T2R2 東京工業大学リサーチリポジトリ Tokyo Tech Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	 制振構造建物の主架構の塑性化の程度に応じたエネルギーの釣合に基 づく応答評価法
Title	
著者(和文)	 松澤祐介, 佐藤大樹, 北村春幸, 山口路夫, 脇田直弥, 松蔭知明 :
Authors	daiki sato, Haruyuki Kitamura, Michio Yamaguchi, Naoya WAKITA
出典 / Citation	日本建築学会関東支部研究報告集, Vol. 83, , 2022
Citation(English)	, Vol. 83, , 2022
発行日 / Pub. date	2013, 3
rights	
rights	本文データは学協会の許諾に基づきCiNiiから複製したものである
relation	isVersionOf:http://ci.nii.ac.jp/naid/110009769768

2022

北村春幸

松蔭知明

制振構造建物の主架構の塑性化の程度に応じたエネルギーの釣合に基づく応答評価法

п

正会員 〇松澤祐介

山口路夫

11

п

構造一振動

鋼構造建物	履歴型ダンパー	エネルギーの釣合式
せん断モデル	/ 時刻歴応答解析	行 等価繰返し数

1. はじめに

現在,耐震計算法として構造骨組のエネルギー吸収能力により建物の耐震安全性を確保するエネルギーの釣合に基づく応答 予測法¹⁾(以後,エネルギー法と呼ぶ)が規定されている。

制振構造において,主架構が弾性でのエネルギー法は秋山ら ¹⁾により提案され,北村ら²⁾により主架構が塑性化する場合にも 対応できるような式に拡張された。エネルギー法では,エネル ギー配分を決定する重要な指標として等価繰返し数があり,北 村らの式では主架構が塑性化する場合のダンパーの等価繰返し 数に耐震構造の等価繰返し数と同じ 1.0 を使用している。しか し,主架構が塑性化する場合にはダンパーの等価繰返し数は主 架構の塑性化の程度に応じて徐々に低下する事を筆者らは文献 3 で報告している。また,北村らの方法では,主架構が大きく 塑性化する事を想定しているため,全層で主架構が塑性化する 式となっており,主架構が弾性である場合と塑性化する場合が 混在するような建物応答の場合は考慮されていない。

本報では「主架構の塑性化の程度に応じて,ダンパーの等価 繰返し数を低減させる」という方法により,主架構の塑性化の 程度に応じた応答評価式を導出する。また,応答評価式による 建物応答と時刻歴応答解析結果の高さ方向分布を示し,比較す る事で応答評価式の妥当性を検証する。

2. 検討対象建物,及び入力地震動の概要

2.1 検討対象建物の概要

検討対象建物は、5 階建て、8 階建て、10 階建ての鋼構造建 物とする。各建物の基準階伏図と軸組図を図1(a)~(c) に示す。 制振建物は、ダンパーを図1(a)~(c) の示す位置に付与したモデ ルとする。解析対象は X 方向とし、減衰定数は主架構の1次固 有周期_fT₁に対して h=2%となる剛性比例型とした。せん断モ デルの作成は、主架構のみの静的増分解析より得られる各層の 履歴曲線が、終局変形 δ_{ui} 時までの範囲で、斜線部の面積が等 価となるように完全バイリニア置換する(図2参照)。なお、静 的増分解析での外力には A_i 分布に基づいた層せん断力を用い た。表1(a)に各建物の主架構の降伏耐力_fQ_w,主架構の降伏変

佐藤大樹

脇田直弥

11

表1(a) 各建物の主架構諸元

					10	10 層モデル		
					f Q vi	ſki	fδ _{yi}	
8層モデル					(kN)	(kN/cm)	(cm)	
			f Q yi	$f k_i$	ſδ _{yi}	6169	2561	2.41
			(kN)	(kN/cm)	(cm)	8866	2560	3.46
5	5層モデル			2147	1.98	11026	2615	4.22
$\int Q_{yi}$	$\int k_i$	ſδ _{vi}	6289	2308	2.73	13196	2670	4.94
(kN)	(kN/cm)	(cm)	8214	2405	3.42	14757	2740	5.39
15030	5624	2.67	9740	2721	3.58	16141	2802	5.76
22400	5771	3.88	10998	2861	3.84	17284	2867	6.03
27936	5786	4.83	12008	2974	4.04	18228	2994	6.09
32175	6233	5.16	12792	3339	3.83	18996	3265	5.82
35154	7435	4.73	13352	5014	2.66	19578	4740	4.13

