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Abstract

Electrocorticography (ECoG) has drawn attention as an effective recording approach for brain-machine interfaces (BMI).
Previous studies have succeeded in classifying movement intention and predicting hand trajectories from ECoG. Despite
such successes, however, there still remains considerable work for the realization of ECoG-based BMIs as neuroprosthetics.
We developed a method to predict multiple muscle activities from ECoG measurements. We also verified that ECoG signals
are effective for predicting muscle activities in time varying series when performing sequential movements. ECoG signals
were band-pass filtered into separate sensorimotor rhythm bands, z-score normalized, and smoothed with a Gaussian filter.
We used sparse linear regression to find the best fit between frequency bands of ECoG and electromyographic activity. The
best average correlation coefficient and the normalized root-mean-square error were 0.9260.06 and 0.0660.10,
respectively, in the flexor digitorum profundus finger muscle. The d (1.5,4Hz) and c2 (50,90Hz) bands contributed
significantly more strongly than other frequency bands (P,0.001). These results demonstrate the feasibility of predicting
muscle activity from ECoG signals in an online fashion.
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Introduction

Brain-machine interfaces (BMI) are versatile technologies with

potential to provide assistance to disabled individuals, allowing

them greater interaction with the external environment. Several

studies have applied electroencephalography (EEG) in the field of

non-invasive BMIs: amplitudes of different frequency bands [1,2];

imagining movement of different parts of the body [3]; slow

cortical potentials [4] and gamma band rhythms [5]. Although

EEG-based BMIs are generally portable and easy to use in

practical application, few studies have tried to reconstruct

kinematic information in time series.

Several invasive BMI studies have demonstrated that sequential

movements can be reproduced from multichannel spike signals

recorded with intracortical multiple electrode arrays [6–13]. They

have reported that multichannel spike signals are effective in

predicting kinematic information such as direction and velocity of

the arm. However, although intracortical electrodes can provide

rich information for the control of BMIs, they face limitations such

as signal degradation due to glial scarring [14] and potential

displacement from the recording site [15].

Electrocorticography (ECoG) is an alternative approach to less

invasive BMIs [15–23]. Since ECoG records directly from

neuronal activities on the cortical surface, ECoG has higher

spatio-temporal resolution with better signal-to-noise ratio than

scalp EEG [24,25]. ECoG has also shown potential as a stable

long-term recording method [21]. Several studies using ECoG

have already succeeded in the classification of movement direction

[16,17], grasp type [22], and prediction of hand trajectory

[18,20,21].

Despite these successes, however, there still remains consider-

able work for the realization of ECoG-based prosthetics. The

human neuromuscular system naturally modulates mechanical

stiffness and viscosity to achieve proper interaction with the

environment. Current rehabilitation robots can perform sophisti-

cated operations including stiffness control [26,27]. Our previous

works suggested that the angle, torque, and stiffness of joints can

be predicted from muscle activity [28,29,30]. Therefore, decoding

muscle activity is an important component for realizing BMI

systems capable of controlling interaction force or stiffness.

The aim of this study is to predict time-varying muscle activities

from ECoG signals as a basis for a neuromuscular BMI system.

Two well-trained Japanese monkeys performed a series of

reaching, grasping, pulling, and releasing movements. We

simultaneously recorded 15 or 16 ECoG signals of the primary

motor cortex (Ml) and 12 electromyography (EMG) signals in the

right arm. We predicted EMG from ECoG signals using sparse

linear regression (SLiR). We also examined the weights of the
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prediction model in order to infer which sensorimotor rhythms

contribute more to the prediction. Our results indicate that

multiple muscle activities can be accurately predicted from a small

number of ECoG signals.

