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Abstract 

     Over the past two decades, brain-machine interfaces (BMI) have been developed 

utilizing the growing understanding of brain function and the development of 

technology to measure brain activity. BMIs are mainly categorized into two types, 

invasive and non-invasive BMIs, according to the signal source.  

     As semi-invasive brain signals, electrocorticography (ECoG) has received much 

focus in recent years. ECoG signals have higher signal-to-noise ratio and 

spatiotemporal resolution than non-invasive recording methods. In addition, long-term 

stability had been showed and the level of clinical risk is lower compared with 

invasive methods.          

     The goal of this study is to develop a high performance ECoG-based upper limb 

brain machine interface, such as self-feeding robot. To accomplish this goal, position 

information and grasp force in time series are necessary. Three-dimensional hand 

positioning, grasp force, and ECoG signals of the primary motor cortex (Ml), were 

recorded simultaneously in two Japanese monkeys while they performed reaching and 

grasping tasks.  

     Raw ECoG signals were common average referenced and band-pass filtered using 

ten different sensorimotor frequency band-pass filters to select motor related feature 

in ECoG signals. A partial least square linear regression method was applied to 

decode hand trajectory from ECoG feature signals. Decoding results indicated that 3D 

hand trajectories can be predicted using nine or ten ECoG electrodes and ECoG 

electrodes with higher performance were concentrated at the lateral areas and areas 
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close to the central sulcus (CS). Likewise, it is also demonstrated that lateral grasp 

force profile can be decoded using a sparse linear regression from ECoG feature 

signals.   

     In addition, the future directions of brain research and interface development were 

investigated. The major burns in current brain research and interface development 

were discussed. With the development of next generational ECoG electrode, ECoG 

signals may play an important role in future brain and interface research. 

     In the end, the feasibility to realize real time robot control was analyzed and 

discussed, based on these results. On-line validation and experiments on human 

subjects are considerable work in the future. 
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Chapter 1 

Introduction 

1.1 brain machine interface 
     Every year, hundreds of thousand people became amputees caused by traffic 

accidents, or suffer from severe neurological disease such as amyotrophic laterals 

clerosis (ALS), spinal cord injury, brain stroke and cerebral paralysis. Brain machine 

interface can help these people to communicate with outside, operate computer 

cursors, control wheelchair or robot arms (Figure 1-1), by using their neural activities.  

 

Figure 1-1. Robot control using brain activity 

This figure is from Hochberg et al., 2012 

     For brain research, studies on brain machine interface continue to offer an 

important insight into how three-dimensional external word represents in the brain, 

how brain plan and control movement, and how neurons and their connections change 
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with feedback from the usage of brain machine interface. 

1.2 invasive, no invasive and semi-invasive BMI 
     According to recording location and invasiveness of the measurement of brain 

signals, BMI were divided into three types: invasive, noninvasive and semi-

invasive BMI, as shown in Figure 1-2.  

 

 

Figure 1-2. Three types of brain machine interface 

This figure is from Schalk et al., 2011 

     Invasive methods penetrate the cortex to record single neuron spike activity 

(SNA), or local field potentials (LFPs). SNA based BMI, a typical invasive BMI, 

which measure activities form cortical neurons directly has high spatial resolution 

and signal-to-noise rate. Kinematic information can be decoded in real time and 

used for on-line robot control in SNA based BMI. Muscle activities in time series 

also can be reconstructed in our previous SNA study. Because of penetration of 

brain, invasive BMI suffer from high clinical risk and poor long-term stability. 

Although human subject joined invasive BMI research (Hochberg et al., 2006, 
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Hochberg et al., 2012, and Collinger et al., 2013), high clinical risk is still the major 

burden for practical clinical solution.  

     On the other hand, EEG based BMI, which record brain signals from the scalp, 

was widely used in human subjects as a safety no-invasive BMI.  It provided basic 

communication to people with severe disability, however, the low spatial resolution 

and ambiguous in high frequency reduce information capacity with EEG signals, 

compared with invasive signals. It is still difficult to realized three-dimensional 

movement control of robot arm or neural prosthetic by using EEG signals. In 

addition, functional magnetic resonance imaging (fMRI), which measures the tiny 

metabolic changes of active part of the brain, and magnetoencephalography (MEG), 

which records magnetic fields produced by electrical currents occurring naturally in 

the brain, are common noninvasive recording methods. 

     Since the limitation in both invasive and no-invasive BMI, as semi-invasive 

brain signals, electrocorticographic (ECoG) signals have been in focus during 

recently years. ECoG electrodes were placed on the surface of brain, subdural or 

epidural. ECoG signals have high signal noisy rate, spatial-temporal resolution. 

Recent researches showed ECoG signals are potential to support high performance 

neural prosthetics with high degrees of freedom. 

1.3 The goal of this study 
     The goal of this study is to develop a high performance ECoG-based upper limb 

brain machine interface for supporting robot arm or prosthetic with multi-degree of 

freedom. To accomplish this goal, we trained two Japanese monkeys to perform 

reaching and grasping tasks. Three-dimensional hand positioning, grasp force, and 
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ECoG signals of the primary motor cortex (Ml), were recorded simultaneously in 

reaching and grasping tasks. Then, we decoded hand trajectory and grasp force profile 

in time series from ECoG signals. As future work, we want to realize real time robot 

control based on these results.  

1.4 Structure of this thesis 
     In chapter 1, the background of brain machine interface was described, including 

the history and motivation of brain machine interface research. Then, three typical 

type brain machine interface: invasive, noninvasive, and semi-invasive BMI, were 

introduced. Based on mentioned fundamental knowledge, the goal of this study was 

proposed. Structure of this thesis was at end of this chapter. 

     In chapter 2, the contents and methods in related ECoG based BMI researches 

were reviewed to show the position of this study in this research field. Then, the 

feature selection and prediction methods in this study were introduced and compared 

with related methods. 

     In chapter 3, the hand trajectory was predicted from ECoG signals in primary 

motor cortex. At the beginning, behavioral tasks and data measurement of ECoG 

signals and three-dimensional positions were introduced. Then, the partial least square 

regression method, two electrode selection methods, and data analysis method were 

described. The prediction results showed that three-dimensional hand trajectories can 

be predicted using nine or ten ECoG signals and that ECoG electrodes with higher 

performance were concentrated at the lateral areas and areas close to the central 

sulcus. 
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     In chapter 4, the grasp force profile was decoded from ECoG signals in primary 

motor cortex. Brief description was held on behavioral tasks and experimental 

procedure, signal-processing method to ECoG signals and detection of grasp force 

profile. Then, a sparse linear regression method was employed to predict the grasp 

force profile. Results showed grasp force profile could be decoded from ECoG signals 

and the efficacy of high γ bands in decoding.  

     In chapter 5, current research projects in brain research were introduced. Then, the 

main issues in brain and interface research were reviewed. Finally, combined with the 

result gotten in this study, the potential future solutions of brain and interface research 

with ECoG signals were discussed.  

     In chapter 6, the main works in this study were summarized. As a future vision, 

ECoG based research may be become a key point in brain and interface research. 
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Chapter 2 

Related research and methods based on ECoG signals 

2.1 Related research ECoG works 
     Initially, ECoG electrodes were implanted to treat intractable head pain or epilepsy. 

With the growing interest in BMI research, some patients joint the experiment 

depends on their willing in the duration of about two weeks monitoring. The first 

online ECoG based BMI were developed by Leuthardt et al. in human subjects. 

Electrocorticography (ECoG) has drawn attention as a new type of signal source for 

BMI. Within about ten years following with this succeed, productive ECoG based 

BMI research were reported, including cursor control (Leuthardt et al., 2004, Schalk 

et al., 2008, and Wang et al., 2013), classification of hand movement (Chin et al., 

2007, Yanagisawa et al., 2009, and Yanagisawa et al., 2011), and grasp types (Pistohl 

et al., 2012), detection of start time point of grasp (Pistohl et al., 2013), decoding of 

muscle activities (Shin et al., 2012), movement-related intracortical activity 

(Watanabe et al., 2012), hand trajectories (Schalk et al., 2007, Chao et al., 2010, 

Shimoda et al., 2012, Nakanishi et al., 2013, and Chen et al., 2013) and finger 

movement (Kubanek et al., 2009 and Acharya et al., 2010) in human and monkey 

subjects. Typical works were summarized in Table 2-1. In these works, special 

frequency bands were extracted from ECoG signals by using Fourier transform, 

Wavelet transform or band-pass filters in feature selection, and linear regression 

methods were usual methods as decoding methods. 
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Table 2-1. Summary of related ECoG based brain machine interface researches 

Year Author Feature selection method Decoding method 

2004 
 
Leuthardt et al 
 

Spectral amplitudes between 0 and 
200Hz in 2Hz bins 

A weighted, linear summation 
of the amplitudes in identified 
frequency bands 

2007 
 
Schalk et al 
 

Special frequency band (8–12, 18–
24, 35–42, 42–70, 70–100, 100–
140, 140–190 Hz) 

Auto regression 

2007 
 
Chin et al 
 

0-99Hz in 3Hz bins, 0-100Hz in 5 
Hz bins, 0-98Hz in 7Hz bins, 0-
100Hz in 10Hz bins histograms 

Nearest neighbor classifier 

2010 
 
Chao et al 
 

Wavelet transform between 10 and 
150Hz in 10Hz bins Partial least square regression 

2011 
 
Pistohl et al 
 

Three frequency band: 2-6, 14-46, 
54-114Hz 

Regularized linear discriminant 
analysis 

2012 
 
Shin et al 
 

Sensorimotor frequency bands 
(1.5-4, 4-8, 8-12, 12-20, 20-30, 30-
50, 50-90Hz) 

Sparse linear regression 

2012  
 
Watanabe et al 
 

Broadband (1–250 Hz), β band 
(10–35 Hz), and high-γ band (80–
170 Hz) 

Sparse linear regression 

2012 
 
Shimoda et al 
 

Wavelet transform between 10 and 
120Hz in 10Hz bins Partial least square regression 

2013 
 
Pistohl et al 
 

6.7Hz low pass filter, frequency 
band amplitudes between 0 and 
128Hz in 4Hz bins 

Regularized linear discriminant 
analysis 
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2.2 Decoding algorithm in this study 

2.2.1 Partial least square regression  

     Partial least square regression and sparse linear regression methods were employed 

to decode hand trajectory and grasp force profile, respectively in this study. Partial 

least square regression model Y from X, based on the decomposition of Y and X.  