表 1(b) 各建物の主架構諸元					
\sim	5層モデル		10層モデル		
$_{f}T_{1}(\text{sec})$	1.10	1.51	2.01		
W (kN)	75199	49115	67912		
(a _{v1}	0.47	0.27	0.29		

形 $_{f}\delta_{yi}$, 主架構の初期剛性 $_{f}k_{i}$ を示し, 表 1(b) に $_{f}T_{1}$, 建物全重 量及び第1層の降伏層せん断力係数 $_{f}\alpha_{y1}$ (= $_{f}Q_{y1}/W$) を示す。 ダンパーには軸材にLY225材を用いた座屈拘束ブレースを使用 し, ダンパーの耐力比分布は図3に示すような A_{i} 分布に基づ いた層せん断力の分布に従って決定した。第1層のダンパーの 降伏層せん断力。Q₁₁は、次式で求められる。

$${}_{s}Q_{y1} = {}_{s}\alpha_{y1} \cdot \sum_{i=1}^{N} m_{i} \cdot g$$
⁽¹⁾

ここに、 $_{s}a_{y1}$:ダンパーの降伏層せん断力係数、N:全層数、 m_{i} :*i* 層の質量、g:重力加速度である。

(1)式では_sa_{y1}をパラメータとしてダンパーの降伏層せん断力 を変化させているので、_sa_{y1}をダンパー量と呼び、本報では s a_{y1}=0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20,
0.25 の 10 種類を用いる。本報で用いるダンパーは、塑性化部 と弾性部で構成されるため、解析で1本の部材としてモデル化 する場合、ダンパー剛性と断面積は、等価剛性及び等価断面積
⁴⁾を用いることとする。

2.2 入力地震動の概要

解析に用いる入力地震動は、コーナー周期 $T_c = 0.64(s)$ 以降の 領域で、 $S_v = 100$ cm/s (h = 5%)となる位相特性 HACHINOHE 1968 EW (以後, ART HACHI), JMA KOBE 1995 NS (以後, ART KOBE) の模擬波と、最大速度を 50 cm/s に基準化した El Centro1940NS (以後, El Centro)の観測波を採用する。入力加速度倍率は 1.0, 2.0, 3.0, 4.0 倍を用いて検討を行う。図 4(a), (b)にそれぞれ入 力加速度倍率 1.0 倍の速度応答スペクトルとエネルギースペク トルを示す。

3. 等価繰返し数の検討

3.1 ダンパーの等価繰返し数の低下率と_fµ_iの関係

ダンパーの等価繰返し数_{sni}は次式で算出される¹⁾。

$${}_{s}n_{i} = \frac{{}_{s}W_{pi}}{4 \cdot {}_{s}Q_{yi} \cdot (\delta_{\max i} - {}_{s}\delta_{yi})}$$
(2)

ここに、 $_{s}W_{pi}$: ダンパーのエネルギー吸収量、 $_{s}\delta_{yi}$: ダンパーの降伏変形、 δ_{maxi} : 最大層間変形である。

主架構の塑性変形倍率」μiは次式で算出される。

$${}_{f}\mu_{i} = \frac{\delta_{\max i}}{{}_{f}\delta_{yi}} - 1 \tag{3}$$

図5にダンパーの等価繰返し数の低下率 $\beta_{m}=_{s}n_{pl}/_{s}n_{el}$ を縦軸と し、横軸を $_{f}\mu_{i}$ としたときの時刻歴応答解析結果を示す。ここ で、 $_{s}n_{el}$ は主架構が弾性状態、 $_{s}n_{pl}$ は主架構が塑性化したときの ダンパーの等価繰返し数である。文献2では、ダンパーの等価 繰返し数に主架構が弾性状態のときは2.5、主架構が塑性化する ときは耐震構造の等価繰返し数である 1.0 を使用している。こ れを β_{m} で表すと、いずれの $_{f}\mu_{i}$ においても0.4 であることを意

