T2R2東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 鋼製ダンパーを用いた既存超高層鋼構造建物の制振補強 	
Title		
著者(和文)	助村浩太郎, 佐藤大樹, 北村春幸, 長江拓也, 佐野剛志	
Authors	daiki sato, Haruyuki Kitamura, TUYOSHI SANO	
出典 / Citation	日本建築学会大会学術講演梗概集, vol. B-2, , pp. 747-748	
Citation(English)	, vol. B-2, , pp. 747-748	
発行日 / Pub. date	2012, 9	
rights	日本建築学会	
rights	本文データは学協会の許諾に基づきCiNiiから複製したものである	
relation	isVersionOf:http://ci.nii.ac.jp/naid/110009654751	

同

北村春幸

鋼製ダンパーを用いた既存超高層鋼構造建物の制振補強

超高層建物	長周期地震動	耐震性能
鋼製ダンパー	制振補強	時刻歴応答解析

1. はじめに

近い将来,東海・東南海・南海地震などの巨大地震の発生が予 測されている。その状況下,2011年3月11日東北地方太平洋沖 地震が発生し,東京・新宿地区の既存超高層建物は10~15分も の長時間,揺れ続けたことが報告されている¹⁾。この様な長時間 の揺れは,梁端部に多数回の繰返しを生じさせ,破断まで到るこ とが,2008年3月にE-ディフェンスにおいて行われた超高層鋼 構造建物を模擬した振動台実験により確認されている²⁾。

そこで,本報では既存超高層建物の長周期地震動に対する耐 震安全性の確認を目的として,以下の構成で記す。新耐震基準 以前における東京地区の既存超高層鋼構造建物をモデル化し, 時刻歴応答解析による応答性状からその耐震性能を分析する。 そして,鋼製ダンパーによる制振補強した際の応答性状と比較 し,制振補強効果について検討を行う。

2. 検討対象建物および入力地震動の概要

既報³において,性能評定シートに示される資料を地区や年 代で分け,着目すべき高層建物分類を示した。その成果に基づ き,本報では,地上52階,高さ199.8m(1階6.0m,2~52階 3.8m),X方向57.6m,Y方向44.8mであるセンターコア形式 を採用した超高層鋼構造建物を想定した。軸組図を図1に,基 準階伏図を図2に示す。平面形状は各階同一で,部材断面を表 1に示す。スラブの合成効果については,梁の曲げ剛性のみ考 慮し,X1~X19通りの16.0mと12.8mスパンの梁部材の剛性増 大率 ϕ は1.5,その他の梁部材は1.25とした。本報の時刻歴応 答解析はX方向のみを対象とし,剛床仮定とする。主架構の1 次固有周期_f T_1 は,6.87秒である。減衰hは,初期剛性比例型の 2%とする。

制振部材は,図1,2に示すように連層に配置し,設置する鋼 製ダンパーには,降伏応力度225 N/mm²の座屈拘束型ブレース を用いる。各層のダンパーの降伏せん断力 Q_{yi} は,第1層のダ ンパー降伏せん断力 Q_{yi} を基準とし,Ai分布に基づく設計用層 せん断力分布を5段階に分けたものに従い決定した。 Q_{yi} と第1 層のダンパーの降伏せん断力係数 $_{d} \alpha_{yi}$ の関係は次式で表され る。ここで, $_{d} \alpha_{yi}$ をダンパー量とする。

$$Q_{y1} =_{d} \alpha_{y1} \sum_{i=1}^{N} m_{i} g \tag{1}$$

ここで,g:重力加速度,m_i:i層の質量である。 解析用入力地震動として,最大速度を50cm/sに基準化した

Seismic Retrofit of High-Rise Steel Building with Steel Dampers

正会員

同

助村浩太郎*!

長江拓也^{*2}

同

同

佐藤大樹

佐野剛志

El Centro 1940 NS (以降, El Centro), *S*_v = 80cm/s (*h* = 5%)となる ART HACHINOHE(位相特性: HACHINOHE 1968 EW (以降, ART HACHI), 東海・東南海・南海連動地震を考慮した関東平 野における建物応答検討用の模擬地震動 YY_KANTO1-FEM_

Kotaro Sukemura, Daiki Sato, Haruyuki Kitamura Takuya Nagae, Takeshi Sano

sig(以降,KANTO)⁴⁾を採用した。図3に地震動の加速度時刻 歴波形 最大加速度 PGA 実効地震継続時間。t₀を示す。図4(a), (b)に速度応答スペクトル S_V (h = 5%), エネルギースペクトル V_E(h=10%)をそれぞれ示す。図4の破線は,主架構のみの1 次固有周期_fT₁であり,図4(b)のプロットは,各ダンパー量にお ける時刻歴応答解析より得られた入力エネルギーの速度換算値 V_Eである。なお,プロットする際の周期には,各ダンパー量で の弾性時1次固有周期を用いている。図4(b)より,エネルギー スペクトルと一致している事が確認できる。