     Assuming that, 𝑌 with 𝑚 variables and 𝑋 with 𝑛 variables have 𝑘 observations to 

form k-by-m response matrix and k-by-n matrix of predictor variables, respectively, 

with rows corresponding to observations, columns to variables. These two matrices 

were z-score normalized, and denoted as following:  

     𝐹! =
𝑦!! ⋯ 𝑦!!
⋮ ⋱ ⋮
𝑦!! ⋯ 𝑦!"

, 𝐸! =
𝑥!! ⋯ 𝑥!!
⋮ ⋱ ⋮
𝑥!! ⋯ 𝑥!"

                                                        (1) 

     Then, the details of modeling were described as four steps as following: 

     Step1: if 𝑢! and 𝑡! are linear combination of 𝑌 and 𝑋, respectively, and defined as 

𝑢! = 𝑣!!𝑦! +⋯+ 𝑣!!𝑦! = 𝑣!!𝑌  and 𝑡!   = 𝑤!!𝑥! +⋯+ 𝑤!!𝑥! = 𝑤!!𝑋 . It is 

expected that 𝑢! and 𝑡! can carry information of 𝑌 and 𝑋 as much as possible, and 

have largest correlation. It also can be denoted as matrix form, as following:          

     𝑢! = 𝐹!𝑣! =
𝑦!! ⋯ 𝑦!!
⋮ ⋱ ⋮
𝑦!! ⋯ 𝑦!"

𝑣!!
⋮

𝑣!!
=

𝑢!!
⋮
𝑢!!

                                                        (2) 

     𝑡! = 𝐸!𝑤! =
𝑥!! ⋯ 𝑥!!
⋮ ⋱ ⋮
𝑥!! ⋯ 𝑥!"

𝑤!!
⋮
𝑤!!

=
𝑡!!
⋮
𝑡!!

                                                          (3) 

     Because the maximum of covariance 𝐶𝑜𝑣  (𝑢!, 𝑡!) means the larger correlation 

between 𝑢! and 𝑡!, and 𝐶𝑜𝑣  (𝑢!, 𝑡!) can be calculated by the inner product from 𝑢! 
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and 𝑡!. The question change to calculate the conditional maximum value, as shown in 

following: 

      
𝑡!, 𝑢! = 𝐸!𝑤!,𝐹!𝑣! = 𝑤!!𝐸!!𝐹!𝑥! ⇒ 𝑚𝑎𝑥

𝑤!!𝑤! = 𝑤! ! = 1, 𝑣!!𝑣! = 𝑣! ! = 1                  
                                                  (4) 

     With the method of Lagrange multipliers, this question change to calculate unit 

vector 𝑤!  and 𝑣!  to make 𝑤!!𝐸!!𝐹!𝑥!  maximum. Equation 4 can be solved by 

calculating the eigenvalue and eigenvector of matrix 𝑀 = 𝐸!!𝐹!𝐹!!𝐸! . The 

eigenvector corresponding to largest eigenvalue 𝜃!! was the solution 𝑤!. Then, 𝑣! can 

be computed from Equation 5: 

     𝑣! = !
!
𝐹!!𝐸!𝑤!                                                                                                        (5) 

     Step 2: To build linear regressions of 𝐸! and 𝐹! from 𝑡!, as shown in following: 

     
𝐸! = 𝑡!𝛼!! + 𝐸!

𝐹! = 𝑡!𝛽!! + 𝐹!
                                                                                                    (6) 

     where, 𝐸! and 𝐹! are the residual matrix. 𝛼! and 𝛽!are vector of coefficients, can 

be calculated by least square methods as shown in following: 

     
𝛼! = 𝐸!!𝑡! 𝑡! !

𝛽! = 𝐹!!𝑡! 𝑡! !
                                                                                                 (7)      

     Step3: Then, iteration method was employed with the residual matrix 𝐸! and 𝐹! in 

the same manner. The results of second components were shown in Equation 8, 9, and 

10, as following: 

     𝑡! = 𝐸!𝑤!, 𝑢! = 𝐹!𝑣!                                                                                            (8) 
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𝛼! = 𝐸!!𝑡! 𝑡! !

𝛽! = 𝐹!!𝑡! 𝑡! !
                                                                                          (9) 

     
𝐸! = 𝑡!𝛼!! + 𝑡!𝛼!! + 𝐸!

𝐹! = 𝑢!𝛽!! + 𝑢!𝛽!! + 𝐹!
                                                                                 (10) 

     Step 4: if 𝑟 is the rank of 𝐸!, or 𝑟th components were iterated in regression, and 

residual matrix 𝐸! and 𝐹! are small enough, as shown in Equation 11, the iteration will 

stop.  

     
𝐸! = 𝑡!𝛼!! +⋯+ 𝑡!𝛼!! + 𝐸!

𝐹! = 𝑢!𝛽!! +⋯+ 𝑢!𝛽!! + 𝐹!
                                                                         (11) 

     The final regression model Equation 13 can be calculated form Equation 12.  

     𝑌 = 𝑡!𝛽! +⋯+ 𝑡!𝛽!                                                                                          (12) 

     𝑦! = 𝑤!!𝑥! +⋯+ 𝑤!"𝑥!  (𝑞 = 1, 2,… ,𝑚)                                                        (13) 

2.2.2 Sparse linear regression 

     Sparse linear regression method (SLiR) was developed (Sato et al., 2001) and 

became an open source toolbox, which wildly used in neural research, including 

reconstructing finger-movements, finger force, and arm EMG patterns from neural 

firings (Ting et al., 2008), blood oxygen level-dependent signals (Ganesh et al., 2008), 

near-infrared spectroscopy signals (Nambu et al., 2009), cortical current dipoles 

(Toda et al., 2011), EEG signals (Yoshimura et al., 2012), and local field potential 

(LFP) signals (Watanabe et al., 2012). The SLiR algorithm calculates the linear 

weight and automatic relevance determination (ARD) parameters in prediction model 

(Neal et al., 1998), which represent how the elements contribute to prediction model. 
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Then, SLiR sets a part of the linear weight value to zero, according with the weight 

contributes to the reconstruction to select the effective channels for better prediction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 20 

Chapter 3 
Prediction of hand trajectory from ECoG signals  
3.1 Introduction 
     Over the past two decades, brain-machine interfaces (BMI) have been developed 

utilizing the growing understanding of brain function and the development of 

technology to measure brain activity. BMIs translate brain signals into commands 

for controlling devices such as cursors (Wolpaw et al., 1991), spelling devices 

(Birbaumer et al., 1999), robot arms, and neural prosthetics (Chapin et al., 1999, 

Wessberg et al., 2000, Taylor et al., 2002, and Carmena et al., 2003). This new 

communication pathway has not only the potential to help to disabled persons but 

also provide insight into the motor system of the brain (Wolpaw et al., 2004, 

Lebedev et al., 2005, Hochberg et al., 2006, Fagg et al., 2007, Velliste et al., 2008, 

Hochberg et al., 2012, and Hauschild et al., 2012). A number of methods have been 

developed to measure brain signals. BMIs are mainly categorized into two types, 

invasive and non-invasive BMIs, according to the signal source. BMI systems have 

been developed using modalities such as multi-neuron activity (Sanchez et al., 2004, 

and Tankus et al., 2012), local field potentials (Rickert et al., 2005, and Kellis et al., 

2010), electroencephalography (Wolpaw et al., 1991, Wolpaw et al., 2004, 

Thulasidas et al., 2006, and Hadjidimitriou et al., 2012), and functional magnetic 

resonance imaging (Shibata et al., 2011).  
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     Electrocorticography (ECoG) has been in focus as a less invasive recording 

method for BMIs (Leuthardt et al., 2004, Wilson et al., 2006, Chin et al., 2007, 

Chao et al., 2010, Shimoda et al., 2012, Pistohl et al., 2012, and Wang et al., 2013) 

since the first ECoG-based BMI succeeded in one-dimensional cursor control in 

human subjects (Leuthardt et al., 2004). ECoG signals have higher signal-to-noise 

ratio and spatiotemporal resolution than non-invasive recording methods, because 

ECoG electrodes are laid on the surface of the cerebral cortex. ECoG recording has 

also been shown to have long-term stability (Chao et al., 2010, and Shimoda et al., 

2012), and its level of clinical risk is lower compared with invasive methods, 

because the electrodes do not penetrate the brain. Classifications of arm movement 

direction (Wilson et al., 2006, and Chin et al., 2007), 3D cursor control (Wang et al., 

2013), natural grasp type (Pistohl et al., 2012 and Pistohl et al., 2013), and hand 

posture (Yanagisawa et al., 2012 and Chestek et al., 2013) have been achieved by 

using ECoG signals. Two-dimensional (Schalk et al., 2007 and Pistohl et al., 2008) 

and three-dimensional (3D) hand trajectories (Chao et al., 2010, and Shimoda et al., 

2012) and muscle activities (Shin et al., 2012) have been decoded using epidural or 

subdural ECoG signals in time series. Despite these successes, however, which 

locations are most effective for ECoG-based hand trajectory prediction and how 

different numbers of effective ECoG signals affect decoding performance are still 

open questions.  

