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Abstract: 2D/3D packing optimization is facing big challenges to get better solution with less runtime. In this pa-
per, we propose a new variation of adaptive simulated annealing (ASA) to solve packing problem. In the traditional
ASA, the parameters that control temperature scheduling and random step selection are adjusted according to search
progress. In the proposed ASA, a guide with adaptive probabilities is used to automatically select moving methods,
including crossover to improve its efficiency. The interesting point is the traditional SA with crossover is inefficient,
while the proposed ASA with crossover is efficient due to the adaptive guide. Based on the experiment using MCNC,
ami49 X and ami98 3D benchmarks, the computational performance is considerably improved. In the case of area
minimization, the results gotten by the proposed ASA are normally better than the published data of 2D packing. In
the case of volume minimization for 3D packing, the results gotten by the proposed ASA are better than the data of
traditional ASA and SA.
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1. Introduction

Simulated annealing (SA) [1] is one of the most popular opti-
mization techniques [2], [3], [4], [5], [6], [7], [8] to get near opti-
mal solutions for NP-hard problems. As the solution space keeps
increasing in practice, the optimization techniques are facing big
challenge to get better solution within a short runtime. Many
improved variations of SA, such as adaptive simulated annealing
(ASA) [3], are proposed to speed up standard SA. In traditional
ASA, the parameters that control temperature scheduling and ran-
dom step selection are adjusted according to search progress in
order to find near optimal solutions more efficiently.

However, there are several shortcomings of traditional ASA
and SA to be overcome. For example, the configuration of past
solutions is not used even in ASA. It is a big informational waste.
The basic idea to improve traditional ASA is to propose an adap-
tive guide with probabilities to select diverse moving methods,
including a special crossover operator to reuse the configuration
of past solutions. There are at least three difficulties when SA
with crossover. Firstly, SA-based algorithm has only one state at
a time, but a crossover needs at least two states at a time. Sec-
ondly, the acceptance probability is unstable. Most of states after
a normal crossover have very low acceptance probability. Thirdly,
since a crossover tends to have a big change each time, it is hard
to approach a local optimum, so it is also hard to get effective
global convergence. After overcoming all mentioned difficulties,
a new variation of ASA is proposed. The traditional SA with
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crossover is inefficient, while the proposed SA with crossover is
efficient due to adaptive guide.

To evaluate the effectiveness of the proposed ASA, we ap-
ply it to 2D/3D packing optimization. To solve the problem
more efficiently, researches explored many representations, such
as BSG [9], sequence pair (SP) [10], O-tree [11], B*-tree [12],
CBL [13], FAST-SP [14], Q-sequence [15], Selected SP [16], etc.
It has been proved that SP could represent a general 2D topology
and there is at least one optimal solution decoding by sequence
pair for area minimization, so we are using SP representation to
solve 2D packing problem in this paper. The 3D packing prob-
lem [17] in 3D layout design is to position different modules into
a fixed rectangular box with volume minimization. The SP is ex-
tended to sequence quintuple to code and decode 3D packing. It
is proved that sequence quintuple could represent the topology of
tractable 3D packing and there is at least one sequence quintuple
which can be decoded to a topology as an optimal 3D packing for
volume minimization.

The contributions of this paper are as the following. As a new
variation of SA, adaptive simulated annealing with crossover op-
erator (ASA X) is proposed to improve the efficiency of simu-
lated annealing by overcoming the shortcomings of traditional
SA and ASA. ASA X is used to improve 2D/3D packing opti-
mization. The experimental results using MCNC, ami49 X and
ami98 3D benchmarks show the proposed ASA X obtains stable
improvement of computational performance for both objectives:
area and volume. The runtime is reduced considerably. The re-
sults of area minimization are normally better than the published
data.
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2. Traditional Simulated Annealing

Based on the theory of statistical mechanics and the anal-
ogy between solid annealing and optimization problem, S.
Kirkpatrick, C.D. Gelatt and M.P. Vecchi [1] proposed simulated
annealing algorithm in 1983. The annealing is to heat up a solid
with a very high temperature and then to cool it down slowly until
it reaches or approaches its minimum energy state. Each state of
solid represents a feasible solution of problem. The energy of the
state is the value of cost function to evaluate the solution. The
state with the lowest energy corresponds to the optimal solution
with the best value of cost function.