非制振モデルでの時刻歴応答解析に基づく応答評価

検討項目は,最大層間変形角R,梁の累積塑性変形倍率_Gηと し,その解析結果を図5(a),(b)に示す。ここで,図5(b)の破 線は,_cnの安全限界値を示しており,既往研究⁵を参考に床ス ラブの影響を考慮して, $_{G\eta}=13.5$ と定めた。

図5(a)より, El Centro 入力時とARTHACHI 入力時においては, R=1/100 (0.01) 以下になっているが, KANTO 入力時においては R =1/100 を超える層がある。図 5(b) より, El Centro 入力時と ARTHACHI入力時では $_{G}\eta$ =13.5の安全限界値を下回っているが, KANTO 入力時においては安全限界値を超える結果となった。

4. 制振モデルでの時刻歴応答解析に基づく応答評価

前節の検討を踏まえ、応答が最も大きかった KANTO 入力時に ついて, μανιをパラメーターとし,制振補銃効果の検討を行う。 はじめに,図6(a),(b)において,横軸に $_d \alpha_{y1}$,縦軸に入力エネ ルギーE, fW,/E(入力エネルギーE に対するフレームのエネル ギー吸収量_f W_p の比率), $_dW_p/E(\Lambda)$ エネルギーEに対するダン パーのエネルギー吸収量。Waの比率)をとり、ダンパー量の違い による応答値の変化を考察する。図6(a)より,ダンパー量の増 加に伴い入力エネルギーが増大し、ダンパー量が_d α_{v1}=0.006 時 に入力エネルギーが最大となり, それ以降は減少していくこと がわかる。これは,周期変動によって入力エネルギーが減少し た影響が大きいと考えられる(図4(b))、図6(b)より, dαyl=0.03 時には,主架構が概ね弾性となっていることが分かる。

次に上記を踏まえ,ダンパー量が_d α_{v1}= 0.03 時の応答性状の 高さ方向分布を検討する。この時の1次固有周期は4.55秒であ る。検討項目は,前節と同様にR,_Gηとし,その解析結果を図 7(a),(b)に示す。図7(a),(b)より,非制振モデルより応答が抑 えられ, R =1/100 以下と Gη=13.5の安全限界値以下となってい ることが確認できる。非制振モデルと応答の最大値を比較する と, Rでは非制振モデルに比べて, 最大応答値の約0.62倍とな リ, $_{G\eta}$ では,約0.23倍となっている。ダンパー量が $_{d}\alpha_{y1}=0.03$ の際は,ダンパーの塑性率_d µ=5.3,累積塑性変形倍率 $_{d\eta}=116.7$ が最大値となった。

5. まとめ

既存超高層鋼構造建物をモデル化し,時刻歴応答解析による

- *1 東京理科大学
- *2 独立行政法人 防災科学技術研究所
- *3 株式会社 大林組

応答性状からその耐震性能を分析し,制振補強したモデルの応 答性状と比較して , 制振補強効果について検討を行った。 鋼製 ダンパーによる制振補強を行ったことで, KANTO 入力時にお いて,非制振モデルの時より応答が抑えられ,さらにR=1/100 以下に,_Gηも安全限界値_Gη=13.5以下にすることができ,制振補 強効果を確認した。

謝辞 800年 中研究は文部科学省が推進する「首都直下地震防災・減災特別プロジェクト」の一環と して、(独)防災科学技術研究所が受託した「都市施設の耐震性指誤評価・機能確保に関 する研究」の成果の一部です。 都市施設の耐震性能評価・機能確保に関

- 日本建築学会:2011 年東北地方太平洋沖地震災害調査速報,2011.7 長江拓也,鐘育霖,島田侑,福山國夫,梶原告一,井上貴仁,中島正愛,斉藤大 樹,北村春幸,福和仲夫,日高桃子:超高層建物の耐震性能を検証する大規模実 験システムの構築-Eディフェンス震動治実験-,日本建築学会構造系論文集,第 2)
- 級システムの構築・ビノイノエノスで登却ロススマー、ロインをオーム1942年7日31982、10006 640号、pp.1163-1171、2009.6 助村浩太郎、佐藤大樹、大下優作、北村春幸、長江拓也、佐野剛志:データベー スによる既存超高層鋼構造建物の耐震性能評価(その2)年代と地区に着目した既 存超高層鋼構造建物の耐震性能評価(その2)年代と地区に着目した既 3) 構造 B-2, pp.21-22, 2011.8 日本建築学会長周期地震動 WG: 長周期地震動に対する公開研究集会,対象とす 4)
- 大地震動と地域,2011年3月 春幸,宮内洋二,浦本弥樹:性能設計における耐震性能判断基準値に関する
- る巨大地震動と地域,2011年3月 北村春幸,宮内洋二,浦本弥樹:性能設計における耐震性能判断基 研究 JSCA 耐震性能メニューの安全限界値と余裕度レベルの検討 -会構造系論文集,第604号,pp.183-191,2006.6 5) ,日本建筑学

Tokyo University of Science NIED Obayashi Corp.