     In this study, and in investigation of these questions, we attempted to decode 

hand trajectory from ECoG signals. We recorded 15 and 32 ECoG signals of the 

primary motor cortex (Ml) and 3D hand positioning simultaneously in two 
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Japanese monkeys while they performed reaching and grasping tasks. We predicted 

3D hand trajectories using our previous signal preprocessing method (Shin et al., 

2012) and a partial least squares (PLS) method. Two methods for electrode 

selection were proposed in order to examine the questions previously mentioned. 

Prediction performances with different combination of electrodes using the 

proposed decoding methods were compared. Both methods showed equivalent 

ability to predict hand trajectories. Our results indicated that 3D hand trajectories 

can be predicted using nine or ten ECoG signals and that ECoG electrodes with 

higher performance were concentrated at the lateral areas and areas close to the 

central sulcus (CS). 
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3.2 Methods 

3.2.1 Ethics statement  

     All experimental procedures were performed in accordance with the Guidelines 

for Proper Conduct of Animal Experiments of the Science Council of Japan and 

approved by the Committee for Animal Experiments at the National Institutes of 

Natural Sciences (Approval No.: 11A157). The animals’ welfare and steps taken to 

ameliorate suffering were in accordance with the recommendations of the 

Weatherall report, “The use of non-human primates in research”. The animals were 

monitored closely, and their welfare was assessed on a daily basis, or several times 

a day if necessary. This included veterinary examinations to ensure that they were 

not suffering, as well as the use of analgesics, antiemetics, or antibiotic therapy if 

necessary. The animals were housed individually on a 12-hour light/dark cycle and 

provided a rubber toy and ample food and water in their home cage. No animals 

were sacrificed in this study. 

3.2.2 Behavioral Task  

     Two Japanese macaques (Monkey A: male, 8.9 kg; Monkey B: female, 4.7 kg) 

were trained to perform right hand reaching, grasping, pulling, and releasing tasks 

as shown in Figure 3-1A. The monkeys performed these tasks repeatedly and 

continuously for over 700 s. Monkey A performed a total of 134 trials, and monkey 

B performed 248 trials.  
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Figure 3-1. Behavioral task and location of ECoG electrodes used in decoding 

A) Monkeys performed right hand reaching, grasping, pulling, and releasing tasks in a 3D workspace. 

During the task, ECoG and hand positioning were recorded simultaneously. 

B) The planar-surface platinum electrode arrays were implanted on the gyrus between the central 

sulcus (CS) and the arcuate sulcus (AS) in the primary motor area in left hemisphere. The locations of 

all 15 and 32 electrodes in monkey A and monkey B are shown with defined channel numbers. 
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Locations of 3, 6, 9, 12, and 15 or 16 electrode groups used in decoding are denoted with green solid, 

purple dotted, blue dotted, brown dotted, and blue solid lines, respectively. The column nearest the CS 

was column #1 in the rostral-caudal direction, and the row in the medial-lateral direction was row *1. 

Note that electrodes inside the blue line were used in both column and row decoding. 

     Both monkeys underwent surgery to implant an ECoG electrode array under 

anesthesia after they completed behavioral training. We chronically implanted a 

platinum ECoG array (Unique Medical Corporation, Tokyo, Japan) over the left 

M1, which contained 15 (monkey A: 5×3 grid) and 32 (monkey B: 4×8 grid) 

channel electrodes, as shown in Figure 3-1B. For both monkeys A and B, centers of 

electrodes in column #1 (monkey A：3, 6, 9, 12, 15; monkey B: 7, 15, 23, 31) were 

placed 1-2 mm rostral of the central sulcus. Electrode 31 in monkey B was placed 

1-2 mm caudal of the central sulcus. Descriptions of the technical and surgical 

details can be found in our previous work (Shin et al., 2012).  

Data recording 

     ECoG signals were sampled at 4 kHz using an acquisition processor system 

(Plexon MAP System; Plexon, Inc., Dallas, US). ECoG signals were filtered with 

band-pass filters through multi-channel bio-signal amplifiers (monkey A: 1.5 Hz 

high-pass and 1 kHz low-pass analog filters, MEG-6116, Nihon Kohden 

Corporation, Tokyo, Japan; monkey B: 0.7 Hz high-pass and 8 kHz low-pass 

analog filters, Plexon, Inc., Dallas, USA).  

     3D-positions of various points of the right arm were recorded using reflective 

markers tracked with an optical motion capture system (Eagle Digital System; 

Motion Analysis Corporation, Santa Rosa, CA). The system used twelve infrared 
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cameras operating at 200 frames/s to track the positions of multiple reflective 

markers (4-mm-diameter spheroids). A total of fourteen markers were attached to 

the right arm of each monkey but we used only the wrist marker to extract hand 

positioning. In addition to optical data, the motion capture system also recorded 

analog signals from the external stimulator (SEN-8203; Nihon Kohden Corporation, 

Tokyo, Japan) for synchronization with the neural recordings. The neural data were 

down-sampled to 500 samples per second, and the motion data were up-sampled to 

500 samples per second to match the neural data, similar in manner to our previous 

work (Watanabe et al., 2012).  

3.2.3 Preprocessing and feature selection 

     Raw ECoG signals were re-referenced to a common average reference (CAR) to 

increase the signal-to-noise ratio in the preprocessing phase. The CAR method 

calculates the mean of all channels, and subtracts this value from the selected 

output channels (McFarland et al., 1997, and Ludwig et al., 2009).  

     Nine specific frequency bands were selected for further analysis: δ (1.5 ~ 4 Hz), 

θ (4 ~ 8 Hz), α (8 ~ 14 Hz), β1 (14 ~ 20 Hz), β2 (20 ~ 30 Hz), γ1 (30 ~ 50 Hz), γ2 

(50 ~ 90 Hz), γ3 (90 ~ 120 Hz), and γ4 (120 ~ 150 Hz). These specific bands were 

selected due to their correlation with motor activity, as shown in previous ECoG-

based BMI (Schalk et al., 2007, Pistohl et al., 2008, Yanagisawa et al., 2012, Shin 

et al., 2012, Pistohl et al., 2012, Pistohl et al., 2013, and Chestek et al., 2013). 

Band-pass filters for each of the nine frequency bands were used to transform the 

re-referenced ECoG signals into nine separate time series. Then, each time series 
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was rectified and smoothed with a Gaussian filter of 0.1 s width (σ: 0.04 s). Finally, 

the smoothed time series xij (t) at time t were z-score normalized to produce the 

final ECoG source signal zij (t) as follows: 

     
zij (t) =

xij (t)− µij

σ ij
                                                                                             (3.1) 

     where, i and j are the electrode channel and the frequency band, respectively.µij  

and σ ij  denote the mean value and the standard deviation of xij (t)  over a 2 s 

interval before time t, respectively. These zij (t)  became the final ECoG feature 

signals for use in hand trajectory prediction. An example ECoG feature signal 

during a trial movement is shown in Figure 3-2. 

 



 

 28 

 

Figure 3-2. Example of measured trajectory and frequency band feature data during 

a movement task 

Frequency band feature data were sorted into channels and frequency bands, as shown at the top. The X, 

Y, and Z positioning data recorded from the markers attached to the hand of monkey B, are shown at 

the bottom. 

3.2.4 Partial Least Squares Regression  

     Partial least squares regression (PLS) was used to decode the 3D hand positioning 

from ECoG. Because of its utility in variable selection and dimension reduction, PLS 

has been widely used in the fields of brain imaging, computational chemistry, data 

mining, and others (Wold et al., 1984, Geladi et al., 1986, Rosipal et al., 2006, Chao 

et al., 2010, Krishnan et al., 2011, and Shimoda et al., 2012).  
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     The 3D hand positioning at time t, Yp (t) , was decoded using the ECoG feature 

signal zij (t)  over a 0.6 s interval before time t and can be described as:              

     Yp (t) = ω ijkzij (t − kΔt)+ω 0
k=0

19

∑
j=1

9

∑
i=1

15or16

∑                                                              (3.2) 

     where, p represents the predicted value of each xyz-coordinate, ∆𝑡 is 30 ms, 𝜔!"# 

are the weights according to the ECoG feature signal zij (t)  at electrode channel 𝑖, 

frequency band 𝑗, and time 𝑡 − 𝑘∆𝑡, and 𝜔! is the bias. 

     The PLS methods calculates a set of orthogonal factors called latent variables to 

model the relationship between two sets of data. Ten-fold cross validation was used to 

evaluate prediction by the model. To avoid over-fitting, the predictive error sum of 

squares (PRESS) was calculated to find the optimal number of latent variables in the 

PLS model, which can be described as 

     
PRESS  = Yp −Yo

2
               (3.3) 

where Yp is the predicted hand position, and Yo is the observed hand position. 

3.2.5 Two methods for electrode selection 

To investigate which electrode locations were more effective, we decreased the 

number of electrodes for prediction using two methods and compared their 

respective performance.  

In the first method, electrodes were selected based on their implantation position. 

Previous physiological studies have shown that cortico-motoneuronal cells that 

encode muscle-activation patterns reflected in EMG activity are located 
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predominantly in the anterior bank of the central sulcus (CS) (Griffin et al., 2008, 

and Rathelot et al., 2009). Our previous work (Shin et al., 2012) also showed that 

the area close to the CS might be key to decoding muscle activity. Therefore, we 

selected electrodes in groups of 3, 6, 9, 12, and 15 or 16 electrodes, expanding in 

distance from the CS as shown in Figure 3-1B. We refer to this method hereafter as 

location-based selection. 