Methods

Ethics statement
All experimental procedures were performed in accordance

with the Guidelines for Proper Conduct of Animal Experiments of

the Science Council of Japan and approved by the Committee for

Animal Experiment at the National Institutes of Natural Sciences

(Approval No.: 11A157). Monkeys were monitored closely and

animal welfare was assessed on a daily basis and, if necessary,

several times a day. This included veterinary examinations to

ensure animals were not suffering as well as the use of analgesics,

antiemetics, or antibiotic therapy if necessary. No monkeys were

sacrificed in this study. Animals were housed individually on a 12-

hour light/dark cycle and provided a rubber toy. They were not

food deprived. Water was provided in their home cage and

recording booth. The animal welfare and steps taken to ameliorate

suffering were in accordance with the recommendations of the

Weatherall report [31], ‘‘The use of non-human primates in

research.’’

Behavioral task
Two Japanese macaques (Monkey A: male, at 8.9 kg; Monkey

B: female, at 4.7 kg) were trained to perform reaching and

grasping tasks with the right hand as shown in Figure 1A. The

grasping object was a small plastic knob instrumented with a thin-

film force sensor (FlexiForce; Tekscan, Inc., South Boston, MA) to

measure grip force. The knob was attached to the end of a joystick

switch lever equipped with several elastic bands. The joystick

switch detected the pulling duration (positive phase of the target

signal in Figure 2). The monkey launched a trial by placing its

hand on a home button located in front of the chair for a

predetermined length of time. If the monkey held the home button

for 2 s, a ‘‘go’’ cue was given in the form of a beep sound

instructing the monkey to reach for the knob. The monkey then

had to pull the knob and hold for a preprogrammed length of

time. The monkey would then release the knob and return its hand

to the home button. When the monkey successfully pushed the

home button to elicit a go cue and pulled the knob to the required

displacement of 6 cm, it received a juice reward. The monkeys

performed this task repeatedly, with monkey A performing a total

of 134 trials and monkey B performing a total of 248 trials.

Monkey B performed one additional session that was used to test

the proposed method on continuous rather than trial-based data.

Surgery for ECoG and EMG electrode implantation
Both monkeys underwent surgery on different days to implant

an ECoG electrode array and EMG wire electrodes under

anesthesia after they completed behavioral training. The monkeys

were anesthetized with ketamine (1.0 mg/kg) and xylazine

(0.5 mg/kg). The inhalation of 1–2% isoflurane maintained

anesthesia during the surgeries. We also continuously monitored

electrocardiogram, pCO2, and arterial O2 levels.

We chronically implanted a platinum ECoG array (Unique

Medical Corporation, Tokyo, Japan) over the left primary motor

cortex (M1), which had 15 (monkey A: 563 grid) and 16 (monkey

B: 464 grid) channel electrodes, as shown in Fig 1B. The

electrodes had a diameter of 1 mm and an inter-electrode distance

of 3 mm center-to-center. Four silver wires (300 mm in diameter;

over 5 cm in length) were used as reference and ground electrodes

and shunted (single-end mode) through connectors (#A8828-001;

Omnetics Connector Corporation, Minneapolis, MN, US). A

craniotomy was performed above M1, and the dura was incised

and reflected. We placed the ECoG array on the rostral bank of

the central sulcus, the hand/arm area of M1. The dura was closed

using 6.0 synthetic absorbable suture threads within surgical glue

composed of gelatin after the two silver wire reference electrodes

were inserted into the subdural space. A piece of artificial dura

mater was applied over the dura and two reference ground

electrodes were inserted into supradural space between the dura

and the skull. The craniotomy was closed with a piece of dental

acrylic, and head holders were attached to the skull. Finally, the

skull was coated with dental acrylic.

EMG activities of the right forelimb muscles were recorded

from chronically implanted pairs of multi-stranded stainless steel

wires (Cooner Wire, Chatsworth, CA, USA). They were subcu-

taneously tunneled to the following target muscles: adductor

pollicis (AP), abductor pollicis longus (APL), flexor digitorum

superficialis (FDS; monkey A only), flexor digitorum profundus

(FDP), and extensor digitorum communis (EDC) for hand muscles;