SA is a stochastic algorithm with iterative improvement. Each
iterative step consists of changing current solution to a new solu-
tion, named a move to neighborhood. The acceptance probability
of new solutions depends on the current temperature, which is
scheduled from the highest temperature to the lowest tempera-
ture. Let Ŝ be the solution space with neighborhood structure.
For any solution S belongs to Ŝ, we define the cost C(S). The
flow chart of standard SA is as follows. The initial solution is
randomly produced. The parameters of temperature scheduling
include the starting temperature T0, the ending temperature Te.
A solution is updated by using a moving method. The new solu-
tion is evaluated by cost function and then it is compared to the
old solution. The new solution is accepted with the probability
P = exp[−ΔC/T ], which depends on the cost difference ΔC and
the current temperature T . If rejected, the current solution goes
back to the old one. The terminal condition is reaching the lowest
temperature Te.

A non-optimal solution S is defined by local optimum if it can-
not reach better solution by moving to any neighboring solution
S′. That is to say, for any neighbor solution (S′) of local optimal
solution (S), the inequality C(S) ≤ C(S′) is always satisfied. The
depth D(S) of local optimal solution S is defined by Max[C(S′)-
C(S)]. The maximum depth of local optimal solutions in Ŝ is de-
noted by d. Let S i be ith solution explored by simulated anneal-
ing, and Ti be the temperature when S i is explored. Let Copt

be the minimum cost. The equality limi→∞C(Si) = Copt is satis-
fied [1] with the following conditions: (1) The solution space Ŝ is
finite and irreducible; (2) There exists an equilibrium distribution
for the transition probability matrix; (3) Ti ≥ Ti+1 and Ti > 0 for
all i; (4) limi→∞Ti = 0; (5)

∑
i:∈(0,∞)[exp(−d/Ti)] = ∞.

There are at least two shortcomings which impact the search
speed. (1) Inefficient global search within a short runtime: In
order to get a final convergence effectively, the moving methods
with small changes should be used, so the global search within
a short runtime is limited. It is normally inefficient to solve the
problem with huge solution space. (2) Informational waste: SA
does not use the experience of past moves and the configuration
of past solutions. It is a big informational waste.

3. A New Variation of Simulated Annealing

The basic idea to propose the new variation of adaptive simu-
lated annealing (ASA) is to use an adaptive guide to select mov-
ing methods and a special crossover operator as one of mov-
ing methods. The proposed ASA X is an iterative improvement

method and a stochastic algorithm. The guide is designed to
speed up the search process by increasing the selection proba-
bility of moving methods which improve the solutions more in
short term. The crossover is designed to reduce the informational
waste by using the configuration of past solutions.

The flow chart of the proposed ASA is as shown in Fig. 1.
The parameters of temperature scheduling are adjusted accord-
ing to a faster annealing [1], [2]. The new features are as follows.
The adaptive guide is added. One of moving methods is selected
by the latest guide with adaptive probabilities, which are initially
with the same probability for each moving method. By using the
selected moving method, the old solution is replaced by a new
solution, if improvement happens. The adaptive guide is updated
after a given number of trials are applied. If the new solution is
better than the current best, the best record is updated. The output
is the latest best record.