For the second selection method, electrodes were chosen based on prediction 

performance. Performance values for the PLS model using only one electrode were 

calculated and sorted by their coefficients of determination (R2). Then, electrodes 

with high performance were added in turn to train a new PLS model. To investigate 

the effective frequency band for prediction, performance values for the PLS model 

using only δ (1.5 ~ 4 Hz), γ3 (90 ~ 120 Hz), and γ4 (120 ~ 150 Hz) bands were also 

calculated for each electrode. We refer to this method hereafter as performance-

based selection. 

3.2.6 Analysis  

The entire 700 s of experiment data were divided into two parts, 500 s of training 

data and 200 s of test data. Ten-fold cross validation was employed to train the PLS 

model on the 500 s of training data. Then, the 200 s of test data were used to 

evaluate the PLS model.  

     PRESS values were calculated to find the optimal number of latent variables in 

the PLS model. Smaller PRESS values were associated with greater PLS model 

performance. Typically, the PRESS value decreases when effective latent variables 
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are added to train the model.  Then, if over-fitting occurs, the PRESS value 

increases. A good choice is to stop adding latent variables as soon as the PRESS 

value increases. In this study, however, the PRESS value decreased quickly when 

the number of latent variables was within 20, but then plateaued soon after, as 

shown in Figure 3-4 for monkey B (see also Figure 3-3 for monkey A). Thus, we 

selected 20 as the optimal number of latent variable. 

 

                             
 

Figure 3-3. Predictive error sum of squares in model training for monkey A 

The blue line and green line show predictive error sum of squares (PRESS) and R2 values, 

respectively, for different numbers of latent variables used in the PLS model. The optimal number of 

20 is denoted with the red dotted line. 
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Figure 3-4. Predictive error sum of squares in model training for monkey B 

The blue line and green line show predictive error sum of squares (PRESS) and R2 values, 

respectively, for different numbers of latent variables used in the PLS model. The optimal number 

of 20 is denoted with the red dotted line. 

     Weights of the prediction model were analyzed to evaluate the contribution of 

each the nine frequency bands used in this study. The contribution of frequency 

band Confb was calculated as  

     

Confb( j) =
�ijk

k
∑

i
∑

�ijk
k
∑

j
∑

i
∑             (3.4) 

     where, 𝜔!"# are the weights associated with the ECoG feature signal zij (t)  at 

electrode 𝑖, frequency band 𝑗, and time 𝑡 − 𝑘∆𝑡.  

     In addition, 3D hand trajectories were predicted using each of the nine 

frequency bands of the ECoG feature signals to investigate their individual 

contributions to prediction. 
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3.3 Result 

3.3.1 Prediction with the location-based selection method 

     3D hand trajectories were first decoded using all the ECoG electrodes. For 

monkey A, the mean R2 value and standard deviation (STD) after 10-fold cross 

validation were 0.4840±0.0118, and mean R2 using the test data was 0.4806. For 

monkey B, the mean R2 values after 10-fold cross validation and using the test data 

were 0.8424±0.0032 (Mean ± STD) and 0.7328, respectively. 

     We verified how decoding performance changes depending on the number of 

effective ECoG signals. Positions for the groups of 3, 6, 9, 12, and 15 or 16 ECoG 

electrodes selected to decode hand trajectories are shown in Figure 3-1B. For 

monkey A, R2 values for X, Y, and Z positioning were 0.4724, 0.4695, and 0.4997, 

respectively, obtained using all 15 electrodes. For monkey B with all 32 electrodes, 

R2 values for X, Y, and Z positioning were 0.7126, 0.7644 and 0.7263, respectively.  

One example of continuous prediction is shown in Figure 3-5 (see also Figure 3-7 

for monkey A). Actual and predicted hand trajectories in 3D space for a single trial 

are also shown in Figure 3-6 (see also Figure 3-8 for monkey A). The best R2 

values for X, Y, and Z positioning were 0.7288, 0.7677, and 0.7526, respectively, 

obtained using 9 electrodes of monkey B.  

     Figure 3-9 shows prediction results over 8 s of test data using 3, 6, 9, 12, and 16 

ECoG electrodes for monkey B (see also Figure 3-10 for monkey A). With the 

location-based selection method, 67.3% and 92.9% of the best R2 values were 
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achieved with 3 electrodes for monkeys A and B, respectively. Best R2 percentages 

using 6 electrodes were 85.3% and 96.9%, and 97.9% and 100% using 9 electrodes. 

 

 

Figure 3-5. Decoding results using 32 electrodes selected with the location-based 

method for monkey B 

Example of 3D hand trajectory prediction over 100 s of test data using 32 channel ECoG signals. R2 

values between the predicted (blue) and observed (red) trajectories for X-, Y-, and Z-positions are 

shown. 

-15
-10

-5
0
5

10
15 R2 =0.7126

X
-p

os
iti

on
 [c

m
]

-15
-10

-5
0
5

10
15 R2 =0.7644

Y
-p

os
iti

on
 [c

m
]

10 20 30 40 50 60 70 80 90 100
-15
-10

-5
0
5

10
15 R2 =0.7263

Z-
po

si
tio

n 
[c

m
]

Time [s]

actual
predicted



 

 35 

 
 
Figure 3-6. Decoding result of monkey B in three dimensional space 

A) Example of prediction of 3D hand positions during 1 trial movement by using 32 channel ECoG 

signals. The predicted (blue) and observed (red) trajectories in 3D space are shown. The hollow circle 

showed the start point of movement. Two triangles showed hand position in moving process at the 

same time. Solid circle showed the end point of movement. 

B) The predicted (blue) and observed (red) trajectories were shown in the view point of X-Y plane. 

C) The predicted (blue) and observed (red) trajectories were shown in the view point of X-Z plane. 

D) The predicted (blue) and observed (red) trajectories were shown in the view point of Y-Z plane. 
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Figure 3-7. Decoding results using 15 electrodes for monkey A 

Example of prediction of 3D hand positions during 100 seconds test data by using 15 channel ECoG 

signals. The R2 value between the predicted (blue) and observed (red) trajectories for X-, Y-, and Z-

positions are shown. 
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Figure 3-8. Decoding results for monkey A in three dimensional space 

A) Example of 3D hand trajectory prediction for one trial movement using 3 electrodes. The 

predicted and observed trajectories in 3D space are depicted in blue and red, respectively. The 

unfilled circles represent the start point of movement. The two triangles mark hand position at 

equivalent time points during movement. Solid circles denote the end point of movement. 

B, C, and D) The predicted (blue) and observed (red) trajectories shown in the X-Y, X-Z, and Y-Z 

planes, respectively. 
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Figure 3-9. Decoding results for monkey B with different electrode numbers selected 

using the location-based method 

Example prediction of 3D hand positioning over 8 s of test data using 3, 6, 9, 12, and 16 electrodes. 

The red solid line depicts actual trajectories. The green solid line, purple dotted line, light blue dotted 

line, brown dotted line, and blue solid line represent predicted trajectories using 3, 6, 9, 12, and 16 

electrodes, respectively. 
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Figure 3-10. Decoding results for monkey A with different electrode numbers 

selected using the location-based method 

Example prediction of 3D hand positioning over 8 s of test data using 3, 6, 9, 12, and 15 electrodes. 

The red solid line depicts actual trajectories. The green solid line, purple dotted line, light blue 

dotted line, brown dotted line, and blue solid line represent predicted trajectories using 3, 6, 9, 12, 

and 15 electrodes, respectively. 
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3.3.2 Prediction with the performance-based selection method 

     For the performance-based method, prediction results for each individual 

electrode are shown in Figure 3-11A. For monkey A, R2 values ranged from 0.0903 

to 0.2407. The highest R2 value was achieved with electrode 10. For monkey B, R2 

values ranged from 0.3566 to 0.6269. The highest R2 value was achieved with 

electrode 23. Prediction results for each electrode using δ (1.5 ~ 4 Hz), γ3 (90 ~ 

120 Hz), and γ4 (120 ~ 150 Hz) bands are shown in Figure 3-11B, 3-11C, 3-11D, 

respectively. R2 values using the δ band ranged from 0.00 to 0.05 and from -0.06 to 

0.37 for monkey A and monkey B, respectively. R2 values using the γ3 band ranged 

from 0.01 to 0.11 and from 0.01 to 0.50, respectively.  The R2 values using γ4 

ranged from 0.01 to 0.16 and from 0.01 to 0.47, respectively. Performances for the 

γ3 and γ4 bands were similar and generally higher than those of the δ band. For 

both monkeys, the most effective electrodes were concentrated at the lateral areas 

and areas close to the CS, especially for the γ3 and γ4 bands.  
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Figure 3-11. Decoding result form each electrode and performance details of two 

methods. 

A) Performance of prediction by using all frequency bands of one electrode. The color map in each 

electrode showed the performance by using this electrode. For monkey A, the R2 value changed 

form 0.00 to 0.24. For monkey B, the R2 value changed form 0.00 to 0.63.  
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B) Performance of prediction by using δ bands of one electrode. The color map in each electrode 

showed the performance by using this electrode. For monkey A, the R2 value changed form 0.00 to 

0.24. For monkey B, the R2 value changed form 0.00 to 0.63.  

C) Performance of prediction by using γ3 bands of one electrode. The color map in each electrode 

showed the performance by using this electrode. For monkey A, the R2 value changed form 0.00 to 

0.24. For monkey B, the R2 value changed form 0.00 to 0.63.  

D) Performance of prediction by using γ4 bands of one electrode. The color map in each electrode 

showed the performance by using this electrode. For monkey A, the R2 value changed form 0.00 to 

0.24. For monkey B, the R2 value changed form 0.00 to 0.63.  

E) The blue solid and dotted line showed the decoding performance for Subject A by using 

performance-based method and location-based method, respectively. The red solid and dotted line 

showed the decoding performance for Subject B by using performance-based method and location-

based method. The solid pentagrams and circles showed the highest performance in performance-

based method and location-based method, respectively. The green and brown dotted line showed the 

number of electrodes, by using which to achieve 90% of best R2 value, for monkey A and monkey 

B, respectively, in location-based methods. 