flexor carpi radialis (FCR; monkey A only), flexor carpi ulnaris
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Figure 1. Behavioral task and ECoG electrode locations. A)
Monkeys performed sequential right arm and hand movements, which
consisted of reaching to a knob, grasping the knob with a lateral grip,
pulling the knob closer, releasing the knob, and returning the hand to
the home position, in a 3-D workspace. During the task, ECoG and EMG
signals were recorded simultaneously. B) Schematic diagrams of ECoG
electrode locations in left hemisphere. The planar-surface platinum
electrode arrays were placed on the gyrus between the central sulcus
(CS) and the arcuate sulcus (AS) in the primary motor area. The #
indicates the location according to the column of ECoG electrodes.
doi:10.1371/journal.pone.0047992.g001
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(FCU), palmaris longus (PL; monkey A only), extensor carpi

radialis (ECR; monkey B only), and extensor carpi ulnaris (ECU;

monkey A only) for wrist muscles; and pronator teres (PT; monkey

A only), biceps brachii (BB), and triceps brachii (TB) for elbow

muscles. Isolation of the muscles was confirmed with electronic

current stimulation through a silver ball electrode (intensity of a

single monophasic current pulse: ,100 mA, pulse duration: 1ms, 1

stimulation: 5 pulses with 3ms pulse intervals, inter-stimulus

interval: 1s), which evoked joint movement and muscle twitch in

the fingers and arm during electrode implantation surgery. In each

muscle, two electrodes were implanted and one electrode was used

as reference (differential mode). Circular connectors (MCP-12,

Omnetics, Minneapolis, MN, USA) were anchored to the skull.

Data recording
Recording sessions were initiated two months after the surgery.

ECoG and EMG signals were sampled at 4 kHz using an

acquisition processor system (Plexon MAP system; Plexon, Inc.,

Dallas, US). ECoG signals were filtered with band-pass filters

through multi-channel bio-signal amplifiers (monkey A: 1.5 Hz

high-pass and 1 kHz low-pass analog filters, MEG-6116, Nihon

Kohden Corporation, Tokyo, Japan; monkey B: 0.7 Hz high-pass

and 8 kHz low-pass analog filters, Plexon, Inc., Dallas, USA). Due

to logistical reasons, two different amplifiers were used for ECoG

filtering in the two subjects. However, post-hoc data processing

(Results section) showed no substantial differences between the

band-pass filters of the two amplifiers. EMG signals were also

filtered online with 1.5 Hz high-pass and 3 kHz low-pass analog

filters through a signal amplifier (MEG-6116: Nihon Kohden

Corporation, Tokyo, Japan). Separate amplifiers were used for

signal filtering because the analog-to-digital converter boards of

the acquisition processor system did not support user-defined

filters.

Preprocessing of ECoG and EMG data
ECoG signals were down-sampled to 500 samples per second to

match movement data and re-referenced using a common average

reference (CAR) montage. Bidirectional fourth-order Butterworth

band-pass filters were applied to each ECoG signal, dividing them

into specific rhythmic bands. These bands were d (1.5,4 Hz), h
(4,8 Hz), a (8,14 Hz), b1 (14,20 Hz), b2 (20,30 Hz), c1

(30,50 Hz), and c2 (50,90 Hz). We selected these particular

frequency bands, because their use is common in current EEG and

ECoG based BMIs. The seven band-pass filters split each of the

15- or 16-channel ECoG signals into seven band-passed signals to

produce M channels of band-pass filtered signals. Each bandpass

filtered signal x̂xi(t) was then normalized by the standard z-score,

resulting in signal sources xi(t), where

xi(t)~
x̂xi(t){m̂mi

ŝsi

(i~ 1,2,3,� � � ,M ) ð1Þ

and m̂mi and ŝsi are the mean and the standard deviation of x̂xi,

respectively, over a 1 s interval before the time t. Finally, the

resulting amplitude modulations were smoothed with a Gaussian

filter (width: 0.1 s, s: 0.04 s).

EMG signals were rectified and passed through a 4th-order low-

pass filter with a cut-off frequency of 4 Hz and further down-

sampled to 500 Hz, resulting in muscle activities.

