. まとめ

本報では,損傷に寄与するエネルギー E_D (入力エネルギーE- 減衰エネルギー W_h)について,ダンパーを有しない1質点・ 多質点モデル(弾性系・弾塑性系)を用いた時刻歴解析により検 討を行った。以下に,得られた知見を示す。

- 弾性系において、地震動(継続時間の長さ等)が E_D / E に 大きく影響を与える。
- (2) 弾塑性系において、1 質点モデルの場合、①塑性化の程度、
 ②入力地震動、多質点モデルの場合、①と②にくわえ③解析モデル諸元(固有周期)が E_D/E に影響を与える。また
 E_D/E は塑性化の程度と規則的な関係にある。

注 1) K-net 観測データを使用

謝辞

本研究は、新日鉄住金エンジニアリング、東京理科大学北村研究室による共同研究の成果の一部を用いたものです。ここに深く感謝の意を表します。

参考文献

- 秋山宏:エネルギーの釣合に基づく建築物の耐震設計,技術堂出版, 1999.11
- 2) 北村春幸,馬谷原伴恵、川崎恵:時刻歴解祈結果をもとにエネルギーの 釣合に基づく耐震設計法を適用した建築物の耐震性評価法の提案、日本 建築学会構造系論文集、第73巻、第632号、1755-1763p、2008.10
- 3) 秋山宏,北村春幸:エネルギースペクトルと速度応答スペクトルの対応, 日本建築学会構造系論文集,第608号, 37-43p, 2006.10
- 小穴温子,北村春幸,吉江慶祐,佐藤俊明:設計用地震動のための長周 期長継続地震動のf値の定性的評価,日本建築学会構造系論文集、第77 号,第674号,575-584p,2012.04
- 5) 北村春幸, 財津和廉, 馬谷原伴恵: 主架構の塑性化を考慮した制振構造 物のエネルギーの釣合に基づく応答評価法, 日本建築学会構造系論文集, 第599 号, 71-78p, 2006.01

*1 東京理科大学 *2 (株)新日鉄住金エンジニアリング