3.3.3 Summary of the two electrode selection methods 

     Performance details of two electrode selection methods are shown in Figure 3-

11E. For both monkeys, performance was improved quickly as the number of 

electrodes used increased from 1 to 9. The performance curves fluctuated only 

slightly when using 10 electrodes and above. The best R2 values were achieved 

using 13 and 10 electrodes for monkeys A and B, respectively.  

     For both methods, the principle is to select more effective electrodes in 

prediction. As shown in Figure 3-11A, 3-11B, 3-11C, and 3-11D, higher 
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performance electrodes are concentrated at the lateral areas and near areas of CS. 

This result is consistent with the principle of the location-based selection method.  

     To confirm this principle, columns electrodes were also used to predicted hand 

trajectory. Prediction results in the rostral-caudal direction, and in the medial-lateral 

direction are shown in Table 1 and Table 2, respectively.  

     The highest performance in the rostral-caudal direction was achieved using 

column #1 in both monkeys. For monkey A, performance using column #3 was 

higher than that using #2. This might have been an effect of the presence of 

electrode 10 (Figure 3-11A). For monkey B, performance using column #3 was 

second highest, and performance using column #2 was higher than that using 

column #4. Highest performance in the medial-lateral direction was achieved using 

row *2 in both monkeys. For monkey A, performance using row *1 was higher 

than that using rows *3, *4, and *5. For monkey B, performance using row *3 was 

second highest, and may have been due to the effect of the δ band at electrode 13 

(Figure 3-11B). Performance using row *1 was higher than that using row *4. 

Generally, higher performance rows and columns are at the lateral areas and areas 

near the CS.  
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Table 3-1. Prediction results using location-based electrode selection in the rostral-

caudal direction 

Monkey Location 
R2 

x y z mean 

A 

#1 0.3317 0.3397 0.3535 0.3416 

#2 0.2959 0.2452 0.3438 0.2950 

#3 0.2998 0.2956 0.3580 0.3178 

B 

#1 0.6773 0.7164 0.6980 0.6973 

#2 0.6063 0.6593 0.6524 0.6393 

#3 0.6591 0.6793 0.6704 0.6696 

#4 0.5655 0.6059 0.5578 0.5763 

 
 

 
Table 3-2. Prediction results using location-based electrode selection in the medial-

lateral direction 

Monkey Location 
R2 

x y z mean 

A 

*1 0.3035 0.3008 0.3429 0.3157 

*2 0.3640 0.3774 0.4141 0.3852 

*3 0.2423 0.2217 0.2873 0.2505 

*4 0.1996 0.1807 0.2381 0.2061 

*5 0.1851 0.1713 0.2213 0.1926 

B 

*1 0.6343 0.6888 0.6117 0.6449 

*2 0.6577 0.6930 0.7069 0.6859 

*3 0.6646 0.7005 0.6841 0.6830 

*4 0.5729 0.5865 0.5501 0.5699 
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3.3.4 Analysis of specific frequency bands  

     Weights of the nine frequency bands in the prediction model were calculated 

and are shown in Figure 3-12A as percent contributions. For monkey B, γ3 (90 ~ 

120 Hz) provided the highest contribution. The contributions of δ (1.5 ~ 4 Hz) and 

γ4 (120 ~ 150 Hz) were higher than those of θ (4 ~ 8 Hz), α (8 ~ 14 Hz), β1 (14 ~ 

20 Hz), and β2 (14 ~ 20 Hz).  

     3D hand trajectories were predicted by using each frequency band of the ECoG 

feature signals individually (Table 3). A two-way ANOVA was employed to judge 

two effects (X, Y, and Z positioning, and the nine frequency bands).  No significant 

differences in prediction performance between X, Y, and Z positioning were 

observed in both monkeys (monkey A: F2, 16 = 3.61, p = 0.051; monkey B: F2, 16 = 

1.96, p = 0.173). Significant differences in prediction performance were observed 

between frequency bands, (monkey A: F8, 16 = 14.16, p = 6.41×10-6; monkey B: F8, 

16 = 52.39, p = 4.99×10-10), as shown in Figure 3-12B. The prediction performances 

using δ, γ2, γ3, and γ4 bands were also significantly higher than that of other bands. 

Prediction performance of the θ and γ1 bands was significantly higher than that of 

β2. 
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Figure 3-12. Analysis results of monkey B on separate sensorimotor rhythm 

bands. 

A) The weight of each frequency band in PLS model was calculated and showed. Each bar 

represents the weights of each frequency band. Each plane showed the contribution of X position, 

Y position and Z position, respectively. 

B) Result of prediction using each separate sensorimotor rhythm ECoG signals. The result of 

analysis based on two-way ANOVA (position and sensorimotor rhythm band) was shown. Each 

bar represents the mean of R2 value of X, Y, Z position between observed and predicted hand 

trajectories. Significant differences between the mean of R2 value are marked with * (p<0.001) 
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Table 3-3. Prediction results using individual frequency bands 

Monkey Bands 
R2 

X y z mean 

A 

δ 0.0987 0.0440 0.1121 0.0850 

θ 0.0689 0.0873 0.0757 0.0773 

α 0.0793 0.1094 0.0800 0.0895 

β1 0.1314 0.1206 0.1503 0.1341 

β2 0.1860 0.2108 0.2188 0.2052 

γ1 0.1627 0.1808 0.1634 0.1690 

γ2 0.1604 0.1476 0.2033 0.1705 

γ3 0.1602 0.1149 0.1920 0.1557 

γ4 0.1739 0.1584 0.2103 0.1809 

B 

δ 0.5652 0.5970 0.6242 0.5955 

θ 0.4316 0.4496 0.4263 0.4358 

α 0.4169 0.4252 0.3051 0.3824 

β1 0.3743 0.4049 0.3318 0.3703 

β2 0.2906 0.3389 0.2345 0.2880 

γ1 0.4567 0.4796 0.3618 0.4327 

γ2 0.6391 0.6794 0.6628 0.6605 

γ3 0.6427 0.6844 0.6966 0.6746 

γ4 0.6477 0.6913 0.6929 0.6773 
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3.4 Discussion  

3.4.1 main work in this study  

     This study decoded 3D hand trajectories from ECoG signals in Ml and showed 

that most effective electrodes were concentrated at the lateral areas and areas close 

to the CS. Comparisons between prediction results suggest that a selection of 

effective ECoG signals may be better choice than a whole ECoG array. Our results 

also suggested that ECoG signals are of ample quality and efficiency to control a 

high performance neural prosthetic.  

3.4.2 Which locations are most effective for prediction? 

     Carmena et al. (2003) reported that neuron activity recorded from Ml showed 

greater efficacy than that from dorsal premotor cortex, supplementary motor cortex, 

posterior parietal cortex, and primary somatosensory cortex. Previous ECoG 

studies have also used signals mainly from the primary motor area (Pistohl et al., 

2012, Pistohl et al., 2013, and Yanagisawa et al., 2012). We chose M1 based on 

those previous results and evaluated the optimal locations in M1. As shown in 

Figure 3-11A, ECoG signals from the lateral areas and near areas of CS also 

showed greater efficacy in prediction, especially in the δ, γ3, and γ4 bands (Figure 

3-11B, 3-11C, 3-11D). 

3.4.3 How did different numbers of ECoG electrodes affect performance? 

     As shown in in Figure 3-11E, the best mean R2 values for monkeys A and B 

were 0.4805 and 0.7496, respectively, in the location-based selection, and 0.4815 
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and 0.7780 in the performance-based selection. Both methods, therefore, appear to 

have equivalent ability to predict hand trajectories.  

     For both monkeys, performance improved quickly as the number of electrodes 

used increased from 1 to 9. The performance curves fluctuated only slightly when 

using 10 electrodes and above. Best decoding performance was achieved using a 

relatively small number of electrodes, 13 and 10 electrodes in the performance-

based selection for monkey A and monkey B, respectively. The performances 

curves of this study are similar to the results of a previous neuron activity-based 

study (Sanchez et al., 2004), which selected different numbers of high sensitivity 

neurons in decoding kinematic variables. These results suggest that best decoding 

performance can be achieved from a relatively small number of effective ECoG 

signals. However, it should also be noted that decoding performance is not simply 

related to the electrode number but may more closely depend on the density of 

electrodes within the effective areas. Still, with the potential utility of wireless 

transmission technology in ECoG (Hirata et al., 2011, and Bjorninen et al., 2012), a 

relatively smaller number of electrodes would provide the benefit of lower power 

consumption, extending the usage time for wireless BMIs. 

3.4.4 Which frequency bands are most effective? 

     To evaluate the efficacy of specific frequency bands in trajectory decoding, we 

compared prediction performances of the nine physiologically-based frequency 

bands with 10 Hz-width fractionized frequency bands from 0 to 150 Hz. The 

physiologically-based method produced nearly the same or better results (R2 = 
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0.7328) than the fractionized frequency method (R2 = 0.6815) for monkey B. These 

results suggest that the usage of physiological frequency bands is more effective 

than non-physiological fractionized frequency bands. 