図5 ダンパーの等価繰返し数の低下率 $sn_{pi}/sn_{ei} \geq f\mu_i$ の関係

味する (図 6)。図 5 より, $_{f\mu_{i}}$ が大きくなると地震動の種類に 関わらず β_{ni} は低下し, $_{f\mu_{i}}=2$ 程度から 0.4 となる傾向にある。 また, $_{f\mu_{i}}=0.5$ までは β_{ni} は 1.0 となっている。等価繰返し数は ばらつく値であるため,図中のプロットの中間を取るような線 を引くと, β_{ni} は $_{f\mu_{i}}$ と係数 a, bを用いて,次式で表される。

$$\beta_{ni} = 1.0 \qquad f\mu_i < 0.5$$

$$\beta_{ni} = a \cdot f\mu_i + b \qquad 0.5 \le f\mu_i \le 2$$

$$\beta_{ni} = 0.4 \qquad f\mu_i > 2$$

$$(4a \sim c)$$

本報では, β_mが 0.4 となる_fµ_iを時刻歴応答解析果より 2 と定め, a に-2/5, b に 1.2 を用いる。

3.2 主架構の等価繰返し数と_fµ_iの関係

主架構の等価繰返し数 ini は次式で算出される。

$${}_{f}n_{i} = \frac{{}_{f}W_{pi}}{4 \cdot {}_{f}Q_{yi} \cdot (\delta_{\max i} - {}_{f}\delta_{yi})}$$
(5)

ここに、fWpi:主架構のエネルギー吸収量である。

図 6 に縦軸を主架構の等価繰返し数 fn_i , 横軸を $f\mu_i$ としたとき の時刻歴応答解析結果を示す。図 6 より, fn_i は $f\mu_i$ の値に関わ らず概ね 0.2~1.0 の値となるが,図 5 とは異なり, $f\mu_i$ に対する 相関性は低い。 fn_i が 1.0 を超えるものは、ダンパー量が極端に 少なく、入力加速度倍率が 4.0 倍である場合が多いため、本報 では fn_i の上限値を 1.0、下限値を 0.2 として応答評価のときに 用いる。

4. 主架構の塑性化の程度に応じたエネルギー法の提案

4.1 エネルギーの釣合式の導出

エネルギー法は、最大層間変形 δ_{maxi} などの最大値を算出する ときは最大応答発生時刻 t_m におけるエネルギーの釣合式(式(6)) から、主架構の累積塑性変形倍率 $_f \eta_i$ などの累積値を算出する ときは地震終了時刻 t_0 におけるエネルギーの釣合式(式(7))から 求める。それぞれの釣合式を以下に示す²⁾。

$${}_{f}W_{e}(t_{m}) + {}_{s}W_{e}(t_{m}) + {}_{f}W_{p}(t_{m}) + {}_{s}W_{p}(t_{m}) = E_{D}(t_{0})$$
(6)
$${}_{f}W_{p}(t_{0}) + {}_{s}W_{p}(t_{0}) = E_{D}(t_{0})$$
(7)

ここに、 E_D :損傷に寄与する入力エネルギー¹⁾、 $_fW_e$: 主架構の 弾性振動エネルギー、 $_sW_e$: ダンパーの弾性振動エネルギー、 $_fW_p$: 主架構のエネルギー吸収量、 $_sW_p$: ダンパーのエネルギー 吸収量である。

以下に,式(6)で用いる諸元の算出式を示す。*E_D*(*t*₀)は,次式 で求められる¹⁾。

$$E_D(t_0) = \frac{1}{2} \cdot M \cdot V_D^2$$
(8)

ここに、 $M: 総質量, V_D: E_D の速度換算値である。$ $式(6)の<math>_f W_e(t_m)$ は、次式で表される²⁾。

$${}_{f}W_{e}(t_{m}) = \sum_{i=1}^{N} {}_{f}W_{ei} + \sum_{i=1}^{N} {}_{f}W'_{ei}$$
(9)