Prediction of muscle activities from ECoG signals
Previous studies have reconstructed finger-movements, finger

force, and arm EMG patterns from neural firings [32], blood

oxygen level-dependent signals [33], near-infrared spectroscopy

signals [34], cortical current dipoles [35], EEG signals [36], and

local field potential (LFP) signals [37]. Since the SLiR algorithm

can automatically select significant input variables and reduce the

number of input dimensions, we used the Variational Bayesian

Sparse Regression toolbox [38] to determine which band is
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Figure 2. Example of measured signals from monkey A during
the tasks. All signals are aligned to trial onset. At the top are frequency
feature values of the ECoG signals. Frequency features were resorted in
time and sensorimotor rhythm bands. Frequency features of each band
are ordered by channel. Below the frequency features are the 12 EMG
signals recorded from wire electrodes implanted into muscles of the
right forelimb. The blue traces represent original muscle activities. The
red traces represent muscle activities obtained by low pass filtering
(cut-off frequency: 4 Hz). Below the EMG are grip force on the knob and
logical signals, indicating presence of the monkey’s hand on the home
button or grasping the knob.
doi:10.1371/journal.pone.0047992.g002
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effective in predicting EMG signals. The SLiR algorithm estimates

the linear weight and automatic relevance determination (ARD)

parameters [39], which represent how the weight contributes to

the reconstruction. Based on these ARD parameters, SLiR

identified only the channels that provided the best generalization

properties by pruning the channels ineffective for reconstruction

(setting the linear weight value to zero) [40].

The predicted muscle activity at time t, is described as

yk(t)~
PM
i~1

PN{1

j~0

vk
ijxi(t{jDt)zvk

0 , ð2Þ

where vk
ij is the weight coefficient of the k-th muscle for the i-th

signal source at a delay time jDt, vk
0 is the bias term, xi(t) is the i-

th ECoG source at time t, and Dt is a discrete-time step-size of

20 ms. The muscle activity at time t was predicted using 10 time

points (N = 10) starting 200 ms before the target time t.

Analysis
Accuracy of the muscle activity prediction was evaluated using

10-fold cross validation. We extracted trials in reference to the trial

onset, where onset was defined as the movement initiation from

the home button. The extracted trials were randomly partitioned

into 10 subsets. Each subset for monkeys A and B had 12 trials and

24 trials, respectively. A single subset was retained as a test subset

to evaluate the model, and the remaining 4 subsets were used as

training data. The cross-validation process was then repeated

10 times, with each of the 10 subsets used exactly once as a test

subset. To verify its applicability to continuous data, we also tested

the model on 50 s of task data randomly extracted from an

additional session performed by monkey B.

We calculated the coefficient of correlation (CC) to evaluate the

similarity between actual and predicted muscle activities. Accuracy

was also evaluated using normalized root-mean-square error

(nRMSE) between actual and predicted muscle activities, defined as

nRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(y
predicted
i {yactual

i )2

n

vuut ,
(yactual

max {yactual
min ) ð3Þ

where for each time i (i = 1, 2, … ,n), yi
predicted is the predicted

muscle activity and yi
actual is the actual muscle activity, and yactual

max

and yactual
min are the maximum and minimum of actual muscle

activities, respectively.

Weight values for contributing to prediction
We examined the weight values for frequency bands, locations,

muscles, and subsets in the prediction model. Weight coefficients

vk
ij were averaged across time points (j = 0, 1, 2, ..., 9). They were

normalized by the maximum weight within each muscle and

applied in a 3-way ANOVA. We used locations rather than

electrodes because the 3-way ANOVA could not be calculated

with so many degrees of freedom. Since Rathelot and Strick [41]

reported that corticomotoneuronal (CM) cells that make mono-

synaptic connections to spinal motoneurons are located predom-

inantly in the anterior bank of the central sulcus, we hypothesized

that the weight values of locations near the central sulcus would be

larger than those of the other locations. Median differences were

then analyzed using Tukey multiple comparison tests. Statistical

significance was assessed at a 5% or 1% confidence level using an

F test. Fw, r values (Results section) represent the ratio of variances

within subjects with degrees of freedom w and between subjects

with degrees of freedom r. Large F values indicated more variance

between subjects than within subjects. All data processing and

analyses were performed using MATLAB R2011b (The Math-

works, Inc., Natick, MA, USA).