     Weight analysis for the PLS model and the results of decoding performance 

using each of the nine frequency bands showed that the δ, γ2, γ3, and γ4 bands 

were more effective than other bands in this study. Previous ECoG studies have 

shown the importance of the high γ band in motor decoding and BMI control, such 

as the 60-80 Hz band in prediction of 3D hand trajectories in monkeys (Chao et al., 

2010, and Shimoda et al., 2012), 70-110 Hz in controlling a 3D cursor in humans 

(Wang et al., 2013), and 56-128 Hz in grasp detection in humans (Pistohl et al., 

2013). The importance of the δ band is also supported by our previous ECoG work 

(Shin et al., 2012), and is consistent with a previous study (Pistohl et al., 2012), 

which employed a low-frequency band (2-6 Hz) to classify natural grasp types.  
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Chapter 4 
Prediction of grasp force profile from ECoG signals  

4.1 Introduction 
     Brain machine interfaces (BMIs) hold promise as a means for disabled 

individuals to control external devices using neural activity. In the past two decades, 

invasive methods have been wildly used to control robot arms and other neural 

prosthetics in rats (Chapin et al., 1999 and Koralek et al., 2012), monkeys 

(Wessberg et al., 2000, Taylor et al., 2002, Carmena et al., 2003, Musallam et al., 

2004, Velliste et al., 2008, Ganguly et al., 2011, Ethier et al., 2012, Gilja et al., 

2012, Hauschild et al., 2012, and Hao et al., 2013), and humans (Hochberg et al., 

2006, Hochberg et al., 2012, and Collinger et al., 2013), using neural signals such 

as spiking activity and local field potential. Muscle activity (Morrow and Miller, 

2003, and Koike et al., 2006), reach and grasp kinematics (Zhuang et al., 2010, 

Bansal et al., 2011, and Bansal et al., 2012) and dexterous finger motions 

(Aggarwal et al., 2008) during real movement have also been decoded in monkeys. 

Despite these successes, however, the penetration of the brain with invasive 

methods has remained a serious bottleneck for practical clinical solutions in 

humans.  

     Electrocorticography (ECoG) signal presents a potential alternative for 

supporting high accuracy BMIs because of its comparatively lower invasiveness. 

ECoG has seen wide clinical use, with electrodes commonly being implanted to 
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localize seizure foci for the treatment of epilepsy in humans. This has also allowed 

for the investigation of ECoG-based BMI in humans, including studies on cursor 

control (Leuthardt et al., 2004, Schalk et al., 2008, and Wang et al., 2013), 

classification of hand movement (Chin et al., 2007, Yanagisawa et al., 2009, and 

Yanagisawa et al., 2011), and grasp types (Pistohl et al., 2012), detection of grasp 

initiation (Pistohl et al., 2013), and decoding of hand trajectories (Schalk et al., 

2007, Chao et al., 2010, Shimoda et al., 2012, Nakanishi et al., 2013, and Chen et 

al., 2013) and finger movement (Kubanek et al., 2009 and Acharya et al., 2010). 

Prediction of muscle activity (Shin et al., 2012) and movement-related intracortical 

activity (Watanabe et al., 2012) from ECoG signals during reaching and grasping 

movements in monkeys have also been successful. Despite the importance of 

grasping force in everyday life, the prediction of grasp force profile during reaching 

and grasping movement has remained lacking yet.	  

     The aim of this study was to decode grasp force profile from ECoG signals 

recorded from the primary sensorimotor areas. Fifteen and sixteen channel ECoG 

signals were recorded from the primary sensorimotor cortex in Japanese monkeys 

while performing reaching and grasping tasks. A sparse linear regression method 

was employed to decode grasp force profile. Our results demonstrate accurate 

decoding of grasp force profile from ECoG signals and the efficacy of high γ bands 

in decoding. 
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4.2 Method 

4.2.1 Ethics statement  

     All experimental procedures were performed in accordance with the Guidelines 

for Proper Conduct of Animal Experiments by the Science Council of Japan and 

approved by the Committee for Animal Experiments at the National Institutes of 

Natural Sciences (Approval No.: 11A157). Steps were taken to ensure the animals’ 

welfare and ameliorate suffering in accordance with the recommendations of the 

Weatherall report, “The use of non-human primates in research.” 

4.2.2 Monkey subjects and experimental procedure   

     Here, we describe our main experimental procedures. Details on these 

procedures can be found in Chapter 3. We trained two Japanese monkeys (Monkey 

A: male, 8.9 kg; Monkey B: female, 4.7 kg) to reach for and grasp a small plastic 

knob at the end of joystick with the right hand, repeatedly and continuously. Totals 

of 134 and 248 trials were performed by monkey A and monkey B, respectively. 

4.2.3 ECoG and force data collection  

     A thin-film force sensor (FlexiForce; Tekscan, Inc., South Boston, MA) was 

attached to the surface of a knob to measure grasp force. As shown in Figure 4-1, 

15 (monkey A: 5x3 grid) and 16 (monkey B: 4x4 grid, with one electrode in the 

somatosensory cortex) channel ECoG electrode arrays (Unique Medical 

Corporation, Tokyo, Japan) were implanted in the left primary sensorimotor areas, 

for monkeys A and B, respectively. Locations of these electrode arrays were 
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identified from anatomical views during surgeries and postoperative X-ray image 

(monkey B) or observation with craniotomy after perfusion (monkey A). The 

electrodes had a diameter of 1 mm and an inter-electrode distance of 3 mm center-

to-center. ECoG signals and lateral grasp force were recorded simultaneously 

during the grasping task at 4kHz with an acquisition processor system (Plexon 

MAP System; Plexon, Inc., Dallas, TX) and down-sampled to 500Hz for data 

processing. 

 

Figure 4-1. ECoG electrode locations  

The ECoG platinum electrode arrays were placed on the subdural space, near the central sulcus (CS) 

in the left primary sensorimotor area. AS: arcuate sulcus.  

4.2.4 Decoding algorithm and data analysis 

     We detected the start and end time points for grasping from the position of the 

wrist marker, a on and off target sensor information on joystick (Shin et al., 2012, 

and Chen et al., 2013). The start point (time point 0 in Figure 2) was defined as the 

time point when the monkeys touched the knob, and the end point was defined as 
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the time point when the monkeys released the knob. Both points were confirmed 

using target sensor data. Average grasping durations with standard deviations 

(STD) for monkeys A and B were 1.86 ± 0.21 s and 0.52 ± 0.17 s, respectively (Fig. 

2). Thus, the duration of each trial was set to 2 seconds and 0.7 second in force 

profile prediction monkeys A and B, respectively. Ten-fold cross validation was 

employed to counteract over-fitting, with each fold containing 11 and 24 test trials 

for monkeys A and B, respectively. 

 

Figure 4-2. ECoG spectral feature and raw force data  

A) ECoG spectral feature of the most contributed electrode 7 for monkey A 

B) ECoG spectral feature of the most contributed electrode 6 for monkey B 



 

 56 

C) Blue lines represent the amplitude of raw force for monkey A, which containing a total number 

of 134 trials. The red and black lines represent the mean and standard deviation of raw force, 

respectively. 

D) Blue lines represent the amplitude of raw force for monkey B, which containing a total number 

of 248 trials. The red and black lines represent the mean and standard deviation of raw force, 

respectively. 

     In preprocessing, raw ECoG signals were common average referenced and 

band-pass filtered using ten different sensorimotor frequency band-pass filters: δ 

(1.5 ~ 4 Hz), θ (4 ~ 8 Hz), α (8 ~ 14 Hz), β1 (14 ~ 20 Hz), β2 (20 ~ 30 Hz), γ1 (30 

~ 50 Hz), γ2 (50 ~ 90 Hz), γ3 (90 ~ 120 Hz), γ4 (120 ~ 150 Hz), γ5 (150 ~ 200 Hz). 

Band-passed ECoG signals were then smoothed with a Gaussian filter (width: 0.1 s; 

σ: 0.04 s). Finally, the smoothed ECoG signals at time t, sECoGij (t) , were z-score 

normalized to produce the final ECoG source signal zij (t)  such that 

     
zij (t) =

sECoGij (t)−µij

σ ij

                                                                                    (4.1) 

     where, i and j are the electrode channel and the frequency band, respectively, 

and µij  and σ ij  are the mean and the standard deviation of sECoGij (t)  over a 2 s 

interval before time t, respectively. 

     Force data were also low-passed filtered at a cutoff of 4Hz (100th order window-

based finite impulse response filter). Then, the low-passed force data were 

normalized to the maximum value of each trial to produce the force profile. 

     A sparse linear regression method was employed to train a decoding model 

using ECoG feature signals. Sparse estimation methods are expected to be useful for 
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extracting significant information from redundant and numerous dataset. We used the 

sparse linear regression algorithm, which has a generalization capability for unknown 

datasets due to its ability to remove irrelevant features, avoid over-fitting of the 

datasets. The grasp force profile at time t, Fp(t) , was decoded using the ECoG 

feature signal zij (t)  over a 0.6 s interval before time t and can be described as  

     

Fp(t) = ωijkzij (t − kΔt)+ω0
k=0

19

∑
j=1

10

∑
i=1

15or16

∑                                                                 (4.2) 

     where, p is the predicted value of the grasp force profile, Δt  is 30 ms, ωijk are the 

weights according to the ECoG feature signal zij (t)  at electrode channel i , 

frequency band j , and time t − kΔt , and ω0 is the bias.  

     Weights of the prediction model were analyzed to evaluate the contribution of 

each electrode and frequency band used in this study. The contribution of each 

electrode Cone, each frequency band Confb and the contribution matrix of 

electrodes and frequency bands Conefb were calculated as  

     

Cone(i) =
ωijk

k
∑

j
∑

ωijk
k
∑

j
∑

i
∑

                                  (4.3) 

     

Confb( j) =
�ijk

k
∑

i
∑

�ijk
k
∑

j
∑

i
∑

                      (4.4) 

     

Conefb(i, j) =
ωijk

k
∑

ωijk
k
∑

j
∑

i
∑

                      (4.5) 
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     where, ωijk are the weights according to the ECoG feature signal zij (t)  at 

electrode channel i , frequency band j , and time t − kΔt . 