To realize the idea of guide, a series of probabilities are ad-
justed automatically to select moving methods. The frequency of
improvement fk( j) of jth moving method in kth iteration loop is
defined by

fk( j) =
timprove( j)

tk( j)

where tk( j) is the number of trials using jth moving method in
kth iteration loop and timprove( j) is the number of improved trials
among tk( j) trials. The amplitude of improvement ak( j) of jth

moving method in kth iteration loop is defined by

ak( j) =
tk( j)∑

i=1

Max
[
0,−ΔCk ( j, i)

]

where ΔCk( j, i) is the difference of cost at ith trial of j-th method
in kth iteration loop. The improvement ratio sk ( j) is defined by

sk( j) =
ak( j) fk( j)

l−1∑

j=0

ak( j) fk( j)

Fig. 1 The flow chart of the proposed algorithm.
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where l is the number of moving methods. In this research, there
are four different moving methods, so l = 4. We only pick up
−ΔC > 0 to calculate ak this time. The guide is not updated after
an iteration loop if no improvement happens during the iteration
loop. The initial probability p0 is same for each moving method.
The next probability pk+1, which is defined by (sk + pk)/2, is
adapted according to the current probability pk and the improve-
ment ratio sk.

To realize the idea of crossover, there are three difficulties to
be overcome. Firstly, SA-based algorithm has only one state at
a time. We can not use a normal crossover operator like genetic
algorithm, which is based on the population of many solutions. A
special crossover operator is designed to generate a new solution
from the current solution and the best solution so far. The margin
and center of the new solution inherit the margin of the current
solution and the reversed center of the best solution, respectively.
The reason to reverse the best solution is to get a different solu-
tion even two given solutions are same. Secondly, the acceptance
probability is unstable. Because one of two states is from the best
so far, it has more chance to get a better solution by crossover.
As a result, the acceptance probability of crossover is improved.
Thirdly, it is hard to approach a local optimum by using crossover
due to its big move at a time. An adaptive guide to adjust the se-
lection probability of crossover is needed to improve the accep-
tance probability and the final convergence. We will discuss the
crossover further in part V.

In short, there are two main changes for ASA X: (1) ASA X
changes the probabilities of selecting different moves based on
history; (2) ASA X adds a new crossover operator that reuses
best-so-far solutions. There are four moving methods with indi-
vidual adaptive probability. Each method’s probability is updated
according to the improvement amplitude and the improvement
frequency from the past iterations. The crossover operator gen-
erates the new solution by composing the boundary of current
solution with the center of best-so-far solution.

4. Application to 2D Packing and 3D Packing

Since 2D packing is a special case of 3D packing, let us start
the formulation of 3D case. A general 3D rectangular packing
problem is formulated as follows. Let M = {m1,m2, . . . ,mn} de-
note the modules or blocks to be placed, where n is the num-
ber of modules. Each mi, where 1 ≤ i ≤ n, has height hi,
length li and width wi. Let (xi, yi, zi, rxy−i, ryz−i, rzx−i) of mod-
ule mi be the location and rotation on 3D orthogonal coordinate
system, where (xi, yi, zi) means the coordinates of the bottom-
south-west corner of module mi, and (rxy−i, ryz−i, rzx−i) repre-
sents the rotation (0, 1) of mi on xy-, yz- and zx- plane. If
rxy−i = 1, the height is the vertical length and the width is
the horizontal length on xy- plane. If rxy−i = 0, the height
will be the horizontal length and the width will be the verti-
cal length, which is rotated by 90 degree on xy- plane. In
short, the input is a set of modules M = {m1,m2, . . . ,mn} with
height, length and width {(h1, l1, w1), (h2, l2, w2), . . . , (hn, ln, wn)}.
The constraint is no overlap between mi and mj, where i �
j. The output is a set of location and rotation of modules
{(x1, y1, z1, rxy−1, ryz−1, rzx−1), (x2, y2, z2, rxy−2, ryz−2, rzx−2) , . . . ,

(xn, yn, zn, rxy−n, ryzn, rzx−n)}. The objective is to minimize the vol-
ume of bounding box.

In general, let A + B be the sequence which is the concate-
nation of A and B, and A − B be the sequence obtained from
A by removing all the elements in B, where A and B are se-
quences. Let us denote A[i, j], where i < j, as the sequence (A[i],
A[i + 1], . . . , A[ j]), where A = (A[0], A[1], . . . , A[n − 1]). Let
Γi = (Γi[0], Γi[1], . . . , Γi[n−1]) be a sequence (1 ≤ i ≤ v), where
v is the number of sequences. Let Fi(mj) be the order of mj in
sequence Γi. For example, if Γi[l] is mj, then Fi(mj) = l. So the
order of mj can be represented by (F1(mj), F2(mj), . . . , Fv(mj)).