Results

Multiple task-related muscle activities
Movement duration averages and standard deviations (STD) for

monkeys A and B were 3.2260.24 s and 1.1660.29 s, respec-

tively. Therefore, we set the duration of each trial to 4.0 s (monkey

A) and 2.0 s (monkey B), including a before-onset period of 0.5 s

and after-onset periods of 3.5 s (monkey A) and 1.5 s (monkey B).

Figure 2 shows an example trial including frequency band features

of the ECoG signals, rectified raw EMG signals, grip force, and

logical signals. Sequential movements were divided into four

movements according to the logical signals. Four patterns of actual

muscle activity were observed when subjects performed the

sequential movements. First, activity for the elbow flexor muscle

BB and finger extensor EDC increased before trial onset to raise

the hand. Second, all muscles except the wrist flexor muscle FCR

and the wrist pronation muscle PT peaked upon opening the hand

to grasping the knob. Third, the palm muscle PL, finger flexor

muscles FDP and FDS, and thumb adductor muscle AP were

activated while the monkey grasped the knob (from 1 s to 2.45 s).

The wrist muscle ECU and FCU also co-contracted to fix the wrist

during the knob pulling movement. Fourth, all muscles, with the

exception of FCU, FDS and FDP, peaked when the monkey

released the knob and returned its hand to the start button. Muscle

activations almost always occurred in this pattern, though timings

slightly differed from trial to trial.

Reconstruction using sparse linear regression
Figure 3 shows typical plots of predicted muscle activity (solid

line) from a test subset in comparison with actual muscle activity

(dotted line) during a trial conducted with monkey A. The

proposed method was able to predict sequential muscle activations

during the reaching and grasping task, as well as concurrent bursts

such as the EDC and APL. In particular, the proposed method

generated the co-contraction features occurring for grasping, as

seen in the ECU and FCU.

CC and nRMSE between the actual and predicted EMGs were

used to quantify the information extracted directly from ECoGs

related to muscle activity. The highest CC values were 0.7360.10

for EDC in the 10th test subset for monkey A and 0.9260.06 for

FDP in the 3rd test subset for monkey B. The highest nRMSE

values were 0.1660.02 for FDS in the 3rd test subset and

0.0660.10 for FDP in the 8th test subset for monkeys A and B,

respectively. Table 1 summarizes the results of the validation in

predicting each muscle for 10 test subsets of monkey B (see also

Table S1 for monkey A). Grand averages and standard error of

the mean (SEM) for each muscle ranged between 0.5560.013 and

0.8860.009 for CC and 0.1760.003 and 0.4260.007 for nRMSE.

These results clearly show that ECoG data contained information

about muscle activations.

A one-way ANOVA was conducted to judge whether perfor-

mance of the proposed method differed significantly among the

test subsets. Significant differences of the nRMSE values were not

observed among test subsets in both monkeys (monkey A: F9,

110 = 0.65, p = 0.75; monkey B: F9, 110 = 0.03, p = 1).

The histogram in Figure 4 shows the distribution of CC and

nRMSE for each muscle of monkey A. Average and STD of the

median of CC were 0.5960.04 and 0.8560.07 for monkeys A and

Prediction of Muscle Activities from ECoGs
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Figure 3. Representative example of predicted and recorded muscle activities. Dotted lines are actual muscle activities from EMG signals
measured with wire electrodes, and solid lines represent predicted muscle activities from ECoG signals of monkey A. The normalized root mean
square error (nRMSE) and correlation coefficient (CC) are also shown above each panel.
doi:10.1371/journal.pone.0047992.g003

Table 1. Summary of prediction accuracies for 10-fold cross validation of monkey B.