     Analysis of variance (ANOVA) was performed using MATLAB (MathWorks, 

Natick, MA) to detect significant effects of Cone and Confb. A two-way ANOVA 

with the Tukey-Kramer test was applied to detect significant effects of Conefb.  

     Correlation coefficient (CC) and normalized root mean square error (nRMSE) 

values between actual and predicted force profile were used to valuate performance of 

prediction.  
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4.3 Result  

4.3.1 Decoding results of lateral grasp force profile 

     Grasp force profiles for monkeys A and B were predicted from the 15 and 16 

channel ECoG signals, respectively.  Figure 4-3 shows typical decoded and actual 

force profiles for both monkeys. CC and nRMSE values in 10-fold cross validation 

are summarized in Table 1. The best CC values for monkeys A and B were 0.82 ± 

0.09 (mean ± standard deviation) and 0.79 ± 0.15, respectively. The best nRMSE 

values for monkeys A and B were 0.21 ± 0.05 and 0.25 ± 0.09, respectively. Grand 

averages and standard error of the mean were 0.77 ± 0.03 and 0.71 ± 0.05 for CC, 

and 0.23 ± 0.01 and 0.29 ± 0.02 for nRMSE. These results clearly show that ECoG 

data contained information about grasp force profile.  

     CC and nRMSE distributions over all test trials in 10-fold cross validation are 

shown in Figure 4-4. The median CC and nRMSE were 0.81 and 0.21 for monkey 

A, and 0.80 and 0.28 for monkey B, respectively. Negative CC values were used in 

analysis but not shown for ease of visualization. These results show that force 

profiles were predicted successfully from ECoG signals.  

     A one-way ANOVA was applied to identify whether significant differences 

exist in decoding performances between test subsets. No significant differences in 

CC (monkey A: F9, 100 = 0.75, p = 0.66; monkey B: F9, 230 = 0.80, p = 0.62), or 

nRMSE (monkey A: F9, 100 = 0.34, p = 0.96; monkey B: F9, 230 = 0.91, p = 0.52), 

were observed between test subsets in both monkeys.  
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Figure 4-3. Sample of predicted force profile 

A) Example of observed (blue) and predicted (red) force profile over 2 second of test data using 15 

channel ECoG signals for monkey A.  The coefficient of correlation (CC) value and normalized root 

mean square error (nRMSE) between observed and predicted force profile were showed at the top of 

figure. In this figure, the prediction error of the early grip strength accidentally appeared. 

B) Example of observed (blue) and predicted (red) force profile over 0.7 second of test data using 16 

channel ECoG signals for monkey B. The coefficient of correlation (CC) value and normalized root 

mean square error (nRMSE) between observed and predicted force profile were showed at the top of 

figure. 
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Table 4-1. Decoding performances of 10-fold cross validation for both monkeys 

 Monkey A Monkey B 

    Test set CC nRMSE CC nRMSE 
    1 

 
0.81±0.07 0.22±0.03 0.78±0.21 0.25±0.09 

    2 0.74±0.17 0.23±0.06 0.71±0.22 0.31±0.10 

    3 0.82±0.09 0.22±0.05 0.70±0.27 0.30±0.12 

    4 0.73±0.18 0.24±0.08 0.64±0.27 0.31±0.11 

    5 0.79±0.10 0.22±0.05 0.67±0.24 0.32±0.11 

    6 0.80±0.13 0.21±0.05 0.74±0.24 0.28±0.11 

    7 0.74±0.13 0.24±0.06 0.73±0.32 0.28±0.14 

    8 0.78±0.09 0.23±0.04 0.79±0.15 0.27±0.09 

    9 0.73±0.17 0.23±0.05 0.72±0.28 0.29±0.13 

    10 0.79±0.13 0.22±0.06 0.67±0.32 0.28±0.10 

      Average 0.77±0.03 0.23±0.01 0.71±0.05 0.29±0.02 
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Figure 4-4. Histogram of whole result in 10-fold cross validation  

The height of each blue and red bar is equal to the number of trials according to CC and nRMSE, 

respectively, with density of interval (0.02). The total area of histogram is equal to the whole 

number of test trials 10-fold cross validation for both monkeys. We noted that, for visualization, all 

negative CC values were substituted. Dotted line showed the median of CC and nRMSE for both 

monkeys.  
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4.3.2 Contribution of individual electrodes and frequency bands to decoding  

     Figure 4-5 shows the calculated contribution of each electrode to the decoding. 

For monkey A, the first, second, and third highest contributing electrodes were 7, 9, 

and 5, respectively. For monkey B, the three highest contributing electrodes were 

15, 6, and 5. The contributions of each frequency band were also calculated. The β2 

band showed the highest contribution for monkey A, and the γ4 band was highest 

for monkey B. A two-way ANOVA was applied to analyze the contribution matrix 

of the 15 or 16 electrodes and the ten frequency bands. No significant difference 

was observed between the 15 or 16 electrodes of the two monkeys (monkey A: F14, 

126 = 1.29, p = 0.22; monkey B: F15, 135 = 1.56, p = 0.09). Significant differences 

between frequency bands were observed in monkey B, where the γ3 and γ4 bands 

were significantly higher than the θ, β1, β2 and γ1 bands. Moreover, the γ5 band 

was significantly higher than the γ1 band (monkey B: F9, 135 = 6.01, p = 4.54×10-7), 

as shown in Figure 4-6. For monkey A, no significant difference was observed 

between frequency bands (monkey A: F9, 126 = 1.88, p = 0.06). In addition, we also 

decoded grasp force profile using each individual frequency band of the ECoG 

feature signals to investigate their individual contributions to prediction. The 

decoding performance (CC) using δ, β1, γ2, γ3, γ4 and frequency bands were 

significantly higher than using θ, α, β2, γ1, and γ5 frequency bands (F9, 1090 = 40.44, 

p = 1.70×10-62, one-way ANOVA with the Tukey-Kramer test) for monkey A. For 

monkey B, the decoding performance (CC) using δ, γ2, γ3, γ4 and γ5 frequency 

bands were significantly higher than using θ, α, β1, β2, and γ1 frequency bands (F9, 
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2390 = 34.88, p = 2.46×10-58). The γ2, γ3, γ4 showed greater efficacy in both 

monkeys. 
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Figure 4-5. Contribution of electrodes 

The color mapping of each electrode represents the contribution of that electrode in the prediction 

model. Contribution values ranged from 0.00 to 0.11 for both monkeys.  

 

 

 
 
Figure 4-6. Contribution of frequency bands 

Each bar represents the contribution of a frequency band in the contribution matrix of electrodes and 

frequency bands. We performed a two-way ANOVA with contribution of electrodes and frequency 

bands. Significant differences between weight values of frequency bands are denoted with ** (p < 

0.001). 
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4.4 Discussion 
     In this study, grasp force profiles were successfully decoded from ECoG signals 

recorded from primary sensorimotor cortex. To the best of our knowledge, this is 

the first attempt to decode real grasp force profiles from ECoG time series, and 

sparse linear regression algorithm did not detect irrelevant information of the motor 

cortex. To the best of our knowledge, this is the first attempt to decode real grasp 

force profiles from ECoG time series. These results, combined with our previous 

decoding of hand trajectory (Chen et al., 2013), suggest the feasibility to realize 

high performance ECoG-based neural prosthetics controllable in multiple degrees 

of freedoms. 

	   A previous study on electromyography-based finger grasp force decoding 

(Kamavuako et al., 2013) showed that force can be recorded and predicted 

precisely with the wrist of the subject fixed during a finger grasping task. However, 

in a reaching and grasping task, the recorded force data should be considered as a 

combination of forces rather than a simple finger grasp force, which maybe 

affected by shoulder, elbow, and wrist joint torque, arm momentum, and other such 

factors. For these reasons, we decoded the temporal profile of grasp, a principle 

component of finger dynamics, rather than the absolute value of force data. Further 

more, grasping force decoding during reaching tasks is more important for real 

application development than static force decoding because it is natural to occur in 

our everyday life. 

     Grasping is a fundamental capability of the hand and a key area for investigating 

motor function and developing BMIs. It has been shown that neuron activities in 



 

 67 

anterior intraparietal cortex (Baumann et al., 2009), dorsal premotor cortex, and 

primary motor cortex (Mason et al., 2002 and Hendrix et al., 2009) are correlated 

with target object properties, hand shape, and grasp force level. Furthermore, 

Carmena et al. (2003) decoded intended grasp force to control grasping by a robot 

arm. Open and close control (Velliste et al 2008, Hochberg et al., 2012) and 

aperture decoding and control (Zhuang et al., 2010, Bansal et al., 2011, Bansal et 

al., 2012, and Collinger et al., 2013) of grippers have also been investigated. 

Differing from previous studies, in this current work, we decoded grasp force 

profiles from ECoG time series, presenting a potentially more natural and realistic 

control method for neural prosthetics. 

     Early studies investigated finger movements related unit activity in the M1 

(Smith et al., 1975, Fetz and Cheney, 1980, and Buys et al., 1986), while long-

standing controversy over whether “muscles” or “movements” are represented in 

the M1 (Kakei et al., 1999). We focused on high-γ component of ECoG, because 

the high-γ component of LFP or ECoG reflects the spiking activity (Ray et al., 2008, 

and Yazdan-Shahmorad et al. 2013). 