The original 2D/3D packing problem is with infinite solution
space. The coding and decoding method is needed to connect
the problem and its representation. The solution space of a good
representation should be finite. The solutions after a good repre-
sentation should be feasible and be better to include at least one
optimal solution.

Sequence pair (SP) (Γ1, Γ2) represents a general 2D topol-
ogy [10]. Two sequences generate a finite solution space which
includes at least one optimal solution of 2D topology for area
optimization by decoding. It is regarded as a set of the rela-
tions of relative location between modules, i.e., “North-South”
and “West-East” (NS- and WE-) relations. Let (mi N mj) and (mi

W mj) denote NS- and WE-relations. SP defines (mi W mj) when

F1(mi) < F1(mj) and F2(mi) < F2(mj).

It defines (mi N mj) when

F1(mi) < F1(mj) and F2(mi) > F2(mj).

The rule of symmetry to be followed is that (mi N mj) is the
same relation as (mj S mi). That is to say, the topology should be
reversely decoded if the order of labeling is reversed. For a given
packing with n modules, the solution space is (n!)2. If the rotation
of the module is not fixed, then the solution space will increase to
(n!)22n.

SP representation for 2D packing is extended to 3D pack-
ing [17] as sequence triple (ST) representation, which consists of
three sequences Γ1, Γ2 and Γ3, and sequence quintuple (SQ) rep-
resentation, which consists of five sequences Γ1, Γ2, Γ3, Γ4 and
Γ5. The ST and SQ representation define the orthogonal coordi-
nate system (x, y, z) for 3D-packing topology, which can be re-
garded as a set of the relations of relative location between boxes,
i.e. “top”, “bottom”, “north”, “south”, “east” and “west” (TB-,
NS- and WE-) relations. For example, box m2 is on the west of
box m3, since the x-coordinate of any part of box m2 is always
smaller than or equal to that of any part of box m3. Similarly box
m1 is on the north of box m3, and box m2 is on the top of box m1.

ST consists of three sequences Γ1, Γ2 and Γ3. The coding
and the decoding are based on TB-, NS- and WE- relation corre-
sponding to the order of modules in ST. For a given packing with
n modules, the solution space is (n!)3. If the rotation of the mod-
ule is not fixed, then the solution space will increase to (n!)36n.

Three or even four sequences are not enough to represent a
general 3D packing topology. It means that ST does not cover
all kinds of topology of 3D packing. That is to say, the topology
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with the minimum volume might not be covered. For example,
the packing in Fig. 2 cannot be represented by ST. SQ gener-
ates a finite solution space which includes at least one optimal
solution of 3D packing for volume minimization by decoding.
For example, the packing in Fig. 2 is represented by SQ where
Γ1 = (m1,m5,m6,m2,m4,m3), Γ2 = (m6,m5,m2,m3,m4,m1),
Γ3 = (m2,m4,m5,m1,m3,m6), Γ4 = (m5,m4,m1,m6,m3,m2) and
Γ5 = (m6,m5,m4,m3,m2,m1). The coding and the decoding are
based on TB-, NS- and WE- relation corresponding to the order
of modules in SQ. For a given packing with n modules, the solu-
tion space is (n!)5. If the rotation of the module is not fixed, then
the solution space will increase to (n!)56n.

Three moving methods including rotation, exchange and move
are defined as follows. Firstly, the rotation changes the orienta-
tion of a module. When a rotation is applied to module mi, r is
changed to 1 − r, where r is one of (rxy−i, ryz−i, rzx−i). Secondly,
the exchange moving method exchanges the order of two modules
in all sequences, e.g. in sequence pair (Γ1, Γ2), F1(mi), F2(mi),
F1(mj), and F2(mj) are changed to F1(mj), F2(mj), F1(mi), and
F2(mi), respectively. Thirdly, the move changes the order of a
module in one sequence Γi. When a move is applied to module
m in Γi, Fi(m) is changed to another value, say j, and the orders
of modules whose order is between Fi(m) and j are shifted ac-
cordingly. For example, if the operation is to move m5 to the first
position in Γ− in Fig. 3, the move leads to F−(m1) = F−(m1) + 1
and F−(m2) = F−(m2) + 1.