Statistics Test set TB BB ECR FCU EDC FDP APL AP

CC 1 0.5160.40 0.8660.12 0.59±0.32 0.8160.21 0.81±0.12 0.8960.17 0.8660.12 0.8460.17

2 0.62±0.36 0.87±0.11 0.5760.34 0.8360.14 0.8060.14 0.8660.20 0.8560.17 0.8560.11

3 0.5660.33 0.8360.25 0.5860.30 0.8360.14 0.8360.15 0.92±0.06 0.8660.17 0.8760.13

4 0.5160.38 0.8560.25 0.5460.32 0.7760.25 0.8360.12 0.8560.24 0.8560.15 0.8560.22

5 0.5460.35 0.8460.29 0.5660.33 0.8060.21 0.8060.14 0.8660.23 0.83±0.19 0.8060.23

6 0.51±0.39 0.87±0.11 0.60±0.32 0.8260.20 0.83±0.10 0.8960.17 0.87±0.11 0.85±0.17

7 0.6160.36 0.8660.12 0.5560.34 0.8360.15 0.7960.15 0.86±0.19 0.8360.18 0.8560.12

8 0.5760.33 0.8360.25 0.5960.30 0.84±0.14 0.8260.15 0.9260.06 0.8660.18 0.88±0.12

9 0.5460.38 0.8560.25 0.5660.32 0.7860.24 0.8360.12 0.8660.23 0.8660.15 0.8660.21

10 0.5760.38 0.8760.11 0.5660.26 0.7960.21 0.8060.12 0.8560.25 0.8460.18 0.8660.13

Avg. 0.5560.013 0.8560.006 0.5760.007 0.8160.008 0.8260.006 0.88±0.009 0.8560.004 0.8560.007

nRMSE 1 0.4060.31 0.1260.13 0.3260.11 0.2160.20 0.1260.05 0.1760.06 0.1260.08 0.1760.09

2 0.3660.27 0.11±0.07 0.3460.11 0.14±0.41 0.1460.06 0.2060.25 0.1760.08 0.11±0.12

3 0.3360.30 0.2560.21 0.3060.12 0.1460.13 0.1560.05 0.0660.10 0.1760.10 0.1360.06

4 0.3860.23 0.2560.43 0.3260.11 0.2560.16 0.1260.08 0.2460.23 0.1560.09 0.2260.16

5 0.3560.18 0.2960.44 0.33±0.09 0.2160.21 0.1460.06 0.2360.19 0.1960.11 0.2360.17

6 0.3960.30 0.1160.13 0.3260.11 0.2060.20 0.10±0.05 0.1760.065 0.11±0.08 0.1760.09

7 0.3660.29 0.1260.07 0.3460.11 0.1560.39 0.1560.07 0.1960.24 0.1860.09 0.12±0.12

8 0.33±0.30 0.2560.22 0.3060.12 0.1460.13 0.1560.05 0.06±0.10 0.1860.10 0.1260.06

9 0.38±0.23 0.25±0.42 0.3260.11 0.24±0.17 0.12±0.08 0.2360.23 0.1560.09 0.2160.16

10 0.3860.38 0.1160.08 0.26±0.11 0.2160.10 0.1260.07 0.25±0.07 0.1860.12 0.1360.10

Avg. 0.4260.007 0.2160.010 0.3160.004 0.2860.010 0.1960.004 0.1760.008 0.17±0.003 0.2060.008

Each cell except Avg. shows the CC or the nRMSE (mean 6 STD) of 24 trials. Bold numbers indicate the best value in each test subset. The Avg. cells show the grand
averages of mean and SEM. Bold numbers here indicate the best grand averages.
doi:10.1371/journal.pone.0047992.t001
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B, respectively. Average and STD of the median of nRMSE were

0.1960.01 and 0.1860.03 for monkeys A and B, respectively.

Negative CC values were not removed from the analysis but were

substituted with zeros strictly for visualization in Figure 4.

We also applied the prediction model to continuous data from

an additional session by monkey B. One example of continuous

prediction is shown in Figure 5, where the prediction was stable

even for repetitive trials over 50 s. Mean and STD of CC and

nRMSE for each muscle ranged from 0.3860.08 to 0.8760.02

(CC) and 0.1160.01 to 0.1760.05 (nRMSE). These results clearly

show that the model can predict muscle activity from ECoG in an

online fashion.

Frequency bands contributing to prediction
We analyzed the weight values for the 7 frequency bands, 3 or 4

locations, 12 or 8 muscles, and 10 subsets in the prediction model.