     The high gamma bands of ECoG feature signals showed higher amplitude 

before grasping, and higher amplitude last to time point of peak force in monkey B 

(Figure 2B). Then, the amplitude decreased. For monkey A (Figure 2A), these 

trends of ECoG feature data were not clear like monkey B. Analysis of weight 

values in the decoding models showed that γ3 and γ4 were a significantly effective 

bands for monkey B. Analysis of individual contribution of each frequency band 

also revealed that the γ2, γ3, and γ4 bands significantly affected on the contribution 
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of decoding in both monkeys. These results were consistent with our previous 

decoding of hand trajectory (Chen et al., 2013), and suggested greater efficacy for 

high γ bands in decoding multiple motor parameters, while we could not find 

anatomical evidence about the most effective site for finger force movement in this 

study. 
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Chapter 5 

Perspective of brain research and interface development 

with ECoG signals  

5.1 Developments of next generational ECoG  
     With the great achievement in ECoG related research, wireless ECoG electrodes 

have been developed (Hirata et al., 2011, and Bjorninen et al., 2012). The high density 

and large-scale ECoG electrodes, which can cover the whole of brain, have been 

focus as future direction of development of ECoG electrodes.  

 

Figure 5-1. Design of wireless ECoG electrode  

This figure is from Bjorninen et al., 2012.  

5.2 Future brain research with ECoG signals 

5.2.1 Major obstacles in brain research  

     Brain is the central of nervous systems, control over the whole parts of our body 

and activities, such as movement, thinking and feeling. More than one hundred years, 
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productive experiments were held, and knowledge have been gotten from different 

level of brain research, from protein, gene, synapses, cells, microcircuits, brain 

regions to whole brain, as shown in Figure 5.1. However, proper understanding 

between different levels of brain is still lacking, for example, the links from neuron 

spike activities to learning and memory. The major obstacle in brain research is 

fragmentation of different parts and levels in brain research.  

     To solve these problems, huge research projects are being held in the world. In 

Europe, Human Brain research project which aims to simulate the complete human 

brain on supercomputer to better understand how it functions, involve hundreds of 

researchers, from 135 partner institutions in 26 countries. Its total costs are estimated 

at 1.190 billion euro for ten years. In American, Brain Activity Map Project is a 

proposed collaborative research initiative, with the goal of mapping the activity of 

every neuron in human brain. The budgets have been projected to cost more than 

$300 million per year for ten years. A huge national research project also will be held 

in japan with the aim of elucidating the network of whole brain.  

     Almost at the same time, the primary countries in the world started huge brain 

research projects. It suggested the possibility of elucidating the network of whole 

brain have been the common knowledge among the brain researchers in the world.  

The process of these research projects will be the milestone in the history of brain 

research.  
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Figure 5-2. From molecules to the body: spatial scales for the brain’s different levels 

of organization span nine orders of magnitude 

https://www.humanbrainproject.eu Human Brain Project Report to European Commission 

5.2.2 Brain research with next generational ECoG signals 

     Although the record of single neuron activity is most direct way to investigate 

network activity and the function of brain, the possible recording number of neurons 
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still limited in about hundreds. ECoG signals represent the activity of a population of 

cells. ECoG signals show great potential to investigate real-time network activity, 

with the development of multi-channel ECoG electrode, which can cover the whole of 

brain.  

     This study clearly demonstrated that multiply motor parameters could be decoded 

from ECoG signals, and the most effective areas for hand trajectory decoding were 

concentrated at the lateral areas and areas close to the central sulcus (CS), as shown in 

Figure 5-2. These results gave us the vision of large areas in the brain, which is 

difficult by using invasive recording methods, because it is very difficult to record 

neuron activities from large area of brain, simultaneously.  

     With this advantage, we believe that it is possible to investigate the network 

activity between different brain areas, builting a bridge across single neuron activity 

to brain regions in brain research with next generational ECoG signals.  

                        

Figure 5-3. Decoding performances with individual ECoG electrodes 

The color map in each electrode showed the performance by using this electrode. For monkey A, the 

R2 value changed form 0.00 to 0.24. For monkey B, the R2 value changed form 0.00 to 0.63.  
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5.3 Future brain machine interface development with ECoG 

signals 
     Brain machine interface aims at the restoration of lost function of disable people. 

Although several laboratory works (Hochberg et al., 2006, Hochberg et al., 2012, and 

Collinger et al., 2013) showed these developments hold promising, it will be still a 

long way and it can be applicable in our everyday life. There are also some issues 

should be discussed in figure brain machine interface.  

     First of all, we should consider the measurement of brain signals. The ideal 

measure method for BMI can be fully implanted, and have very long-term recording 

stability from lager number of neurons from multiple brain areas. In this view, ECoG-

based BMIs meet this need well. 

     Secondly, the computationally efficient algorithms are also needed for real time 

control.  The efficiency of feature selection method and decoding method is important. 

In this study, band-pass filter, z-score normalization and linear regression method 

were used in selecting motor related feature and training model. The computational 

cost of these methods were very low, and suitable for real time processing. 

     Thirdly, the long-term usage of brain machine interface will change the brain. How 

to use brain plasticity to incorporate prosthetic devices is still an opening question in 

the future. 

     Fourthly, the final goal maybe is to make the prosthetic device feel like the user’s 

own limb using micro-stimulation of cortical sensory areas based on neural feedback 

function.  
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     Anyway, recent ECoG based works have showed the long-term stability of ECOG 

signals (Chao et al., 2010), discussed the location of ECoG electrodes, subdural (Chao 

et al., 2010) and epidural (Shimoda et al., 2012), investigated the necessary number of 

ECoG electrodes and most efficient areas of ECoG recording (Chen et al., 2013). 

Combined with wireless system of ECOG signals (Hirata et al., 2011, and Bjorninen 

et al., 2012), ECoG signals hold promising in developing high performance neural 

prosthetics controllable in the future.  
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Chapter 6 

Conclusion 

6.1 Summary 
     The motivation of this thesis is to develop a new type of upper limb brain machine 

interface for practical application. To accomplish it, the background of brain machine 

interface was investigated, including invasive, noninvasive brain machine interface. 

Since the high clinical risk in invasive methods, and the low information capacity in 

noninvasive methods, ECoG signals were selected as signals source for relatively low 

invasiveness and high spatial-temporal resolution.  

     To complete a neural prosthetic with multi-degree of freedom, position in 

formation and control method for gripping is necessary. Thus, we intended to decode 

hand trajectory and force information from ECoG signals. Two monkeys were trained 

to perform reaching and grasping task. The ECoG signals, 3D hand positions and 

grasp force were recorded simultaneously during behavioral task.  

     We proposed an algorithm to decode hand trajectory and grasp force from 15 and 

32 channel ECoG signals recorded from primary motor cortex (M1) in two primates. 

To determine the most effective areas for prediction, we applied two electrode 

selection methods, one based on position relative to the central sulcus (CS) and 

another based on the electrodes’ individual prediction performance. The best 

coefficients of determination for decoding hand trajectory in the two monkeys were 
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0.4815 ± 0.0167 and 0.7780 ± 0.0164. Performance results from individual ECoG 

electrodes showed that those with higher performance were concentrated at the lateral 

areas and areas close to the CS. The results of prediction according with different 

numbers of electrodes based on proposed methods were also shown and discussed. 

These results also suggest that superior decoding performance can be achieved from a 

group of effective ECoG signals rather than an entire ECoG array. 

     We also demonstrated that lateral grasp force profile can be decoded using a sparse 

linear regression from 15 and 16 channel ECoG signals recorded from sensorimotor 

cortex in two non-human primates. The best average correlation coefficients of 

prediction after 10-fold cross validation were 0.82 ± 0.09 and 0.79 ± 0.15 for our 

monkeys A and B, respectively. These results show that grasp force profile was 

successfully decoded from ECoG signals in reaching and grasping tasks and may 

potentially contribute to the development of more natural control methods for 

grasping in neural prosthetics. 

     In addition, the future directions of brain research and interface development were 

investigated. The major burns in current brain research and interface development 

were discussed. With the development of next generational ECoG electrode, ECoG 

signals may play an important role in future brain and interface research. 

6.2 Future work 
     As future work, we want to complete real time robot control. An open loop control 

is possible to complete based on the result mentioned about. The main parts of open 

loop control can be divided into three parts: the starting time point of reaching and 

grasping, target hand trajectory of robot arm, and control of gripper.  
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     In previous ECoG based study, the starting time point of reaching and grasping 

were decoded successfully (Pistol et al., 2013). It is possible to achieve the same 

result. For target hand trajectory of robot arm, we can predict the target hand 

trajectory from ECoG signals (Chen et al., 2013). Then, shoulder and elbow joint 

angle can be calculated based on the predicted hand trajectory and length of robot arm 

(Koike et al., 2013). It is in discussion whether open or closed loop control method is 

better. We also want to decode aperture, the distant between thumb and index finger, 

from ECoG signals because aperture control of gripper is usual control method in 

current control systems (Zhuang et al., 2010, Bansal et al., 2011, Bansal et al., 2012, 

and Collinger et al., 2013). In addition, force control of the gripper during grasping 

will be held based on the predicted grasp force profile (Chen et al., 2013). 

     In addition, to develop a more compatible brain machine interface, the interaction 

between the monkey and physical world should be investigated. New system also 

should make use of the learning ability of monkey and the plasticity of brain. In this 

study, the monkeys were trained to perform reaching and grasping task only. 

Additional task were not investigated. In needle-based search (Velliste et al., 2008), it 

had been suggested that the monkeys learned to control robot arm with multi-degree 

of freedom to perform some movement, which is not necessary to self-feeding task 

and an assisted brain-controlled task is useful and an important phase for the monkeys 

to learn the robot arm by their neuron activities purely in the end. The plasticity of 

neuron activities and brain in this process may be very important to investigate how 

the brain learn and control a device outside directly. For ECoG signals, how to design 

an assisted brain-controlled task, whether the monkey can adapt neuron activity to 
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control the robot with ECoG signals, because ECoG signals reflect the population 

activity of brain rather than single neuron activity, and if they can, whether the 

plasticity of neuron activities with ECoG signal is the same with the plasticity of 

single neuron activity, are still opening question for future research.  
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