 $\Box \Box \overline{C}, \quad _{f} W_{ei} = \frac{_{f} Q_{yi} \cdot _{f} \delta_{yi}}{2} \qquad (_{f} \mu_{i} > 0)$ (10)

$$_{f}W'_{ei} = \frac{_{f}Q_{\max ei}\cdot\delta_{\max ei}}{2} \quad (_{f}\mu_{i}=0)$$
(11)

ここに、 $_fQ_{\max ei}$: 主架構弾性式(式(20))より求めた主架構の層せん断力である。

 $fW_e(t_m)$ の算出において、文献1では全層で主架構が降伏する事を仮定していたため、式(10)を全層で適用していたが、本報で

は主架構弾性式より求めた最大層間変形 $\delta_{\max el}$ (式(20))が,主架 構の降伏変形を超えない場合,その層の主架構は弾性であると みなし,その層にのみ式(11)を適用する。これにより,層によ って主架構が弾性である場合と弾塑性である場合が混在する建 物応答でも適切なエネルギー配分が可能となる。

式(6)の_fW_p(t_m),式(7)の_fW_p(t₀)は、次式で表される²⁾。 fW_p(t_m)=4_fn_i·_fy_i·_fQ_{yi}($\delta_{\max i} - f\delta_{yi}$) (12)

$${}_{f}W_{p}(t_{0}) = {}_{f}\gamma_{i} \cdot {}_{f}W_{pi} = {}_{f}\gamma_{i} \cdot {}_{f}Q_{yi} \cdot {}_{f}\delta_{yi} \cdot {}_{f}\eta_{i}$$
(13)

$$\Xi \Xi \mathfrak{C}, \quad \frac{1}{f^{\gamma_i}} = \frac{f^{s_i \cdot f} p_i^{-n_i}}{\sum\limits_{i=1}^{N} (f^{s_i \cdot f} p_i^{-n_i})}$$
(14)

$$\begin{cases} {}_{f}s_{i} = \left(\sum_{j=i}^{N} \frac{m_{j}}{M}\right)^{2} \cdot \overline{\alpha}_{i}^{2} \cdot \frac{fk_{1}}{fk_{i}} \quad (f\mu_{i} > 0) \\ {}_{f}s_{i} = 0 \qquad (f\mu_{i} = 0) \end{cases}$$

$$(15)$$

$$_{f}p_{i} = \frac{(_{s}\alpha_{yi} + _{f}\alpha_{yi})/(_{s}\alpha_{y1} + _{f}\alpha_{y1})}{\overline{\alpha}_{i}}$$
(16)

ここに、 $_{f\gamma_i}$: 主架構の損傷分散係数、 $\overline{\alpha}_i$: 最適降伏せん断力係数分布¹⁾、 n_i : 損傷集中指数である。

主架構が塑性化していない層は $_{f}W_{pi}$ が0となるため、本報では 式(15)において $_{rs_{i}}$ の値を $_{r\mu_{i}}$ によって場合分けしている。

式(6)の $_{s}W_{p}(t_{m})$,式(7)の $_{s}W_{p}(t_{0})$ は、次式で表される²⁾。

$$W_{p}(t_{m}) = 4_{s} n_{ei} \cdot \beta_{ni} \cdot {}_{s} \gamma_{i} \cdot {}_{s} Q_{yi} \cdot \delta_{\max i}$$
(18)

$$W_{p}(t_{0}) = s \gamma_{i} \cdot s W_{pi} = s \gamma_{i} \cdot s Q_{yi} \cdot s \delta_{yi} \cdot s \eta_{i}$$

$$(19)$$

ここに, $_{s\gamma_i}$: ダンパーの損傷分散係数⁴⁾, $_{s\eta_i}$: ダンパーの累積 塑性変形倍率である。

4.2 主架構の塑性化の程度に応じた応答評価フロー

本節では 3.1 節で提示したダンパーの等価繰返し数の低下率 を,エネルギー法の式に組み込む事で,主架構の塑性化の程度 に応じた応答評価法を提案する。はじめに,文献4で示されて いる応答評価式(以後,主架構弾性式)を用い,主架構弾性式 より求めた最大層間変形 $\delta_{max,ei}$ を算出する。

$$\delta_{\max ei} = \frac{{}_{f}Q_{\max ei}}{{}_{f}k_{i}} = \left(\frac{{}_{f}\delta_{0}}{{}_{\kappa_{i}}}\right) \cdot \left(\sum_{j=i}^{N}\frac{m_{j}}{M}\right) \cdot \left(\frac{{}_{f}\alpha_{i}}{{}_{f}\alpha_{0}}\right)$$
(20)