Fig. 2 A 3D packing topology that cannot be represented by sequence triple.

Fig. 3 An example of two sequences Γ+ and Γ−, which are selected ran-
domly from (Γ1, Γ2, Γ3) or (Γ1, Γ2, Γ3, Γ4, Γ5).

5. Crossover Operator

A special crossover operator is designed as follows. Two se-
quences are derived from the current solution and the best solu-
tion, and the remaining sequences are derived from the current
solution. Two sequences (Γ+, Γ−) out of three sequences (Γ1, Γ2,
Γ3) or five sequences (Γ1, Γ2, Γ3, Γ4, Γ5) are picked up randomly
for 3D as shown in Fig. 3. Let us denote the father as (Γ+f , Γ−f )
which is selected from the current solution. The mother (Γ+m, Γ−m)
is from the best solution so far. A number i is an integer randomly
produced between 1 and n/2 − 1, where n is the number of mod-
ules. The child of SP (Γ+c , Γ−c ) is given by Γ+f [0, i]+Γ′ +m +Γ

+
f [n−

i − 1, n − 1] and Γ−f [0, i] + Γ′ −m + Γ
−
f [n − i − 1, k − 1], where Γ′ +m

and Γ′ −m are the inverse of Γ+m −Γ+f [0, i]−Γ+f [n− i− 1, n− 1] and
the inverse of Γ−m − Γ−f [0, i] − Γ−f [n − i − 1, k − 1], respectively.

To make it clearer, let us take an example to explain the
crossover. As shown in Fig. 4, the left layout is represented by
Γ+ = (m3,m4,m2,m1,m5) and Γ− = (m5,m1,m2,m3,m4) as the
father. The right one is Γ+ = (m1,m3,m4,m2,m5) and Γ− =
(m3,m4,m1,m5,m2) as the mother. Assume that i = 1. Then,
the child is the layout represented by Γ+ = (m3,m2,m4,m1,m5)
and Γ− = (m5,m2,m1,m3,m4) as the right layout of Fig. 5, where
Γ+ = (m3, . . . ,m5) and Γ− = (m5, . . . ,m4) are from the father as
the margin of left picture of Fig. 5, and Γ+ = (. . . ,m2,m4,m1, . . .)
and Γ− = (. . . ,m2,m1,m3, . . .) are from mother with an inverse
order as the center of right picture of Fig. 5.

6. Experiment and Comparison

A set of experiments was implemented by using the proposed
ASA X, in comparison to traditional SA and ASA. We are using
MCNC, ami49 X and ami98 3D benchmarks. The ami49 X is
produced by duplicating ami49 circuit X times. The ami98 3D is
produced by inheriting the height and width of ami49 2, which is

Fig. 4 Crossover operator as a moving method: the current solution and the
best-so-far solution (Father and Mother).

Fig. 5 Crossover as a moving method: the next solution (Child).

c© 2013 Information Processing Society of Japan 97



IPSJ Transactions on System LSI Design Methodology Vol.6 94–100 (Aug. 2013)

Fig. 6 The improvement ratio S k and the selection ratio Pk according to
temperature scheduling.

produced by duplicating ami49 circuit twice, and randomly get-
ting the length between the given minimum and maximum di-
mensions.