A 3-way ANOVA was conducted to test the effects of three factors

(frequency bands, locations, and muscles). Results of ANOVA

showed significant main effects of frequency bands (F6, 1008 =

43.46, p = 2.42610247; F6, 672 = 33.78, p = 1.07610235) and loca-

tions (F2, 1008 = 6.23, p = 0.002; F3, 672 = 18.47, p = 1.59610211).

The 3-way interaction did not show any significance. The

interaction between frequency bands and locations only showed

the significance (F12, 1008 = 12.89, p = 6.89610225; F18, 672 = 4.01,

p = 5.9461028) among the two-way interaction. We, therefore,

investigated simple main effects of frequency bands by running

separate two-way ANOVA for each level of the locations to infer

which frequency band most greatly contributed to the prediction.

Simple main effects of frequency bands for all levels of locations,

except the fourth location, were significant (first location:

F6, 1239 = 38.37, p = 1.34610242; F6, 868 = 12.81, p = 1.79610213;

second location: F6, 1239 = 28.57, p = 1.03610231; F6, 868 = 20.82,

p = 1.81610222; third location: F6, 1239 = 13.51, p = 1.84610214;

F6, 868 = 11.56, p = 4.64610212). Multiple comparisons were

conducted as shown in Figure 6. Multiple comparisons showed

that the d and c2 bands significantly contributed to the prediction

more than any other frequency band in both monkeys. However,

all frequency bands were needed for effective prediction because

input dimensions were not reduced by the SLiR algorithm. No

significant differences between b1 and b2 were observed for all

levels of locations, showing that feature bands could be reduced by

unifying b1 and b2. The weight values of column #1 that were

located in the most caudal part of the pre-central gyrus were

slightly larger than those of the other columns located more

rostral.

We also conducted a two-way ANOVA to calculate simple

main effects of the locations for each frequency band level. All

simple main effects except h level showed significance for

monkey A (d: F2, 1239 = 5.91, p = 0.003; a: F2, 1239 = 7.99,

p = 3.561024; b1: F2, 1239 = 9.11, p = 1.2061024; b2:

F2, 1239 = 11.02, p = 1.7861025; c1: F2, 1239 = 21.91,

p = 4.30610210; c2: F2, 1239 = 39.94, p = 1.46610217). The simple
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Figure 4. CC and nRMSE distributions for each muscle of monkey A. The height of each blue bar is equal to the CC density of the interval
(0.05). The height of each red bar is equal to the nRMSE density of the interval (0.02). The total area of the histogram is equal to the number of trials
used as validation data. Each dotted line with a number shows the median of nRMSE or CC for each muscle. For visualization, we substituted zeros for
all negative CC values in validation.
doi:10.1371/journal.pone.0047992.g004
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main effects of d, b1 and c2 showed significance for monkey B

(d: F3, 868 = 11.45, p = 3.1861027; b1: F3, 868 = 6.33,

p = 3.9961024; c2: F3, 868 = 20.08, p = 1.88610212). Results of

multiple comparisons are summarized in Figure 7.

Discussion

This study describes a novel attempt to predict multiple muscle

activities from a small number of ECoG signals. This approach

offers important insight regarding the presence of ample informa-

tion in ECoG signals to predict time-varying muscle activities,

whereas previous ECoG-based studies have tried to classify

direction or intention of movement. The results clearly demon-

strate that muscle activity time series and trial-to-trial variations of

finger, hand, and arm muscles can be predicted from ECoG

signals.