ここで、 fa_i/fa_0 は次式で求まる。

$$\frac{f \alpha_{i}}{f \alpha_{0}} = -4_{s} n_{ei} \cdot c_{i} \cdot {}_{s} \gamma_{i} \cdot {}_{f} \overline{\alpha}_{i}^{2} \frac{s \alpha_{yi}}{f \alpha_{0}}$$

$$+ {}_{f} \overline{\alpha}_{i} \sqrt{8_{s} n_{ei} \cdot c_{i} \cdot {}_{s} \gamma_{i} \left(2_{s} n_{ei} \cdot c_{i} \cdot {}_{s} \gamma_{i} \cdot {}_{f} \overline{\alpha}_{i}^{2} + \frac{f k_{i}}{s k_{i}} \right) \left(\frac{s \alpha_{yi}}{f \alpha_{0}}\right)^{2} + 1 - \frac{\sum_{i=1}^{N} \left(s Q_{yi} \cdot {}_{s} \delta_{yi}\right)}{M \cdot V_{D}^{2}}} (21)$$

ここに, $fa_0:1$ 質点モデル非制振弾性系の応答せん断力係数², $f\overline{a_i}: 主架構の最適降伏層せん断力係数分布⁴, <math>c_i$ については,

文献1を参照されたい。

式(20)より求めた $\delta_{\max ei} \epsilon$ 最大層間変形 $\delta_{\max i}$ であるとみなし, 主架構の塑性変形倍率 $_{f\mu i}$ (式(3))を求める。いずれの層において も $_{f\mu i}$ が 0 ならば,主架構が全層で弾性であるとみなし,主架 構弾性式で応答評価を行う。いずれかの層で $_{f\mu i}$ >0 となる場合 は,主架構の塑性化の程度に応じた釣合式より最大層間変形を 求める。

これより、主架構の塑性化の程度に応じた最大層間変形 δ_{maxi} を算出する。式(6)において、 $_{s}W_{e}(t_{m})$ は $E_{D}(t_{0})$ に対して極めて小 さな値となるため、 $_{s}W_{e}(t_{m})=0$ とする。式(9)、(12)及び(18)を t= t_{m} のときの釣合式(6)に代入すると、 δ_{maxi} は次式で算出される。

$$\delta_{\max i}^{(j+1)} = \frac{E_D - {}_f W_e + 4_f n_i \cdot {}_f \gamma_i \cdot {}_f Q_{yi'f} \delta_{yi}}{4_s n_{ei} \cdot \beta_{ni}^{(j)} \cdot {}_s \gamma_i \cdot {}_s Q_{yi} + 4_f n_i \cdot {}_f \gamma_i \cdot {}_f Q_{yi}}$$
(22)

ここで、右辺の β_{mi} は δ_{maxi} を含む項であるため、左辺の δ_{maxi} と値を一致させる必要がある。そこで、はじめは主架構弾性式 より求めた $\beta_{mi}^{(1)}$ を使用し、算出される $\delta_{maxi}^{(2)}$ を用いて再度 $\beta_{mi}^{(2)}$ を求め、式(22)に代入する。この操作を繰り返し、 $\delta_{maxi}^{(j+1)}$ が概 ね一定値となる δ_{maxi} を建物応答値とする。

次に、主架構の塑性化の程度に応じた $f\eta_{i,s}\eta_{i}$ を算出するため に、 $t=t_{0}$ のときの釣合式(7)に、式(13)及び(18)を代入すると、 主架構の累積塑性変形倍率 $f\eta_{i}$ は次式で算出できる。その際 δ_{maxi} には、式(22)より求めた値及び、その値に対する β_{ni} を用いる。

$${}_{f}\eta_{i} = \frac{E_{D} - 4_{s}n_{ei} \cdot \beta_{ni}^{(j+1)} \cdot {}_{s}\gamma_{i} \cdot {}_{s}Q_{yi} \cdot \delta_{\max i}^{(j+1)}}{{}_{f}\gamma_{i} \cdot {}_{f}Q_{yi} \cdot {}_{f}\delta_{yi}}$$
(23)