For fair comparison, all algorithms are implemented in Python
environment on 2.16GHz PC with 3.00GB memory. A fast an-
nealing of temperature scheduling decreasing exponentially ac-
cording to Ti = T0 exp(−ci1/D) [1], [2] is used in this paper, where
c and D are two constant parameters and T0 is the initial tem-
perature. This annealing schedule is faster than fast Cauchy an-
nealing, where Ti = T0/i, and much faster than Boltzmann an-
nealing, where Ti = T0 ln i. The temperature scheduling is of-
ten simplified to an easy-to-calculate version, that is, Ti+1 = aTi

(0 < a < 1), where Ti is the temperature at ith loop which contains
p trials. a is the temperature coefficient between 0 and 1, and a is
normally near 1.

To confirm the effectiveness of guide and crossover during the
whole search process, the improvement ratio sk of each moving
method according to temperature (T from T0 to Te) is gotten by
the experiment using ami98 3D, as shown in Fig. 6. In exper-
iments, a = 0.99, p = 1000. Based on the experiment, it is
confirmed that the improvement ratio sk of crossover is normally
bigger than that of any other moving method, when the tempera-
ture is large enough. During the initial stage, the crossover is the
most efficient moving method, but it is not efficient at the final
stage.

The selection ratio pk is a relative value, which is calculated by
improvement ratio and the previous selection ratio, and the total
probability 100% is maintained. The initial probability p0 is set
to 25%. The number of trials in each iteration loop is t = 300.
The selection ratio (pk) is shown in Fig. 7.

For 3D packing optimization, the average results of 50 trials
are gotten. All experiments are implemented within 4,000s each
time using ami98 3D benchmark. We test ASA with and without
crossover as shown Table 1. When we are using the crossover
operator, the average improvement of 3D packing using SQ rep-
resentation is near 9.6% with runtime from 20 s to 4,000 s. In
short, both the guide and the crossover improve the efficiency of
search process.

For the detail of 2D packing, as shown in Table 2, the best,
average and worst cases of area minimization among 50 trials are
gotten within 10 minutes each time using MCNC and ami49 X
benchmark by SP representation. In the best case of area mini-

Fig. 7 Guide with probabilities P(k) to select each moving method accord-
ing to the improvement ratio.

Table 1 Performance comparison of 3D packing by adaptive simulated an-
nealing with and without crossover.

Table 2 Area optimization by ASA X for 2D packing with SP representa-
tion.

Table 3 Average improvement of 2D packing with SP representation.

mization, the results gotten by ASA X are normally better than
the published data. The comparison of solution and runtime
between ASA and ASA X on average is as shown in Table 3.
The ASA X reduced near 20% runtime with better solution. A
near log-linear trend of average improvement rates from ASA to
ASA X is gotten. That means ASA X should be more suitable
for the packing problem with a larger number of modules.
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Fig. 8 Comparison of computational performance among SA, ASA and
ASA X using ST representation.

Fig. 9 Comparison of computational performance among SA, ASA and
ASA X using SQ representation.

Figure 8 shows the comparison of volume minimization using
ST representation. The proposed ASA X outperforms SA with
the improvement of 3D packing ratio between 5% and 16%. The
average improvement from SA to ASA is near 12%. The ASA X
outperforms ASA with the improvement between 2% and 8%.
The average improvement of volume minimization from ASA to
ASA X is near 6%.

As shown in Fig. 9, it is the comparison of volume minimiza-
tion using SQ representation. The proposed ASA X outperforms
SA with the improvement of 3D packing ratio between 10% and
30%. The average improvement from SA to ASA is near 19%.
The ASA X outperforms ASA with the improvement between
4% and 20%. The average improvement of volume minimization
from ASA to ASA X is near 10%.

7. Conclusion

In this paper, a new variation of adaptive simulated anneal-
ing with crossover (ASA X) is proposed to solve 2D/3D packing
problem. A guide with adaptive probabilities is used to automat-
ically select moving methods. A special crossover is designed to
use the information of past solutions and get high improving effi-
ciency. Based on the experimental results, the proposed ASA X
obtains stable improvement for two objectives: area and volume.
The proposed ASA X reduced computational runtime with the
better solution for area and volume minimization. The proposed
ASA X has potential to improve more NP-hard problems, such
as 3D packing with rectilinear boxes, effectively.
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