Previous studies using invasive methods have succeeded in the

prediction of muscle activities through linear summation of the Ml

firing rate [7,28,29,42–45] or LFP [46]. Only one study, to our

knowledge, has demonstrated that temporal activities of wrist

muscles can be reconstructed from EEG cortical source currents,

estimated from EEG sensor signals using a hierarchical Bayesian

EEG inverse method [36]. Although their method could lead to

drastic improvement in the non-invasive BMI area, it is still

unknown whether it can be applied to sequential movements. In

addition, their method has to solve an inverse problem, i.e., a

projection from EEG sensors to current sources. A large number

of current sources also increases the computational burden. In

contrast, the present approach may be useful as a real-time force

controller for BMI devices because it is fundamentally based on a

simple filtering technique that addresses the z-score of frequency

features of ECoG signals. This is the first report of a method for

predicting multiple muscle activities from ECoG signals during

natural forelimb movements.
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Figure 5. Example of muscle activity prediction in a continuous time series from monkey B. Dotted lines are actual muscle activities from
EMG signals and solid lines are predicted muscle activities from ECoG signals over a 50 s time interval. Both lines were normalized to the ranges of
actual muscle activities. The normalized root mean square error (nRMSE) and correlation coefficient (CC) are also shown.
doi:10.1371/journal.pone.0047992.g005
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Most EEG-based BMI studies have used one or two sensori-

motor rhythms such as m (8,12 Hz) or b (14,30 Hz) oscillations

because the c (.30 Hz) rhythm is often inconspicuous and

neglected with a low pass filter, though Khan and Sepulveda [5]

did use c band EEG to discriminate four types of wrist motion. In

ECoG-based BMIs, however, the c rhythm has been widely used.

In our studies, we identified the useful ECoG frequency bands

associated with muscle activity. Analysis of the weight values for

the frequency bands showed that contributions by the d, c, and b
bands were significantly larger than those of the h and a bands

(e.g. Figure 6). This result corresponds to previous studies as well

[21,46–49].

Kinematic artifacts might have influenced the d band to become

the most contributing feature because the power spectrum of the

movements had a peak in low frequency components (,2 Hz).

These d band features, however, are mainly derived from low

frequency local field potentials (lf-LFPs) or movement event-

related potentials (MRPs) in the frontal motor areas [4,15,50,51].

The weights of the d and c bands were higher than those of the h
and a bands. This result coincides well with previous studies

classifying of finger movement [52] and grasp type [22]. They

reported that the accuracy of movement classification using power

spectrums in high (75,170 Hz) and low (,4 or 5 Hz) frequency

bands was greater than that using intermediate frequency bands

(6,15 Hz and 17,40 Hz).

It should be noted that no frequency band weights disappeared

after applying the SLiR algorithm. This might indicate that all

sensorimotor rhythms of ECoG encode muscle activity and are

needed, at least at some degree, to predict them. Toro et al. (1994)

reported that multi-joint arm movements were accompanied by a

decrease in the spectral power of the 8,12 Hz band in ECoG

signals [53]. Previous works also reported a significant coherence

between the M1 and EMG at the b band frequency [54,55,56].

Additionally, recent studies reported that higher frequency bands

(.100 Hz [48]; 100,200 Hz and 200,400 Hz [51]) yielded

better performance than the typically used c band (30,100 Hz).

Therefore, we expect that the usage of all sensorimotor rhythms

including the high frequency bands would contribute to the

improved performance of an ECoG-based BMI.

In addition, the weight values of the electrodes located near the

central sulcus were higher than those of the electrodes located

more rostral. This result matches well with previous anatomical

and physiological findings. CM cells that make monosynaptic

connections to spinal motoneurons are located predominantly in

anterior bank of the central sulcus [41]. The output from CM cells

encodes muscle-activation patterns reflected in EMG activity [57].

Thus the frequency band features near the central sulcus may be

the key to decoding muscle activities.

The primary advantage of the proposed method is that it can

predict agonist and antagonist muscle activities during sequential

movement tasks. If we can predict agonist and antagonist muscle

activities, joint angle, torque, and stiffness can also be predicted

using previously proposed methods [28,29,30]. This creates

remarkable benefits, which would contribute to the realization of

ECoG-based prosthetics.

Supporting Information

Table S1 Summary of prediction accuracies for 10-fold cross

validation of monkey A. Each cell except Avg. shows the CC or

the nRMSE (mean 6 STD) of 12 trials. Bold numbers indicate the

best value in each test subset. The Avg. cells show the grand

averages of mean and SEM. Bold numbers here indicate the best

grand averages.
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