さらに、 $t=t_0$ のときの釣合式に式(13)及び(19)を代入すると、ダンパーの累積塑性変形倍率 $_s\eta_i$ は次式で算出できる。

$${}_{s}\eta_{i} = \frac{E_{D} - {}_{f}\gamma_{i} \cdot {}_{f}Q_{yi} \cdot {}_{f}}{}_{s}\gamma_{i} \cdot {}_{s}Q_{yi} \cdot {}_{s}\delta_{yi}}$$
(24)

図 7(a),(b)に、時刻歴応答解析(質点モデル)、本手法(エネ ルギー法)により得られた 10 層モデルの高さ方向の応答比較を 示す。比較する応答値は、主架構の累積塑性変形倍率_fη_iとダ ンパーの累積塑性変形倍率_sη_iである。解析に用いる地震動は ART HACHI(入力加速度倍率 3.0 倍)とし、 $sa_{y1}=0.10$ とした。 本手法に用いる V_D は、質点モデルの時刻歴応答解析から得ら れた値を用い、 sn_{ei} には主架構を弾性設定とした結果の全層の sn_{ei} を平均した値を使用する。主架構の等価繰返し数 fn_i には、 $f\eta_i$ (式(23))を求めるときは主架構に対する応答評価が危険側に ならないように上限値である $fn_i=1.0$ を、 $s\eta_i$ (式(24))を求めると きはダンパーに対する応答評価が危険側にならないように下限 値である $fn_i=0.2$ を使用する(表 2 参照)。

(10 層モデル、ART HACHI, $_{s}\alpha_{y1}$ =0.10, 3.0 倍)

表2 応答評価式に用いる V _{D, s} n _{ei, f} n _i の値							
	V_D (cm/sec)	_s n _{ei}	_f n _i				
			_∫ η _i の算出	_s η _i の算出			
	589	7.4	1.0	0.2			

図 7(a)より,本手法の $_{\eta_i}$ は時刻歴応答解析と比較して安全側 の評価となる事が分かる。図 7(b)より,本手法の $_{s\eta_i}$ は時刻歴 応答解析の傾向を捉えており,同等な値となる。これにより, 本手法は $_{\eta_i}$, $_{s\eta_i}$ の評価法として妥当であると言える。

5 まとめ

本報では,主架構の塑性化の程度に応じてダンパー等価繰 返し数が徐々に低下する影響を考慮した応答評価式(本手法) を提案した。さらに,本手法と時刻歴応答解析との結果を比 較検証する事で,本手法の有用性を確認した。これにより, 建物架構の状態に応じて適切なエネルギー配分が可能となる。

謝辞

本研究は,新日鉄住金エンジニアリング株式会社,東京理科大学によるエネルギー法研究会の成果の一部である。

参考文献

- 1) 秋山宏: エネルギーの釣合に基づく建築物の耐震設計,技術堂出版, 1999.11
- 2) 北村春幸,財津和廉,馬谷原伴恵:主架構の塑性化を考慮した制振構造物のエネルギーの釣合に基づく応答評価,日本建築学会関東支部研究報告集,2006.1, pp.341-344,2010年度日本建築学会関東支部研究報告集,pp.341-344
- 3) 松澤祐介,佐藤大輔,佐藤大樹,北村春幸,山口路夫,脇田直弥,松蔭知明: 制振構造における主架構の塑性化がダンパー吸収効率に与える影響-その2-等 価繰返し数の検討,日本建築学会大会学術講演梗概集, B-2, pp.963-964, 2012.9
- 4) 栗林晃司,佐藤大樹,北村春幸,山口路夫,西本晃治:実効変形を考慮した履 歴減衰型制振部材を有する鋼構造建物のエネルギーの釣合に基づく応答予測 法,日本建築学会構造系論文集,第76巻,第661号,543-552p,2011.3

^{*1} 東京理科大学

^{*2} 新日鉄住金エンジニアリング株式会社